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Chapter 1

Introduction

1.1 State-dependent delays

The systematic study of differential equations with state-dependent delays (SD-DDEs)
started with the work of Driver on the two-body problem of classical electrodynamics in
the sixties of the last century [27, 28, 29, 30, 31, 32], and since that it became an active
research area. Models with state-dependent delays appear recently in many applications
including automatic and remote control, machine cutting, neural networks, population
biology, mathematical epidemiology and economics (see, e.g., [1, 2, 9, 10, 18, 19, 33, 35,
36, 37, 64, 65, 66, 69, 87, 83, 91]). For a survey on SD-DDEs we refer to [56], which
contains a brief summary of some important applications, general theory and numerical
approximation of SD-DDEs, as well as a list of references of about 200 papers on SD-
DDEs.

Consider the initial value problem (IVP) associated to a general autonomous functional
differential equation

z(t) = flxe), t>0, (1.1.1)
z(t) = (1), te[—r0]. (1.1.2)

Here r > 0 is fixed, f: C — R", where C' is the Banach space of continuous functions
[—7,0] — R™ equipped with the supremum norm, ¢ € C, and z; denotes the segment
function defined by

xy: [-1,0] = R", x(¢) == x(t + ().

C! below will be the space of continuously differentiable functions ¢: [—7,0] — R™, where
the norm is defined by [¢|c1 = max{|¢|c, [¢]c}-

In (1.1.1) the growth rate of the solution depends on past values of z. The simplest
example for this dependence is a linear equation with a single constant delay 7 € [0, r],
i.e., equation

z(t) = ax(t — 7).
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1.1. State-dependent delays 5t

In the case when the delay 7 in the previous equation or the selection mechanism of the
values of the segment function x; used in (1.1.1) is not constant, moreover it depends on
the segment function z; itself, we say that in the equation the delay is state-dependent.
One of the simplest prototype example of a state-dependent delay equation is the case
when f in (1.1.1) has the form f(¢) = ap)(—7(¢(0))), and so (1.1.1) reduces to

(t) = ax(t — T(x(t))). (1.1.3)

The form (1.1.1) includes much more general classes of SD-DDEs, see, e.g., [56].

The difficulty in the theory of SD-DDEs can be seen already in the simple SD-DDE
(1.1.3): we can’t assume even the Lipschitz continuity of the function f: C — R",
f() = a(—7(¥(0))), not even if we assume high order smoothness of the function
7: C — R. This makes the basic questions of uniqueness, smooth dependence of the
solution on the initial data and other parameters, as well as the principle of linearized
stability and other topics interesting and challenging, since the standard methods of the
theory of delay equations may not be used, in general, for SD-DDEs (see, e.g., [16, 21, 27,
38, 45, 47, 56, 57, 58, 60, 70, 71, 77, 84, 85, 86, 89, 90]). In particular, C' is not suitable
as the state-space of solutions in SD-DDEs, but it is not clear what is the best choice to
use, especially if we want to have high order smoothness of the solutions on the initial
data and on other parameters.

Walter [89, 90] considered the IVP (1.1.1)-(1.1.2), and developed a framework, which is
now called frequently as the C'-framework, where he gave quite general conditions which
are satisfied for large classes of SD-DDEs, and which guarantee the existence of a semiflow
of continuously differentiable solution operators, the principle of linearized stability, as
well as the existence of C'-smooth local stable and unstable manifolds at hyperbolic
stationary points. Using this framework Krisztin showed the existence of CV-smooth
local unstable manifolds and C'-smooth center manifolds for the semiflow at hyperbolic
stationary points [70, 71].

The key assumption of the C'-framework is that the solutions are restricted to a
submanifold of C* of codimension n defined by

Xy 1= {wr € € (0) = F)}. (1.1.4)

In this manuscript we consider two classes of functional differential equations with
state-dependent delays. In Chapters 2 and 3 we consider the SD-DDE

B(t) = f(t,z0,x(t — 7(t,20,6)),0), >0, (1.1.5)

where £ and # are parameters in the equation, and the initial condition associated to
(1.1.5) is (1.1.2). In Chapter 4 we consider neutral functional differential equations with
state-dependent delays (SD-NFDEs) of the form

%(x(t) — gt w(t— pt, 2, X)), A)) - f(t,xt,x(t . T(t,xt,g)),e) t>0, (1.1.6)
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where x and A are also parameters in the neutral part of the equation. The initial condition
associated to (1.1.6) is, again, (1.1.2).

The particular forms of (1.1.5) and (1.1.6) assume that one delay in the retarded and
also in the neutral part is time- and state-dependent, and this dependence is described
explicitly in (1.1.5) and (1.1.6) by 7 and p, but we may have other delayed terms in the
equation. Here the dependence of f and g on z; represents all the “non state-dependent “
delayed terms, so smooth dependence of f and g on their second variable will be assumed.
We note that for simplicity equations (1.1.5) and (1.1.5) contain only one state-dependent
term, but all the results can be easily generalized to the case when in the retarded or in
the neutral terms there are several state-dependent delays.

In this thesis we use the space of Lipschitz continuous functions W* (see Section 1.2
for the definition) as the state-space of solutions, and we show existence, uniqueness and
continuous dependence of solutions with respect to (wrt) the parameters of the equation
for both the SD-DDE (1.1.5) and the SD-NFDE (1.1.6) (see see Sections 2.2 and 4.2,
respectively). The main goal of this thesis is to study the differentiability of solutions
of (1.1.5) and (1.1.6) wrt the parameters of the IVP. In Chapter 2 we discuss first and
second order differentiability of solutions of the SD-DDE (1.1.5) with respect to ¢, 6 and
&, In Chapter 3, as an application of the differentiability results, we study a parame-
ter estimation problem associated to (1.1.5), define the quasilinearization method to get
approximate solutions, show convergence of the scheme, and give numerical examples to
demonstrate the applicability of the method. In Chapter 4 we discuss well-posedness of
the IVP associated to the SD-NFDE (1.1.6), and prove a result showing differentiabil-
ity of the solutions wrt ¢, 0, &, A and y. At the beginning of each chapters a detailed
introduction is given to the topic of the chapter.

1.2 Notations and preliminaries

In this section we introduce notations and collect some results will be used throughout
this thesis.

N and Ny denote the set of positive and nonnegative integers, respectively. A fixed
norm on R™ and its induced matrix norm on R™*™ are both denoted by | - |. C' denotes
the Banach space of continuous functions @ : [—r,0] — R"™ equipped with the norm
|¥|c = max{|y(¢)]: ¢ € [-r,0]}. C!is the space of continuously differentiable functions
¢ : [-r,0] — R™ where the norm is defined by [¢|c1 = max{|¢|c, [¢¥|c}. L™ is the
space of Lebesgue-measurable functions ¢ : [—r,0] — R™ which are essentially bounded.
The norm on L* is denoted by |¢|p~ = esssup{|(¢)|: ¢ € [-r,0]}. WP denotes the
Banach-space of absolutely continuous functions ¢ : [—r,0] — R™ of finite norm defined
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by 0 . 1/p
Wl = ( / rw<<>\p+|w<<>\pd<) L 1<pe<m,

r

and for p = oo
6l e = max { [l [l |

We note that W1 is equal to the space of Lipschitz continuous functions from [—r, 0] to
R". The subset of W1 consisting of those functions which have absolutely continuous
first derivative and essentially bounded second derivative is denoted by W2, where the
norm is defined by

Ulwens = max {[¢le. [dle. [l }

If the domain or the range of the functions is different from [—r, 0] and R", respectively,
we will use a more detailed notation. E.g., C(X,Y) denotes the space of continuous
functions mapping from X to Y. Finally, £(X,Y) denotes the space of bounded linear
operators from X to Y, where X and Y are normed linear spaces.

An open ball in the normed linear space X centered at a point x € X with radius ¢ is
denoted by Bx(z; d) :={y € Y: |z —y| < 0}. The corresponding closed ball is denoted
by Bx(z; 6).

Throughout the manuscript » > 0 is a fixed constant and z;: [—r,0] — R”, 24(0) :=
x(t + 0) is the segment function. To avoid confusion with the notation of the segment
function, sequences of functions are denoted using the upper index: z*.

The derivative of a single variable function v(¢) wrt ¢ is denoted by ©. Note that
all derivatives we use in this paper are Fréchet derivatives. The partial derivatives of a
function g: X; x Xy — Y wrt the first and second variables will be denoted by D;g
and Dyg, respectively. The second-order partial derivative wrt its ¢th and jth variables
(1,7 = 1,2) of the function g: X; x Xy — Y at the point (z1,22) € X7 X X is the
bounded bilinear operator A(-,-): X; x X; — Y if

D ‘ng(l'l + ]féu,%g + k523>h ;’ng('xl:mZ)h B A<h> k>‘Y _ 0, h e XZ,’ ke Xj7
X1

where 0;; = 1 for i = j and 6;; = 0 for ¢ # j is the Kronecker-delta. We will use the
notation D;;g(x1,x2) = A. The norm of the bilinear operator A(-,-): X; x X; — Y is
defined by

lim su
k—0 h#0 ’h

X

| AR, B}y
|7 x; |k x;

In the case when X; = R, we simply write D;g(x1, z5) instead of the more precise notation
Dig(xy1,29)1, i.e., here D;g denotes the value in Y instead of the linear operator L(R,Y).
In the case when, let say, Xy = R™ =Y, then we identify the linear operator Dsg(x1,x2) €
L(R™ R™) by an n X n matrix.

|A|L2(Xi><Xj,Y) = Sup{ : hEXi,h%O, k’GXJ,k‘%O}

X;
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Next we formulate a result which is a simple consequence of the Gronwall’s lemma.

Lemma 1.2.1 (see, e.g., [50]) Suppose a >0, b: [0,a] — [0,00) and u: [—r,a] — R"
are continuous functions such that a > |ug|c, and

lu(t)| < a—l—/o b(s)|us|c ds, t €0, q]. (1.2.1)

Then
lu(®)| < |ugle < aelo P&t e0,al (1.2.2)

The next lemma formalizes a method used frequently in functional inequalities (see,
e.g., in [40]) and which will be used in the sequel, as well.

Lemma 1.2.2 ([48]) Suppose h: [0,a] x [0,00)* — [0,00) is monotone increasing in
all variables, i.e., if 0 < t; < s; fori =1,2,3,4, then h(ty,ts,t3,t4) < h(sy,S2,S3,S4);
n: [0,a] — [0,7] is such that a < n(t) fort € [0,q] for some a > 0; u: [—r,a] — [0,00)
15 such that
u(t) < h(tult), u(t —n(t)), lwle), — tel0,al,
and
|uole < h(0,u(0), u(=n(0)), [uolc).
Then
v(t) < h(t,v(t),v(t — a),v(t)), t €10, al,

where v(t) := sup{u(s): s € [-r,t]}.

We recall the following results which will be used later.

Lemma 1.2.3 ([40]) Leta>0,b>0, r; >0, 7o >0, r = max{ry,r2}, and v: [0,a] —
[0,00) be continuous and nondecreasing. Let u: [—r,a] — [0,00) be continuous and satisfy
the inequality

t
u(t) < v(t) + bu(t —ry) + a/ u(s —rq)ds, t €0, ql.
0
Then u(t) < d(t)e® for t € [0,a], where ¢ is the unique positive solution of cbe ™ +

ae~? =c¢, and

d(t) == max{& max e_csu(s)}, t € [0,al.

1 —be=e’ —r<s<0
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Lemma 1.2.4 (see, e.g., [81]) Suppose that X andY are normed linear spaces, and U
1s an open subset of X, and F' : U — Y is differentiable. Let x,y € U be such that
y+v(r—y)eU forvel0,1]. Then

|F(y) — F(x) = F'(x)(y — 2)ly < |z —ylx sup [F'(y +v(r —y) — F'(2)| ey

Lemma 1.2.5 Suppose 1 € WL, Then

[0(0) = ()] < [P]z=[b—al

for every |a,b] C [—r,0].

We recall the following result from [16], which was essential to prove differentiability
wrt parameters in SD-DDEs in [21], [50] and [58]. We state the result in a simplified form
we need later, it is formulate in a more general form in [16]. Note that the second part
of the lemma was stated in [16] under the assumption |u* — u|y/1.00(j0,,x) — 0 as k — oo,
but this stronger assumption on the convergence is not needed in the proof. See also the
proof of Lemma 4.26 in [44].

Lemma 1.2.6 ([16]) Let g € L'([¢,d],R"), ¢ > 0, and u € A(e), where
A(e) := {v € Wh([a,b],[c,d]) : 0(s) > ¢ for a.e. s € [a,b]}.
Then
b 1 rd
[ latutenias < [ lgts)las (1.2.3)
Moreover, if the sequence u* € A(e) is such that [uF — ulc(ap,r) — 0 as k — oo, then
b

lim
k—o0 a

g (s)) — g(u(s))( ds = 0. (1.2.4)

Remark 1.2.7 Changing to the new variable s = —t in the integrals in (1.2.3) and (1.2.4)
give easily that the statements of Lemma 1.2.6 hold also in the case when conditions
u,u* € A(g) are replaced by —u, —u* € A(e).

In the next lemma we relax the condition u € A(g) of the previous lemma.
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Lemma 1.2.8 Suppose g € L*([c,d],R), and u: [a,b] — [c,d] is an absolutely continu-
ous function, and

essinf{u(s): s € [d', 0]} > 0, for all [d',b'] C (a,b). (1.2.5)
Then the composite function g ou € L*®([a,b],R), and |g o u|r=(japr) < |91 (c,aR) -

Proof First note that since u is absolutely continuous, it is a.e. differentiable on [a, b],
and condition (1.2.5) yields that w is strictly monotone increasing on [a,b]. Let G :=
{v € [c,d]: g(v) is not defined or |g(v)| > |g|r=(jc.q,r)}- Then meas(G) = 0. Let A :=
{t € [a,b] : g(u(t)) is not defined or |g(u(t))| > \g\Loo le,d],R) }- Clearly, A = v HQ).
Let 0 < ¢ < (b —a)/2 be fixed. Then let ¢ := (a + 6) d = u(b—¢), and let
M :=essinf{u(s): s € [a+¢,b—¢]}. Then (1.2.5) yields M > 0. Since G is of measure
0, there exist open intervals (¢;, d;), ¢ € N such that

G C G(Ci7 dz) and Z < eM.
=1

We have
A=uHG)=u" (G N e, c’]) Uu? <G n|e, d’]) Uut (G Nnid, d]),

and the monotonicity of u yields u~! (G Nle, c’]> Cla,a+¢e], u™ (G Nn|d, d]> C [b—¢g,b],
and

u‘1<G N [c’,d’]) C u‘1<[c’, d]n Q[Ci, p ) Uu (C dIn Cz,di]> = G[% bil,

i=1

where a; := v~ '(max{c, ¢;}) and b; := ! (min{d’, d;}). The definition of M yields

b;

d; —c¢; > min{d',d;} — max{c, ¢;} = u(b;) —u(a;) = / u(s)ds > M(b; — a;).
Therefore A C [a,a+¢] U [b—¢,b] U ;2 [ai, bi], and the sum of the length of the closed
intervals covering A is less than 3c. Slnce g > 0 is arbitrary, we get that A is Lebesgue-
measurable and meas(A) = 0.

We show that g o u is Lebesgue-measurable. Let x € R, and define G,, := {v € [¢,d]:
g(v) is defined and g(v) < k}. G, is a Lebesgue-measurable set, since g € L*(][c, d],R).
Therefore there exists a closed set F); such that F,, C G, and meas(G.\ F,) = 0. Since u is
continuous, u~!(F}) is a closed set, and therefore, it is Lebesgue-measurable. Moreover,
v HG,) = u N (F,) Uu"! (G, \ Fy), and as in the first part of the proof, we get that
u~ (G, \ Fy) is measurable, and so is u ™' (G,). [
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Clearly, the statement of the previous Lemma is also valid if (1.2.5) is changed to

esssup{u(s): s € [d/,b']} <0, for all [da',b] C (a,b).

We will use the following notation.

Definition 1.2.9 PM([a,b], [c,d]) denotes the set of absolutely continuous functions w:
la,b] — [c, d] which are piecewise stricly monotone on |a,b] in the sense that there exists a

finite mesh a =tg <t; < -+ < tpm_1 < tym =0 of [a,b] such that for alli =0,1,...,m—1
either

essinf{u(s): s € [d,V]} > 0, for all [d',b'] C (t;,tir1)
or

esssup{u(s): s € [d,b]} <0, for all [d',b] C (ti,tiv1).

Lemma 1.2.8 implies the next result immediately.

Lemma 1.2.10 Suppose g € L*([c,d],R"), and u € PM([a,b],[c,d]). Then the com-
posite function gow € L*®([a,b],R") and |g o u|po(ap, ) < |91 (.0, ®P)-

The next lemma generalizes the convergence property (1.2.4) to the class PM. We
comment that to prove the convergence property (1.2.4) for u,u® € PM([a,b],[c,d]), we
need the stronger assumption |u* — Ulp1.o0(jap), k) — 0 instead of |u* —u|c(jap, ) — 0 what
is used in Lemma 1.2.6.

Lemma 1.2.11 Suppose g € L>([c,d],R"), and u,u* € PM([a,b],[c,d]) (k € N) satis-
fying

|u® — Ulwr.oo(jap), ®) — 0, as k — oo. (1.2.6)
Then

/ lg(uF(s)) — g(u(s))| ds — 0, as k — oo. (1.2.7)

Proof Clearly, it is enough to show (1.2.7) for the case when ¢ is real valued, i.e., n = 1.
First note that Lemma 1.2.10 yields g o u, g o uf € L*°([a,b],R). We prove (1.2.7) in
three steps.
(i) First suppose that g € L*([c,d],R) is the characteristic function of an interval
e, f]1 C [e,d), ie.; g = Xe,s- Then |x(e.s(u(s)) — X(e.py(u(s))] is either 0 or 1, hence

meas({s € [a,b]: Xje.(u"(5)) # Xe.1(w(s))}) < 4" — ulo(apr),
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and so

b
/ X[, 1 (W (5)) = Xjes) (u(s))] ds < 4Ju” — ulcapp) — 0,  as k — oco.

(ii) Suppose g is a step function, i.e., g = > ", ¢;Xa,, where A; are pairwise disjoint
intervals with U ; A; = [c,d]. Then

b m
/ lg(u"(s)) — g(u(s))] ds < Z |cil4|u* — ule(apr) — 0, as k — oo.
@ i=1

(iii) Let a =ty < t; < --- <t, = b be the mesh points of u from the Definition 1.2.9,
and let 0 < ¢ < min{t;41 —t;: i =0,...,m —1}/2 be fixed, and introduce t; := t; + ¢ for
i=0,....m—landt/ :=t,—cfori=1,...,m, t) :=a,t, =0, and let

M := min essinf |u(?)|. (1.2.8)

i=0,...,m—1 te[t;,t/!

Vil
We have M > 0, since u € PM([a,b], [c,d]).

The set of step functions is dense in L!([c,d],R) (see, e.g., [23]), so for a fixed g €
L>([¢,d],R) and 0 < 6 < eM/m there exists a step function h: [c,d] — R such that
|9 — hlpiear) < 0. Let h = >, ¢ixa,, where A; are pairwise disjoint intervals with
U A; = [e,d], and define h* := """ ¢ xa,, where

Ci, if |ei| < |gleee(ear) + 1,
¢; =19 l9lee(ear, ifc>|glre@egr + 1,
—lglr(edr), if i < —=|glre(ear) — 1.

Then it is easy to check that |g(v) — h*(v)| < 1 for a.e. v € [¢,d], and

d d
/ lg(v) = h*(v)|dv < / lg(v) — h(v)| dv < 6.

We have therefore

b
/mm»wwwm

= Y [ oty -t ds + 3 [ latuts) - e tuls)as
< 2€(m—|— 1) + ; /:Hl ‘g(u(s)) . h*(U(S))‘U(S)ﬁdS
1 m_1 u(t )
2e(m+1 — 0) — ()| do
- e M i=0 /U(té) 5(v) @l
< 2€(m+1)+5ﬁm
< (2m+ 3)e.
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Assumption (1.2.6) yields that there exist kg > 0 such that [u¥ — u|pr1ec(upr) < % for
k > ko. Then for k > ko it follows [i*(s)| > & for a.e. s € [¢,t/,,] and i =0,...,m — 1.
Therefore similarly to the previous estimate we have for k& > kg

/ lg(uF(s)) — h*(uF(s))| ds < 2e(m + 1) + %Wm < (2m +4)e.

Using the above inequalities we get

[ latat() = gluts))1 ds

b b
< /|mw@»—mw%ﬁwm+/WmmW@wJNMan

+ [ lgtuls) ~ (ul)]ds

< Wmﬁk+/VNﬁ®%%W@m@, k> ko,

which yields (1.2.7) using part (ii), since € > 0 is arbitrary close to 0. ]

Lemma 1.2.12 Suppose f*h € L>*([c,d],R") for k € N and h € H for some fized
parameter set H,

lim Sup/ | f*"(s)| ds = 0,

k—o0 heH

and there exists A > 0 such that |f*"(s)] < A for k € N, h € H and a.e. s € [c,d]. Let
u,u* € PM([a,b],[c,d]) (k € N) be such that (1.2.6) holds. Then

hmsup/\fkh )| ds =0.
k—oco hen

Proof Leta=1ty<t; <---<t, =>bDbethe mesh points of u from the Definition 1.2.9,
and let 0 < ¢ < min{t;y1 —t;: ¢ = 0,...,m — 1}/2 be fixed, let ¢, and ¢! be defined
as in the proof of Lemma 1.2.11, and let M be defined by (1.2.8). Let k¢ be such that
[uF — ulwro(unr) < M/2 for k > ko. Then for k > ko it follows [a¥(s)] > 2 for
ae. s € [tht!, ] and i = 0,...,m — 1. Since u* € PM([a,b],[c,d]), it follows from
Lemma 1.2.10 that |f%"(u*(s))| < A for k € N, h € H and a.e. s € [a,b]. Therefore for
any k € N and h € H we have

/Wh wsziﬂwm W+Z/ |k (5))] ds
i=0 /1

< (m—i—l)A?e—l—ﬁ/ | f5h(s)] ds.
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Then
b 2m d
sup / P (5)) ds < (m -+ 1) A2 + sup = / |4 (s)| ds,

heH heH

which proves the statement, since ¢ is arbitrarily close to 0. []



Chapter 2

Delay differential equations with state-
dependent delays

2.1 Introduction

In this chapter we study the SD-DDE
@(t) = ft,z, x(t — 7(t, 2, €)),0),  te€[0,T], (2.1.1)
and the corresponding initial condition
x(t) = (1), t € [-r0]. (2.1.2)

Let © and = be normed linear spaces with norms |- |¢ and |- |z, respectively, and suppose
€O and €.

In this chapter we consider the initial function ¢, 6 and £ as parameters in the IVP
(2.1.1)-(2.1.2), and we denote the corresponding solution by x(t, ¢, 0,¢). The main goal
of this chapter is to discuss the differentiability of (¢, p, 0, &) wrt ¢, 8 and £. By differen-
tiability we always mean Fréchet-differentiability throughout this thesis. Differentiability
of solutions wrt parameters is an important qualitative question, but it also has a natural
application in the problem of identification of parameters (see [46] and Chapter 3 below).
But even for simple constant delay equations this problem leads to technical difficulties if
the parameter is the delay [42, 73]. Similar difficulty arises in SD-DDEs.

Theorem 2.2.1 below yields that, under natural assumptions, Lipschitz continuous ini-
tial functions generate unique solutions of (2.1.1). As it is common for delay equations,
as the time increases, the solution of (2.1.1) gets smoother wrt the time: on the interval
[0,7] the solution is C, on [r,2r] it is a C* function, etc. But for ¢ € [0, 7] the solution
segment function x; is only Lipschitz continuous. Therefore the linearization of the com-
posite function x(t — 7(t, z,&)) is not straightforward, which is clearly needed at some
point of the proof to obtain differentiability wrt parameters.

15
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To illustrate the difficulty of this problem in the case when we can’t assume contin-
uous differentiability of =, we recall a result of Brokate and Colonius [16]. They studied
equations of the form

(1) = f(talt - 7(ta®),  teab],
and investigated differentiability of the composition operator
A W[, b R) D X = L[, bR),  A@)(E) = 2t — (¢, 2(1))).

They assumed that 7 is twice continuously differentiable satisfying a <t —7(t,v) < b for
all t € [a,b] and v € R, and considered as domain of A the set

X = {x € W'*([a,b];R) : There exists € > 0 s.t. %(t — T(t,x(t))) > e

for a.e. t € [a, b]}

It was shown in [16] that under these assumptions A is continuously differentiable with
the derivative given by

(DA(z)u)(t) = —2(t — 7(t,z(t))) Dar(t, z(t))u(t) + u(t — 7(t, z(t)))

for u € W ([a, b], R).

Both the strong W1*-norm on the domain and the weak LP-norm on the range,
together with the choice of the domain seemed to be necessary to obtain the results
in [16]. Note that Manitius in [78] used a similar domain and norm when he studied
linearization for a class of SD-DDEs.

Differentiability of solutions wrt parameters for SD-DDEs was studied in [21, 45, 58,
89, 90]. In [45] differentiability of the parameter map was established at parameter values
where the compatibility condition

Y E Clv 90(0_) = f(07 2 90(_7_(07 2 6))’ 9) (213)

is satisfied. It was proved that the parameter map is differentiable in a pointwise sense,

i.e., the map
Wh>® x 0 x = — R", (p,0,8) — x(t, 0, 0,¢) (2.1.4)

is differentiable for every fixed ¢ from the domain of the solution. Moreover, it was shown
that the map
Whe x 0 xZ— C, (p,0,8) — z4(-,0,0,8), (2.1.5)

and, under a little more smoothness assumptions, the map

Wl’oo >< @ >< E - W17OO’ ((107 9’ 5) = xt(.7§07 97 5) (2'1‘6)
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is also differentiable at fixed parameter values satisfying (2.1.3). Note that condition
(1.1.4) used by Walter in [89] and [90] coincides with (2.1.3) for equation (1.1.1). This
is the main assumption of the C'-framework of Walter which was needed to prove the
existence of a C''-smooth solution semiflow for (1.1.1).

In [58] differentiability of the parameter map was proved without assuming the com-
patibility condition (2.1.3). Instead, it was assumed that the time lag function t +—
t — 7(t, z, &) corresponding to a fixed solution x is strictly monotone increasing, more
precisely, ;

%sgstigrgf %(t —7(t,24,§)) > 0, (2.1.7)
where a > 0 is such that the solution exists on [—r,a]. Also, instead of a “pointwise”
differentiability, the differentiability of the map

W x @ xZ— WY, (p,0,6) = x4(,9,0,€)

was proved in a small neighborhood of the fixed parameter value. Note that here the
differentiability was obtained using only a weak norm, the W!P-norm (1 < p < 00) on
the state-space.

Chen, Hu and Wu in [21] extended the above result to proving second ordered differ-
entiability of the parameter map using the monotonicity condition (2.1.7) of the state-
dependent time lag function, the W'?P-norm (1 < p < oo) on the state space, and the
W?P-norm on the space of initial functions. Note that 7 was not given explicitly in [21],
it was defined through a coupled differential equation, but it satisfied the monotonicity
condition (2.1.7).

In [48] the IVP

z(t) = f(t,xg,z(t —7(t,20))), t € lo,T], (2.1.8)
z(t) = p(t—o0), telo—ro

was considered. In this IVP the parameters # and £ were omitted for simplicity, but
the initial time o was considered together with the initial function as parameters in
the equation. Combining the techniques of [45] and [58], and assuming the appropriate
monotonicity condition (2.1.7), but without assuming the compatibility condition (2.1.3),
the continuous differentiability of the parameter maps

Whe SR @ a(t,o, )
and
WLOO - Ca ("2 xt(’? g, 90)

were proved for a fixed ¢ and ¢ in a neighborhood of a fixed initial function. Note that
with this technique similar result can’t be given using the W *-norm on the state-space
without using the compatibility condition.
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Assuming the compatibility condition (2.1.3) it was also shown in [48] that the maps
[07 a) - Rn? g = I(t7 0-7 90)

and
[0705) - C7 0 — xt('70-7 90)

are differentiable for all t € [o—r, o] and t € [0, ], respectively, and o, ¢ in a neighborhood
of a fixed parameter (o, ¢), and where o > 0 is a certain constant. Assuming that the
functions f and 7 have a special form in (2.1.8), i.e., for equations of the form

0

#(t) = f(t,:v(t—Al(t)),...,x(t—/\m(t)),/ A(t,0)(s + 0) ds,

-

0

x(t - [t, z(t —&'1), ... z(t — gf(t)),/ B(t,0)z(s + 0) dSD)

'

the differentiability of the map
[07 Ck) - Rn? 0 l1’(157 U? ()0)

was shown in [48] for ¢ € [0, ] using the monotonicity assumption (2.1.7), but without
the compatibility condition (2.1.3). Note that in this case similar result does not hold
for the map o — z4(-, 0, p) using the C-norm, which is not surprising, since it is easy to
see [48] that the map o — x(t,0, ) is differentiable at the point ¢ = ¢ if and only if a
compatibility condition similar to (2.1.3) is satisfied.

The organization of this chapter is the following. In Section 2.2 first we list the detailed
assumptions on the IVP (2.1.1)-(2.1.2) we will need in our differentiability results later,
and formulate a well-posedness result (Theorem 2.2.1) concerning the IVP (2.1.1)-(2.1.2),
and prove some estimates will be essential later througout this chapter.

In Section 2.3 using and extending the method introduced in [48], we discuss differen-
tiability of the parameter maps associated to the IVP (2.1.1)-(2.1.2). In the main result
of this chapter (see Theorem 2.3.9 below) we show the differentiability of the parame-
ter maps (2.1.4) and (2.1.5) without using the compatibility condition (2.1.3), and also
relaxing the monotonicity condition (2.1.7) to the condition that the time lag function
t—t—T(t x, &) is “piecewise strictly monotone” in the sense of Definition 1.2.9. Note
that omitting the compatibility condition is essential in the application of this results in
Chapter 3, where we prove the convergence of the quasilinearization method in the prob-
lem of parameter estimation. Also, in this application the existence of the derivative is
needed in this strong, pointwise sence, i.e., the differentiability of the map (2.1.4) will be
used in Chapter 3. Note that in Section 2.3 sufficient conditions are given in Lemma 2.3.8
which imply that the detivative of the solution wrt parameters is Lipschitz continuous
wrt the parameters. This result is needed for the proof of the quasilinearization method
in Chapter 3.
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In Section 2.4 the main result is Theorem 2.4.16, which proves twice continuous dif-
ferentiability of the maps

WQ,OOX@XE_)RTL? (¢,9,€)r—>x(t,¢,9,§)

and
W2® x 0 x E— C, (0,0,8) — (-, ,0,&)

at a parameter value (i, 0, ) satisfying the compatibility condition (2.1.3) and such that
the corresponding time lag function ¢t — 7(¢t, 2, &) is piecewise strictly monotone in the
sense of Definition 1.2.9. Under some additional condition, the continuity of the second
derivative wrt the parameters is obtained in a certain sense. Note that this result shows
the existence of the second derivative in a pontwise sense, at each t. The only result
known in the literature for the existence of a second derivative wrt the parameters is the
result of Chen, Hu and Wu [21], where the second order differentiability is proved only
using a weak W1P-norm on the state-space.

2.2 Well-posedness and continuous dependence on pa-
rameters

In this section we list all the assumptions we need later on the IVP (2.1.1)-(2.1.2), and
show some basic results including the well-posedness of the IVP and Lipschitz continuous
dependence of the solutions on the parameters ¢, 6 and 7.

Suppose 2 C C, Qy C R, Q3 C O, {2y C = are open subsets of the respective spaces.
T > 0 is finite or T" = 0o, in which case [0, 7] denotes the interval [0, 00).

We assume

(A1) (1) f:RxCxR"x 0O D[0,7] x 2y x Qy x Q3 — R" is continuous;

(i) f(t,%,u,@) is locally Lipschitz continuous in ¢, u and 0, i.e., for every finite
a € (0,7T], for every closed subset M; C €y of C' which is also a bounded
subset of W compact subset My C €y of R™, and closed and bounded
subset M3 C Q3 of © there exists a constant Ly = Ly («, My, M5, M3) such that

|f(tv¢au70)_f(t7 7,ﬂ,§)| §L1<|¢_’J)|C+|U_a|+|0_§|®>7

for t €[0,a], ¥,¢ € My, u,u € My and 6,0 € Ms;

(iii) f: RxCxR*"x0O D [0,T] x 2 x Qs x Q3 — R is continuously differentiable
wrt its second, third and fourth arguments;
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(iv) f(t,v,u,0) is locally Lipschitz continuous wrt ¢, i.e., for every finite o € (0, T,
for every closed subset M; C €; of C which is also a bounded subset of W1,
compact subset My C 25 of R, and closed and bounded subset M3 C €23 of ©
there exists a constant Ly = Ly («, My, My, M3) such that

|f(t7¢7ua9) - f(fv¢7uvg)| < L1|t_ﬂ

for t,t € [0,a], v € My, u € My and 6 € Ms;

(v) Dof, D3f and Dy4f are locally Lipschitz continuous wrt all of their arguments,
i.e., for every finite a € (0,7, for every closed subset M; C €y of C' which is
also a bounded subset of W1 compact subset My C € of R", and closed
and bounded subset M3 C Q3 of O there exists Ly = Ls(«, My, My, M3) such
that

|sz(ta¢7u7‘9)_sz(t_7 _7ﬂ7§>|£(Yi,R”) < L3<|t—£|+|¢—7j)|c+|u—l_b|+|0—0_|@>
fori=2,34,t,t€[0,a], ¥, € My, u,z € My and 6,0 € Ms, where Y, := C,
Y;:=R" and Y, := O;
(vi) Dof, D3f and D,f are continuously differentiable wrt their second, third and
fourth arguments on [0, 7] x € x Qy x Qj;
(A2) (1) 7 : RxCxZD[0,7] x Q1 x Q4 — [0,7] C R is continuous;

(i) 7(¢,1,&) is locally Lipschitz continuous in ¢ and ¢ in the following sense: for
every finite a € (0,77, closed subset M; C Qy of C' which is also a bounded
subset of W1 and closed and bounded subset My C €4 of = there exists a
constant Ly = Lo(a, My, M) such that

7(t,,€) = 76,5, )| < Lo(J9 = Blo + € — =)

for t € [0,a], ¥, € My, &€ € My;

(iii) 7 : [0,T]x C xZD[0,7] x 21 x 4 — R is continuously differentiable wrt its
second and third arguments;

(iv) 7(t,v,&) is locally Lipschitz continuous in ¢, i.e., for every finite « € (0,71,
closed subset M; C €; of C which is also a bounded subset of W and closed

and bounded subset M, C € of Z there exists a constant Ly = Lo(cv, My, My)
such that

|T(t7¢>f) - T(ﬂ%f)’ < L2’t - ﬂ
for t,t € [0,a], v € My, £ € My;
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(v) for every finite a € (0,77, closed subset M; C §2; of C' which is also a bounded
subset of W1 and closed and bounded subset My C € of = there exists
Ly = Ly(a, My, My) > 0 such that

d d _ _
%T(t;ytag) - ET(tagtvg)‘ S L4<|yt - gt|W1’°° + |£ - §|E)a a.e. t e [0,0é],

where ¢, € My, and y,§ € Wh([—r,a],R") are such that y,, 5, € M, for
t €10, al;

(vi) Dot and D37 are locally Lipschitz continuous wrt all arguments, i.e., for every
finite a € (0,77, closed subset M; C §; of C' which is also a bounded subset
of W1 and closed and bounded subset M, C €4 of = there exists a constant
Ls = Ls(a, My, My) such that

|Di7(t, 4, &) — Dy (8,9, 8)| (2, ) < L5<\t — i+ [ —Ylc+ 1€ — 5\5)

fori=2,3,t,t€[0,a], ¥, € M, € € My, where Z, := C and Z3 := Z;

(vii) Dy7 and D37 are continuously differentiable wrt their second and third argu-
ments on [0, 7] x Qy x Qy;

(viii) for every finite a € (0,7, for every closed subset M; C €, of C' which is
also a bounded subset of W1 compact subset My C € of R", and closed
and bounded subsets Ms; C Q3 of ©® and M, C 4 of = there exists Lg =
L6<O{, Ml, MQ, Mg, M4) such that

H byt = 79 ).6) — 763, 3( — 7(6.5.),0)

< Lo(lp —Blwie + 1§ = €= +10—0lz). ae. te0,al

where 0,0 € Ms, £,& € My, and y,5 € Wh([—r,a],R") are such that y;, 7, €
M, for t € [0, q].

We introduce the parameter space
Ii=WHx0x=

equipped with the product norm |y|r := |p|lwre= + |0le + ||z for v = (¢, 60,£) € T, and
the set of admissible parameters

II:= {(<p,6,§) el e, o(—71(0,0)) € Qy, 0 €03, € € 94}.

The next theorem shows that every admissible parameter (¢, é, é ) € II has a neighborhood
P and there exists a constant & > 0 such that the IVP (2.1.1)-(2.1.2) has a unique solution
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on [—r, a] corresponding to all parameters v = (p,0,£) € P. This solution will be denoted
by z(t,v), and its segment function at t is denoted by x;(+, ).

The well-posedness of several classes of SD-DDEs was studied in many papers (see,
e.g., [27, 56, 58, 84]. The next result is a variant of a result from [50] where the initial
time is also considered as a parameter, but the parameters # and £ were missing in the
equation. The proof is similar to that of Theorem 3.1 in [50], and it also follows from the
analogous proof of Theorem 4.2.2 of the neutral case, therefore it is omitted here. The
notations and estimates introduced in the next theorem will be essential in the following
sections.

Theorem 2.2.1 Assume (A1) (i), (ii), (A2) (i), (i), and let 4 € 1. Then there exist
0>0and 0 < a<T finite numbers such that

(i) for all v = (¢,0,&) € P := Br(¥; ) the IVP (2.1.1)-(2.1.2) has a unique solution
x(t77) on [_T> O‘];

(ii) there exist a closed subset My C C which is also a bounded and convex subset
of Wt M, C R™ compact and convex subset and Ms C ©, My C Z closed,
bounded and convex subsets of the respective spaces such that z,(-,~y) € My, x(t —
T(t, 2e(+,7),€),7) € Ms, 6 € My and & € My for v = (¢,0,€) € P and t € [0,al;
and

(iii) z,(-,v) € Wh> for~v € P andt € [0,a], and there exist constants N = N(«,8) and
L = L(«,0) such that

[z:(,Y)lwie <N, yeP, te|0,q], (2.2.1)

and
|$t<'77) - xt('7’7)|le°° < L|’7 - ’7|Fa Y€ P, le [0,0é]. (222)

The following result is obvious.

Remark 2.2.2 Suppose the conditions of Theorem 2.2.1 hold, P and « are defined by
Theorem 2.2.1, and let P denote the subset of P consisiting of those parameters which
satisfy the compatibility condition, i.e.,

P = {(%9,5) eP:peC, ¢0-)= f(O,go,go(—T(O,gp,g)),Q)}, (2.2.3)

Then for all parameter values v € P the corresponding solution x(t,7y) is continuously
differentiable wrt t for t € [—r, al.
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Throughout the rest of the chapter we will use the following notations. The parameter
4 € II is fixed, and the constants 6 > 0, 0 < a < T are defined by Theorem 2.2.1, and
let P := Br(%;§). The sets My € C, My C R", M3 C © and My C = are defined by
Theorem 2.2.1 (ii), Ly = Ly (o, My, My, M3), Ly = Lo(cv, My, My) and Ly = Ly(a, My, My)
denote the corresponding Lipschitz constants from (A1) (ii), (A2) (ii) and (A2) (iv),
respectively, and the constants N = N(a, d) and L = L(«, 0) are defined by Theorem 2.2.1
(iii). We will restrict our attention to the fixed parameter set P, so the sets My, My, Mj
and My, and the constants L, Lo, Ly, L. and N can be considered to be fixed througout
this chapter.

Lemma 2.2.3 Assume (A1) (i), (i), (A2) (i),(ii), v = (©,&,60) € P, hy = (7, B5, hY) €
[' is a sequence such that v+ hy € P for k € N and |hilr — 0 as k — oo. Let
z(t) == z(t,7), 2*(t) := z(t,y + hx) be the corresponding solutions of the IVP (2.1.1)-
(2.1.2), and ub(s) = t — 7(t,2F, & + h3) and u(t) == t — 7(t,x,€). Then there exists
Ky > 0 such that

[P (t) — u(t)| < Kolhi|r, te0,a], keN. (2.2.4)

If in addition (A2) (iv) holds, then u,u® € W1°°([0,a],R), and moreover, if (A2) (v) is
also satisfied, then there exists K1 > 0 such that

W — ulwroo,01r) < Kilhe|r, k € N. (2.2.5)
Proof Assumption (A2) (ii) implies
[uf (£) = u(®)] = |7 (¢ 2f, € + B5) = 7(t 20, €)| < L2} — zle + Ihilz), € [0,a],
so (2.2.2) yields (2.2.4) with Ky := Lo(L + 1).
Now assume (A2) (iv) also holds. For simplicity of the notation let hy := 0 = (0,0,0) €

[, and so 2 := z and u° := u. Then (A2) (ii), the Mean Value Theorem and (2.2.1)
imply for k € Ny and ¢,t € [0, o]

I7(t, xF € + 1) — (5 2F, € + W) < Lo(|t — 1] + |2F — 2F|¢) < Lo(1 + N)|t —#]. (2.2.6)
Hence u* is Lipschitz continuous, and so it is almost everywhere differentiable on [0, o],

and 4" | e (0,ar) < L2(1 + N). Therefore u* € Wh>([0, o], R) for k € Ny.
Let Ly = Ly(a, My, My) be defined by (A2) (v). Assumption (A2) (v) and (2.2.2) give

. . d d
[ (8) = (1)) = | 7t of, €+ ) — (620, §)| < Lallaf —wlo +[hilz) < La(L+1)[hylr

for a.e. t € [0, ). Therefore (2.2.5) holds with K; := max{ Ky, L4(L + 1)}. []
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We note that (A2) (v) and (viii) hold under natural assumptions for example for
functions of the form

0

60, = (Lo @) 0 @), [ AROBO A E0)

-

and
0

ft,0.0) = F (1.0 00— (0), [ BOUC) de.0(0)

-

Here © = WH([0,T],R) and = = W1>°([0,T],R) can be used, and then we have, e.g.,
for 7 under straightforward assumptions we have for a.e. t € [0, ], y € Wh([—r, o], R")
d - 1 4 ’

Gt e = Dir(tylt—n ).t '), [ A Qe+ Q) dc.€)

0

30 D (e =0 0ol = @), [ ARt + e, 0)

xy(t —n'(t))(1 = 7' (1))

D (bt = 00 olt = '@, | ALt + O e, 0)

-

x / DA, Oyt +C) + At Ot + Q)] de

-

D (1t = (0). e =), [

0 .

A, Oyt +€) de, £(1) ) (0.

Similar formula holds for % (t,ye, y(t — 7(t,y:,€)),0). So if 7 and f are continuously
differentiable, 7* are continuously differentiable and esssupcp (1 — 7°(t)) > 0 for i =
1,...,¢, then it is easy to argue that (A2) (v) and (viii) hold. See also Lemma 4.2.1 in

Chapter 4 for a related computation.
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2.3 First-order differentiability wrt the parameters

In this section we study the differentiability of the solution z(¢,7) of the IVP (2.1.1)-
(2.1.2) wrt 4. The proof of our differentiability results will be based on the following
lemmas.

Lemma 2.3.1 Let y € Wh([—r,a],R"), wy € (0,00) (k € N) be a sequence satisfying
wr — 0 as k — oo. Let u,u” € PM([0,a],[—r,a]) (k € N) be such that

|’LLk — u‘Wl,oo([O’oéLR) < wg, k € N. (231)
Then

lim —/ [y(u®(s)) = y(u(s)) — gluls))(u"(s) — u(s))| ds = 0. (2.3.2)

k—o0 Wy
Proof Let 0 =ty <t; < -+ < tj,_1 < t,, = a be the mesh points of u from the
Definition 1.2.9, and let 0 < ¢ < min{t;;; —¢;: @ = 0,...,m — 1}/2 be fixed, and
introduce t; :=t;+ecfori=0,....m—1,t/ :=t, —ecfori=1,...,m,t;:=0,t =«
and let

M:= min essmf |u(t)].
= 7

We have M > 0, since u € PM([0,q],[-r, a}). Assumption (2.3.1) yields that there
exists ko > 0 such that |u* — ulwi.oo (0,0, R) < % for £ > kg. Then for k > kg it follows
[0k (s)] > & and |u(s) + v(i(s) — u(s))] > & for ae. s € [t),t/,],i=0,...,m—1 and
v € [0,1]. Let A := |y|w1.~([—r,a],R"). Then simple manipulations, (2.3.1) and Fubini’s
theorem yield

[ ) = ) = () ) ) s
5 [N -t ] o

< (m+ 1)252A|uk — UlC(Oa 1,R)

DA >+v<<>—u@»)—mw@ﬂwwg_u@»m4@

< [m+14Ag+Z//

IA

(Iy(u()) = y(()] + () e () = us)]) ds

"
t2+1

vt (s) = u(s))) = jluls))| dsdv].
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It follows from Lemma 1.2.6 and Remark 1.2.7 that for every v € [0, 1]

tiss
lim
k—oo [

(3

i (uls) + v () = u(s)) — (uls))|ds =0, i=0,m—1,

hence we get by using the Lebesgue’s Dominated Convergence Theorem that

lim sup w—/ [y(ut(s) = y(u(s)) — 4luls))(u(s) — u(s))| ds < (m + 1)44e.
k—oo k
This concludes the proof of (2.3.2), since € > 0 can be arbitrary close to 0. []

We introduce the notations

wf(t,z/j,ﬂ,e_,z/z,u,é’) = f(t7¢ u, 6) f( 1/_}71279) - Dgf(t,l[),ﬂ,é)(l/) - QZ)
—Dsf(t, v, u, 9)@ )— Dyf(t,4,u,0)(0 —0), (2.3.3)

WT(tfézvgﬂv/}:g) = ( ¢ 5) _T(t ’QZ) g) (tf&vg
—Dy7(t,9,€)(§ —§) (2.34)

for t € [OvT]7 &71#6 Ql7 a7ue Q?a 0_786937 5756947 and

() = e sup{1D:f (1, 1,0) = Dif (1,08, | ogv, o
=Pl +u—a|+10—0lo <, te0,a], ¥,0 e M,
uii€ My, 0,0 € Mg}, (2.3.5)
Q. () = gg%supﬁDﬂ(t,w,ﬁ) — Dit(t, 9, )| ez my: [ —Ylo+ 1€ — €|z <
€ [0,a], ¥, € My, &€ € M4}, (2.3.6)

where Y5 :=C, Y3 :=R", Y, :=0, Zy :=C and Z3 := =.

The following result is an easy generalization of Lemma 4.2 of [50] for the IVP (2.1.1)-
(2.1.2), therefore we omit its proof here. (See also the related proof of Lemma 2.4.7
below.)

Lemma 2.3.2 (see [50]) Suppose (A1) (i)-(iii), (A2) (i)-(iii). Let P and a > 0 be
defined by Theorem 2.2.1, let v = (p,0,) € P be fizred, and hy = (hf,hz,hi) el
(k € N) be a sequence satisfying |hx|r — 0 as k — oo, and v+ hy € P for k € N. Let
o(t) = x(t, ), 28(t) = z(t,y + hy), u(t) =t — 7(t, 21, &) and u¥(t) .=t — 7(t, 2%, € + 1),
Then .

khm Tlr / |lwi(s, x5, 2(u(s)), 0, 2%, 2" (u¥(s)),0 + hl)| ds = 0 (2.3.7)
—oo [hg|r
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and

lim
k—o0 |hk|F

|l gatig o m)lds =0, (238)
0

A solution z(-,7v) of the IVP (2.1.1)-(2.1.2) for v € P is, in general, only a TWh-
function on the interval [—r, 0], but it is continuously differentiable for ¢ > 0. In [58] (see
also [50]) a parameter set

Pri={y=(p,0,§) € P: z(-,7) € X(,§)}

was considered, where
X(a, &) = {:L" € Whe([—r,a],R"): 2, € Q, x(t — 7(t,21,€)) € Qy for t € [0, al,
e d .
and essmf{a(t —7(t,x4,€)): ae t€0,a ]} > O}

and o := min{r,a}. Then Lemma 1.2.6 yields that the function ¢t — @(t — 7(t, 2+, §)) is
well-defined for a.e. t € [0,*] and it is integrable on [0, «*], and it is well-defined and
continuous on [o*, a]. Note that it was shown in [58] (see also [50]) that P, is an open
subset of the parameter set P. In this section we relax this condition. We define the
parameter set

Py = {fy - (307976) € P: the map [0,0é*] - ]R7 t—1t— T(taxt('77)7§>
belongs to PM ([0, ], [—r, a])}. (2.3.9)
Then we have P, C P, C P, and Lemma 1.2.10 yields that for a solution = corresponding
to parameter v € P the function ¢t — @(t — 7(t, 2, €)) is well-defined for a.e. t € [0, |
and it is integrable on [0, a*]. Therefore, as the next discussion will show, the parameter
set where the variational equation, and correspondingly the differentiability of the solution
wrt the parameters can be obtained is larger than in the previous papers [45, 50, 58].
Let v = (p,0,€) € P, be fixed, and let z(t) := z(t,~y). Consider the space C' x © x =
equipped with the product norm |(h%, h%, h®)|cxexz = |h?|c + |h¥|e + |h¢|z. Then for
a.e. t € [0, a] we introduce the linear operator L(t,z): C' x © x = — R™ by
L(t,z)(h*, B, h)
= Daf(t, e, x(t — 7(t,24,6)), 0)h7 + D3 f(t, xp, x(t — 7(t,24,6)), 0)
X [_x(t - T(t) T, 5)) (DQT(t7 Ty, §>hg0 + D3T(ta T, §)h€> + hw(_T(tv T, g))]
+Dyf (t, zy, x(t — 7(t, 24, ), 0) R’ (2.3.10)

for (h#,h? h%) € C' x © x Z. We have by (A1) (ii), (A2) (ii) and (2.2.1)

Lt 2) (02,10 < Lalk¥lo + L | N(Lalh¥lo + Lalblz) + 1h]c| + Lalhflo
< LiNo|(h#, R, h®)|cxex=,  ae. t€[0,q], (2.3.11)
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where

Therefore
‘L(tax)‘E(CXGXE,R") S L1N07 a.e. t e [0,0é].

Hence L(t, ) is a bounded linear operator for all ¢ for which &(t — 7(¢, 2, §)) exists.
For v € P, we define the variational equation associated to x = z(-,7) as

i(t) = L(t,x)(z, k%, h%) a.e. t € [0,al, (2.3.13)
z(t) = h?(t), t € [—r,0], (2.3.14)

where h = (h? h? k%) € C x © x Z is fixed. The IVP (2.3.13)-(2.3.14) is a Carathéodory
type linear delay equation. By its solution we mean a continuous function z: [—r, a| —
R™, which is absolutely continuous on [0, a, and it satisfies (2.3.13) for a.e. ¢t € [0, o] and
(2.3.14) for all t € [—r,0]. Standard argument ([22], [43]) shows that the IVP (2.3.13)-
(2.3.14) has a unique solution z(t) = z(¢,~,h) for t € [-r,a],v € Pyand h = (h? h k%) €
Cx0OxE.

The following result was proved in [50] for the parameter set P; (see Lemma 4.4 in
[50]), but the proof is identical for the parameter set P», as well.

Lemma 2.3.3 (see [50]) Assume (A1) (i)—-(iii), (A2) (i)—-(iii). Let v € Py, and x(t) :=
x(t,y) fort € [-r,al. Let h € C x © x = and let z(t,7, h) be the corresponding solution
of the IVP (2.3.13)-(2.3.14) on [—r,al. Then

(i) z(t,y,-) € L(C x © x E,R"™), the map C x © x = — C, h — z(-,v,h) is in
L(CxOxEC), and

|Z(t777 h)| < |Zt('777 h)|C < N1|h|C><®><E7 S [0,0&], Y E P27 he(Cx0Ox E,

(2.3.15)

where Ny 1= ef1Noo

(i) there exists No > 0 such that

’Zt<',’7,h)ywl,oo S NQVL‘F, te [O,CY], Y € pg, hel. (2316)

Next we show that the linear operators z(¢,7,-) and z:(-,, ) are continuous in ¢ and
v, assuming that v belongs to P. First we need the following result.

Lemma 2.3.4 Assume (A1) (i)-(iii), (A2) (i)-(v). Let v € Py, h = (h?,h% h%) € T,
he = (h$,hY,h5) € T (k € N) be a sequence such that |hilp — 0 as k — oo, and
Y+ h, € Py for k € N. Let z(s) := z(s,7), 2%(s) = z(s,v + hg), u(s) := s — 7(s, 4, ),
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and uk(s) == s — 7(s, 2% & + hf). Then there exists a nonnegative sequence cgy, such that
cor — 0 as k — oo, and

|L(s,2")h — L(s,2)h| < cop|hlr + LiLa|i(u*(s)) — @(u(s))||h|r (2.3.17)
for a.e. s €[0,a], ke Nand heTl.
Proof We have
L(s,z*)(h?, h? h&) — L(s,x)(h?, h?, h%)
= (Daf(s b, (w5 (), 0+ W) — Daf (s, 20, (u(s)), 0) ) b
(Dgf<s,xs,x’f< “(),0 + ) = Dy f(s, 3, 2(u(s)), 0))
x (=@ (u(s))) (Do (s, 2%, € + BR? + Dyr(s, 2k, € + B)IE)
Dy f (5, 20, 2(u(s)), 0) (— (6 (5)) + (" (s) >)
x (D (s, @k, € + B + Dyr(s,

) S ) 3’

3

+Daf (5,0, (u(s)), 0) (= )

(DQT(S, ok &+ B)hE + Dar(s, 2k, € + hi hﬁ)
D3 (5,2 2(u(5)),0) (~i(u(s)))

X [(DQT(S, 2k €+ hE) — Dor(s, 5)) h?
+(Ds7(s, @k, € + h) = Dar(s,,,€) ) ¢
+(Daf (5,8, 2" (W4 (5)),0 4 B) = Dy (s, 20, (u(s)),0) ) h (=7 (5, 2%,€ + B)
Dy f (5,5, 2(u(5)),0) (A (—7(s, 28, € + ) = h#(=7(s5,2.,€)))
+(Daf (s, b, 0" ()), 0+ W) = Daf (s, 2 2(u(s)),0)) W, s € [0,a].
Relations (2.2.1), (2.2.2), (2.2.4) and the Mean Value Theorem give

2" (u*(s)) — x(u(s))| [2* (" (s)) — 2 (u" ()] + |2(u"(s)) — z(u(s))|
Lihglr + N{u*(s) — u(s)|
Ko|hilr, (2.3.18)

VAN VANRVAN

with KQ =L -+ NK(),

2% — 2o + e (b (s)) — 2(u(s))] + Wl < Kalulr, (2.3.19)



30 Chapter 2. State-dependent DDFEs

with K3 := L+ Ky + 1, and
|2k — ile + |hilz < (L +1)]helr. (2.3.20)

Combining the above estimates with (A1) (ii), (A2) (ii), (2.2.1), (2.2.2), (2.2.4) and the
definition of 2y and €2, we get

|L(s,2")(h?, h? h&) — L(s,z)(h?, b, h%)|

< Q (KBV%\F> |h?|c + Qf (Kz\hkfr> N Ly(|h?]c + |h]=)
(u*(s)) — i (u(s))
LN (L -+ D)lhlr) ) (1190 + 1)) + 2 (Kl ) 2o

4Ly Ll |r Ly (|h¥) e + |R¥|z) + Ly Ly(|h?|c + |h®|z)

+L1|h@|LooK0|hk|r+Qf<K3|hk|p>|h9|@, S € [O,CE],

which yields (2.3.17) with cos := NoQ; (Kgyhk|r) +L1L2L|hk|p+L1NQT((L+ 1)|hk|p) n
L1 Ko|hg|r, where Ny is defined by (2.3.12). ]

Lemma 2.3.5 Assume (A1) (i)-(iii), (A2) (i)-(v). Let v € P, and x(t) := x(t,~) for
te[—r,al. Let h € C'x Q x Z and let z(t,7,h) be the corresponding solution of the IVP
(2.3.13)-(2.3.14) on [—r,a]. Then the maps

RxT'D [0,0&] XP2—>,C(F,]RR>, (t/)/)'_)'z(t?’%)

and
RxTD[0,a] x P, — LT, C), (t,7)— (.7

are continuous.

Proof Let v € P, be fixed, and let hy = (h{,h%,h%) € T (k € N) be a sequence such
that |hg|r — 0 as k — oo and v + hy € P, for k € N. For a fixed h = (h?, h?, h®) € T we
define the short notations z*(t) := x(t, v+ hy), z(t) := z(t, ), uF(t) ==t —7(t, z¥, E + 1Y),
u(t) ==t — 7(t, 2, &), 25M(t) == 2(t,y + hg, h) and 2"(t) := z(t,~,h). The functions z*"
and 2" satisfy

t
) = h“"(O)+/ L(s,2") (28" h?, h%) ds, t€10,al,
Ot
) = h¢(0)+/ L(s,2)(z" h he)ds,  t€[0,al,
0

and therefore for ¢t € [0, a]

R () — (1) < /O

(L(s, )~ L(s, x)) (2 B0 RS+ L(s, 2F)(2Fh—2" 0,0)| ds. (2.3.21)

s
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We have by (2.3.16) and Ny > 1
(2, 2%, 18 < Nalhlr + B + [hf|z < (N2 + 1)[Ar. (2.3.22)
Then (2.3.11), (2.3.17), (2.3.21) and (2.3.22) imply

¢
|25 (t) = 2"(t)] < erplh|r +/ LiNo|zb" = 20 c ds, t € 10,al, (2.3.23)
0
where ¢, is defined by
1 = acor(No+1)+ LiLy(Ny+ 1) / |x(uk(s)) — x(u(s))| ds.
0

Lemmas 1.2.11 and 2.2.3 yield that foa* |&(uf(s5)) — 2(u(s))|ds — 0 as k — oo. If a* < a,
then define
0, (c) == max{|m'(s) —i(3)]: |s—3| <e, s,5€0, a}}.

The continuity of & on [0, ] yields Q,(¢) — 0 as € — 0. Therefore
/ ((uH(s)) — i(u(s)] ds < Qu(Kolhulr)a — 0, & — oo,
and so
lim |2(uF(5)) — @ (u(s))| ds = 0. (2.3.24)
Hence ¢, — 0 as k — oo.
Lemma 1.2.1 is applicable for (2.3.23), since |z0" — 2| = 0, and it gives
|20 (t) — 2" (t)] < |28 = 2Pe < erwNi|hr, t €10,q], (2.3.25)
where N; := el1Noa Therefore we get for t € [0, o]
|2(t, v+ hi, ) = 2(E 7, ) covree mry < |2e(, v+ iy ) = 26,75 ) | cowree o) < e1eN1 (2.3.26)

for all £ € N.
Let t € [0, a] be fixed, and let vy be a sequence of real numbers such that t+ v € [0, ]
for k € N and vy — 0 as k — oo. Then (2.3.16) and the Mean Value Theorem yield

|Zt+Vk('7’7 + hk‘7 ) - Zt('yfy + hk‘a ')|£(F,C) S N2|Vk’|7 k Z kO'
Combining this relation with (2.3.26) and ¢; , — 0 we get
|2(t 4+ v,y + Py -) = 2(t, 7, ) e re)

< Nz oy + By ) — 2,7, ) 2oy

< Nz oy + ) = 2oy + B )leriey + 12007 + Ay ) — 20,7, ero)
< Nofvg| + c1pe Ny

— 0, as k — oo.

This completes the proof. ]
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In Lemma 2.3.8 below we will show that under additional conditions, the function
v+ z(t,7,-) is Lipschitz continuous. To obtain this higher smoothness first consider the
next lemma.

Lemma 2.3.6 Assume (A1) (i)-(iv), (A2) (i)-(iv) and v = (¢,0,&) € P is such that
@ € W2, Then there exists Ky = Ky(7y) > 0 such that the solution z(t) = x(t,v) of the
IVP (2.1.1)-(2.1.2) satisfies

lz(t) — z(6)| < Kylt — 1 fort,t € [-r,0) and t,t € (0,al. (2.3.27)

Moreover, if in addition v € P, then x € W2([-r, a],R"), and

|z(t) — 2(t)] < Ky|t — ¢ for ¢, € [—r, . (2.3.28)
Proof The Mean Value Theorem and the definition of the W#*-norm yield
2(t) — 2(@)] = [o(t) — @] < [plwee|t =1, t,t€[-r,0).

For t,t € (0, ] it follows from (A1) (ii), (iv), (A2) (ii), (iv), (2.2.1) and (2.2.6) with k =0

i(t) = @] = 1z w(ult), 0) = f(F s 2(u(d), 0)
< Lyt =2+ |z = aide + a(u(t) — o(uD)])
< L1+ N+ NLy(1+ V)t — .

Hence (2.3.27) is satisfied with K, := max{|p|wz~, L1[1 + N + NLy(1 + N)|}.
If v € P, then & is continuous, and (2.3.27) yields that it is Lipschitz continuous on
[—r, a] with the Lipschitz constant Ky, so, in particular, z € W°°([—r, o], R"). ]

We will need the following class of initial functions in the next lemma.

Definition 2.3.7 Let PW?* denote the set of functions o € W1 which are piecewise
W2 _functions, i.e., there exists a finite mesh —r =tq < t; < ... < t,, = 0 such that ¢
is Lipschitz continuous on the intervals (t;,t; 1) fori=0,...,m —1, and has continuous
one-sided derivatives at t; fori=0,...,m. We define a norm on PW?%> by

lelowse = max{lple, [ploe. |~ ).

Note that any function ¢ € PW?* is almost everywhere differentiable and twice differ-
entiable, but both ¢ and ¢ may have discontinuity at the mesh points. A typical example
of a PW%>-function is a spline function defined on [—r, 0].

The next lemma gives sufficient conditions under the solutions of the IVP (2.3.13)-
(2.3.14) depend Lipschitz continuously on the parameters. This result will be essential to
prove the convergence of the quasilinearization sequence in Chapter 3.
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Lemma 2.3.8 Assume (A1) (i)—(v), (A2) (i)—(vi), and v* = (¢*,60%,&*) € Pi. Then
there exists 0* > 0 such that for every m € N and K > 0 there exists a nonnegative
constant N3 = N3(v*,0%,m, K) such that for every v = (,0,&) € Br(y*; §*) satisfying
o € PW2>® with |¢|pwa~ < K, and the number of points of discontinuity of ¢ and ¢
in (—r,0) is less or equal to m, there exists 6 > 0 such that for every sequence hy € T’
with |hglr < & for k € N and all h € T the functions zF"(t) == z(t,y + hg, h) and
2M(t) == z(t,7, h) satisfy

|25 (t) — 2M(t)] < ]zf’h — 2Mo < Ns|hg|r|hr, te0,a], heTl. (2.3.29)

Proof Since P; is an open subset of P (see [58] and [50]), there exists a dp > 0 such that
Br(v*; do) C Py. For a fixed v € Br(v*; §g) we define z(t) := x(t,7), z*(t) := z(t,v%),
u(t) =t —71(t, x4, &) and u*(t) :=t — 7(t, 2, &*). Introduce

M* = min{essinfﬂ*(s), 1}.
s€[0,a*]
Then v* € P, yields M* > 0, and u* is strictly monotone increasing on [0,a*]. Let
0 < M < M* be fixed. It follows from Lemma 2.2.3 that there exists 0 < §* < §y such
that if v € Br(~*; 6*), then 4(s) > M for a.e. s € [0,a*], and, in particular, u is also
strictly monotone increasing on [0, a*].

Fix m € Nand K > 0, and v = (p,0,&) € Br(y*; %) be fixed such that ¢ € PW>>,
|l pw2e~ < K, and the points of discontinuity of ¢ in (—r,0) is less or equal to m. Let
91 > 0 be such that Br(v; 6;) C Br(y*; 0%), and let hy € I' (k € N) be a sequence
satisfying |hxlp < &) for k € N. Let 2%(t) := a(t,y + hg) and u*(t) ==t — 7(t, 2F, € + h%).
Let —r < t; < --+ < t, < 0 be the points of discontinuity of ¢ (from Definition 2.3.7),
and define tg := —r and t,, := 0. Then by the assumption on v we have ¢ < m.

It follows easily from the proof of Lemma 2.3.6 that K := max{K, L;[1+ N+ NLy(1+
N)|} satisfies

i(t) — (D) < Kt —f|  for t,£€ (ti,timn), i=0,....0, t,fe(0,a) (2.3.30)

and for all v € Br(y*; 6*) N Bpy2.(0; K).
Let g9 := min{t; 11 —t;: i =0,...,0}. Let 6y := min{él, Af{—?} Then if |hg|r < 09 for
all k£ € N, then by (2.2.4) we have

[u(s) — u(s)| < Kolhg|lr < Mey < e, keN, sel0,a. (2.3.31)

Since u(0) < 0, there exist s; € [0,a*] and j € {0,1,...,¢+ 1} such that u(s;) = ¢; for
i = J,...,0 + 1. By the strict monotonicity of u we have 0 < s5; < --- < sp41 < ™.
Similarly, let s;; and j; be such that u*(sg;) =t; for i = ji,..., £+ 1, k € N. We again
have 0 < 555, < -+ < Speqp1 < .
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Next we show that if |hg|r < 0o for k& € N, then

K
|sp.s — si] < M‘th\p <ep, i=max(j,jr),....0+1, keN. (2.3.32)

First consider the case when s;; > s; for some i € {max(j, ji),...,¢+1} and k € N. The
definitions of M, §*, d1, da, s; and s;,; and (2.3.31) imply

M (sp; —si) < u(sgq) —u(si) = u(sp;) — uk(s;“) < Kolhg|r < Mey, ke N

for all i = max(j, jx), ..., {+1. We have then 0 < s;;—s; < g¢. In the opposite case when
Ski < s; we get the same way that 0 <'s; — 55, < %Vlkh‘ < &9, which yields (2.3.32).

We distinguish 3 cases. Case (1): If j = 0, then s; = 0, moreover, j, = 0 and s;;, =0
for u*(0) = 0, and ji = 1 and sz, > 0 for u*(0) > —r. Case (2): If s; = 0 and j > 0,
then u(0) = ¢;, moreover, jp = j + 1 and s; ;11 > 0 for v*(0) > u(0), and jp = j and
sk; > 0 for uF(0) < u(0). Case (3): Consider the case when s; > 0 and j > 0. Then
ti—1 < u(0) < tj, and let A := min(u(0) — t;_1,t; — u(0)) and 3 := min{J,, KAO} Then
if |h|r < 03 for all k € N, then |[u¥(s) — u(s)| < Ko|hi|r < A for s close to 0, and hence
Jx = J, and u*(s),u(s) € (t;_1,t;) for 0 < s < min(s;, sx;), and t;_; < uF(s) < t; < u(s)
for s € (min(s;, sy ), max(s;, sx;)).

Now we consider Case (3) above. Suppose |hi|r < 05 for all & € N. Define ay; =
min(s;, si;) and by,; := max(s;, sg;) for i = j,..., ¢+ 1. Then for i = j,...,f and k € N
we have

K
bri — g = |8i — Skl < ﬁo|hk|f‘, (2.3.33)

bri < apis1, and u(s),uf(s) € (t;,t;y1) for s € (br,,agiy1). For definiteness suppose
(agi,bri) = (si,sk;) (the opposite case is similar). Then for s € (ay;, br;) we have
u(s) € (t;, tip1) and uF(s) € (t;i_1,t;). Therefore (2.3.30) and (2.2.4) imply

ji(u(s)) — @ (u"(s))] [(u(s)) — @ (ti+)] + @ (tit) — @ti—)] + |a(ti—) — @ (u’(s))]
K (u(s) = t;) + |@(tit) — a(ti=)| + Ki(t; — u"(s))
Kilu(s) = u(s)| + | (tit) — @(ti—)]

K Ko|hg|r + |2(ti4) — @(t;i—)|. (2.3.34)

VAN VAN VANVAN

Then (A1) (ii), (2.2.2) and (2.3.18) give for ¢t € [0, o]

[2(O)] < [f(t zr,w(ul?)), 0) = F{ a2 (W (1)), 0°)] + | f (L, 27, 27 (u"(1)), 67))

Loz — il + le(u(t)) — 2" (u* (@) + 10 — 0%|o) + max [f(E @i, 2" (u*(2)), 07)]

ININA

IN

Li(L+ Ky + 1)y =" + max [f(t, @, 2™ (u*(2)), 07)]

K,

IN
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where K := Li(L + Ky + 1)0* + maxyco,a] |f(t, 27, *u*(t)),6%)|. Then, in particular,
|2(04)] < K for all v € Br(v*; §*), and so (2.3.34) yields for all i = j,...,f and k € N

l&(u(s)) — @ (uf(s))| < K Kolh|r + 2K*, s € (i bri), (2.3.35)

where K* := max{K, K}. Note that it is easy to check that (2.3.35) holds for the case
(akis br,i) = (Skyis 8i), too.
Therefore by (2.2.4), (2.3.30), (2.3.33), (2.3.35) and ¢ < m we have

*

/0 T Ji(u(s)) — Hut(s)] ds
Qg 4
= [ atutsn = attentas+ 3 [

¢ Qf i+4+1 o
30 [ atuto) itk lds + [ latuts)) - a9 as

bi.i br,er1

i (u(s)) — i(u(s))] ds

k,i

¢ ¢
< ay, ; Ky Ko|hi|r + Z(bm — ap; ) Ky Ko|hi|r + Z(bkz — ay,;)2K”

i i=j
¢
+ 3 (arie1 — i) K3 Kolhylr + (o — by o) K Ko |
=5
* Tk KO *
< kagkb+4n]72ﬁ')hup. (2.3.36)

Ineqauality (2.3.36) can be obtained similarly for the Cases (1) and (2).
Assumptions (Al) (v) and (A2) (vi) imply that Qs(e) < Lse and Q.(g) < Lse for
e > 0 with Ly = Ls(a, My, My, M3) and Ls = Ls(«, My, My). Therefore the definition of
Cok, C1x and (2.3.36) yield the existence of an L* > 0 such that ¢, < L*|h|r for all hy
satisfying |hg|r < 0 for some 6 > 0. Then (2.3.29) follows from (2.3.25) with N3 := L*N;.
[J

Now we are ready to prove the Fréchet-differentiability of the function x(t,v) wrt .
We will denote this derivative by Doz (t,).

Theorem 2.3.9 Assume (A1) (i)-(iii), (A2) (i)-(v), and let Py be defined by (2.3.9).
Then the functions

RxTD[0,a] x P—R" (t,7) — x(t,7)

and
RxTD[0,a] xP—C,  (t,7)+ 2(-,7)
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are both differentiable wrt v for every v € Py, and
Dox(t,y)h = 2(t, v, h), hel, tel0,a], v€ P, (2.3.37)

and
D2xt('77)h = Zt('aVa h)a h € Fa te [0,0é], Y € P2> (2338)

where z(t,, h) is the solution of the IVP (2.3.13)-(2.3.14) fort € [0,a], v € Py and h € T.
Moreover, the functions

RxT>[0,0] x P, — L(T,RY),  (t7) — Dsx(t,7)

and
RxT D[0,a] x P, — L(T,C),  (t,7) + Doxy(+,7)

are continuous.

Proof Let v = (p,0,&) € P, be fixed, and let hy, = (h7,hY,h%) € T (k € N) be a
sequence with |hglr — 0 as k — oo and v+ hy € P for k € N. To simplify notation, let
2R (t) ==zt y + hy), o(t) == z(t, ), u(s) == s — 7(s,25,), uF(s) := s — 7(s, 2%, & + hs)
and 2" (t) := 2(t,7, hy). Then

o (t) = 0) + Ay (0 / f(s,ak a¥(uk(s)),0 + hl) ds, t €0, ql,

x(t) = g0(0)+/0 f(s, x5, x(u(s)),0)ds, t €[0,ql,

and .
2" (t) = h(0) +/ L(s,x)(2", hl, h%) ds, t€0,a].
0

We have
)~ a(t) = ) = [ (0t 20,0 ) — Jlssra(ul),0)
0
~ L(s,x)(z" B, h,ﬁ))ds. (2.3.39)
The definitions of wy and L(s, x) (see (2.3.3) and (2.3.10), respectively) yield for s € [0, a]

f(s, 2k, 2 (uF(5)),0 4+ BY) — f(s, 20, 2(uls)),0) — L(s,x) (2", b, )

= Daf(s,20,0(u(s)), 0) (k= 2y — 21%) + Daf(s, 2 2(u(s)),0) (2 (e (5)) = 2(u(s)) )
+ Dsf(s,xs, x(u(s ),9)( (D275x5,§ hk—i—DgT(s x5, E)h ) zh’“(u(s))>
+ wi(s, s, x(uls), 0, 2%, 2 (u*(s)), 6+ h). (2.3.40)
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Relation (2.3.4) and simple manipulations give

xWWSD—MM))'((D@%ﬂ&%fﬂ?+Dﬂ@wm®ﬁ>—h“%@)

= a"(u'(s)) — 2(u(s)) — 2" (u"(s)) + 2 (W’ (s)) — x(u(s)) — @ (uls))(w"(s) - u(s))
( (S )"‘JT<S 375,5, s’§+h£> —f( (5))D27(37"E87§)(w§_m5 th)
2 (u(s)) = 2" (u(s). (2.3.41)

Relation (2.2.4) and (2.3.16) imply
2" (u"(5)) — 2" (u(s)] < Nafhlru*(s) — u(s)| < NaKolhlp. (2.3.42)

Using (2.2.1), (A1) (ii), (A2) (ii), and combining (2.3.39), (2.3.40), (2.3.41) and (2.3.42)
we get

[ (t) — w(t) — 2 (1))
< A[u@ﬁ—xfw?w+mﬂww»—uw@»—ﬁww@m

+ |z(u®(s)) — z(u(s)) — @(u(s))(u*(s) — u(s))|
+ Nlw, (s, 24, &, 2%, € + BE)| + NLo|a® — 2y — 2 |C+N2K0|hk|r)

o+ fwp(s, w0, w(u(s)), 0,28, 2 (u"(5)), 0+ B) [ ds, € [0,0]. (2.3.43)

Let Ny be defined by (2.3.12). Then

¢
l2*(t)—a(t)—2" ()| < ak—l—bk—i-ck—i-dk—l—LINo/ |z¥ —a— 2| ds, t€0,a], (2.3.44)
0

where
S / (s (s, 20, (u(s)), 0, 25, 2 (uH(s)), 6 + h2)| ds, (2.3.45)
b = LlN/O |wr (s, 25, €, 5,25, & + hY)| ds, (2.3.46)
o = Iy /0 2 (e () — w(u(s)) — i(u(s)) (W (s) — uls))| ds,  (2.347)
and

dy, := aNoKo|hy|p. (2.3.48)
Since |z§ — 2o — 20|c = 0, Lemma 1.2.1 is applicable for (2.3.44), and it yields

l2%(t) — z(t) — 2" (t)] < |aF — 2y — 2|0 < (ag + bp + ¢ + di,) Ny, t€0,a], (2.3.49)
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L1 Noa

where N; := e , and hence

|9Ck(t) —x(t) — th(t)‘ < |5Cf — Ty — ka|C < ay + b + ¢ + di,
|| B || B ||

le t e [O,CY],

(2.3.50)
which proves both (2.3.37) and (2.3.38), since Lemmas 2.3.1, 2.3.2 and (2.3.48) show that

ak—l—bk—i-ck—l—dk

lim =0. 2.3.51
k—00 |h|r ( )
The continuity of Dox(t,7) follows from Lemma 2.3.5. ]

Remark 2.3.10 We comment that for v € P, the statements of Theorem 2.3.9 are valid
without assumptions (A2) (iv) and (v), since they are needed only to prove (2.2.5), which
is the key assumption of Lemma 1.2.11. If v € P, then both u and «* are monotone
increasing (for large enough k), so Lemma 1.2.6 can be used instead of Lemma 1.2.11.
Also, continuous differentiability of x wrt the parameters holds in a neighborhood of ~,
since P; is open in P. See Theorem 4.7 in [50] for a related result.
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2.4 Second-order differentiability wrt the parameters

To obtain second-order differentiability wrt the parameters we need more smoothness
of the initial functions. Therefore we introduce the parameter set

[y :=W** x0O x =

equipped with the norm |h|r, := |h?|w2.0 + |h?|e + |h¢|=z. We will show in Theorem 2.4.16
below that the parameter map

FZD(PQQFQ)_)RH7 7—>$(t77)
is twice differentiable at every point v € P, N I'y NP. The proof will be based on a
sequence of Lemmas.
We assume throughout this section
(H) v = (0,0,6) € ,NTy, h = (h*,h8, k%) €T, by, = (hf,hz,hi) € I' (k € N) are
so that |hglr — 0 as k — oo, v+ hy € P, for k € N, and |hy|r # 0 for £ € N.
Let 2*(t) := x(t,y + hy) and x(t) := z(t,7) be the solutions of the IVP (2.1.1)-

(2.1.2), 2Ph(t) := Doz (t,v + hy)h and 2"(t) := Dax(t,v)h be the solutions of the
IVP (2.3.13)-(2.3.14).

The simplifying notations for ¢ € [0,a] and k € N

u(t) = t—71(t,x,§),
ub(t) = t—7(t,af €+ 1),
v(t) = (t,zyx(u(t)),0),
Vi) = (tap, 2 (W (), 0),
A(t, h?, hg) = Dor(t,m,)R? + DgT(t,xt,f)hg,
ARt b hE) = Dyr(t,ak € + hS)R? + Dar(t, 2% € + hS)RS,
E(t,h?, hs) = —:t(u(t))A(t,h“",hf) + h?(=7(t,2,)), ae. te|0,al
ER(t,he h8) = —i"(u (1)) AR (t, b2 hE) + he(—7(t, 2 € + BS)), ae. t €0,ql,
F(t,h?,h8) = —&(u(t))A(t, h?, h8) + h#(—7(t, x4, ), ae. t € 0,al,
FE(t, h?, hE) — iR (R () AR (t, b2 RE) + hP(—7(t, 2 € + BS)), ae. t €0,q]

will be used throughout this section. For simplicity of the notation we define hy := 0 =
(0,0,0) € T, and accordingly, 2° := z, u® := u, 29" := 2" A°:= A E°:= E. Note that
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in all the above abbreviations the dependence on ~ is omitted from the notation but it
should be kept in mind. With these notations the operator L(t, z) defined by (2.3.10) can
be written shortly as

L(t,2)h = Dof (v(t))h? 4+ Daf(v(t))E(t, h?, h®) + Dyf(v(t))h’.

Lemma 2.4.1 Assume (A1) (i)-(iii), (A2) (i)-(v), and (H). Then

kILIEO |hk|F/ |i%(s) — @(s) — 2" (s)|ds = 0, (2.4.1)
and ) N
lim —— |27 (uF(s)) — @ (uF(s)) — 2" (u"(s))|ds = 0. (2.4.2)

Proof Using (2.3.39), (2.3.43), (2.3.44) and (2.3.49) we get

éau%@—fww—%%ﬁmS

< [ a1t = ool ) — () - )
F lo(t(5)) — a(u(s)) — a(u(s)) (@ (5) — u(s)

+N|w’r(8 Z‘s,f, S7§+h§)|+NL2|.T _'TS_Z |C+N2K0|hk|1")

+ s, @0, w(u(s)), 0, 2k, (4 (s)), 0 + )| | ds

< (lk+bk+ck+dk+L1N0/ |$f—$s—zgk|6‘d5
0

< (ak + b, + ¢, + dk)(l + LlN()NlOz),

where ay, by, ¢ and dj are defined by (2.3.45)—(2.3.48), respectively. Then (2.4.1) is
obtained from (2.3.51).

Relation (2.4.2) follows from (2.4.1), 2%(s) — x(s) — 2" (s) = 0 for s € [~r, 0], |#¥(s) —
i(s) — 2™ (s)| < (L + Ny)|hy|r for s € [-r,0], and Lemmas 1.2.12 and 2.2.3. L]

Lemma 2.4.2 Assume (A1) (i)-(v), (A2) (i)-(vi), (H) and v € P. Then there exists
Ny = Ny(v) > 0 such that

127(s) — 2"(3)| < Ny|h|r,|s — 3|, for s,5€[-r0) and s,5€(0,a], heT,.
(2.4.3)
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Proof For h €Ty, i.e., h¥ € W2, the function h? is continuous, and for s,5 € [—r,0)

[£"(s) = £"(3)| = [h?(s) = h#(8)| < [A®|wao]s — 8 < |hlry]s — 3.

h

Since v € P, L(s, x) is defined and continuous for all s € [0, a], so 2" is continuous on

(0,a]. For s,5 € (0,a] (2.3.11) and (2.3.13) imply

[£"(s) = 2"(3)] = |L(s,2) (2, b, h%) — L(5, 2) (=, B, )|
< |[L(s, @) = L(3,2)] (24, 17, k)| + |L(5, 2) (20 = 24,0, 0)]
< |[D2f(v(5)) = Daf(v(5))]2] + |[Dsf(v(s)) = D3 f(v(3)) E(s, 2, h°))|
+H D3 f(vV(5))[E(s, 20, h*) — E(5, 25, h)|

+[Daf(v(s)) = Dyf(v(3)]h®| + Ly No|2 — 2P| (2.4.4)
We have by (2.2.1) and (2.2.6) with £ =0 for 5,5 € [0, o]
V() = V()| < |5 — 5|+ |2 — w5l + Ja(u(s) — 2(u(s) < Kols—5]  (245)
and
(s, 25,§) — (5,25,§)] < (1 + N)[s — 5 (2.4.6)

with K5 = (1 + N + NL2<1 + N)) and (]. + N) =1+ N. Let L3 = Lg(a, Ml,MQ,Mg;)
and L := Ls(a, My, My, M3) be defined by (A1) (v) and (A2) (vi), respectively.
The definition of A, (A2) (ii) and (2.3.15) give

|A(S7Z?7 h£)| S |D27_(57'r57€)22| + |D37’(S,l’8,€)h£| S K6|h|F7 s € [0,0{], h e F) Y€ P2
(2.4.7)
with Ky := L(Ny + 1), and by using (A2) (ii), (vi), (2.3.15), (2.3.16), (2.4.6)

|A(s, 2, h®) — A(5, 20, h°)| < |[Da7(s, 24, €) — Dot (5, 5, )] 20| + | Da7 (5, 25, ) [z — 2]
+|[D37'(8,I’5,€) - D3T(§a l‘g,g)]hq
< Kils—3|hle, s,5€[0.a] (2.4.8)

with K7 := Ls(1+ N)N;+ LyNy+ L;(14 N). Relations (2.2.1), (2.3.15) and (2.4.7) yield
|E(s, 20, h5)] < Ja(u())||A(s, 20, h5)[ + [2" (u(s))]

)y Y8 »7s)

< Kglh|p, se€l0,a], hel, y€ P, (2.4.9)

with Kg := NKg + Ny, and using (2.2.1), (2.2.6) with & = 0, (2.3.16), (2.3.28), (2.4.7)
and (2.4.8)

A - r s EaCI)

5)) — @ (u(3)]A(s, 25, h)| + | (u(3))[A(s, 2, h°) — A(5, 2, 1)
(

€ [0,a] (2.4.10)
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with Ko = Ko(7) := K4Lo(14+ N)K¢+ NK;+ NoLy(1+ N). Then combining (2.4.4) with
(2.4.5), (2.4.9) and (2.4.10) yields

|2M(s) — 2"(5)| < (LsKsNy + LsKsKg + L1 Ky 4+ LsKs + LiNyN,)|s — 5||h|r

for 5,5 € [0,a] and h € T. Hence Ny := max{l, L3KsN; + L3K;Kg + L1Kq + L3K5 +
LiNyN,} satisfies (2.4.3). ]

Lemma 2.4.3 Assume (A1) (i)-(v), (A2) (i)-(vi), (H) and v € P. Then

lim sup / 12" (u M(u(s))| ds = 0. (2.4.11)
k—o0 h7§0 |h|F2

Proof Since v € P, and u(0) < 0, it follows that u has finitely many zeros on [0, «]. Let
0<s1 <8<+ < s < be the mesh points where u(s;) =0, 0 < & < min{s;11 — s;:
i=1,...,0—1}/2 be fixed, and introduce s} := min{s; + ¢, a} and s := max{s; —¢,0}
fori=1,...,¢, 55 :=0, sy, = «, and let

M:= min  min |u(s)|

i=1,..., /—1 SE[S; fL’+1]

We have M > 0. Relation (2.2.4) yields that there exist ko > 0 such that |[u*—u|c(o.0,r) <
Y for k > ko. Then for k > ko it follows |uf(s)| > & for s € [s}, s/ ;] and i = 0,..., L.
Note that h € Ty and v € P yield 3" is contmuous on [—r,0) and (0,«], and (2.3.16)
implies [2"(s)| < Ny|h|r < Na|h|p, for s # 0. Therefore ]zh(uk(s))] < No|hlr, for a.e.

€ [0, ], since, by assumption (H), v + hy € P, hence u* € PM([0,a],[—7,a]). Then
(2.2.4), (2.3.16) and (2.4.3) yield

/O T2 (b (s)) — 2 (u(s))]| ds

< Z/ (12" (uF(s))] + 2" (u d3+2/ s)) — #"(u(s))| ds
< 4€€N2|h|1“2 (€—|—1)04N4K0|h|r2|hk|r

This concludes the proof of (2.4.11), since € > 0 can be arbitrary close to 0. []

Lemma 2.4.4 Assume (A1) (i)-(v), (A2) (i)-(vi), (H) and v € P. Then

L St — 2"(u(s)) = 2 (u(s))(uF(s) — u(s s =
lim sup |h|1“2|hk|1“/ 2" (u®(s)) — 2" (u(s)) — 2" (u(s))(u"(s) — u(s))|ds = 0. (2.4.12)

k—o0 h;éO
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Proof Let s;, 5., 57, ¢, e, M and ky be defined as in the proof of Lemma 2.4.3. Then
lu(s) +v(uk(s) —u(s))] > 4, and u(s) and u(s) + v(u*(s) — u(s)) are both either positive
or negative for s € [s}, s}, ], v € [0,1] and i = 0,...,¢. Therefore (2.2.4) and (2.4.3) yield

2" (u(s) + v(u(s) — u(s))) = 2"(u(s))] < Nalh|r,lu®(s) — u(s)| < NakKo|hlr, [lr-
Hence, using Fubini’s Theorem, (2.2.4) and (2.3.16) we have
/Oa 2" (u(5)) — 2" (u(s)) — 2" (u(s)) (u"(s) — u(s))| ds

¢

= Zl /: (’Zh(uk(s)) — 2"(u(s))] + |2 (u(s))|JuF(s) — u(s))|>ds

£ s
#30 [ ) = 2 () () s) = s ds
< 4&76]\;2I(0|}Z|F|hk|11

+Z / [ 04 (5) — ) = 2l ) — s s
S 4€€N2K0|h|r|hk|p
+Ko|hk|r2/ / ) v (s) — u(s)) — (u(s))]ds dv
S 4€€N2Ko|h|r2|hklr + Kg(ﬂ + 1)04N4|h|r2|hk|1%
This completes the proof of (2.4.12), since € > 0 is arbitrary close to 0. ]
Lemma 2.4.5 Assume (A1) (i)-(iii), (A2) (i)-(v), (H). Then
lim sup —— / |25 (s) — 2M(s)| ds = 0, (2.4.13)
k—o0 h;é() |h|r

and

L i k’huks —ZhUkS —zk’hus —ZhUS S =
Jim sup o [ ) = 2 0) - () - ()] ds = 0. (2410

Proof For s € [0, a] combining (2.3.11), (2.3.13), (2.3.17), (2.3.22) and (2.3.25) we get
|25 (s) — 2"(s)]

< |L(s, ™) (28" — 20 0,0)| + |(L(s, 2%) — L(s,2)) (2", 1%, h%)|
S L1N0€17kN1|h|F + C(),k(NQ + 1)|h|r + LlLQ(NQ + 1)|[E(Uk(8)) — I(U(S))Hhh‘
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Hence Lemmas 1.2.11 and 2.2.3 yield (2.4.13).

Define the functions |kh( ) _h( )

ok ZhN(s) — (s
LS) = )

£ o

and the set H := {h € I': h # 0}. Note that (2.3.11), (2.3.13) and (2.3.15) yield
|28h(s)| = |L(s,2%)28" < LiNgNi|h|r for k € Ny and s € [0, al, so | f5"(s)| < 2L1 No N,
for a.e. s € [-r,a], k € Nand h € H. Then it follows from (2.4.13), 2*"(s) — 2""(s) = 0
for s € [-r,0], and Lemmas 1.2.12 and 2.2.3 that for any fixed v € [0, 1]

lim sup ﬁ /Oa’,é'k’h <u(s) + v(uf(s) — u(s))> —3h <u(s) + v(uf(s) — u(s))) ’ ds = 0.

k—00 h#0
hel
(2.4.15)
(2.2.4) and Fubini’s Theorem yield

/Oa 290k (5)) — 2Pk (s)) — [P (u(s)) — 2" (u(s))]| ds
= /OO‘ /01 [gk,h (u(S) + V(uk(s) — u(s))> — <u(s) + I/(uk(s) B u(g))ﬂ

x[u®(s) — u(s)] dl/’ ds
< Kolhi|r /01 /Oa‘z"k’h (u(s) + v(uf(s) — u(s))) — 'h<u(s) + v(uf(s) — u(s))) ‘ ds dv.

Therefore (2.4.15) and the Dominated Convergence Theorem imply (2.4.14). O]

Introduce the notation

() =2 (t) — a(t) — 2" ().

Then, under the assumptions of Theorem 2.3.9, (2.3.50) and (2.3.51) give

k
lim max 2O g (2.4.16)

To linearize equation (2.3.13) around a fixed solution z we will need the following results.

Lemma 2.4.6 Assume (A1) (i)-(v), (A2) (i)-(vi), (H) and v € P. Then

(1)
uF(s) —u(s) + A(s, 2 1) = gi(s), s e€0,a], (2.4.17)

P ]
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where
gh(s) == —w (s, 25, &, 2%, € + b)) — Dot (s, ws, )pt
satisfies
lim )| ds = 0; 2.4.18
Jim o [ labGs) (2418)
(ii)
2 (uF(s)) — x(u(s)) — E(s, 2%, hy) = gk (s), s € [0,0a], (2.4.19)
where

satisfies

1
lim —— lg%(s)| ds = 0; (2.4.20)
and

(i) if hy € Ty for k € N, then

i*(uF(s)) — (u(s)) — F(s, 2™, hf) = g5 (s), s € [0, ql, (2.4.21)
where
g5 (s) = @"(uh(s)) — 2 (u(s)) — 2" (u(s)) + 2" (u(5)) — 2" (u(s))
+i(u(s)) — '(U(S))—fﬂ( (s))(u"(s) — u(s))
—ii(u(s))wr (5, s, §, 2%, € + BY) — E(u(s)) D7 (s, 24, )k
satisfies
1 R B
Jim T / 65(s)|ds = 0. (2.4.22)

Proof The definition of w, and A imply

ut(s) —uls) + A(s, 2%, 1)

= _[ ( ) sag—f— h§> - T('S xs:€> - DZT(Saxsaf)(l{; - 1‘5) - D27(87"E87§)hi]
—Dy7 (s, 25, &) (2 — 1y — 2), s € [0,ql,

s

which shows (2.4.17). (2.4.18) follows from |Dy7(s, x5, &)|zc,r) < Lo for s € [0,a], (2.3.8)
and (2.4.16).
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Relation (2.3.41) and the definition of g¥ yield (2.4.19). We have by (2.2.1) and (2.3.42)
Jlklds < o max 31+ [ et () = au) - du@) 0k~ ) ds
+N/ ‘gO(S)’dS—FOéNQKolhk’F.
0

Therefore (2.4.16), (2.4.18), and Lemmas 2.3.1 and 2.2.3 yield (2.4.20).

Simple computation and the definition of g5 imply (2.4.21) immediately. Note that
v € P yields that & is continuous on [—r, a], and ¢ € W?* and Lemma 2.3.6 imply that
x € W2 ([—r, a] R™). Then (2.2.5) and Lemma 2.3.1 with y = & yield

Jim i [0 ) = au(e) = () ) — (s ds =0 (2429
We have by (2.3.27) and Lemma 1.2.10 that |#(u(s))| < K, for a.e. s € [0, a], therefore
Jlholds < [Tttt — it 6) b)) ds
/ () — 2 ()| s
o [t 6) = atu(s) = () () - u(s)] ds

+K4/ lwr (s, x5, &, xs,f + hi)| ds + K4 Lo m[(z)ix} ]pf\c.
0 s€(0,x
Hence (2.3.8), (2.4.2), (2.4.11), (2.4.16) and (2.4.23) imply (2.4.22). O

We define the notations

wp,r (8, 8,€,0,€,1)

= Dot (s,0,8)0 — Dat(s,9,6)¢) — Daat (s, 3,€) (1, — @) — Das7(s,5,6)(1,€ = &)
wpar(5,8,€,0,€,X)

= Ds7(s,0,8)x — Ds7(s,9,8)x — Dsa(s,%,6){x, 0 — ) — Das7(s,0,E)(x, € = )

for s €[0,a], ¢, € Q1, £, € Qy, v € C and x € Z.

Lemma 2.4.7 Assume (A2) (i)-(vii) and (H). Then

1
lim sup

Wp,r (8, Ts, &, Ty, +h, 2" ds =0, 2.4.24
iy sup e [ o€ b € 06,58 (2420

and

1 e
lim sup / |wpyr(s, 24, &, ¥, € + B, hE) | ds = 0. (2.4.25)
0

k—o0 h;éo ‘h|r|hk‘p
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Proof Let Ly =

Ls(cv, My, Mj3) be defined by (A2) (vi). Then (A2) (vi), (2.2.2), (2.3.15)

and (2.3.20) yield for s € [0, o]

| Dy (s, 2%, & + h3) 25" — Dyt (s, x,, ) 25"

and hence,

‘WDW(S

< Ls(L + 1)Ny|hg|r|h|r,
|Doo(s, 25, E) (25" 2% — 2y < LsNiL|h|r|hilr,
<

| D37 (s, x5, €) (25" hY) LsN1|h|r|hi|r,

xs;€> s?§+hk7 s )| <2L5(L+1)N1|hk|1"|h|1", s € [07Oé].

On the other hand, for s € [0,a], k € N and 0 # h € T such that |* — z,|c + |[h|p # 0
and |27 # 0, assumption (A2) (vii), (2.2.2) and (2.3.15) yield

‘WDQT(S l’s,f, 57€+hk, s )|

sup
|h|r#0

<

—

|h|r| Pyl
sup |wWpor (8, 26,6, 2 sa£+hk7 B (b = e + [hi ) |25 o
mezo (|28 — z4lo + [hIr) 25" e |h[r|hx|r

<L+1>N1 sup |WD2T(S xS)§7 s?§+hk7 s )l
mrzo (|28 — 2l + |hgIr) 28" o
0, k — oc.

Note that for s, k and h such that |25 —z,|c+|hs|p = 0 or |20 = 0, |wpyr (s, z5, €, 2%, €+
hS, 25| = 0. Therefore the Dominated Convergence Theorem implies (2.4.24).

k’s

The proof of (2.4.25) is similar. ]

For a.e. s € [0,a], h,y € T we introduce the bilinear operators by

G(S)«hw? hé)? (ytp, y£)> = DQQT(‘S’ Lss £)<h¢7 y¢> + D23T(87 Ls; f)(hf/’, y€>

“_DSQT(S) T, §)<h£7 y‘P) + D337_(37 Ls, €)<h£7 y§>7

H(s)((h%,1%), (y%,y%)) o= —Als,h?, hO)F(s,y%,y) — a(u(s)G(s)((h?, %), (y*, y*))

and

—hw(_T(Sv s, 6))A(57 y(’p> y€)7

Y7, y%)) + Daa f(v(5)){h?, )
)(E(S h?,h%),y >+D33f(V(S))< (s,h%, h%), B(s,y%,y*))
)(E(s,h%, %), y°) + Daaf (v(s)){h", y%)
(B E(s,y%,9%)) + Daaf (v(s)(h’,3/)
H(s){(h?, h*), (4%, ).
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Note that G, H and B correspond to v, but this dependence is omitted for simplicity in
the notation.

For v € P, consider the corresponding solution z of the IVP (2.1.1)-(2.1.2), and let
2" and 2¥ be the solutions of the IVP (2.3.13)-(2.3.14) corresponding to a fixed h,y € T
We consider the IVP

w(t) = L(t,2)(w,0,0) + B) (2", 1%, h%), (27,4°, %)), ae. t€0,qa], (2.4.26)
w(t) = 0, te[-r0]. (2.4.27)

The IVP (2.4.26)-(2.4.27) is a Carathéodory type inhomogeneous linear delay system with
time-dependent but state-independent delays. It is easy to see that under assumptions
(A1) (i)—(vi), (A2) (i)—(vii) the IVP (2.4.26)-(2.4.27) has a unique solution on [—r,a],
which will be denoted by w™¥(t) := w(t, v, h,y). It is easy to see that IxI" — R™, (h,y) —
w(t, 7, h,y) is a bilinear map for a fixed ¢ € [0, ] and v € P5. In Lemma 2.4.12 below we
will show that this bilinear map is bounded.

We need the further notation
M(s) = (s) = 2(s) — wh(s), s € [-ral]
Lemma 2.4.8 Assume (A2) (i)—(vi) and (H). Then there exists Kio > 0 such that

| A (s, 2" hE) — A(s, 22" h&)| < Kio|h|r|he|r, s€0,a], keN, j €Ny, (2.4.28)

»Ys ) ’~Ys )

and there exists a sequence co ) > 0 satisfying ca, — 0 as k — oo such that

| AR (s, 250 RS — A(s, 2, hE)| < eanlhlr, s€[0,a], ke N. (2.4.29)

)8

Proof Let L; = Ls(a, My, M3) be defined by (A2) (vi). To show (2.4.29) we use (2.2.2),
(2.3.15), (2.3.20) and (A2) (vi) to get

|A¥ (s, 20" hE) — A(s, 22" b))

y~Ys ) »Ys )

< |Dor(s,af, &+ hY)2l" — Dor(s, x4, £)22"| + | Dsr(s, af, & + h{)hE — D37 (s, z,, &) ht|

Y S ) S

< L5(L + 1)|hk|[‘N1|h|1" + L5<L+ 1)’hk|p|h|p7 S € [0,0é], ke N, j € No,

which yields (2.4.28). Using (2.3.25), (2.4.29) and (A2) (ii) we get

[A%(s, 20" B°) — A(s, 2, b))

? Y8

< AR (s, 2B RS — A(s, 2B RE)| | A(s, 2B RE) — A(s, 2P BE)|

»Ys ) Y Ys ) ) YS )

Krolhlr|hilr + Dot (s, x5, €) (2" — 2))]

S S

<
S K10|hk‘f“h‘r‘ + LQCl,kN1’h|F7 S € [O,C(], k c N,

therefore (2.4.29) holds. ]
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Lemma 2.4.9 Assume (A1) (i)-(v), (A2) (i)-(vii), (H) and v € P. Then
AF(s, 287 B0) = A(s, 20 B0) = G(s) (2L, h%), (2%, hy)) — Als, wl™,0)
= A(s,¢"",0)+ ¢g¥"(s),  sel0,a], heT, keN, (2.4.30)
where
95" (s) = Daot(s,ms, (2B — 20wk — w.) + Daor(s, w4, €) (2L, pl)
+Day7 (5,5, ) (28" = 22, BY) + Dot (s, ., €) (S, pf)
FWpyr (8, T, &, 2%, & + B, 2P + wpar (s, 24, €, 28 € + 1S, )

satisfies

1 [0
lim sup —/ |gh"(s) ds = 0; (2.4.31)
|Alrlhelr Jo

k—oo  ho
herl’
and if hy, € I'y for k € N, then
(s, 20 1) — B, 2 0) = HOS)( ), (5 ) = B, wl™,0)

y~Ys ) PRI

= E(s,¢""0)+ ¢""(s), ae se[0,a], hel, keN (2.4.32)
with
gzlf h(S) - _[xk(uk(‘g)) - x(u(s))][Ak(s, Z?h? hf) - A(87 Zf’hv hg)] - QS(S)A(& z§’h7 hﬁ)
—(uls))gs" (s) + 2" (WF(s)) = 2"k (s)) = [ (u(s)) — 2" (u(s))]
+2" (U (s)) = 2" (uls)) — 2" (u(s)) (u"(s) — u(s))
+2M(u(s)) (uk(s) —u(s) + A(s, 2", hi))
satisfying

1 (6%
lim sup —/ lgE"(s)| ds = 0. (2.4.33)
|ofral o, Jo

k—o0  h0
heTly

Proof The definitions of A%, A, G, g¥" wp,,, wp,, and relation

A(s 2ok hg) — A(s 2P hg) — A(s, w?’h’“, 0) = A(s, zf’h — w?’h’“, 0)

yield
A(s, 20" h0) = Als, 20, h) = G(s)((20, h), (0%, ) — Als, wl™,0)

y~¥s ) )78

= Ak(s Zk’h hf) - A(S Zk’h hf) - G(S)«Zga hf)’ (zilka hi» + A(S7 QE7ha O)

)75 ) y s )

= Dor(s,z* €+ hi)zf’h — Dy7(s,24,6) 25" — Doyr(s, x4, €) (2P0 28 — 2,)

S rrs

_DQST(S> L, £)<Z§7h> hi) + D227—(35 Ls, €)<Z§7h - ng -75]; - $s>
+Doo7(8, T, ) {28, DE) + Dog7(s, 2, ) (25" — 22, 13)
+Dy7(t, 2% € + h)hS — Dyt (s, x5, €S — Do (s, x4, €) (RS, 2F — )

—Diy7(s, 5, ) (W5, B5) + D7 (s, 24, ) (B, k) + A(s, 4", 0)
= A(s,¢"",0) + gh"(s).
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Let Ly = Ls(a, My, M3) be defined by (A2) (vi). Then we have by (2.2.2), (2.3.15) and
(2.3.25)

/ |g |d8 < OfL5ClkN1|h|FL|hk|F+O./L5N1|h|p maX |p5|C+aL5clkN1|h|F|hk|F
+aL5|h|r max |p5|C‘|‘/ |WD27' S xsagv sa€+hk7 s )|d5
+/ |WD37(Saxsa 7x5>€+hivh£)|d8'

0

Hence ¢, — 0 as k — oo, (2.4.16), (2.4.24) and (2.4.25) imply (2.4.31).
Relation

E(s, 2" h&) — E(s, 2" h&) — E(s,w" 0) = E(s, 2" — 21 — wh 0)

75’ » 8 »7s s S

and the definition of E, E¥ and H give

E*(s, 2" h%) — B(s, 2, h%) — H(s)((2!, h9), (0%, h)) — E(s, i, 0)

= EMs, 20" 0%) — E(s, 20", h%) — H(s)((2, h®), (20 hf)) + E(s,¢.",0)

= —if(u ( ) A (s, 28", he) + i (u(s))A(s, 28, h%) 4 28" (uF(s)) = 2" (u(s))
—I—A(S 2 RS F (s, 2 h5)+x(u(s))G(s)<(2 he), (" h‘“ h§)>

1 ~s »Ys )

(uls)A(s, 2%, 1) — E(s,4:",0)
= [ “(ut(s) — @ (u())[A%(s, 27" hF) — A(s, 20", )]
—[i*(u(s)) — @ (u(s)) — F(s, 2% B)JA(s, 20", b)
) ? S Y

() | A¥(s, 250 BE) = A(s, 250 RE) = Gs) (0 1), (20, 1)
Bh(

uF(s)) = 2"(u"(s)) — [ (u(s)) — 2" (u(s))]
( "(s)) = 2"(u(s)) — 2" (u(s)) (u"(s) — u(s))
—i—z"h(u(s)) <uk(s) —u(s) + A(s, 2", hg))+E(5, =", 0),

which, together with (2.4.21) and (2.4.30), yields (2.4.32).
To prove (2.4.33) first note that by (2.2.2), (2.2.4) and (2.3.28)

|i* (uF(s)) — a(u(s))| < [&°(u"(s)) = 2(u®(s))] + | (u"(s)) — @(u(s))]
< Llhlr + KaKo|hilr. (2.4.34)

Hence (2.4.28) and (2.4.34) give

1 (07
lim sup T / ¥ (uF(s)) — @(u(s))||A¥(s, 22", hE) — A(s, 25", h%)| ds = 0.
|h|r|Pelr Jo

k—o0 h;éo
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Relations(2.2.1), (2.4.7), (2.4.22) and (2.4.31) imply for hy € I's for k € N

1 o K «
lim sup —/ g5 () A(s, 2" hé)| ds < lim —> / g% (s)|ds =0
|Alrlhelr, Jo 0

k—00 h#£0 k—o0 ‘hk Iy
herl

and

1 @ N @
lim su —/ i(u(s)) g™ (s dsglim—/ Fhs) ds = 0.
oo Zég ’h|F|hk’F 0 ’ ( ( ))93 ( )| b |h‘F‘hk’F 0 ’93 ( )|
The above limits and (2.4.12), (2.4.14), |2"(u(s))| < Na|h|r, and (2.4.18) yield (2.4.33).
]

Lemma 2.4.10 Assume (A2) (i)-(vii), (H) and~y € P. Then there exist K11 = Ky1(7y) >
0 and a nonnegative sequence csj = c3x(7y) satisfying cs, — 0 as k — oo such that

|F(s,2" h%)| < Kulh|r, a.e. s€[0,a], heTl, (2.4.35)

) Y8

|E*(s, 25" h®) — E(s, 2", 0%)| < esplhlr, a.e. s€0,a], k€N, (2.4.36)

»~Ys ) I

and, if in addition, (A2) (viii) holds, there exists a nonnegative sequence cyy = cqx(7y)
satisfying car, — 0 as k — 0o such that

/ |F*(s, 280 B — F(s, 2" h)|ds < cqap|h|r,, a.e. s€0,a], k€N, hely.
0
(2.4.37)

Proof The definition of F, (2.3.27) and (2.4.7) imply immediately (2.4.35) with Ky; :=
K4K6 + 1.

Relations (2.2.1), (2.2.2), (2.2.4), (2.3.15), (2.3.16), (2.3.25), (2.4.7), (2.4.29), (2.4.34)
and (H2) (ii) yield for a.e. s € [0, ]

\Ek(s 2kl hg) — E(s 2P hf)\

»~s Y » s

< it (ut(s)) — @ (u(s))||A%(s, 20", )]

» s )

H(u(s))|A%(s, 20" B0) — A(s, 2, B6)| + [0 (u(5)) — 2" (u*(s)))]

’ s ) )78

+|2" (" (5)) = 2" (u(s))|
S (L + K4K0)|hk|pK6|h|1" + NCQ’k|h|F + Cl,kN1’h|F + N2|h|FK0‘hk|1",

which proves (2.4.36).
|Fk<87 Z?? hg) - F<S7 Z?, h£)|

<l (s)) = (e ()] + | (5)) = E(us))] ) |A(s, 21, 9)
i (u(s))] [ A5 (5, 2, 1) = AF(s, 28, 1) | + 2 (5) = 2 (u(s))]

PRI » s
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For t € (0,a] we have by (A2) (viii) that

A0 — (0] = | p(t a2 0),0 1) — L7 a(u(),0)

< Lo(lzf — zile + [hile + |hilz)
< L¢(L + 1)|hg|r-

For t € [-r,0) and h € I'y we get
[#5(t) — &(t)] = [A ()] < |hulr.

Using that & € L*([—r, a],R™), similarly to (2.3.24) we can argue that

«

lim |#(uF(s)) — #(u(s))| ds = 0.

Then the above relations, |Z(u(s))| < K4 for a.e. s € [0, ], (2.4.7), (2.4.11) and (2.4.28)
vield (2.4.37). O

For a.e. s € [0,a], h,y € T and k € N we introduce the bilinear operators by

G*(s)((h,1%), (Y%, y°)) = Daar(s, 2%, &+ h) (M2, y?) + Doy (s, 2%, & + B3) (R, yF)
+D327-<37 37’;7 5 + hi)<h€7 y%0> + D337—(5, x];?g + hi><h£7 y£>7
H*(s)((h?,h%), (y?, y°)) = —A%(s,h?, hS)F*(s,y%,y")

—xk(uk(s))Gk<S)<(h@, hﬁ)7 <y<P, y§)>
R (=7 (s, 2", € + hS)) AP (s, 4%, yF),

and

B(s)(h,y) == Dasf(v"(s))(h?,y?) + Dasf (v*(s))(h*, E*(s, 4, y°))

Lemma 2.4.11 Assume (A1) (i)-(vi), (A2) (i)-(vii). Then for every~y € Ps there exists
K12 = K12(’)/) > 0 such that

|B(S)<(Z§7h€7h€)7 (Zg7y67y£)>| < K12|h|1"|y|1"7 a.e sc [_T7 Oé], h7y € Fv Y€ PZ'
(2.4.38)
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If in addition (A2) (viii) holds, then for every v € Py NP there exists a nonnegative
sequence ¢z = C55(7y) such that ¢s, — 0 as k — oo, and

r

for h,y € I's.

B (s)((z0, 0%, h%), (22, 9°,y°)) — B(s)((24, 1, 1%), (24,97, 4%)) | ds < cs|hlr, |yl
(2.4.39)

Proof Let Ly = Ls(a, My, My, M3) and Ls = Ls(cv, My, My) be the Lipschitz constants
from (A1) (v) and (A2) (vi), respectively. Then the definition of G, (A2) (vi) and (2.3.15)
yield

G(s) (20, h%), (22, y* )| < 4LsNP|hlrlyle,  hoy €T, se0,al. (2.4.40)
Then definition of H, (2.2.1), (2.3.15), (2.3.27), (2.4.7), (2.4.35) and (2.4.40) imply
|H<S)<<Z?, h£)7 (Zg7y£)>| < Klglhlr‘yh", h7 y e F7 a.e. s ¢€ [07 Oé] (2441>

with K13 = Ki3(7) := K¢(K;Kg+1)+ N4LsN? + Kg. Therefore we have by the definition
of B, (2.4.9) and (2.4.41)

|B(s)(h,y)| < L3(4 +4Kgs + K2 + Ky3)|h|r|y|r, a.e. s €[0,q],

which, together with (2.3.22), yields (2.4.38).
Define the set M} := {¢€} U {h} : k € N}. It is ecasy to show that M; C M, is a
compact subset of Z. Define

Qo) = max sup{|Dy7(s,%.m) = Diym(s, 07 20x, .m0
S [Oaa]a 1?7?/_1 € Mlvlr]?f/ € MZ, W _2/_}|C’+ |77_7_7|E S 5}7

where X5 := C and X3 := =. Assumption (A2) (vii) and the compactness of [0, a] x M; x
M} yields that Qs ,(¢) — 0 as ¢ — 0+. Then (2.3.15) and (2.3.20) give

[G*(s) = G()(=2 1), (24, 9))| < |[Daat(s, @k, €+ hy) — Daor(s, s, E))(21, 2

)|
+|[Das7 (s, 2%, € + hS) — Das7(s, 2%, € + h5)] (2", )]
+|[Ds27(s, 2%, & + hf) — Dyor(s, z¥, € + By (RS, 2Y)]
H[[Dssr(s, 2%, € + hS) — Dasr(s, 2, € + B (RS, 4|

IN

e (L 4+ Dlhale ) (N + D2 RIlyle, s € [0,0].
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Relations (2.2.1), (2.2.2), (2.2.4), (2.3.15), (2.3.16), (2.4.7), (2.4.28), (2.4.34), (2.4.35),
(2.4.37), (2.4.40) and (2.4.42) imply

/Oa ([H*(s) — H(s)]{(2", h®), (2¥,y°))| ds

< [ (14 ) = Al B P (s, 2 )

HAN s 2 B 5. 22,05) = P,

[ (" (5)) = ()]G () (2 1), (22, 5))]

Hu(s)[GHs) — GO (L), (2 )

[ () = 2 (uls)]A (s, 22, )]

2 )[4 (s, 22, %) — Als, 22 59)]]) ds

aKolhlp|hy|r K1 |yle + Kol hlvcarlylr, + (L + KaKo)|hy|p4Ls N7 2o |ylr
+NQQT(< >rhk|r) (N + 12 [Arlylr

IN

/ 12 w(s))] ds Kslylr + aNalhlr, KuolBlr |yl
< ¢ k’h’F2|y\F2 (2.4.43)

with some appropriate sequence c¢g = ¢ () satisfying ¢, — 0 as k — oo, where in the
last estimate we used (2.4.11).

Simple manipulations give

[1B*(s) = B(s)[{(25, b, 1), (2, 4", )]
< |[Da2f (v¥(s)) = Do f(v(s))|(z, 22)]
H[Das f(v¥(3)) = Das f(v()(z3, E* (s, 2L )
+ Das f(v(s)) (=0, E* (s, 22, ) —E(S,ZE,?f)H

/\\.
»

~—

~—

+|[D24f<V (s
+|[Dsa f(v¥(s
+[Ds2 f(v(s))
+[[Dss f(v* (s
+| D33 f(v(s)) 5

| Dss f(v(s)){E(s, 25, h*), E¥(s, 28, y°) — E(s, 2%, 4°))]
H|[Daa f (v¥(5)) = 34f( (SNIE (s, 2, h*), %)
H[Daa f(v($))(E" (5, 2, h*) = E(s, 2, h%), y")]
+[Daaf(v(s)) — Daaf (v(s))|(h, 22)]|

) —
) — Doy f(v
) —

1z
D32f( (8))]<E'“(8 2, ht), )|

)
(22
)
) , Zg
(E*(s, 2" &) — E(s,z?,hg),zgﬂ

) — Ds:af(V(S))KEk(S 20, he), X (s, 28, y%))
(

(

)

(

)

E¥(s,2" %) — E(s, 2", h®), E*(s, 2¢, y°))|
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H[Disf(v¥()) = Das [ (v()(R", E* (s, 22 )
+H Dasf (v(s))(h”, B* (s, 22, y%) — E(S,Zﬁ,y ))
H[Daaf(v¥(5)) = Daaf (v(s)I(R’, ")

+H[Dsf (v¥(s)) = Dsf(v(s)) H (s )<(Zs,h5)7(2i’,y€)>|

+H D f(v(s)[H"(s) — H(s)[{(2, h), (2, 5%))]. (2.4.44)

Define the set Mj := {0} U {h?: k € N}. Clearly, M; C Mj is a compact subset of ©.
Define
Qo pe) == i£%§4sup{|Dijf<S7¢a v,n) — Dijf (s, 1;717777)11:2(3@%@,11%)3
s € [0704]7 Qﬁﬂ; € Mlvvﬂ_] € M2> 77777 € Mga
[ —dle+ =0+ n—7le <e

——

where Y5 := C, Y3 := R" and Y, := ©. Assumption (Al) (vi) and the compactness of
0,a] x My x My x M3 yields that Q5 ¢(¢) — 0 as ¢ — 0+. Then combining (2.4.44)

with (2.3.19), Dy f(v5(s)) = Digf(v(s)lezvinyy mm < Qo (Kalhelr) for i,j = 2,3,4,
|Di f(V¥(3))|eevirny < Ly for i = 2,3,4, s € [0,a] and k € Ny, (2.3.15), (2.4.9), (2.4.36),
(2.4.41), (2.4.43) and (2.4.44). yields (2.4.39)

[J

Lemma 2.4.12 Assume (A1) (i)-(vi), (A2) (i)-(vii), v € P;. Then there exists N5 =
Ns(v) > 0 such that the solution of the IVP (2.4.26)-(2.4.27) satisfies

’whg(t)‘ S N5|h|r|y|F7 te [—7”, a]7 h7y € L. (2445)
Proof It follows from (2.4.26) and (2.4.27) that
t t
W) = [ BN, ) ds+ [ Liso)wh0.0ds,  te fo.al
0 0
Therefore (2.3.11) and (2.4.38) yield
t
W] < Kalilelyie + Lo [ fublods, ¢ (0.a)
0

Since w™¥(t) = 0 for t € [—r,0], Lemma 1.2.1 gives (2.4.45) with N5 := KpeltMo [
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Lemma 2.4.13 Assume (A1) (i)-(vi), (A2) (i)-(viii), (H). For h,y € T'y and k € N
let wh¥(t) := w(t,v,h,y) and w*"Y(t) = w(t,y + hx, h,y) be the solutions of the IVP
(2.4.26)-(2.4.27). Then there exists a nonnegative sequence cry = c7(7y) such that

PRY oo < er bl [y, tel0,a], h,yel,. (2.4.46)

|w;
Proof It follows from (2.3.11), (2.3.17), (2.3.26), (2.4.26), (2.4.38), (2.4.34) and (2.4.45)
w0 () — w(1)]

t
< / (ILEs, %) — Lis, )] (w2, 0,0)] + |L(s, ) (b —wl,0,0)|)ds
0

t
[ (1B, (= 220,00+ B4 — 24,0,0), (2,0 )

0

+H B (s)((2, 17, 10), (229 %)) — B(s){(zy, b, 1), (Zé’,ye,yg)ﬂ)ds

aco s Ns|hlrly[r + L1L2/ j:(u*(s)) — @ (u(s))| dsNs kv ylr
0

IA

t
+L N, / Jwkhy — Y| o ds 4+ 20K 19¢1 x NER|r |yl + acsi|h|r|ylr
0

t
< 08,k|h|r|y|F+L1N0/ WY — wh| e ds,
0

where Cgk = Cg,k(’y) = CMC()’kNg) + LlLQ(L + K4KQ)N5|hk;|l" + 2aK9¢q kN + acs k. Then
Lemma 1.2.1 is applicable, since |wh™¥ — w*¥|c = 0, and it yields (2.4.46) with 7, :=
cg pel 1 Noo, ]

We define

wpof(V(s), V¥ (s), 1) = sz(V’“(S))w D FO()y = Do f(v(s)) (e, 2l — )
u(s)) — @ (u(s))) — Dau ( (3)) (0, ),
wpy(V(s), v¥(s),v) = Dsf(v¥(s))v D3f( (s))v = Daa f(v(s)) (v, 25 — )
—Dss f(v(t))(v, 2" (u"(5)) — x(u(s))) — D34f( ())(v,h@,
wp,r(V(s), v (s),n) = Daf(v¥(s))n — Daf(v(s))n — Daaf(v(s))(n. 2% — ws)
—Dasf(v(s)){m, 2" (u*(s)) — 2 (u(s))) = Daaf (v(s)){n, hg)

for s € [0,a], ¥ € C, v € R" and n € O.
The proof of the following lemma is similar to that of Lemma 2.4.7.

S

Lemma 2.4.14 Assume (A1) (i)-(vi) and (H). Then

1 (0%
lim sup ———— / W, (s, Ts, 2(u(s)), 0, 2% "(uF(s)), 0 + hY, 25" ds = 0, (2.4.47)
Al lhelr Jo

k—o00 h;éO
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1 [0}
lim sup—/ Wy (s, Ts, 2(u(s)), 0, 2% 2% (uF(s)), 0 + hY, E*(s, 28" h&))| ds = 0,
k—oo nzo |h[p|hilr Jo

(2.4.48)
and

1 [0
lim sup ———— / |lwp, (s, Ts, 2(u(s)), 0, 2% 2% (uF(s)), 0 + b, b)) ds = 0. (2.4.49)
|Alrlhelr Jo

k—o00 h;é()

Lemma 2.4.15 Assume (A1) (i)-(vi), (A2) (i)-(vii), (H), v € P and hy € I'y for k € N.
Then

L(s, a*) (28" 0%, h%) — L(s, @) (2! + wi™, b’ h%) — B<s><<z§, h?,h%), (0%, i, hi)}

, = L(s,2)(¢"",0,0) + g&"(s), a.e. s€[0,ql, (2.4.50)
g5"(s) = Daf(v(s))(z" —zf,:c’j — @) + Daa f(v(3))(2 1Y)
+Da3 f(v(s)) (20" — 20, 2" (u"(5)) — 2 (u(s))) — Dasf(v(s)){z2, 91 (s))
+Daa f(v(8)) (20" — 20, i) + Daa f(v ())( (5,20, h%), p%)
—|—D32f(V(S))<Ek<S, tha hé) (Sv Zs ) h’ )7 ? - Q33>
+D33 f(v(8)){E" (s, 20", h8) — B(s, 2, h°), 2" (u"(s)) — 2 (u(s)))
+Da3f (v(s))(E(s, 2, 1), g ()>+D3f( ()95 (5)
—|—D34f(V(S))<E (37 tha hg) (57 Zs ’ hg)? >
+Daa f(v($))(h*, p5) + Das f(v(s5)) (B, g1 (5)) + wp, s (v(s), V¥ (s), 2")
+wD3f(V(S>7 ( ) Ek(sazghvhg)) +wD4f(V(S>?V ) hZ)
satisfies
1 2 i, 1= 243

Proof Straightforward manipulations yield for a.e. s € [0, ]

L(s, ) (20 00, 1) = L, ) (8 + w1, 1) — B(s){ (007, 1), (20, ) )

= Dof(VH())ek" = Daf(v(s))eb" + Daf (v(s) (" = 2t —wl™)
Dy f(vH()) B (5, 25, 1) = Daf (v(s)) E¥(s. 25", 1)
+Daf (v(s)) (B (s, 25" 1) = B(s, 20, b)) + Daf (VH(s))h” = Daf (v(s)h’
—Daf (v(s))E(s,wh™,0) = B(s) (24, b, ). (21, Wl ) )
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= Daf(V¥(s))2l" = Daf (v(s)) 28" = Do f (v(s)) (25", af — a5)
—Das f(v(s)) (28", 2" (u*(s)) — ( (8))) = Dasf(v(s))(zt", h)
+Daf(v(s) fh+D22f(V(S) (251 = 20 2 — ) + Daof(v(9))(2L, %)
+Das f (v(s)) (2" *(u¥(s)) = z(u(s)))
+Das f (v(9))(2l, 2" (uF () — w(u(s)) = E(s, 2L*, hy)) + Daaf(v())(28" — 22, i)
+D3 f(VF(s))EF(s, 25", h%) — D3 f(v(s)) E*(s, 25", hf)
— Do f(V($))(E*(s, 2" &), 2% —a,)

(

(

“

( 25"

—Dssf(v(s “(5)) = x(u(s))) — Daaf(v(s))(E"(s, 25", h%), hi)

( x

(

(

(

/—\

= <

—ZLU

)

)q

)

s))

5))

(v(s) (B ( )

(V(s)(E" (s, 28", h%), 2" (u

+Dso [ (v(8))(E" (s, 28", h%) = E(s, 2L, h%), af — wg) + Daa f (v(s))(E(s, 28, h%), %)

+Ds3 f(v ))(E’“(&th,hg)— E(s, 27, h*), 2" (uf(s)) — z(u(s)))

+Ds3 f(v(5))(E(s, 22, h%), 2" (u(5)) — w(u(s)) — E(s, 2*, hy))
(v(s))( )

[E

E*(s, 27" h&) — E(s, 2" h¢), n!

y~Ys 78’

“(s, 20" ) — B(s, 20, h°) — H(s){((=0, %), (207 1)) — (s, wy™,0)]

’»Y~¥s ) )8

S

»~Ys )

+Dsaf(v(s
+D3f(v(s))

+Dy(v¥(s))h" = Da(v($))h” = Daaf (v(s))(R", 2 — wy)
—Dasf(v(s))(h”, 2" (" (s)) — 2 (u(s))) — Dasf (v ())<h9 hi)
+Daa f(v()(R’, ) + Dasf (v(s))(h?, 2" (u(5)) — 2(uls)) — B(s, 2%, 1)),

which implies (2.4.50), using (2.4.19) and (2.4.32). Let L3 = Ls(«a, My, My, M3) be defined
by (A1) (iv). Then (A1) (iv), (2.2.2), (2.3.16), (2.3.18), (2.3.25), (2.4.9) and (2.4.36) yield

/ 195" ()| ds
< OéLscl,kNﬂh’FL’hk\r + 04L3N1\h|r IED[SLX] \pffc + 04L301,kN1|h|rK2\hk\r

+L3N1’h|p/ ’ng(S)' dS + OéLgCLkNl’h’F’hHF + OéLgKg‘h‘p IEII[(?X] ‘p’;‘c
0 se|0,a
+OéL3Cg7k|h|rL|hk|1" + OéLgCg’k|h|FK2|hk’F
+L3K8|h|r/ |glk S)|dS+L1/ |g§k S)ldS+OzL303k|h|r’hk|r
Laltle . [t]e -+ Lalble [ (o)l ds + [ opasv(),vH(9). 24 ds
/ |wps (v ), E*(s, 28", h%)) |d8+/ wpyr(v s), hy)| ds.
Hence c1p — 0, 3 — 0 as k — oo, (2.4.16), (2.4.20), (2.4.31), (2.4.47), (2.4.48) and

(2.4.49) imply (2 4.51).
[
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Now we are ready to prove the main result of this section.

Theorem 2.4.16 Assume (A1) (i)-(vi), (A2) (i)-(vii). Then fort € [0,a] the maps
Py D (PNT) =R,y a(t7)
and
F2D(P2mr2)_>ca 7H$t<7’7)
are twice differentiable wrt v for every v € P, N Ty NP, and
Dasa(t,7){h,y) = w"(t),  h,y €Ty,
and
D22xt( )<h y) - wt ) h:y € F?a
where w™Y is the solution of the IVP (2.4.26)-(2.4.27). Moreover, if in addition, (A2)
(viii) holds, then the maps
R x Ty > <[O,a] % (P, TN 73)) LTy x T, RY), (7)) — Dasr(t,7)
and
B x Ty ([0.0] x (BNT2NP)) = LATs x 1,0, (7) = Dasael,)
are continuous.

Proof It follows from Theorem 2.3.9 that Dex(t,v) € L(I',R") exists for all v € P, and
€ [0,a]. Since |h|r < |h|r, for all h € Ty, it follows that Dex(t,7) . € L(T'y,R™), and
2

Doz (t, 7) is the derivtive of the map I's D (P,NIy) — R™, v — x(t,7). For simplicity,

the restlctlon of Dyx(t,7y) to I'y will be denoted by Dox(t, ), as well. Theorem 2.3.9 yields
that Doz (t,y)h = z(t,7,h), where z(t,7, h) is the solution of the IVP (2.3.13)-(2.3.14)
for h € T's.

Let v € P, N Ty NP be fixed, hy = (hf,hz,hi) € I'y (k € N) be a sequence such
that v + h, € P, for k € N, 0 # h = (h*,h% k%) € Ty Let x(t) := x(t,7) and
z*(t) == x(t,v + hi) be the solutions of the IVP (2.1.1)-(2.1.2), 2"(t) := Dyx(t,v)h
and zM"(t) := Dax(t,y + hg)h be the solution of the IVP (2.3.13)-(2.3.14), and w™"*(t)
be the solution of the IVP (2.4.26)-(2.4.27) corresponding to parameters h and hy. Then
we have for t € [0, o

t
) = h¢(0)+/ L(s, z®) (28" h?, h%) ds,
0
t
M) = h“J(O)—i-/ L(s,z) (2", h h&) ds,
0

whhn(f) = /t<L(s ) (W™, 0,0) + B(s )<(z§,h",h5),(zgk,hz,hi)»ds.
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Hence Lemma 2.4.15 and the definition of ¢*" give
) = /Ot<L(5, a®) (250 B? RS — L(s, x) (2" + whhe b, hY)
—B(s)((h h, RS (2L, 1) ) ) di
- /Ot gEM(s) ds + /Ot L(s.2)(¢"",0,0)ds,  te0.al,

0 (2.3.11) yields

t t
ol < [l s [ 1et it 0.0lds < [Tl lds - md [ o ds
0 0

for t € [0,a]. Using that ¢*"(t) = 0 for t € [—r, 0], Lemma 1.2.1 implies

|qk’h<t>| < |q |C < Nl/ |g s)| ds, t€[0,q],

where N := el1Noo Therefore (2.4.51) yields for ¢ € [0, a]

lim sup m < lim sup —— \q e < lim sup ——— / 19" (s) ds = 0,
koo iz |folrg|hlry T k=00 o [Ble |k, T koo nzo !h!m!hk\rg

which completes the proof of the second-order differentiability wrt parameters. The con-
tinuity of Daeoz(t,7y) follows from Lemma 2.4.13. [

We note that the method used in this section to prove the existence of the second order
derivative Dasx(t,7) can not be used to prove the existence of the third order derivative,
since some parts of the proof relied on the assumption that the parameter v satisfies
the compatibility condition v € P. The key step to show the existence of higher order
derivatives is to get rid of this assumption in the proof of Theorem 2.4.16.



Chapter 3

Parameter estimation by quasilineari-
zation

3.1 Introduction

Estimation of unknown parameters in various classes of differential equations, and in
particular in FDEs, has been investigated by many authors (see, e.g., [6, 7, 14, 15, 17, 51,
52, 54, 55, 59, 79)).

In this chapter we consider again the nonlinear SD-DDE (2.1.1)

() = f(t, o, x(t — Tt 21, €)), 9), tel0,7] (3.1.1)
with the associated initial condition
x(t) = (1), t € [-r0]. (3.1.2)

For simplicity we assume throughout this chapter that (3.1.1) is a scalar equation, which
is defined on the whole space, i.e., we suppose

(Bl) 77,:1,91:C7Q2:R793:@,andQ4:E.

By Theorem 2.2.1, (A1) (i)—(ii), (A2) (i)-(ii) and (B1) imply that the IVP (3.1.1)-(3.1.2)
has a unique solution z(t,v) on an interval [—r, a] and v € P, where P is a neighborhood
of a fixed parameter 7 € T', and the parameter map I' — R, ~ — z(¢,~) is differentiable
for every v € Py.

We assume that the parameter v = (p,&,0) € ' is unknown, but there are measure-
ments Xy, Xi, ..., X; of the solution at the points to,t1,...,% € [0,a]. Our goal is to find
a parameter value which minimizes the least square cost function

() 1= 3 _(2(tiny) = Xo)? (3.1.3)
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over the parameter space I'. Denote this infinite dimensional minimization problem by
P.

The method of quasilinearization for parameter estimation was introduced for ODEs
in [8] and was applied to identify finite dimensional parameters in FDEs in [14] and [15].
The method uses the derivative of the solution wrt the parameters. This problem was
studied, e.g., in [13], [42], [43], [63] for several classes of state-independent FDEs, and see
Section 2.1 for SD-DDEs.

Next we briefly show the derivation of the quasilinearization method following the
procedure suggested in [62]. Let 'V be an N-dimensional subspace of the parameter
space I, and let v, = (0%, 0y, &) € TV be fixed, and consider the corresponding solution
of the IVP (2.1.1)-(2.1.2), z(¢,v). For a fixed i € {0,1,...,¢} take first order Taylor-

approximation of x(¢;,7y) around the parameter 7y:

and consider the approximate cost function restricted to the subspace I'V defined by

JEN(y) = Z(fc(ti, Vi) + Doz (ti, ) (v — ) — Xz-)Z, verl™.

=0

We solve the minimization problem P*%:

min J*V (7).
min (7)
Fix a basis {x¥,...,xN} for the finite dimensional subspace I'", and let
N N
Vi = Z c?xé-v and v = chxév.
=1 =1
We introduce the vectors ¢* = (c},...,c&)T € RY and ¢ = (¢1,...,cn)T € RY. Then

we can identify the finite dimensional parameters 7, and v € I'V with the vectors c¢* and

c € RV, so we simply write z(t;,c*) and J*V(c) instead of z(t;,7x) and J*V(v). Then
we have

1 N
2
JEN(e) = Z(m(ti,c ) + Dow(ti )Y (¢ Xi)
i=0 Jj=1
l N 2
i=0 Jj=1

To find the minimizer of J*¥(c) first consider

0
5 kaN 22( z(t;, c®) — X; +Z ,— ) Do (ti, ¢ )Xf)Dﬂ(tz‘aCk)Xév'
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We introduce the N-dimensional vectors

T
m(tic*) = (Dawlti, N, Dol FINN) (3.1.4)
l

b(c*) = Y m(t;,c)(x(t;, ") - X)) (3.1.5)

i=0
and the N x N matrix
I
D(c") =) m(t;, " )m"(t;, c"). (3.1.6)
i=0
Then %J’“N(c) =0forp=1,..., N, if and only if
D(c")(c —c*) = —b(ch). (3.1.7)

We note that the Hessian of J*V(c) is 2D(c").

Lemma 3.1.1 D(c*) is a positive semi-definite N x N matriz, and it is positive definite,
if and only if there is no u € RY such that u # 0 and u L m(t;,c*) fori=0,...,N.

Proof Let u € RY and consider

! l
T
u’D(c*)u = Z u'm(t;, ) ym” (t;, cFu = Z(mT(ti, ck)u> m?” (t;, cF)u > 0,

i=0 i=0
which yields the statement of the lemma. ]
Assuming that D(c¥) is invertible for all k = 0,1, ..., we define the quasilinearization

method by the iteration

" =P —D7(c")b(ch), k=0,1,.... (3.1.8)

1

Lemma 3.1.1 and the previous calculation imply that c**! is the unique minimizer of

JPN (c).

This is the same scheme that was used in [14] and [15] except that there the parameter
space was finite dimensional, and the set {x¥,...,xN} was the canonical basis of RY.
In our examples the parameter space will be the space of Lipschitz continuous functions,
and therefore Dyx(t;,c¥) is a linear functional defined on the space of W*-functions,
and Dox(t;, ck)xjy denotes the value of the linear functional applied to the function X§V :
For the derivation of this method for ODEs with finite dimensional parameters we refer
to [8].
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3.2 Convergence results

In this section we show the local convergence of the scheme (3.1.8) supposing the existence
of an exact fit solution of the parameter estimation problem P. We assume

(B2) TN C T is a finite dimensional subspace for all N € N;

(B3) there exists v* € T, for which J(v*) = 0.

The next theorem studies the convergence of the quasilinearization scheme (3.1.8) in
the case when v* € I'V for some N € N.

Definition 3.2.1 We say that the sequence c* € RY converges to c* € RN superlinearly,
if there exists a sequence €, > 0 such that ¢, — 0 as k — 00, and

k+1

|cFH —c*| < gfcF — ¢, k e N.

As in Section 2.3, we define the parameter set P, :={y € I': z(-,7) € X(«, &)}, where
1,00 : d *
X(a,€) = {:c € W ([=r,a],R): essinf{ (¢ = 7(t,2,,€)): ac. ¢ € [0,a"]} > o).

We know (see [48] and [58]) that P, is an open subset of I'; and it follows from The-
orem 2.3.9 and Remark 2.3.10 that for every ¥ € P; there exists a ¢ > 0 such that
Dox(t,v) € L(T',R) exists and it is continuous for ¢ € [0, ] and v € Br(%; 9).

Theorem 3.2.2 Assume (A1) (i)-(iii), (A2) (i)-(iii) and (B1)-(B3). Suppose v* € P,
and suppose v* = Zjvzl C;TX;V € 'V for some N € N, and D(c*) is invertible where
C T Then for this N the quasilinearization sequence (3.1.8) is locally

*

R * *
= (cf,...,eN)"-
superlinearly convergent to c*.

Proof It follows from Theorem 2.3.9 and Remark 2.3.10 that there exists §; > 0 such
that Doz (t,v) € L(I', R) exists and it is continuous for ¢ € [0, ] and v € Br(y*; ;). Then
there exists d2 > 0 such that for |c — c*| < &9 it follows that the corresponding parameter
v = Z;VZI ¢;x; € Br(v*; 01). Hence D(c) is well-defined and continuous on Bgw (c*; d5).
Since D(c) is invertible at ¢* and continuous, there exist 0 < d3 < 2 and d > 0 such that
D(c) is invertible and satisfies

’D_l(c)‘ < d, for ¢ € Bgn(c™; 03).
Then the function

g: RY O Bewn(c*; 03) — RY, g(c) :==c—D*(c)b(c)
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is well-defined. Consider
g(c) —c* = c—c*— D !(c)b(c)
— D} (e)(D(c)(c - ¢) ~ b(c))

= D7(e)Y_miti,c) (mT(ti, o)(c —¢*) — (x(t;,c) — Xi)). (3.2.1)

Now using the exact fit-to-data assumption, c* satisfies z(t;,c*) = X; for : = 1,..., N,
hence (3.2.1) yields

l

g(c) —¢* = D ()Y m(t, ¢) <x(ti, c) — z(t;,¢*) — mT(t;, c)(c — c*)). (3.2.2)

=0
It follows from (2.3.15) that
|D2x(ti,c)xj~v| < N1|X§V|1" fori=0,...,¢, c € Bgn(c*; d3), and j=1,..., N.
Then there exists mg > 0 such that
lm(t;, c)| < my, i=0,...,0, c€&Bn(c; ). (3.2.3)

Hence (3.2.2) implies
l
lg(c) — | < dmo Z‘x(ti, ) — a(ti,c) —mT(t;, c)(c —c)|,  ceBav(ch dy).
i=0

We have
mT<ti7 C)(C - C*) = D2$<ti7 7)(7 - 7*)7
where 7 := Zjvzl ¢;xY and ¥ = Zjvzl ¢ixY. Therefore

z(t;,¢) — x(t;,c*) —m’ (t;,c)(c — c*)

= Dox(ti,v") (v —=7") — Dax(ti, y) (v — ") +w(ti, 7", 7), (3.2.4)
where
satisfies .
him “ g o

=7

Define the vector norm on RY by

N
lell == > e
j=1

= |’}/|1", C € RN.
T
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Since all vector norms on RY are equivalent, there exist positive constants C; and C}
such that Cflc| < ||c|| = |y|r < Cy]c| for all ¢ € RY. Then we have

ti7 *7 . tia *7 —c’ tia *7
i @ED et e — el g BT
cmetJe—cf oot [y —=9p e =7 |y =7Ir
Hence (3.2.4) yields
|g(C) - C*| < dmOZ’ tzac t27c ) T(ti,C)(C - C*>
< w(c* ,c)|c —c*l, c € Brn(c™; d3), (3.2.6)
where
: [wtisr*, )l
w(c*,¢) == dmy ;(ang(ti, 7*) = Daa(tis )l e m + |_—”|”) (3.2.7)
satisfies
lim w(c*, c) =0. (3.2.8)

Hence for every 0 < v < 1 there exists 0 < &, < d3 such that |w(c*,c)] < v for ¢ €
B~ (c*; d4). Then the convergence of the sequence (3.1.8) follows from (3.2.6) for all
c? € Bgv(c*; d4), and the superlinear speed of the convergence follows from (3.2.6) and

(3.2.8). O

Next we study the case when v* does not belong to I'"V for any N, but we assume that
for each N the cost function J restricted to the finite dimensional parameter set I'V has
a local infimum at 7, € I'V. Then

L
Z 177N )D2$(t177N)X§V:O7 ] = 17"'aN' (329)

i=0
We assume also that

(B4) for each N € N the basis functions Xév = (X;-P’N,X?’N,XE’N) satisfy Xf’N c PW2e°

for j = 1,..., N, and there exist mesh points —r < t; < --- < t,, < 0, where
m = m(N), such that )'(f’N and )'(f’N have points of discontinuity only at t; for all
7=1,...,N;

(B5) for each N € N the fixed basis functions in T'V satisfy Z e <1

(B6) for each N € N the cost function J restricted to the finite dimensional parameter
set 'V has a local infimum at 7, € I'V.



3.2. Introduction 67

For the rest of this section, for simplicity, we use the l-norm on R", i.e., |c|; :=
Z;.V:l lcj|. The corresponding induced matrix norm on RV*¥ is denoted also by | - |;.

Theorem 3.2.3 Assume (A1) (i)-(v), (A2) (i)-(vi), and (B1)-(B7). Suppose v* in
(B3) satisfies v* € Py. Let 6* > 0 be defined by Lemma 2.53.8, for a fited N € N
let 7y = Zj.v:léjxév be defined by (B6), e = (c1,...,en)T, m = m(N) and Xf’N
(j=1,...,N) be defined by (B4), let

K = max{|EN|1 —{—5*, (|CN|1 + 0 ) IIllaXN|).(.l’?7N|Loo}>

.....

and let N3 = N3(v*,0%,m, K) be defined by Lemma 2.53.8. Then if 75 € Br(v*; 0%), the
matriz D(eV) exists, it is invertible and satisfies

D! 1]\@,2\3; ti, V) — Xi| < 1,

then for this fized N the quasilinearization sequence (3.1.8) is locally convergent to €.

Proof Througout this proof we associate to the vectors ¢ := (cy,...,cn)T € RY and
cV = (c,...,en)T € RY the parameters 7, := Zjvzl cix) € TN and yy = Z;VZIE]-X;-V €
'Y, respectively.

We have by (B5) that [x}|r <1 forall j =1,..., N, hence

N
|70‘F < Z |CZ ’X] ’F < |C|17 cc RN' (3210>

As in the proof of Theorem 3.2.2, let §; be such that Dox(t,v) € L(I',R) exists and
it is continuous for t € [0, a] and v € Br(v*; 6;). Let §* > 0 be defined by Lemma 2.3.8,
and suppose that N is such that 7, = Zjv L GXY € Br(y*; 6%). Let 0 > 0 be such that

Br(¥y; 62) C Br(y*; 6%). Then (3.2.10) implies that v, € Br(7y; 02) for ¢ € By (€V; 02).
We use the notation Ve = (¢c, e, &) € V. Then

pelwice <Iyelr <lch <[V 462, ¢ € Ban(c"; ).

It follows from assumption (B4) that x}” N e P2,

.....

Bl < D21l < lols max, 57",
=1

and therefore |¢¢|ppr2e < K for ¢ € Ben (cV; 65).
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Let & > 0 corresponding to 7y € Br(y*; 0*) be defined by Lemma 2.3.8. Then

c € By~ (EN; 5) implies v, € Br (WN; 5) using (3.2.10). For every d satisfying

¢ ¢
S)INs Yt ©Y) = X < dNs Y Ja(ti, ©Y) — X < 1 (3.2.11)
- =0
there exists 0 < d3 < 0 such that D(c) exists and is invertible for ¢ € By (EN; 63), and
ID~!(c)| < d for ¢ € Bgn (cV; 53).
Then the function g(c) := ¢—D~*(c)b(c) is well-defined on Bgx (¢V; d5), and similarly
0 (3.2.1) it satisfies

g(c) —cV ( ) Zm ti, c) < (t;,c)(c —eV) — (x(t;,c) — XZ)> (3.2.12)

It follows from (3.2.9) that
¢

> (@t €) = X;)m(t;, e") = 0,
=0
hence combining it with (3.2.12) gives

g(c) — eV = ( ) im (t;,c) ( tl,c)(c—EN) — (z(t;, c) —:L‘(ti,EN))

=

_ (D(c)>_1 i(m(ti, ¢~ m(t, ) (el e) - X).  (3213)

i=0
Then using (2.3.29) and (B5) we get
N
‘m(tiac) - m(tiaaN)h = Z |D2x< z>7c) - DQx( is Y ) §V|
j=1
N
< N3|%—7N|FZ|X§V|F

=1

< Ngle—cVy,  i=0,...,0, c&Ban(c";ds). (3.2.14)

Let mp, w and w be defined by (3.2.3), (3.2.5) and (3.2.7), respectively. Then (3.2.6),
(3.2.13) and (3.2.14) yield

l
glc) =&V < dmoZ\m%,cxc =) = (a(ti, ) — a(ti, )|

1

+d2\m ti,c) —m(t;, )|y |x(t;, &) — X

IN

(w(ec ,)+AN)|c—c l,  c€Bav(eY;d),  (3.2.15)
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where by (3.2.11)

l
AN = ngZ |$(t,,EN) — Xz| < 1.
=0

Let v be such that Ay < v < 1. Then (3.2.8) yields that there exists 0 < d4 < d3 such
that 0 < w(c",¢c) < v — Ay for ¢ € B (cV; d4). Therefore (3.2.15) gives

|Ck—"_1 - EJ\[|1 S V‘Ck - EN|17 CO € BRN (ENy 54)a

which proves the local convergence of (3.1.8) to ¢, [

3.3 Numerical examples

In all of the numerical examples we present below only one component of the parameter
vector (p,0,€) is considered to be unknown, the other two components will be given. So
the parameter set I" will be identified with either W1, © or Z. Also, # and £ below will be
coefficient functions in the equations, so we will use W1°°([0, o], R) as the parameter set
© or =. In all this three cases we approximate the functions of W or W>([0, o], R)
by linear splines. Hence in the examples we define I'V as the space of linear spline
functions with equally distant node points vy, vy, ..., vy of the domain [—r, 0] or [0, a].
Let {\N,..., AN} be the usual “hat” functions corresponding to the mesh {vy,... vy}
satisfying AN (v;) = 0 if i # j, and AN (v;) = 1. Then the basis of I'V will be the scaled
“hat” functions {x¥,...,xN} defined by xV(t) := ———AY for i = 1,..., N. Then

N‘AZN|W1700

'Y and {x7,...,xN} satisfy assumptions (B2), (B4) and (B5).

Example 3.3.1 Consider the scalar delay equation

#(t) = Q(t)a:(t — ()22 (t) — 1), te0,3], (3.3.1)
z(t) = (1), t € [-r0]. (3.3.2)

If we take
f(t) = 20 (1) = 28 nd ot = (4 4)? (3.3.3)

(t+4)%

as the parameters in (3.3.1)-(3.3.2), then the solution of the corresponding IVP (3.3.1)—
(3.3.2) is

() = %(t +4)2. (3.3.4)
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Note that along with the “true solution (3.3.4), the time lag function is t —2?(¢)&%(t)—1 =
t — 2,50 r > 2 is needed in (3.3.2) to generate solution (3.3.4).

We used the function (3.3.4) to generate measurements at the points t; = 0.2i, i =
0,1,...,15. In this example let & and ¢ be defined by (3.3.3), and consider 6 as an
unknown parameter in the equation. The derivative of the solution z(¢,6) of the IVP
(3.3.1)—(3.3.2) with respect to 6 applied to a fixed function h € W1>([0, 3], R) is denoted
by z(t) := z(t,0,h) = Dyz(t,0)h, and it satisfies the variational equation

) = o) [—j:(t —E2)a(t) — 1)52(t)2x(t)z(t) + z(t —2(0)a(t) — 1)}
+h(t)x(t — 2(0)a3(t) — 1), te0,3], (3.3.5)
Z(t) = 0, te[-20]. (3.3.6)

This IVP and also the IVP (3.3.1)-(3.3.2) are solved numerically by the approximation
technique introduced in [41] to obtain the derivative values used in (3.1.4). In all the
numerical runnings below step-size 0.05 was used in the numerical simulation.

First we computed iteration (3.1.8) starting from the constant 0 initial parameter
value. The numerical results can be seen in Figures 1 and 2 using N = 3 and N = 8
dimensional linear spline approximations of the coefficient function #. In the figures the
solid curve represents the ”true®“ parameter function #, and the dotted curves are the
spline approximations obtained by the quasilinearization sequence (3.1.8). We observe
good approximation of the "true” parameter 6 in two steps. In Tables 1 and 2 the value
of the least square cost function .J(#*)) at the kth iteration, and the the error of the spline
iteration function at the node points Agk) = |6%) (1) — O(v;)| are presented.

Let PV f denote the projection of the function f to the space of N-dimensional linear
spline functions (with equi-distant node points). In Figures 3 and 4 and Tables 3 and 4 the
numerical results of the iteration (3.1.8) can be seen starting from the initial parameter
guess 00 (t) = P3(4sin5t) and 0 (t) = PS(4sin5t), respectively. As in the previous
running, a quick convergence is observed.

o(t) o(t)
2 T T T T T T T T
*) — true 6(t) — true 6(t)
o O Step 0 'O Step0
% Step 1l % Step 1
15F O Step2 || 150 O Step2 ||
1 . 1
*
0.5f D o5
*
o1 [ R R RPN o PR a1 @ | o EXPRIPRIPRY x FRRYSRRSOONY | o o] o 1]
-05 . . . . . 05 . . . . .
0 0.5 1 15 2 25 3 0 0.5 1 1.5 2 25 3

Figure 1: ) (t) =0, N =3 Figure 2: ) (t) =0, N =8
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Table 1: 00 (t) =0, N =3

A

A

D (IO G
0:  13.257248
1. 0.583975
2: 0000202

2.00000 0.89796 0.56000
0.10736  0.31157 0.41742
0.25890 0.04866 0.02411

Table 2: #O)(t) =0, N =8

71

Je®y Al AP

Agk) Aik)

Al

Al

AP

NG

T A

13.257248  2.00000 1.50173

0.577428 0.01275 0.07210 0.02331
0.000007 0.01554 0.05837 0.03913 0.01889

1.19000 0.97921
0.16346

0.82840 0.71581
0.37610 0.32800 0.35868 0.33955
0.00730  0.01190 0.00464 0.02400

0.62891

0.56000

a(t)

o(t)

3.5

— true 6(t) a.

“B Step0
¥ Step 1
Q" Step2

— true 6(t)
O Step 0
¥ Step 1
Q' Step2

. O

e
0

0.5 1 15 2

2.5 3 0

Figure 3: 0 (t) = P3(4sin5t), N = 3

0.5

1

15

2

2.5 3

Figure 4: 0©)(t) = P8(4sin5t), N = 8

Table 3: 00 (t) = P3(4sin5t), N =3

koo JO®) AP A N
0: 10.318073 2.00000 2.85404 2.04115
1:  0.000319 0.24502 0.06980 0.00527
2: 0.000179 0.26077 0.05294 0.01625
3 0.000177 0.26321 0.05177 0.01668

Table 4:

00 (t) = P¥(4sin5t), N = 8

Je®y Al A

Agk) Aik)

A

AP

AP

AP

11.807231 2.00000 1.86142
0.055042 0.04142 0.03820
0.000001  0.05690 0.02693

4.83139 0.39971

0.03152 0.01420 0.00792  0.00952

2.18554 4.55861

0.51786 2.04115

0.01805 0.23000 0.22969 0.52617 0.04923 0.59118
0.00417  0.00684
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Example 3.3.2 In this example we consider again the IVP (3.3.1)-(3.3.2), where now
we suppose ¢ and 0 are defined by (3.3.3), and we consider £ in (3.3.1) as an unknown
parameter function defined on the interval [0, 3]. We use the same measurement generated
by the “true solution” (3.3.4) which was used in Example 3.3.1. The derivative of the
solution z(t, ) of IVP (3.3.1)—(3.3.2) with respect to £ applied to a fixed function h €
Whee([0, 3], R) is denoted by z(t) := z(t,&, h) = Dyx(t,&)h, and it satisfies the variational

equation

A = o) [—g'c(t —E2)a2(t) — 1) <§2(t)2x(t)z(t) + 25(t)x2(t)h(t))

+z<t—£2(t)x2(t)—1>}, te0,3], (3.3.7)
Z(t) = 0, te[-20]. (3.3.8)

We used the numerical solution of the IVP (3.3.7)-(3.3.8) to compute the quasilinearization
sequence (3.1.8). We generated the sequence starting from the initial parameter value
€O (t) = 1. The first several terms of the corresponding sequence is illustrated in Figures 5
and 6 and in Tables 5 and 6 using N = 3 and N = 8 dimensional spline approximation,
respectively.

U] &

1.6 T 1.
— true &(t)
0O Step 0
1.157/, % Stepl [| 1.4F \
‘O Step2
121 1.2¢
m- g o 1
0.8 0.8
0.6 0.6
— true &(t)
B Step0
0.41 0.4r| % Step1
Q" Step 2
0.2} 02 & Stp3 g R D
¥
0 . . . . . 0 . . . . .
0 0.5 1 15 2 25 3 0 0.5 1 15 2 25 3
Figure 5: €0 (t) =1, N =3 Figure 6: £0(t) =1, N =8

Table 5: €O (t) =1, N =3
Je®)y Al Al Al

k

0: 1.419877 0.56250 0.56287 0.83340
1:  0.080676 0.11016 0.04972 0.13968
2.
3

0.000964 0.14078 0.02789 0.01848
0.000219 0.14846 0.02439 0.00513
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Table 6: £O(t) =1, N =8
Je®y AP Al AP AP Al AP Al AP

k

0: 1.419877 0.56250 0.03993 0.28132 0.48756 0.62484 0.71908 0.78550 0.83340
1. 0.078229 0.03357 0.00237 0.01607 0.01850 0.05421 0.09934 0.12863 0.14326
2.
3

0.001305 0.02226 0.00555 0.00493 0.00522 0.00288 0.01240 0.01409 0.06391
0.000049 0.00075 0.00574 0.00230 0.00027 0.00042 0.00531 0.00153 0.00614

Example 3.3.3 Now consider again the IVP (3.3.1)-(3.3.2), where the coefficients ¢ and
¢ are defined by (3.3.3), and in this example we consider the initial function ¢ as the
unknown parameter in the equation. We use the same measurements that was used in
Examples 3.3.1 and 3.3.2, therefore the true parameter value will be the function ¢ defined
n (3.3.3).

Note that the difficulty to estimate the initial function in SD-DDEs is that the size
of the initial interval depends on the solution, therefore it is not known in advance.
One simple trick is to handle this difficulty numerically is to modify the initial condition
in the computation of the numerical solution of (3.3.1). Using the measurements X;
at the time mesh points ¢; and the formula of the delay function we select r so that
—r > max(&%(t;) X? + 1), consider a function ¢ € W1*°([—r, 0], R), and we replace (3.3.2)
by the initial condition

{ ,r 0]7
{ ), t < —r.

The derivative of the solution z(t, ¢) of IVP (3.3.1)—(3.3.2) with respect to ¢ applied to
a fixed function h € W°°([—r, 0], R) is denoted by z(t) := z(t, ¢, h) = Dyx(t, p)h, and it
satisfies the variational equation

At) = Q(t)[—j:(t—£2(t):c2(t)—1)52(t)2x(t)z(t)

+z(t—§2(t)x2(t)—1)}, teo,3], (3.3.9)
() = h(t), tel-r0] (3.3.10)

Again, in the numerical computation we replace (3.3.10) by

h(t), te[-r0],
2(t) = { h(—r), t<—r.

In the generation of the iteration (3.1.8) below we used r = 2 and the projection of the
function cost to the space of linear spline functions as the initial parameter value. The
numerical results can be seen in Figures 7 and 8 and in Tables 7 and 8 for N = 3 and
N = 8. We note that in this example the convergence of the iteration scheme was much
more sensitive to the selection of the initial parameter value than in the previous two
examples. For this particular values of the initial function both iteration sequences were
convergent. We observe quick convergence of the approximating sequences to the true
parameter function ¢.



74 Chapter 3. Parameter estimation by quasilinearization

o)

L ] — true @(t)
0 — true (t) © B Step 0
2 "B Step0 o % Step 1
% Step 1 0.2 o o Q' Step2
QO Step2 A Step 3
-04n°
o *
-0.5 - . : -0.6 . . .
-2 -15 -1 -0.5 0 -2 -15 -1 -0.5 0
Figure 7: ¢(O(t) = P3(cost), N =3 Figure 7: ¢(0)(t) = P8(cost), N =8

Table 5: ¢ (t) = P3(cost), N =3
Je®)y Al AP A

k

0: 0.082319 0.61615 0.09030 0.20000
1. 0.108323 0.10783 0.05159 0.02523
2.
3
4

0.000084 0.00364 0.00916 0.01367
0.000011  0.00592 0.01128 0.00583
0.000005 0.00828 0.01205 0.00373

Table 6: (0 (t) = P¥(cost), N =8
JoO®y AP AP AR A AR AR A AP

k

0: 0.172338 0.61615 0.40422 0.18887 0.00683 0.16072 0.25337 0.26966 0.20000
1. 0.110547 0.73788 0.01933 0.15739 0.11087 0.02379 0.00866 0.04256 0.25172
2.
3

0.001212 0.23078 0.02075 0.01854 0.05279 0.00820 0.05878 0.14140 0.05103
0.000005 0.01346 0.00017 0.01250 0.00098 0.00847 0.00407 0.00027 0.00237

We we refer to [46] for more numerical examples of the quasilinearization method
(3.1.8) for SD-DDEs. We note that the parameter estimation problem for several classes
of state-dependent and also for state-independent delay and neutral equations was studied
in [6, 7, 17, 51, 52, 54, 55, 59, 79] using direct finite dimensional optimization methods.
Finally note that the identifiability of parameters, i.e., the uniqueness of the parameter
value which generate the same solution is an important issue in the theory of parameter
estimation. It is studied for FDEs, e.g., in [76, 80], but similar studies are missing for SD-
FDEs. We refer to Example 5.4 in [55], where the parameter estimation was numerically
investigated in a case when the uniqueness of the parameter value failed.



Chapter 4

Neutral FDEs with state-dependent
delays

4.1 Introduction

In this chapter we consider SD-NFDEs of the form

%(m) — gt e, 7t — p(t, T, X)), )\)) - f(t, v, x(t — T(t, 21, ), 9) t [0, 7],
(4.1.1)
with initial condition
x(t) = (1), t e [-r0]. (4.1.2)

Here 6 € ©, £ € =, A € A and x € X represent parameters in the functions f, 7, ¢
and p, where O, =, A and X are normed linear spaces with norms | - |e, | - |z, | - |» and
| - |x, respectively. See Section 4.2 below for the detailed assumptions on the IVP (4.1.1)-
(4.1.2). By a solution of the IVP (4.1.1)-(4.1.2) we mean a continuous function defined
on an interval [—r, ], such that (i) ¢t — x(t) — g(¢t, ¢, x(t — p(t, 24, X)), A) is differentiable
for t € [0, ], (at the ends of the interval one sided derivatives exist); (ii) « satisfies (4.1.1)
for t € [0, a], and (iii) « satisfies the initial condition (4.1.2).

The study of SD-DDES, i.e., the case when g = 0 in (4.1.1) is an active research area
(see [56] and its references). Much less work is devoted to SD-NFDEs, see, [3, 4, 5, 11,
12, 25, 29, 32, 34, 39, 50, 49, 54, 61, 68, 92, 93, 94, 95] and their references. Most of the
above papers deal with SD-NFDEs of the form

/() = h(t, 2(t), 2(t — 7(t, (), 2 (t — n(t, x(t)))). (4.1.3)

This equation is called in [75, 92, 93] as “explicit” SD-NFDE contrary to the “implicit” SD-
NFDE (4.1.1). Well-posedness of such “explicit” SD-NFDEs was investigated in [38, 67].

75
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Equation (4.1.1) can be considered as a natural “generalization” of NFDEs of the form

%G(t, x) = f(t, ), (4.1.4)
but (4.1.4) may also contain (4.1.1) depending on appropriate conditions on G and f,
see assumtions on f in [56] for SD-DDEs, and [92] and [93] for similar conditions on
“implicit © SD-NFDEs. Existence, uniqueness, stability and numerical approximation of
special classes of (4.1.1) was studied in [5, 50, 53, 75]. Similar classes of abstract implicit
SD-NFDEs were investigated in [20, 26, 74, 83].

In a recent paper [93] Walter studied continuous semiflows generated by “explicit”
SD-NFDEs in the space of continuously differentiable functions, and differentiability and
continuity of derivatives with respect to initial data. Differentiability wrt parameters of
“Implicit“ SD-NFDEs was proved in [48] for the case when the delay p in (4.1.1) is only
time-dependent, and there are no parameters in the neutral term. The proof was based on
the assumption that the parameters satisfy a compatibility condition similarly to (1.1.4) in
the SD-DDE case. In this chapter we extend this result for (4.1.1), where state-dependent
delay and parameters are included in the neutral term, as well. In Theorem 4.2.2 below
we discuss the well-posedness of the IVP (4.1.1)-(4.1.2), and in Theorem 4.3.4 and Corol-
lary 4.3.5 below we show the differentiability of solutions of the IVP (4.1.1)-(4.1.2) wrt
the parameters (¢, &, 0, A, x) in a pointwise sense and also using the C-norm.

The organization of the chapter is the following. In Section 4.2 we list our assumptions,
and discuss well-posedness of the IVP (4.1.1)-(4.1.2), and then in Section 4.3, using and
improving the method of [48], we study differentiability of solutions wrt parameters. Note
that for simplicity we present our results for the single state-dependent delay case, but
all our results can be easily extended to the case when both ¢ and f contain multiple
state-dependent delays.

4.2 Well-posedness and continuous dependence on pa-
rameters

Consider the SD-NFDE

%(x(t) — gt e, 2t — p(t, T, X)), A)) - f(t, o, x(t — T(t, 21, ), 9) t e [0,T),
(4.2.1)
and the initial condition
x(t) = (1), t € [-r0]. (4.2.2)
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Next we list our assumptions on the SD-NFDE (4.2.1) we will use throughout this
paper. Let ©, =, A and X be normed linear spaces with norms | - |g, | - |z, | - [» and
| - |x, respectively, and let ; C C, Qs C R", Q3 C ©, Qy C =, Q5 C R", Qg C A and
Q)7 C X be open subsets of the respective spaces. Let 0 < ry < r be fixed constants, and
T > 0 be finite or 7' = oo, in which case [0, 7] denotes the interval [0, c0). In addition to
assumptions (A1) (i)—(iii) and (A2) (i)—(iil) introduced in Section 2.2 we assume:

(A3)

(i) g: RxCxR*"xAD[0,T] x Q; x Q5 x Qg — R" is continuous;

(ii) g is locally Lipschitz continuous in the following sense: for every a € (0,71,

closed subset M; C Q; of C which is also a bounded subset of W, compact
subset M5 C 5 of R™ and closed and bounded subset Mg C g of A there
exists Ly = Ls(a, My, M5, Mg) such that

|g(t7 1/17 u, /\)_g(t_u _7 u, 5‘)’ < L3 <|t_t_|+<€fngxro W}(C)_QZ(C)|+|U_E|+’)‘_5‘|A>7

]

for t,£ € [0,a], ¥, € My, u, i € Ms, A\, \ € Mg;

(iii) ¢ is continuously differentiable wrt its second, third and fourth arguments;

(iv

)

Dsyg, D3g and Dy4g are locally Lipschitz continuous wrt its first three variables
in the following sense: for every a € (0,77, closed subsets M; C €2 of C' which
is also a bounded subset of W1 compact subset M5 C €5 of R™ and closed
and bounded subset Mg C Qg of A there exist Ly = Ly(cv, My, M5, Mg) and
Ls = Ls(a, My, M5, Mg) such that

|D29(ta,¢}7u7>‘)h_D29(£&>ﬂa)‘)h|
< La(jt-f+ max 0(Q) = d(Q)]+|u—al) max [r(C)]

¢e[—r,—ro] ¢e[—r,—ro]
+Lymax{[h(Q) = hOl: ¢,C € [=r,—rol, |¢ =] < Llt — 1},
|D39(ta ¢7 u, >‘) - DSg({a ’l]}, ﬂ, )‘)|
< La(jt—tl+ max Q) = 9(Q)]+ lu—al).

|Dag(t, v, u, A) — Dag(t, 0,0, \)| c(arm
< La(jt =1+ _max [9(Q) = d(Q)| + [u—al).

for t,t € [0,al], ¥, € My, u,u € Ms, \ € Mg, h € C;

(i) p: RxC x X D10,T] x Q1 x Q7 — R is continuous, and

0<ro<p(ty,x) <r, te0,T], veQ, xey
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(ii) p is locally Lipschitz continuous in the following sense: for every a € (0,71,
closed subset M; C €; of C which is also a bounded subset of W*  and
bounded and closed subset M; C Q; of X there exists Lg = Lg(av, M1, M7)
such that

p(t, 0, %) = p(E 6,01 < L (Jt =+ _max [15(C) = $(C)] + [x — xlx )

C€[—r,—10]

for t,# € [0,al, ¥,v € My, and x, X € My;
(iii) p is continuously differentiable wrt its second and third arguments;

(iv) Dyp and Dsp are locally Lipschitz continuous wrt its first and second variables
in the following sense: for every a € (0,7, closed subset M; C ; of C' which
is also a bounded subset of W* and bounded and closed subset M; C Q; of
X there exist Ly = Ly(«, My, M7) and Lg = Lg(a, My, M7) such that

| Dap(t, b, x)h — Dap(t, 1, x)hl
< Lr(jt =1+ max [0(Q) = ¥(Q)) max|h(Q)

CE[—r,—r €[~r,—70]

+Lymax{|h(¢) = ~(C)]: ¢, ¢ € [=r,—mo], [ — ¢ < Lsft — 2},

and

|D3p(t, v, x) — Dap(t, v, X)|c(xr) < L7(|t —t[+ max [Y(()— &(C)D

C€[~r,—ro]

for t,t € [0,al, ¥, € My, x € My, h € C.

It is easy to see that (A3) (ii) and (A4) (ii) yield that g(¢, ¢, u, \) and p(t, 1, x) depend
only on the restriction of ¢ to the interval [ r, —ro), since if () = () for ¢ € [—r, —ry),
then g(t, 1, u, \) = g(t,%,u,\) and p(t,v¥,x) = p(t,,x). It also follows from (A3) (ii),
(iii) and (A4) (ii), (iii) that

|D29(t7¢7u7/\)h| S ‘DQQ(t7¢7u7 )\)‘ﬁ(C,R")C [max |h'(<)|

€[—r,—70]

and
| Dap(t, ¥, x)h| < |Dap(t, ,X)Iac,R)C max |h(C)

c [—T,—To]

hold for ¢t € [0,T], ¥ € Oy, u € Q5, A € Qg, x € Q7 and h € C.

It follows from the assumptions on M; in (A1) (ii), (A2) (ii), (A3) (ii), (iv) and (A4)
(ii), (iv) that it has no interior in C'. Note that assumptions (A1) and (A2) are practically
identical to those used in [58] for SD-DDEs, i.e., for the case when g = 0. (See also [27]
or [58] for well-posedness of SD-DDEs.) The key assumptions in this paper are that p is
bounded below by 7o > 0 (see (A4) (i)) and g(¢, v, u, A) and p(t, %, x) depend only on the
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restriction of ¥ to the interval [—r, —r¢]. Similar assumption is used for SD-NFDEs in
[50], see condition (gl) in [92], [93], and for PDEs with state-dependent delays in [82]. The
particular form of the Lipschitz continuity assumed in (A3) (ii), (iv) and (A4) (ii), (iv) is
motivated by the specific form (4.2.3) and (4.2.4) of the functions g and p, respectively
(see Lemma 4.2.1 below). We comment that Arzela-Ascoli theorem yields that closed
subsets of C' which are bounded subsets of W* are compact in C.

Assumptions (A3) and (A4) are naturally satisfied, e.g., in the case when A = X =
Whee([0,T],R), and g and p have the form

—70

gt 0) = g (1.0 (O 0 0), [

[ AROUQO L u D) (423)

and

—70

plts ) = p(t. 0= (0. v (0), [

-Tr

BILOWQO A M), (42.4)

where t € [0,T], v € C,ue R*, A€ A, x € X and 0 < ry < r. The next lemma shows
that assumption (A4) is satisfied under natural assumptions on p. Clearly, (A3) can be
also satisfied under similar assumptions on g.

Lemma 4.2.1 Assume X = W*°([0,T],R), and p has the form (4.2.4), where

(i) p: [0,T] x R™HD x R — R s continuous, v*,...,v*: [0,T] — R are continuous,
B: [0,T] x [=r,—ro] — R™" is continuous, and

O<r0§ﬁ(t,u1,...,u@+1,v)Sr, tG[O,T], Ul,...,U,g_HGRn, veR,

and '
0<ro<v'(t)<r, i=1,...,¢, te|0,T];

(ii) p is twice continuously differentiable;

(iii) vi,... vt [0,T] — R and B : [0,T] x [-r,—rg] — R™" are locally Lipschitz
continuous wrt t, i.e., for every a € (0,T] there exist Ly = Lo(a) and Lig = Lip(«)
such that

() =V ()] < Lolt — ¢,  t,E€(0,a], i=1,....¢

and
|B(t,0) = B(t,Q)| < Lot —t],  t,t€[0,a], (€[~ —m.

Then p satisfies assumptions (A4) (i)-(iv).

Moreover, if in addition x,v',...,v" € CY([0,T],R) and B is continuously differen-
tiable wrt its first argument, then p(t, ), x) is differentiable wrt t fort € [0,T] and ) € C*,
and the map [0,T] x C' — R, (t,%) — Dip(t, v, X) is continuous.



80 Chapter 4. State-dependent NFDFEs

Proof (A4) (i) is clearly satisfied under the assumptions of the lemma with ©; = C and
Q7 = X. Suppose a € (0,T], M; is a closed subset of C which is also a bounded subset
of Wb and M; C X is closed and bounded. Then there exists R; > 0 and Ry > 0 such
that My C By1,-(0; Ry) and M; C Bx(0; Ry). We have

" B.0wQ | < bmaaktr, v€ (0.0l v e,

where
binaz = bmaz (@) := max{|B(t,{)|: t € [0,a], ¢ € [-r,—7ro]}. (4.2.5)
Let
Lll = Ail{naiﬁ(+3max{|Diﬁ(t,u1, e ,Ug+1,’U)| 1t e [O, O{], Ul, ..., Up € BRn(O, Rl),

Upy1 € Brn(0; bae R17), v € Bgr(0; Rg)}.
Then Lemma 1.2.5 yields for t € [0,a], 1,9 € My, and x, ¥ € My
|p(t, %, x) = plt, ¥, X))
= [p(t. vl ®).... o). [

b

-0

B(t, ()y(¢) dc, x(t))

—7Q

(D O B0, [ B0 k(D)

'

—70

< Lu (S 1(-v@) = S-v @)l + [ IBEOINC) - 0]+ ) - X))

—r

< Lu(f+ Tbmaa:)(c max_ [4(¢) — (O] + [x — X|X>'

€ 77’777‘0]

To show the Lipschitz continuity of p wrt ¢ consider for ¢,¢ € [0,a], ¥ € My, x € M;
<[p(t. v ). v, |

-

—7r0

B(t, Q) de, (1))

(1A D)D), [ BN D)

=T

T0

< Lu(je= 1+ 3 w=v ) — vl @) + [ 1B.0) - BEOINO)| &
+x() = x())

Y4
< Lua ([t = 11+ 32 [0l () = @) + Laorllelt — ] + supserpalK(5) [t~ 1)
=1
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Therefore (A4) (11) holds with L6 = maX{Ln(f + Tbma:c)y LH(]. + €R1L9 + LloTRl + RQ)}
The differentiability of p yields for t € [0,T],v € C, x € X, he C andn e X

D2p(t7 Q/Ja X)h

= i Di+1,5(t7 W(—v (1)), ... ’w(_yf(t))’ /

-r

—-ro

B(t, U (C) dC, x(1) ) h(='(1))

—-ro

+Diap (v (-0 ), (v 0), |

-r

Bt Qw0 de ) [ Br.OMO &

and
Dsp(t, v, x)n = De+3ﬁ<t, Y(=vM (1), .. (= (1)), /__TO B(t, ¢)y(¢) dc, x(ﬂ)n(t),

and clearly, Dsp(t, 1, x) € L(C,R) and Dsp(t, 1, x) € L(X,R) are continuous in ¢, ¥ and
X-

Similarly, if » € C*, v* € C' (i = 1,...,/), B is continuously differentiable wrt ¢, and
x € C1([0, ], R), then for ¢ € [0, 7]

Dlp(tu 77Z)7 X)
= Dip(tb(-v 0. (v 1), |

-r

—7r0

B(t, O (C) dC, x(1))
V4 —T0 . . .
=3 Deap (b0 (D) U (), / Bt C(€) dC, x(8) )~ (1) (1)

Dt v (O v 0), [ BOw© e 0) [ DB OuC) de

+Dap (8 (- () 0= (0), [

-r

Bt Qw(C) dC, x (1) ) X(2).

Moreover, it is easy to see that the function [0,7] x C' — R, (¢,%) — Dip(t, ¢, x) is
continuous.
Let

Ly = max 3max{|DjDiﬁ(t,u1,...,u£+1,v)|: t€0,al], up,...,ue € Bra(0; Ry),

Upy1 € BRn(O; bmaleT’), NS ER(O; RQ)}
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Then for ¢t € [0,a], ¥, € My, x,X € M7 and h € C we get
| Dap(t, 0, x)h — Dap(t, ¥, X)h|

= [ Dean(t o @) v @), [ BN () (1)

—70

+Disap (b0 0 (v 0), |

B OuO ) [ BrOMO &

=3 Duaap (1B ), ), [ BEOBQ) dex(o) (- (0)

—70

~Drsap (85 (1), . (1), [

T

B3 6 x() [ Bt Om) i

L
< LS W 0) = S0+ [ IBE QNN FO1dC + x(®) - x(0)])

z:1 o
(S Ireni+ [ Bl )

< Li(_max [0(C) = 9O +Ix — Xlx) _max |h(c)

with L% := Lo (0 + rbpnas)®.
Similarly, for ¢ € [0, a] v, € My, x,X € M7, n € X we have

| Dsp(t, ¥, x)n — Dsp(t, ¢, X)n|
= [ Deap(t 0= O, (=20, [ BB A6

~Dreap(t. 5= (O B0, [ BB déx(0)at)]
¢ —ro
< Lia( 3 W=/ (8) = (= @) + | IBEOISO - S)1C + x(®) - X))l
< Li(_max [0(Q) = ¥(Q)] + [x — xlx)lnlx.

CE[ T, To]

For t,t € [0,a], ¥ € My, x € M; and h € C' we have
|Dap(t, v, x)h — Dap(t, 1, x)h|

i Diap(t (-2 (@)oo ('), |
Diaap(E(0 O), . 0= D), [ BEQUO A D) I 0]

—-ro

B(+,0)w(0) ¢, x(1))
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—-7r0

| Driap(t v @) =0), [ BEOBOdC )

~Duiap(E(-r O), . v @), [ BEOUQ dCx®)| [ 1B Ol

Deap(£ 0= D)., (D). [ _TOB@ ()¢, (D)

< |h(—(£)) — h(— (D) )
| Decsp(E (v (D) (D), / B QU de.x(D)

< / CIB(.0) — BEOIMO)| dC

< Lao(le =21+ 3 Wi (0) = vl O] + | 180 - BEOlv )&

Hx(® —x(®)) (Z o)+ [ BEOINO )

+LH(Z h(~ @)+ / T B(.) - BN de)

< (Lo(1+ leLg +rLigRy + R2) (€ + 7bpas) + 7L11Lig)|t — t‘ max |h( )|

¢e[—r,—ro
+ Ll max{|h(¢) — h(Q)]: ¢,C € [—r, —ro], [¢ =] < Lolt — 1]}
Finally,

|D3p(t, v, x)n — Dsp(t, ¥, x)1|

#Desap(E 0= ). (=), [ BERE dex®) ) i)

< L= 8+ S wl-v0) ~ s @) + [ 15,0 - BEOH(Q)]dg

() = (DI ) 1l + Lulnlx[t — ),

so (A4) (iv) holds with L7 := max{L%, Lio(1+{RyLo+7LigR1+ R2)({+7bpmas) +7 L1y L1o+
Lll; Lllg} and Lg = Lg. D
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We define the parameter space I' := Wh>® x Z x © x A x X, and use the notation
v = (0,&0,\x) or v = (v%,75,74%,7*,7%) for the components of v € T', and |y|p :=
lolwie + €]z + |0le + |A|a + |x|x for the norm on I'. We introduce the set of feasible
parameters

M= {(PE0ANET e, p(-7(0,p,8) €%, e, e,

@(_P(OMOaX)) € Q57 A€ Qﬁa X € 977 }

We will show in Theorem 4.2.2 below that II is an open subset of I'. Next define the
special parameter set

P = {(9075,9,)\,)() eIl : g(t,v,u,\) and p(t, 1), x) are differentiable wrt ¢,

and the maps (¢,v,u) — Dig(t,1,u, \) and (t,v) — Dip(t, ¥, x)

are continuous for t € [0,T], ¥ € Qy, u € Qo; peCh
$(0=) = D1g(0, ¢, (=p(0, ¢, X)), A) + D2g(0, ¢, (—=p(0, ¢, X)), A)¢
+D39(0, ¢, o(=p(0, ¢, X)), A)¢(=p(0, 9, X))

X (1= Dip(0,0,%) = Dap(0, 0, )9) + S (0,0, 9(~7(0,,€)),0) }.

Note that an analogous set was used for neutral FDEs in order to guarantee the existence
of a continuous semiflow on a subset of C* in [72].

Next we show that under the assumptions listed in the beginning of this section the
IVP (4.2.1)-(4.2.2) has a unique solution which depends continuously on the parameter
v =(p,& 0, x) in the C-norm. The solution of the IVP (4.2.1)-(4.2.2) corresponding to

a parameter v and its segment function at ¢ are denoted by (¢, v) and x4(+, y), respectively.
Theorem 4.2.2 Assume (A1) (i), (ii), (A2) (i), (ii), (A3) (i), (ii) and (A4) (i)~(ii),
and let 5 € TI. Then there exist § > 0 and 0 < o < T finite numbers such that

(i) P:= Br(7; 0) C II;

(i1) the IVP (4.2.1)-(4.2.2) has a unique solution x(t,~) on [—r,a] for all v € P;

(iii) there exist a closed subset My C C which is also a bounded and convex subset
of Wh M, C Qy and Ms C €5 compact and convex subsets of R™, such that
x(t) :== x(t,) satisfies

x, € My, o(t — 7(t,2,€)) € My, and x(t — p(t,xs, x)) € M5 (4.2.6)

fort€[0,0] and v = (¢,£,0,X,x) € P;
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(iv) z4(-,7) € Wh™ fort € [0,a], v € P, and there exist N = N(«,d) and L = L(«,0)

such that
(- lwre <N, t€[0,0], yEP (4.2.7)
and
[z4(-,7) — (-, ) |e < Ly — Flr, te0,a], v,7€P (4.2.8)
(v) Moreover, the function z(-,v): [—r,a] — R™ is continuously differentiable for v €
PNP.

Proof (i) Lety = (¢, E, 5, X, X) € II. Since €, ..., Q7 are open subsets of their respective
spaces, there exists d; > 0 such that Ba($; 6;) C Q1, Be <§, 51> C Qs, Bz <§7 (51> C Qq,
By (X, 51> C Qg and Bx(X; 1) C Qr. Introduce the vectors w; := 3(—7(0,3,£)) and
wy := P(—p(0,3,X)). Let e; > 0 be such that Bgn(wy; 1) C Qo and Bgn(wy; £1) C Qs.
The map

R X C X = o [O7T] X Ql X Q4 - Rn7 (t7w7£) = w(_T(tawug))

is continuous, since

[Y(=7(t,4,8)) = O(=T7(t 0. 6))]
< [o(=7(t,9,¢)
< W —dlo+Y )

0, ast—t, Y — Y, £ —E.

l

Similarly, the map R x C' x = D [0,T] x Q1 x Q7 — R" (t,9¢,x) — ¥ (—p(t, ¢, x)) is
also continuous, therefore there exist do € (0,0,] and T} € (0,7 such that

[W(=7(t,,8)) —wn| <er,  [P(=p(t, 9, X)) —wa| <& (4.2.9)

for t € [0,T1], ¥ € Bo(@; 62), € € Bs (2; 52) and x € Bx(%; 0s).
Let g9 > 0 be fixed. The continuity of the map (¢,,¢,0) — f(t, ¢, (—7(t,1,§)),0)
yields that there exist d;3 € (0,05] and T, € (0,77] such that

(0, 0 (—7(8,9,€)),0) — £(0,8,3(—7(0,3,€)),0)| < eq
for t € [0, T3], ¥ € Bo(@; 63), € € Bg(é 53) and 0 € Bo (6; 53).
Define the sets

My = Bgn(w1; €1), Ms:= Beg <§, 53>, M, := B= (E, (53)

and
Ms := Bgn(ws; £1), Mg := EA()\; (53), M, = EX()A(; 3).
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Throughout this proof the extension of the function ¢ € C' to the interval [—r, c0) by the
constant value 1(0) will be denoted by

o e ¢(t)’ te [_7«’ 0]7
v) "{ b(0),  t>0.
We define the following constants and sets
Ky = |f(0,8.8(~=7(0,3,8)).0)| + .
0
/61 = 537
o = min{§ i}
' 3727
ap = |Plwre + 0,
Mg = { e Wh®: [ — §lc < 83, ||~ < ao},

It is easy to check that M g is closed in C and it is bounded in Wt so let

Lso = Ls(Ty, M, Ms, Ms) be the Lipschitz constant defined by (A3) (ii),
Leo = Lg(T, My, M7) be the Lipschitz constant defined by (A4) (ii),
Ky = L3o(1+ao(2+ Leo(1 + ao))),
a; := max{ag, K11+ Ks},
o = min{%, 28—;0, 15, 7’0},
E, = {y € C([—r,a1],R"): y(s) =0 for s € [—r,0] and |y(s)| < By for s € [O,al]}.

We have |¢|r=~ < |plwie < |@lwrs + | — Plwie < ag for ¢ € By ($; 0), and so
By (p; ) C Myg. Then for y € Ey, ¢ € Byrx(p; 0), t € [0,a4] and ¢ € [—7, 0] we get

v+ +ot+¢) —e(Q] < |yt + O+ [t +¢) — 2O+ [e(¢) — 2(C)]
< Bi+tplpe +9
< Bi4+aiag+9o
< 93, (4.2.10)

and hence |y; + @y — @|c < d3. Consequently, y; + @; € Bo(@; d3) C Q4, and so
‘f(uyt + @hy(t - T(t7 Z/t + 551‘45)) + &(t - T<t7 yt + @taf))’ 9) ‘ S Kl?

and ¢ = y; + ¢y satisfies (4.2.9) for y € Ey, ¢ € By« (@; 0), £ € Bz (E, 5), 0 € Bo(p; 9)
and t € [0, o). Therefore the definitions of My, M5 and (4.2.9) yield

(Ye + Pe) (—=T7(t,0,8)) € Mo, (ye + @e)(=p(t, ¥, X)) € M5 (4.2.11)
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for ¢ € [0,a1], y € By, ¢ € Bia (1 0), X € Bx(X: ) and € € B=(& 9.
Fix 7 = (12,60, \,X) € Br(: 6). Then ¢ € By« (; 9), 0 € Bo (65 6), x € Bx(X; 9),

A € By (X, 5) and x € Bx(X;0). We can use the method of steps to show that the

IVP (4.2.1)-(4.2.2) corresponding to v has a solution. First note that a solution will
satisfy x4(¢) = z(t + ) = ot + () = ¢4(¢) for t € [0,r¢] and ¢ € [—r, —1]. We have
t—p(t, o, x) <t —19 <0 fort € [0,70], so y(—p(t, ¢, x)) = 0 for t € [0,70]. Hence
(4.2.11) yields that @[t — p(t, ¢r, x)] € M; for t € [0,70]. An estimate similar to (4.2.10)
gives |pr — ple < d3 for t € [0,79). Therefore, the function

pi(t) = g{t. G, olt — p(t. G0 AL, tE€[0,79] (42.12)
is well-defined. Then (A3) (ii), (A4) (ii), Lemma 1.2.5, |@| 1~ < ag, §r € My fort € [0, 7],
and the definition of K, ; yield

' (t) = ' ()] < Ls,o{!t—fH max ip(t + () — ¢(t + ()|

CE[—T,—’I‘O
+ilt = ot 21 0] = el = p(F 2201}
< Loo{lt =T+ [@laelt = 7 + @l 1+ Lop(1 + plo=)]lt — 71}
< Kl,l’t — ﬂ, t, E € [O, 7“0]. (4213)

On the interval [0, 7¢] Equation (4.2.1) is equivalent to

d

%<:c(t) . ul(t)) = f(toxa(t — 1(t,2,,6)),0),  te[0,r).

Therefore, (4.2.1) is equivalent to

w(t) = p'(t) + ¢(0) — ' (0) + /Ot f(s,xs,2(s — 7(8,24,8)),0) ds, t €0,m9]. (4.2.14)

We introduce the new variable y(t) := z(t) — ¢(t), and we define the operator

T (y,7)(t)
) () = p0)+ / f<87ys + @5, (Y + @) (s — 7(5,ys + %f))ﬂ)d& t €0,
0, ’ te[-r0].

Then in the new variable y, on the interval [—r, a;] the IVP (4.2.1)-(4.2.2) is equivalent
to the fixed point problem

y=T"(y,7).
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It is easy to check that T"(-,) maps the closed, bounded and convex subset E; of C
into Ey for all v € Br(y; 0). Therefore, Schauder’s Fixed Point Theorem yields the
existence of a fixed point y = y(-,) of T'(-,7), and therefore, (4.2.1) has a solution
r = x(-,v) = y(-,7) + @ on the interval [—r, a;]. Estimate (4.2.13) yields that u' is
Lipschitz continuous, and therefore, it is a.e. differentiable, and |i'(t)| < Ki, for a.e.
t € [0, ). Hence y, and so, x is also a.e. differentiable on ¢ € [—r, a;], and (4.2.14) implies
|z(t)] = |y(t)| < K11+ Ks for ae. t € [0,a4], and so |2(t)] < a; for a.e. t € [—r, aq].

(ii) Next we show by iteration that the solution obtained in part (i) of the proof can
be extended to a larger interval so that estimate (4.2.7) remains to hold with some N
independent of the selection of ~ from Br(7; d). Let j := 2, and let x = z(-,) be the
solution of (4.2.1)-(4.2.2) on [—r,a;_1], ¢’ := x4, , and

1 (t) == g<t +aj1, 01, Pt — p(t + a1, 9], X)), A>7 t € [0, 7],

—~

where cp{ denotes the segment function of ;ﬂ/ at t. If aj_1 < T, repeating the first part
of the proof, we are looking for an extension of the solution of the IVP (4.2.1)-(4.2.2) by
solving the fixed point equation ‘

y="T(y,7),
where y(t) == 2(t + oj_1) — &(t), and

T’ (y,7)(t)
w (1) — 1 (0) N .
= +/ Fls + 1,05 + b (y+ ) (s = 7(s + 051,55 + 04, €)), 0) ds, t € [0, Aayy),
0
t € [—r0]

Y

for some Aa; € (0,7 — aj_1]. Relation (4.2.10) yields that [¢/ — @] < d3. Therefore,
there exists £; > 0 such that Bo(¢’; ;) C Bo(®; 03). Define the constants and sets

6 .
ﬁ] = 5]7
My = {peWh ™ [ =@l < b5, [~ < a1},
Ly = L3(Ty, My 1, Ms, Ms) be the Lipschitz constant defined by (A3) (ii),
Lej_1 = Lg(To, My j_1, M7) be the Lipschitz constant defined by (A4) (i),
Kij o= Lyja(l+ a2+ Leja(1+a;))),
a; = max{a;_1,K; + Kz},
. . 8.
AOéj = mln{f—j, 2ajj_1, T2 — 1, T0}7
a; = a1+ Aoy,

E; = {y € O([-r, Aqj],R"): y(s) =0, s € [—r,0] and |y(s)| < F;, s € [O,Aaj]}.
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Since |¢7|r < aj_1, it is easy to check that |y + ¢ — ¢|o < g; for t € [0,Aqy],
y € E;, and hence o; < Ty and (4.2.9) imply (y, +@))(—7(t + ;1,9 + &1, €)) € My and

(e + D) (=p(t + a1,y + ), X)) € Ms for t € [0, Aay], y € E;. Also, one can check that
|1 () — i ()| < Ky 4]t —t| for t,t € [0, 7], and the operator T7(-,y) maps E; into E; for all
v € Br(7; 0). Hence Schauder’s Fixed Point Theorem yields the existence of a fixed point
y of TV(-,7) in E;, and hence the function z(¢) := y(t —a;_1) + @ (t —aj_1), t € [aj_1, ;]
gives an extension of the solution of the IVP (4.2.1)-(4.2.2) from the interval [—r, o;_4]
to the interval [—r, a;]. Moreover, for the extended solution we have |Z(t)| < a; for a.e.
t € [-r,a;]. If a; < T3, by repeating the previous iteration, we can extend the solution
to a larger interval. In case of an infinite iteration, we stop it after finitely many steps to
guarantee the boundedness of the sequence a;. Suppose we repeat the iteration k times.
Then let « := . This completes the proof of the existence of a solution z = z(-,~) of
the IVP (4.2.1)-(4.2.2) on [—r,a] for any v € Br(%; d), which satisfies |Z(t)| < ay for a.e.
t € [—r,a]. The estimate

t
o0 < 6O+ [ li@)lds <antma,  teal
0
yields that x satisfies (4.2.7) with N := max{ay, ag + axa}. Define the set

My = My = {Y € W' g —Blo < by, [dli < .

Then M;; C M, for all j = 0,...,k, and 2, € M, for t € [0,a]. The Arzela-Ascoli
Theorem implies that M is a compact subset of C, and hence the solution = = z(-,~)
constructed by the above argument satisfies (4.2.6) for ¢ € [0, a] and v € Br(7; 9).

(iii) The uniqueness of the solution will follow from (4.2.8). To show (4.2.8) suppose
v=(p,&0,\x) and ¥ = (,&,0, A, ¥) are fixed parameters in Br(7; §), and let = be any
fixed solution of the IVP (4.2.1)-(4.2.2) corresponding to 7, and let Z := z(-;%) be the
solution of the IVP (4.2.1)-(4.2.2) obtained by the argument of part (i) of the proof on
the interval [—r, a]. Then part (i) of the proof yields |Z;|y1.~ < N and

1T, — Plo < 03, |T(t—7(t,7,8)) —wy| <e1, |T(t—pt, T, X)) —wo| <& (4.2.15)

for t € [0, a], and therefore Z(t — 7(t, 7, &)) € My and Z(t — p(t, ¢, X)) € M5 for t € [0, af.
Since v € Br(7; 9), it follows that ¢ € By1.«(@; d), £ € BE(E; 5), 0 € Bo <§, 6), NS
By (X; 5) and x € Bx(%; 0). Hence § < &5 and (4.2.9) yield [o—3|c < 6, [o(—7(0, ¢, €))—

wy| < €1 and |@(—p(0, ¢, X)) — ws| < €1. Therefore the continuity of x implies that the
above inequalities are preserved for small t. Let a, € (0,a] be the largest number for
which

|z — Plo < s, lx(t —7(t, 24,8)) —wq| < &1, |x(t— p(t, x4, X)) —we| < &1 (4.2.16)
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hold for t € [0,a”). Then z(t — 7(t, 2+, §)) € My and x(t — p(t, x4, X)) € Ms also hold for
t €[0,a7].

Next we show that z; € M; for t € [0,a]. It is enough to show that |&¢|r~ < ay
for a.e. t € [0,a7]. Let m = [a”/r], where here [-] is the greatest integer part function.
Note that m < k since mry < o” < a = oy < krg. Let t; := jro for j = 0,...,m, and
tm+1 = 7. Suppose first that tg <t <t < t;. Then integrating (4.2.1) from ¢ to ¢t and
using (A3) (ii), (A4) (i), (ii), (4.2.16), |¢|r= < ap and the definitions of L3, Leo, Ko,
Ky, and a; we get

2(t) — 2@ < lg(t, 20,2t — plt, 30, 3)), N) — 921, 2(F — p(F, 75, X)), )
/WfS%, o (5,20,6)),0)| ds

t, or, p(t — p(t, 21, %)), A) — g(t, o5 p(t — p(t, &7, X)), A
/Wfsa, o (5,20,6)),0)| ds

Lyo(lt =+ _max Jo(t+0) — (i +0)|

=70

IN

it = pl(ts 31 0)) = (T = p(E, 30 0))]) + Kalt = 1]

(Lso(1+ ao(2+ Loo(1 + a))) + K2 ) |t = 1]
< alt =1, t,t € [to, t1].

IA

Then ag < ay implies |z(t) — z(t)| < a1|t — ¢ for t,t € [—r, t1].
Suppose now that |z(t) —z(t)| < a;|t —t| holds for ¢, € [—r, ;] for some j < m. Then
for t,t € [—r,t;41] we get easily that

2(t) = 2D < (Log(1+ s+ Log(1 + a3))) + Kz ) |t 1
< aj+1|t—f|, t,fE [to,t]’+1].

This shows that |z(t) —x(t)| < ag|t—t| for t,¢ € [—r, 7], hence ||~ < a4, for t € [0, a7],
and therefore z, € M for t € [0,a7].

Let L1 = Ll(a,Ml,Mg,Mg), LQ = LQ(()&,Ml,M4), L3 = L3(OZ,M1,M5,M6) and L@ =
Lg(cv, My, M7) be the Lipschitz constants from (A1) (ii), (A2) (ii), (A3) (ii) and (A4) (ii),
respectively. Integrating (4.2.1) from 0 to ¢ we get for ¢ € [0, 7]

[z(t) — 2(t)] i
< gl m a(t = p(t 21, X)) A) = g(t 20, 2(8 = p(8, 21, X)), V] + [9(0) — ¢(0)]
+ 1900, 0, 0(=p(0, 0, X)), A) — 9(0, 8, 6(=p(0, ¢, X)), A)|

+[:ﬂ&%@@-ﬂ&%ﬁﬂ@—f@@ﬁ@—d&@fﬁ@ds
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< La( max |t + ) = 2(E+ Q)+ |2t = p(t, 21, X)) — 2t = p(t, 71, X))

46[77‘»77'0]
A=) + o = Plo _
+Ls(lp = @le + [e(=p(0,9,x)) = ¢(=p(0, 8, X))| + |A = A])

t — p—
+L, / (15 = sl + [2(s = 7(5,20,€)) = 2(s = 7(5,70,€)| + 0 = Ol ) ds.
0

Lemma 1.2.5, |Z¢|p1.« < N for t € [0,a] and (A2) (ii) yield

|2(s = 7(s,25,8)) = T(s = 7(s, 75, €))|

|2(s = 7(s5, 25, €)) = T(s = 7(s, 25, )| + [2(s = 7(s,25,€)) = T(s = 7(s,25,8))]

<
< N|7(s,26,&) — 7(8, %, &) | + |25 — Ts|c
< LoN(jwy — Zlo+ € —&lz) + |2 — Tle, s €[0,a7]. (4.2.17)

Define p(t) := max{|z(s) — z(s)|: —r < s < t} for t € [0,a?]. Assumption (A4) (i),
Lemma 1.2.5, |Z¢|p1e < N for t € [0,a] and (A4) (ii) imply

[2(t — p(t, 21, X)) — Z(t — p(t, Tt, X))
< ot = p(t, z, X)) — 2( — p(t, 2, X)) + [Z(t — p(t, 20, X)) — Z(t = p(t, Te, X))
<t —ro) + Nlp(t,ze, x) — p(t, Ze, X)|
< (14 NLg)u(t —ro) + NLg|x — X|x, te[0,a7].

Similarly, [¢(—p(0, ¢, X))~ #(~p(0, @, X))| < (1+NLe)lp—@le+ NLg|x — x| Therefore
2(t) = ()] < Kap(t — 10) + (K + Dlp — Blwroo + 2Lg]A — | + 2N Ly Ll — ¥l

4 Lo [ (24 LaVuls) + LaNlg — = +10 - Blo) ds, ¢ [0.0),
0

where K3 := L3(2 + NLg). Lemma 1.2.2 yields

t
H(0) < Kaplt = ro) + Kaly = 3le + K5 [ n(s)ds, ¢ [0.00),
0

where Ky := K3+ 14 2L3+2NLsLe+ L1(LaN + 1) and K5 := L1(2+ Ly N). Applying
Lemma 1.2.3 we get

lz(t) — z(t)| < u(t) < de”, te[-ra, (4.2.18)

where ¢ > 0 is the solution of cKze™“° + K5 = ¢, and d = d(~,%) is defined by

d = max K4|’7_'7|1" QCT’(,O—@‘
' 1 — Kyeero’ °f
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Therefore there exists K¢ > 0 such that d(v,%) < Kg|v — J|r, so, combining this with
(4.2.18), we get

z(t) —z()] < LIy =Alr,  te€[-ra’], v€Br(¥;0), (4.2.19)

where L = Kge®®. Note that the Lipschitz-constant L is independent of the selection of
7,7 € P. This concludes the proof of (4.2.8) on [—r,a”].

Hence if v = 7, then (4.2.19) yields that x(t) = Z(t) for t € [0,”]. But then (4.2.15)
and the definition of a” yield that a” = a. This concludes the proof of the uniqueness of
the solution of the IVP (4.2.1)-(4.2.2) on the interval [—r, ] for all v € Br(7; §). This
completes the proof of part (iv) of the theorem.

(iv) For v € P NP the definition of P gives that the function ' defined in (4.2.12) is
continuously differentiable on [0, 7], since @; is continuously differentiable on [—r, —r].
Therefore (4.2.14) implies that z is continuously differentiable on [0, (], and the compat-
ibiliy condition in the definition of P yields ¢(0—) = x(0+), so = is continuously differ-
entiable on [—r,1]. Hence g(t, zy, x(t — p(t, ¢, X)), A) is differentiable wrt ¢ for ¢ € [0, ro],
and therefore on [0, r¢] the IVP (4.2.1)-(4.2.2) is equivalent to

©(t) = Dig(t,zy, x(v(t)), A) + Dag(t, x, x(v(t)), Ny + Dsg(t, x, x(v(t)), A)
xx(v(t)){1 — Dip(t, z¢, X) — Dap(t, e, X))t} + f(t, 2, x(u(t)), 0), (4.2.20)

where v(t) :=t—p(t, x¢, x) and u(t) == t—7(t, 24, €). (Al)-(A4) imply that the right-hand
side of (4.2.20) is continuous in ¢, therefore the definition of P yields that & is continuous
on [—r,7o]. Now the continuity of & follows from (4.2.20) and the definition of P, using
the method of steps with the intervals [irg, (i + 1)ro], = 0,1,2, .. ..

L]

4.3 Differentiability wrt the parameters

In this section we study differentiability of solutions of the IVP (4.2.1)-(4.2.2) wrt the
initial function, ¢, the parameters £, 6, A and y of the functions 7, f, g and p, respectively.

Let the positive constants o and 9, the parameter set P, and the compact and convex
sets My, My and My be defined by Theorem 4.2.2. Let

M; = Bg (5, 5), M, = Bz ({A, 5), Mg = By (X, (5) and My := Bx(X; 9),
(4.3.1)
as in the proof of Theorem 4.2.2.
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First we define a few notations will be used throughout this section. Introduce

ol 80 9r0) = Sl 00) = S0 50.0) = Daft _zz ,_ew %)

for t € [0, T, ¥, € My, 4,u € My, and 0,0 € Ms. Lemma 1.2.4, assumption (A1) (iii)
and the convexity of My, My and Mj yield

|Ldf(t, 7757 ﬂa éa ¢7 u, 0)‘

< OS<13£)1<‘D2f(t,'QE + V(¢ - ,4/;)712_’_ V(u - ﬁ),é—f— V(H - 0_)) - D2f(t’&’u’§)‘L(C,R")
x|t — e
| Daf(t b+ v = )@+ vlu— 0), 04+ v(0 — ) = Dy (1,0, 5,0)|Ju—
+ ‘D4f(t7i]+y(¢ —’g/j),ﬂ—{—l/(u—ﬂ),é—kl/(e—é)) - D4f(tv¢7u79)‘ﬁ(®7Rn)|9_ é|@>

for t € [0,a], ¥,v € My, u, € My and 6,0 € Ms. Then
st 0,,0,6,4,0)] < (l—dle+lu—a|+18-0e ) (Jv—dlo-+u—al+6-0lo ) (4.3.2)
for t € [0,al], ¥, € My, u,u € My and 0,0 € M, where
Qf(g) = SUp{IH&X(‘DQf(t, ¢,U, 0) - DQf(tv &a 77 §)|£(C’,R")a
‘D3f(t7w7u>0)_D3f( b, 1 9_)|
IDuf0,0) — Daf(t, 5,0, o ):

Y —Yle +Ju—al +10 - 0o <e,
t€0,a], ¥, € My, u,ti € My, 6,§eM3}.

Similarly, we define
et 0,€.9,€) 1= T(t,16, ) = (8,95, €) = Dar(t,,E) (¥ — ) — Dar(t,9,€)(€ — §)
for t € [0,0], ¥,9 € My and &, € My. Then Lemma 1.2.4 and (A2) (iii) give that
wr(t, 8, & 0,01 S Qell = dle + 1§ EN(Y - Do+ - &) (43.3)
for t € [0,a], ¥,v € My and &, € My, where
() = sup{max(|Dat, ¥,€) = Dalt, §,€)leicam, | Dalt, ¥,€) —

Dy(t, %,€)lezan )
te [0,0é], %&GMM £€€M47 W WC‘Hf 5 S

}
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We introduce the function

b A ) = gl ) gt ) = Daol o Ao

— Dsg(t, v X)(u @) = Dag(t, s, @, A)(A = A)

for t € [0,a], ¥, € My, u,u € Ms, A\, \ € Mg, and let Ly = Ly(c, My, M5, Mg) be the
Lipschitz constant from (A3) (iv). Then Lemma 1.2.4 yields

jwg(t, 0,0, A, 1, u, A)| < La(_max Jih(Q) = (Q)] + [u—al + A= Ala)*,  (4.3.4)

CE [—T7—T()]

for t € [0,a], ,v € My, u,u € Ms, A\, \ € M.

Let ¥ = (5,£,0,\,¥) € PNP, and x(t) := x(t,7) be the corresponding solution of
the IVP (4.2.1)-(4.2.2) on [—r, a. Note that Theorem 4.2.2 yields that x is continuously
differentiable on [—r, a]. Fix h = (h?,hs, B’ h* hX) € T, and consider the variational
equation
d

E(z(t) = Dag(t, xe, a(t — p(t, 2, X)), Nz — Dag(t, ze, 2(t — p(t, 24, X)), A)
x| (= p(t, 2 0)){ Daplt, 2, %) 2 + Daplts 2, IR} + 2(t = plts 21, X)|
—Daglt, me, 2t — p(t, 20, 7)), )\)hA>
= Dof(t, e a(t — 7(t,20,)),0)z + Daf(t, a0, 2(t — 7(t, 21, €)),0)
x|l = 7(t, 20, ©){ Dar (b, 20, )2 + Dyr(t, 0, O} + 2(t = 7(t, 21, )|

+Dyf(t, z, x(t — 7(t, 24, 8)), 0)R7, t €[0,q] (4.3.5)
z(t) = h¥(t), t e [-r0]. (4.3.6)

This is an inhomogeneous linear time-dependent but state-independent NFDE for z with
continuous coefficients, therefore this IVP has a unique solution, z(t) = z(t, ¥, h), which
depends linearly on h. The boundedness of the map I' — R", h — z(t,7,h) for each
t € [0, a] follows from Theorem 4.3.1 below.

For a fixed t € [0, o] we introduce the linear operator L(t,z): C'x =x © — R™ defined
by
L(ta x)(¢, hi’ he)
= DQf(ta T, {E(t - T(t7 Ty, 5))7 Q_)w + D3f(ta T, 'T(t (t xt» _)) 0_)
—it = 7(t 20, ) { Dar(t, 20, ) + Dar(t, 20, O} + v(=7(t, 31,€))
+D4f(t7xt7x<t - T(t7$t,€)),0_)h0 (437)
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and the linear operator G(t,z): C' x A x X — R" defined by
G(t,z) (v, h*, 1Y)
= Dog(t, o, x(t — p(t, 21, X)), N + Dag(t, 2, x(t = p(t, 24, X)), A)
X [_i’(t = p(t,z, X )){sz(t 24, X)¥ + Dap(t, x4, X)h }+¢( p(t, xt;i))]
+Dyg(t, y, 2(t — p(t, 24, %)), . (4.3.8)

With these notations (4.3.5) can be rewritten as

d
dt
Let Ly = Li(a, My, My, M3) and Ly = Lo(a, My, My) be the Lipschitz constants from
(A1) (ii) and (A2) (ii), respectively. Then (A1) (ii), (A2) (ii) and (4.2.7) yield
|L(t, x)(¢, h*, )|
< Lille + Ly (NLs(lele + 1]2) + ¥l ) + LilA%le

(z(t) — Gt ) (20, B, hX)) = L(t,2)(z, hS, 1), te0,al. (4.3.9)

< N0<|¢|c + Rl + |hf’|@), tel0al, e, hEeE, 1 eo, (4.3.10)

where Ny := L1 (2N Ly + 2).
Let Ly = Ls(a, My, M5, M), Lg = Lg(a, My, M7) be defined by (A3) (ii) and (A4)
(i), respectively. Then we have by (A3) (ii) and (A4) (ii) that

G a)(w, W) < Ny max O]+ Rl + PX]x),  tea),  (4311)

Ce[f =T 0]
for € C, h* € A, hX € X, where Ny := L3(2N Lg + 2).
Theorem 4.3.1 Assume (A1) (i)-(ii1), (A2) (i)-(iii), (A3) (i)-(iv) and (A4) (i)-(iv),
let > 0 and P C II be defined by Theorem 4.2.2. There exists Ny > 0 such that the
solution of the IVP (4.3.5)-(4.3.6) satisfies
|z(t,7v, h)| < No|hlr, tel[-ral, hel, yePNP. (4.3.12)

Moreover, for ¥ € PN'P there exists a monotone increasing function A = A(%) such that
A: ]0,00) — [0,00), A(u) — 0 as u — 0, and

|z(t, 7, h) — z(t, 7, h)| < A(|t —t])|h]|r, t,t € [-r,a], herl. (4.3.13)
Proof (i) Let v € PNP. For simplicity we use the notations h = (h%, h¢, h? h* hX) € T,

x(t) := x(t,y) and z(t) := z(t,y, h). Let §, My, My and M5 be defined by Theorem 4.2.2,
Mjs, My, Mg and M; be defined by (4.3.1), Li,..., Lg be the corresponding Lipschitz
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constants form (A1)—(A4), and let Ny and N; be corresponding constants defined by
(4.3.10) and (4.3.11), respectively. Integrating (4.3.9) from 0 to t we get

|2(t)| < |G(t, ) (2, Y, BX)| 4 |h?(0)] 4 |G(0, z)(h?, h*, hX)| +/0 |L(s,2)(z, h*, h?)| ds

for t € [0, al, and therefore (4.3.10) and (4.3.11) yield

2O < Ny max [2(t+ Q]+ (14 N)IFF o+ 2N (B + 5¥]x)
—7r,—7T0

t
+NO/(|ZS|C Fle + 1Rle) ds,  te[0.al.
0

An application of Lemma 1.2.2 implies
t
u(t) < Niplt = 1) + Kelble + No [ p(s)ds. 1€ oial
0
where p(t) := max{|z(s)| : s € [-r,t]} and K7 := max{Nya,1 + Ny,2N;}. Then

Lemma 1.2.3 yields
2(t)] < pu(t) < Nofhlr, € [0,0],

K
Ny := max {—7 e”} e

where

1 — Nyje—cro '

and c is the positive solution of ¢Nye=° + Ny = ¢. Moreover, (0) < No|h|r yields that
(4.3.12) holds for ¢t € [—r, 0], as well. This concludes the proof of (4.3.12).

(ii) Let ¥ = (¢,£,0,\,x) € PNP, z(t) := z(t,7), h = (¥, k¢, % B} hX) € T,
2(t) :== z(t,7,h), v(t) .=t — p(t, s, X). Let t,t € [0, ], and consider

G(t,x)(z, h, ) — G(t, x)(z, n, hX)
= Dag(t, ze, 2(v(t)), N) 2 — Dag(t, xz, 2(v O) Nz + Dag(t, xg, 2(v(f)), M) (2 — 2)
+ | Daglt.zr,a(v(t), ) = DaglFwr,a(v(D), )|
X)h

x| @UHDw&%,M+Dw@%, }+20)]
4 Dag(F, z7, 2(v (D)), A [ (ac(v x'(v(f))){DQp(t,xt,f()zt + D3p(t,xt,>2)hXH
—Dag(, xr, 2(0(D)), N (v (D) [DQp t,20,X) 2 — Dop(L, 7, X)2 + Dap(t, 27, %) (2 — 2)
R = Daplf, >m}+DwUxm<wa»mk@a»—zw@ﬂ
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Let N be defined by (4.2.7), and the Lipschitz constants Lg = Lg(a, My, M7), Ly =
Lz(a, My, M7) and Lg = Lg(a, My, M;) be defined by (A4) (ii) and (iv), respectively.
Then (A4) (ii) and (4.2.7) yield

(t) =v(@®)] = |p(t,z,X) — p(t, 25 X))
< Le(|t =t + o — zilc)
< Lg(l+N)[t —t, t,t €[0,al, (4.3.15)
and hence
lz(v(t)) —x(v(t))] < NLg(1+ N)|t — ¢, t,t €10,q]. (4.3.16)
Define the function
Qyi(e) = sup{|x'(u) —z(a)]: lu—u|l <e, wu,ué€l-r, a]}. (4.3.17)

Since 7 € P, z is continuously differentiable on [—7,a], hence Q;(¢) — 0 as ¢ — 0.
Therefore (A3) (ii), (iv), (A4) (ii) and (4.2.7) imply for ¢, € [0, o]

|G (t,z) (2, h*, hX) — G(t, z) (25, b, hX))|
< La(jt = 11+ foe = wide + la(0(t) — (@) ) ¢

+Lymax{|z(t +¢) — 2(t + Q)|+ ¢, ¢ € [=r,—ro], [( = (| < Ls|t — 1]}
+Ls max |2(t+C) = 2(t+ )

CE[=r,—r0
L[t = 2+ foe = wile + 2(0() = 2(0(®)]) (NLo(lzle + [1¥]x) + |=(0(1))])
Ly (0(t) = oD Lo(lzle + W¥]x) + LN (L (Jt = 1) + | = wilo)| o
+Lymax{[z(t + ) — 2(t + )+ ,C € [, —ro, [¢ = | < Lt — 11}
+Ls max |z2(t+¢) — z(E+ Q)| + Lo(jt — | + |z — xg|c)|hx|x>

CE€l=r,—7o]
+Lal2(0() = 2(0(®)] + La([t = T+ |y = 2l + [2(0(2) = 2(0(D)]) 1.
(4.3.18)
Let
w(t,e) == max{|z(s) — 2(35)]: 5,5 € [-nrt], |[s—5] <e}, te]0,a], €€]0,00).

Note that w(ty,e1) < w(ty, e9) for 0 < t; <ty < @ and 0 < g1 < &y. Then using (4.2.7),
(4.3.12), (4.3.15), (4.3.16) and the definition of w we get for 0 <t <t < «

G(t, ) (20, B, BX) — G(, ) (27, B, WY
< Ly(L+ N+ NLg(1 + N)Nalt — Alhlr + Law(t — 7o, Lolt — ) + Lyw(t — ro, [t — 1])
+Ly(1+ N+ NLg(1+ N))(NLs(Na + 1) + No)|t — t]|h|r
Lo (Lo(1 + N[t = 71) Le(N + D)|hlr + LaN (Lr(1 + N)Nolt — 7|l
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+Lyw(t — 1o, Lg|t —t]) + Lew(t — 1o, [t — t]) + Lz (1 + N)|t — EthF)
+Law(t — ro, Le(1 + N)|t — t|) + Ly(1 + N + NLg(1 + N))|t — t||A|r
< a(|t —#))|h|r + Knw(t —ro, Kio|t — ), (4.3.19)

where a°(u) := Kgu + Ko (Kou) with appropriate nonnegative constants Kg, Ky, Ko,

KH, and K12 = max{l, L5, Lg, L6(1 + N)}
Integrating (4.3.9) from ¢ to ¢ we get

2(t) — 2(0) = G(t,z)(z, b, hX) — G(L, z) (25, b, hX) 4—/g L(s,x)(z, h*, 1) ds.

Hence (4.3.10), (4.3.12) and (4.3.19) yield for 0 <t <t < «
12(t) — z(®)] < a'(|t —t))|hlr + Knw(t — 7o, Kot — ) (4.3.20)
with a'(u) := a®(u) + No(Ny + 1)u.

Let m := [a/ro] (here [-] denotes the greatest integer part), and t; := jro, j =
0,1,...,m, tyy1 := . First suppose t,t € [to,t1]. Then |h?|p~ < |h?|wre < |h|r and
Lemma 1.2.5 yield

|2(t) = 2(0)| = [P?(8) = 2] < [t = tl|hlr, ¢t € [-r,0].
Therefore (4.3.20) and the definition of w imply for ¢, € [to, 1]
[2(t) — 2()] < a'(Jt = t)Ihlr + Kuw(to, Kioft — #]) < a' (|t — #])]Alr + K Kia|t — €] 2]r.
For —r <t <ty <t < t; the above inequalities yield

|2(t) — 2(2)] |2(t) — 2(to)] + [2(t0) — 2(?)]

a'(t)|h|r + K1 Kyot|h|r + |E]|h|r
a' ([t —t)|h|r + (1 + K11 Ko |t — t||h|r. (4.3.21)

INIAIA

But now it is easy to see that (4.3.21) holds for all —r < ¢ <t < ¢y, and therefore,
w(tl,s) < a1<6)|h|r + (1 -+ K11K12)5|h|r, > 0. (4322)
If t,t € [t1,t5], then (4.3.20) and (4.3.22) yield

|2(t) — 2(2)|

a' ([t —)[hlr + Kuw(t:, Kiolt — 1))
a'(Jt =€) |hlr + Kna' (K|t — )| hle + (KK + K K[t — ]l
(1+ Kin)a® ([t = )|hlr + (KK + K7 K|t — ZWL|F>7

IAINA

IN
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where a?(u) := a'(Kou). But then for —r <t <t; <t <ty we have

|2(t) = 2(t0)] + [2(t1) — 2(2)]
(1

(24 Ki)a*(|t — t)|h|r + (1 + 2K Ky + K3 KL) |t — t||h|H(4.3.23)

Again, it follows that (4.3.23) holds for all ¢, € [—r, ts].
Repeating the previous steps for the intervals [—r, ¢;] for j = 2,...,m+1, we get that

|2(t) = 2(0)] < A([t — #[)[h]r

for t,t € [—r,a] with an appropriate function A satisfying A(s) — 0 as s — 0+, which
proves (4.3.13). ]

We need the following estimates in the proof of the next theorem.

Lemma 4.3.2 Assume (A3) (i)-(iv), (A4) (i)-(iv). Suppose ¥ = (p,&,0,\,x) € PNP,
hi = (he, S, b k), hY) € T is such that 3+ hy, € P for k € N, and |hy|r — 0 as k — oo.
Let z(t) = z(t,7), 28(t) == x(t,5 + hy,), 25(t) == 2(t, 79, ha,), v () ==t — p(t,2F, x + hY)
and v(t) :=t — p(t,x, X). Then there exist a nonnegative constant Ny and a nonnegative
sequence Ay = Ag(, hg) such that Ay — 0 as k — oo, and for k € N

lg(t, 2y, 2" (0" (1)), A+ hy) — g(t, 20, (v (1)), N) — G(t, @) (2, by, b))
< Ag|hi|r + Ny (max |2*(t+¢) —x(t+¢) — 2"t + )], te]0,al(4.3.24)

Proof Let a,M; and M;5 be defined by Theorem 4.2.2, Mg and M; be defined by
(4.3.1), and Ls, ..., L7 be the corresponding Lipschitz constants from (A3)-(A4). Simple
manipulations yield

—Dag(t, x4, x(v(t)), )(952C — x1) + Dag(t, xy, x(v(t), A) (2} — z1 — 2f)

—D3g(t, x, 2(v(t)), A) _iﬂk(vk(t)) - x(v(t))} — Dag(t, xy, x(v(t)), \) by

+D3g(t,xp, 2(0(1)), A) |2 (08 (1)) — 2(v* (1)) - Zk(v’“(t))]

+Dsg(t, 1, 2(0(1)), A) |20 (1)) = 2(v(t)) — 2 (u(t)) (V" (t) — U(t))}

o+ Dag(t, i, 2(v(t)), N(v(6)) [o5(2) = v(t) + Dap(t, 20, X)(2f — ) + Dap(t, 21, X)1}

= Dag(t, a1, 2(0(t)), N (0(0) Dap(t, 21, X) [} — w0 = 2

+Dag(t, 2y, 2(v(t), V) [zk(vk(t)) - zk(m))}, te0,a], kel (4.3.25)
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Using the definition of w,, and applying (A3) (iv), (A4) (ii), (4.2.7), (4.2.8) and (4.3.4)

we have

oyt 20, (0 (1)), A 2, 2 (0 (1), A+ )
< Lijat ——xﬂc-+\kaﬁ<w>——x<v@>n-+|hmA)2
(18 = w4 |2 WF () — 2 D)) + e (0) — D) + hila)
< La(2fe — mle + lirloe o5 (0) — (O] + 111
(
(

<

h

2
< Li((2+NLg) \xt—xt|C+NL6\hX\X+yh*\A)

(2
< Li((2+ NLg L+NL6+1> 2, tel0,a], keN.
Lemma 1.2.4, (A4) (iv) and (4.2.8) imply

[0"(t) = (t) + Dap(t, ze, X) (2t — xe) + Dp(t, e, Xy
[t

< — | max [Dap(t, z; + v(zy — 1), X) — Dap(t, 20, X)|cicmm)
+|h?§<|X 0@3‘2{1 |D3p(t7 T, X + Vh%) - D3p(t7 T, X)|£(X,R")

< Lolag — a3 + Lal %

< Lo(L + 1) |yl tel0,a], keN.

Relations (4.2.8), (4.3.13) and (A4) (ii) yield

[0 () = v(t)]) el

A(
A(Lo(lrf = wile +11)) ol
(

N
ko
—~
c
=
—
~
SN—
SN—
I
I\
-
~~
1
~—~
~
SN—
SN—
AN

IN

< A(Lo(L+Dlhile)bele,  te0.a), kEN.

Relations (A4) (ii), (4.2.8), (4.3.13), (4.3.17) and Lemma 1.2.4 imply

[2(0"(1)) = 2(v(t)) — @ (v(t) (" (t) = v(1))]
< R(E) — o) sup {f(v(t) + v(vt(t) = (1)) — @ (v(t))[}
< Lo(L+ 1)l (Lo(L + 1)|hk|p), te0,a], kel
Combining the above estimates, t — r < v¥(t) < t — rq together with (4.3.25), we get

(4.3.24) with Ay = LyLe(L + 1)y <L6 L+1 ) + LA <L6 L+ 1)|hk|p> 4 Kbl
and with appropriate constants N4 and K;3. ]
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Lemma 4.3.3 Suppose (A1) (i)-(iii), (A2) (i)-(iii), and let 7 = (¢,&,0,\,X) € PN P,
he = (RS, RS, WY, h), hX) € T be such that 5 + hy € P for k € N and |h|p — 0 as k — oo.
Let z(t) := x(t,ﬁ), xk(t) = x(t,y + hg), 25(t) = 2(t,7, hy), u(t) ==t — 7(t,2,€), and
uF(t) == t—7(t, ¥, E4+hS). Then there exist a nonnegative constant N5 and a nonnegative
sequence By = By(7, hx) such that By, — 0 as k — 0o, and

|f(87 xfa wk( k(s))> é + hz> - f(sa Ts, x(u(s)), é) - L(Sa I‘)(Zf, hia hZ)’
< Bilhilr + Ns|o® — 2, — 2F|¢, te0,a], keN. (4.3.26)
Proof Let o, My and M, be defined by Theorem 4.2.2, M3 and M, be defined by (4.3.1),

and L; and Lo be the corresponding Lipschitz constants from (A1) (ii) and (A4) (ii),
respectively. The definitions of wy and w; yield

f (s, b, 2 (uF (), 0+ hY) — f(s, 20, 2(u(s)),0) — L(s, z) (25, b, b))
= wyls,zy 2(u(s)), 0,05, 2" (WH(5)), 0 4+ b) + Daf (s, 0y, 2(u(s)),0) [k — 2, — 2]
+D3f(s, 25 w(u(s)), 5){%"“@’“(8)) — a(uf(s)) — 2" (u*(s))
+a(uh(s)) - 2(u(s)) — d(u(s))(u(s) — uls)) — i(u(s)wr (s, 20, &, %, € + h)
i (u(3)) Da(s, 0, €) [ = 0, — 2] + 2 (u(s) = #(u(s)) }.
Using (4.2.17) we have that

— xle + 2" (WF(s)) — z(u(s))] + Ao
< 2z — z,|o 4+ LoaN(J2% — 2o + |h2) + |h]e
S K14|hk‘p, S € [0,0é], k e N,

EA

where K4 := 2L+ LoN(L + 1) + 1. Hence (4.3.2) implies
wi(s, x5, 2(u(s)), 0, 2%, 2" (u"(5)),0 + )| < Qp(Kualhile) Kuallule, s €[0,0], k € N.
Similarly,
|wr(s, 5, &, 2%, € + 1) < (L4 1)|hglp) (L + 1)| e, se0,a], ke N.
Using (A2) (ii), (4.2.8) we get
W (s) = uls)] = (s, 25, €+ ) = 7(s5,,, )] < Lo (Jak = wulo + Bflz) < La(L + 1)l

and therefore the definition of €2; and (4.3.13) yield

|2(u*(s)) — @ (uls)) — @(ul(s))(u"(s) — uls))] < Qs (Lz(L + 1)|hk\r) Lo(L + 1) | [
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and
25 (5)) = ()] < A(Ju(5) = w(s)]) Il < A(La(L+ Dl )
for s € [0,a] and k € N. Therefore, combining the above estimates we get
[f(s, 2%, 2"(W"(5)), 0 + hg) — f(s,25,2(u(s)),0) = L(s, ) (22, 1, )|
< Qp(Kualhule) Kualhule + Lolat = @, = o + Li{ 2" (04(s)) = o(u*(s)) = 2 (u*(s))|
0 (La(L 4+ Dl ) La(L + 1) el + N (L + Dlhale ) (£ + 1) el
N Lofet — 2 — o + A(La(L+ Dlwle ) el }.
Hence (4.3.26) holds with the sequence
Bi = Qp(Kulhlr) Kua + L (La(L + D) La(L + 1)

+LiNQ-((L + 1)|hi|r)(L 4 1) + Ly A(Lz(L + 1) |hk|r)
and with the constant N5 := Li(2+ NL,). ]

Next we study differentiability of the function z(¢,v) wrt 7. We denote this differen-
tiation by Dsx.

Theorem 4.3.4 Assume (A1) (i)-(iii), (A2) (i)-(iii), (A3) (i)-(iv) and (A4) (i)-(iv),
and let P and o > 0 be defined by Theorem 4.2.2, 7 € PNP, and xz(t;7y) be the solution
of the IVP (4.2.1)-(4.2.2) on [—r,a] for v € Br(7; 6). Then the function z(t,-): I' D
P — R™ is differentiable at 5 for t € [0,q], and

Dox(t,3)h = z(t,7, h), hel, tel0,al,
where z is the solution of the IVP (4.3.5)-(4.3.6).

Proof Let ¥ = (§,£,0,)\,X) € P be fixed, and a,d, M;, M, and Mjs be defined by
Theorem 4.2.2, Mj, My, Mg and M7 be defined by (4.3.1). Let hy = (h{, hi, hY hy, hf) €T
be a sequence such that |hg|r — 0 as k — oco. We may assume that |hx|r < 0, hence
Y+hy € P for k € N. For brevity, we use the notations x(t) := z(¢,5), 2*(t) := x(t, y+hs),
F(t) = 2(t, 7, ), u(t) =t —7(t, x4, E), ub(t) =t — 7(t, 2 E+ B, v(t) ==t — p(t, 24, X)
and v*(t) :=t — p(t, xF, x + h).

Integrating (4.2.1) and (4.3.5) we get for t € [0, o]

2*(1) = g(t.af, 2 (@ ), A+ i) + 9(0) + hE (0)

(0. + hE. G (0) + AL (0)). A + B

N——
+
O\“
=
»

&

o o
8

el
N
ol
N
“%
+
>
EliSaY
~—
Q
»
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Therefore,
() — x(t) — 27 (1)
= g(t,z}, 2" (")), A+ hp) — g(t, z, 2(0(1), A) = G(t,2)(27, by, )

— [9(0.7+ hE. £05(0) + REWH (), A+ 1) = 9(0. 7, 5(—0(0)). A)
—G(OJ)(hf»h?ah?)]
w [ [rabat b 60,0+ 1) = f(ssmu(s)).0) = s, ) (5, ).

Define the function w*(t) := 2*(t) — x(t) — 2(t). Then Lemmas 4.3.2 and 4.3.3 yield for
t €10,

t
|w*(t)] < Cylhlr + Ny CEFlax } lwk(t + )| + N5/ lw¥|c ds, (4.3.27)
—7r,—70 0

where C}, 1= 24, + Bra — 0 as k — oo. Let p*(t) := max{|w®(s)|: —r < s < t}. We
have w*(t) = 0 for ¢t € [—r,0]. Therefore Lemma 1.2.2 implies from (4.3.27) that

t
M@fé@%ﬁ+%ﬁ@ﬂﬂ+%/u%ﬂ&tEMM. (4.3.28)
0
Therefore Lemma 1.2.3 and p*(t) = 0 for t € [—r,0] yield
C
|ah(8) — 2(t) — 2(8)] < ph(t) € ———e|hilr,  t€[0,q], (4.3.29)
1 — Nye—cro

where ¢ is the unique positive solution of ¢Nse~“° 4+ N5 = c. Hence the claim of the
theorem follows, since C), — 0 as k — oo.
The proof of the theorem is complete. []

The proof immediately implies differentiability of the parameter map in the C-norm:
Corollary 4.3.5 Assume the conditions of Theorem 4.3.4. Then the function
I'>P—C, y—=az(,7)
is differentiable at ¥ € PN P fort € |0,«|, and its derivative is given by
Doxy(,7)h = (-, 7, h), hel, tel0,al.

We remark that the proof of Theorem 4.3.1 relies on the compatibility assumption v €
P. To prove the existence of higher order derivatives wrt the parameters we would need to
get rid of this assumption. Also, to extend the quasilinearization method of Chapter 3 to
SD-NFDEs it is necessary to omit the compatibility assumption from the assumptions of
Theorem 4.3.1. We comment that numerical experiments show that the quasilinearization
method works for NFDEs also in cases when the compatibility assumption fails.
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