Acta Mathematica Academiae Scientiarum Hungaricae
Tomus 18 (1—2), 1967, pp. 19—23.

. ON A CLASS OF SOLUTIONS OF ALGEBRAIC
HOMOGENEQUS LINEAR EQUATIONS

By
A. PETHO (Budapest)
(Presented by P. TURAN)

On solving algebraic homogeneous linear equations by Cramer’s rule, solutions
can automatically be obtained in which the number of zero elements is maximal
in a sense [2J—{3]). In the present communication, these so-called ,,simple” solutions
are defined more simply, in a2 combinatorial manner, and their properties are formu-
lated more generally. The necessity of introducing simple solutions emerged orig-
inaily in connection with a chemical problem {2].

§ 1. Definition of simple solutions and several criteria for their existence

Let us consider the set of homogeneous linear equations
” .
()] jz: x,ay = 0, i=0n2..,m

Introducing the column vectors a,=lay;, ..., a.,;* (j=1,2, ..., n), instead of (1)
@ JZ; x4, =0

can be written. Defining the matrix A=[a,, ..., a,} and the column vector x=
=[xy, ..., x,J* (1) resp. (2) have the form:

® Az=0.

We will assume A to have no column and no row consisting of pure zero elements.

DEFINITION 1. In the set of the solutions s=[s,, ..., 5,]* of (3)

{a) the trivial solution should be disregarded, and

(b) two solutions s and s, 170 bemg a real number, should be considered
as a single solution.

So the number of the linearly independent solutions of (3) is n—r, where
r=rank A.

DEFINITION 2, Let the non-zero elements of the solution s= [sl,. . S, J* be
Sjyse-es 5,0 Where C={jy, ..., j,} is acombmatlon of the numbers 1,2, ..., n taken
g=n at a time. Then s is said a solution over C. \
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REMARK. Consider now a solution s=[s,, ..., .J* of the set of equations

n
J-Z;x".j=0, x.fq+l =L, = XJ”TO

where {jg+1, ---.Ja} is the complementary set of C in Definition 2. Let it be agreed
that in this case one says, for the sake of shortness, s to be a solution of the equation

4
4 _ 2 %8, =0. P
=] ( ;J
Consequently, if s is a solution over C={j,, ..., j,}, 8 is a solution of (4). e
DEFINITION 3. Let s be a tion over C={jj, ..., j,}. 8 will be said simple I
if it is the only solution of (4)fUnder consideration of Definition 1, s is sim'pie if
and only if [4 e
&) rank [a;,, ..., a; ]=g—1. [ KarVRen
THEOREM 1. For the number of the non-zero elements in a simple solution the
inequality holds: ‘ g i
(6) ~ 2=¢g=r+1, r=rank A i

PRrOOF. Since the trivial solution of (3) has been disregarded due to Definition 1,

no solution with ¢=0 exists. Nor does a solution exist with g=1, A having no

column with only zero elements. Thus, for every solution of (3), consequently for
the simple ones as well, 2= ¢ holds. — On the other hand, the inequality

o rank [a,,, ..., a; | =r
is always true, hence, owing to (5): -

g=rank [a;,...,8; J+1=r+1.
Qed O J

DEFNITION 4. Let s! be a solution over C* and s? be a solution over C%. The
solution s! is said better than s? if C? is a proper subset of C*: C' < C2.

DEeENITION 5. The solution s' is said_just as good as s* if they are solutions
over the same C.

——
~1
—

L

THBOREM 2. A solution is simple if and only if there does not exist any better one.

ProoF. The condition is trivially necessary on the basis of Definition 3. To
show that the condition is sufficient we will prove that, if a solution is not simple,
one can always find a better solution. Let s be a not simple solution over C={j,, ..., j,}»
then according to Definition 3

<

rank s, , ..., a; ]=¢—-2.

Setting ¢. g. x;,_ in (4) equal to zero, the new equation

£
(7) '=Z: X8y = 0
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ON ALGEBRAIC HOMOGENEOUS LINEAR EQUATIONS

becomes such that unchanged
rank [a;,, ..., 8, _]=g—-2.

Therefore, (7) will still have a solution 8" over some C’, such that C'cC: so §’ is
a better solution. Q.e.d. £

CoroLLARY. The number of the non-zero elements in a simple solution is at
least 2 according to (6). Thus, a solution with 2 non-zero elements — if existing —
is certainly simple because of the former theorem.

THEOREM 3. A solution is s:mple if and only if there does not exist any other
Just as good one.

Proor. The condition is trmally necessary, on the basis of Deﬁmnon 3. The
sufficiency will be proved in the form that if a solution is not simple, one can always
find another just as good one. Let s be a not simple solution over C={j,, ..., J,}
then (4) has also another solutlon, say 8. Let us now form the solution s+ s,
where ¢>0 is a real number. If s is small enough, the non-zero elements of s vary
hereby only a little, that is, do not become zero. Therefore, s+ &8’ will be a solutlon
just as good as 8. Q. e. d.

%ﬁ. Let a_combination C={j,, ..., j,} be given. A simple solution over
C

exists if and only iffthe solution of (4), say s, is unique, moreover
LS
L]
(8) s, =0
t=1

This theorem is a trivial consequence of Definitions 2 and 3. U}
THEOREM 5. The statement of the previous theorem holds if and only if

) rank{a; ,...,a; ] =¢g—1, E S:L‘f: fzx
t=1,2 .,q. i i

(10) rankfa;,...,a; 8, .,.,8]=g—1,

A system of linearly dependent vectors should be called a simplex if, by omnttmg
any of them, the remaining vectors become lmearly independent. The statement o ?
Theorem 4 holds consequently if and only if {a,,, ..., a,,} forms a simplex. %/

PROOF. At first we show that, if {a,,, .. » 8, } forms a snmplex, the solution of
" (4) is unique and (8) is also fulfilled. The solution of (4) is umque the number of
the unknowns, g, being by one greater than rank [ay,,...,a;,]=¢—1 (see ).
Consider now the (unique) solution of (4): s=[s,, ..., 5,J* Were any s, (1st=gq)
zero here, (4) without the term corresponding to a,, "would havé no solution (see
(10) and Definition 1), notwithstanding that s was the solution of (4). Thus (8)
must be true.

Now we show that, if the solution of (4) is unique and (8) also holds, the vectors
a;,, ..., a; form a simplex. Owing to the uniqueness (9) holds. Here, omitting any
vector a; (I =t=gq), the remaining ones becgme linearly independent; otherwise
X, woui’d namely be umquely zero in (4%, which contradicts (8). Thus (10)
holds, too. L}

®ct. Appendix.
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§ 2. Construction of the simple solutions

In the foregoing it has not yet been mentioned how the simple solutions of
(3) can be found. A few theorems with respect to this question will now be proved.

DEFINITION 6. A solution s of (3) is called a pase solution if it is a solution of
an equation of the form

( 1) Xy 8yt .t x, 8 X0 = 0,

where {a,,...,a,} is a basis (i.e. rank[m;,,....,a;]1=r) and k=r+1,..,n.
THEOREM 6. (11) determines one and only one solution s, for which also s;, #0.

~ Proor. Let us solve (11). The number of its unknowns being equal to'r+1
and the rank of its matrix [a;,, ..., 8;,, a,,] equal to r, its solution is unique, say s
(by virtue of Definition 1). Here, moreover, s;, #0, otherwise s; =... =5, =0 would
have to hold becausy {a;,, ..., 8, )} is a basis: thus (11} would have no solution
though s was one. Q.e.d. .
The base solutions of equation (3) are obtained when solving it by Cramer’s
rule. More exactly there holds the following

THEOREM 7. Let us solve (3) according to Cramer's rule. As known, choosing
a bal¥ (&, ..., 8, ), the general solution becomes

(12) 8= 2 Xu5,

' k=rt1
where the x;,_are the so-called free variables. Consider now all the general solutions
of type (12) belonging to the possible bases among a,, 8,, ..., 8, and consider the set
of the different 8,, in these solutions. As a trivial consequence of Definition 6 we may
assert that by these s;,_all the base solutions of (3) are represented.

We can now formulate our following fundamental
THEOREM 8. The simple solutions are identical with the base solutions.

PROOF. At ;'u'st we show that the base solutions are simple ones. Consider a
base solution, it is, due to Definition 6, a solution of an cquation of type (11).
Without loss of generality we may assume (11) to be of the following form:

(13) X8, +...+x,8,+x,8=0,

where {a,, ..., a,} is a basis. Here, according to Theorem 6, x, cannot be zero;
if, however, any of the unknowns x,, ..., x, i8 zero, then it must be uniquely zero.
Thus, let the unknowns x;,, ..., x,_, @=¢=r+1) be different from zero, then
(13) becomes:

(14) Xp 8t X 8 e =0,

where none of the unknowns can be zero any more. Thus, owing to Theorem 4,
the solution of (14), i. e. the base solution considered, will be a simple one over

C"—"-{jp "'Dj"l' k}
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We prove now that a simple solution is a base solution. Consider a simple
solution s, without loss of generality assuming it to be of the form s, , ..., 5,,0,...,0}*.
1t is, because of Definition 3, the unique solution of the equation

(15) x84, +...+x,8, =0.

Here, éccording to Theorem 5, {a,, ..., a,} constitutes a simplex, where g—1=r
(see (6)). So we may complete the linearly independent vectors a,, ..., a,_, with
r—(g—1)=0 vectors: a,,...,a;__,,, the new vector system {(a,,...,a_,,
a;, ..., 8 _.,,) becoming hereby a basis. Consider now that of the base solutions
belonging to this basis which is determined uniquely by the equation (see Defi-
nition 6 and Theorem 6):

Xga 4+ A X8 X8 XLy X8, =0

This solution is asserted to bes. Namely, on account of the construction, x; , ..., x; _ .,
are identically zero,? consequently the equation (15) is left over, whose unique
solution is indeed the simple solution 8. So s is a base solution.

Appendix

The system of homogeneous linear equations (1) has a solution in which the
unknown x;, (j;=1,2, ..., n) is uniquely (identically) zero if and only if the rank
of the matrix of (1) is by one greater than that of the matrix in which the j,-th
column is dropped [1]:

rank (a;,, ..., a;}J=rank [a,, ..., a,] -1 = r—1.

In conclusion, the author wishes to express his indebtedness to Professor
P. TURAN for his interest in this work.

{ Received 13 November 1965)
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