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ON CLASSES OF FUNCTIONAL DIFFERENTIAL EQUATIONS WITHSTATE-DEPENDENT DELAYSPublication No.Ferenc Hartung, Ph.D.The University of Texas at Dallas, 1995Supervising Professor: Janos TuriIn this dissertation we study a class of nonlinear functional di�erentialequations (FDEs) with state-dependent delays given by_x(t) = f �t; x(t); Z 0�r ds�(s; t; xt) x(t+ s)� ; t � 0; (1)where the term describing the delay dependence is a Stieltjes-integral of thesolution segment x(t+ �) with respect to �(�; t; xt), which is a matrix valuedfunction of bounded variations depending on time, t, and the state of theequation, xt.The main objective of this work is to extend the basic theory of delayequations for the type of FDEs described by (1). We establish well-posednessof the initial value problem corresponding to (1) in the state-space C, andwe discuss other potential state-spaces, namely, W 1;1 and W 1;p. Then weinvestigate di�erentiability of solutions with respect to parameters in thesestate-spaces. We can summarize our �ndings as follows: In special caseswe prove di�erentiability of solutions in the state-space W 1;1, but in orderto obtain di�erentiability under less restrictive assumptions on the class ofequations under consideration we study di�erentiability in a weaker sense,i.e., in the norm j � jW 1;p . In particular, we de�ne a special norm on theset W 1;1, which is weaker than the j � jW 1;1 norm and stronger than thej � jW 1;p norm, and consider W 1;1 equipped with this norm. The resultingnormed linear space is a so-called quasi-Banach space, and using a mod-i�ed version of the Uniform Contraction Principle (which was generalizedfor quasi-Banach spaces by Hale and Ladeira) we obtain di�erentiability ofsolutions wrt parameters in this norm, and therefore in the weaker norm,j � jW 1;p , as well.In the second part of the dissertation we discuss three important issuesof applications. First we obtain stability results for the autonomous versionof (1) using a linearization technique. Then we formulate an Euler's schemefor computing approximate solutions of (1), and present a new proof forconvergence of this method using equations with piecewise constant argu-ments. As an application of this numerical scheme, we discuss the problemof parameter identi�cation for equation (1). In all applications we presentseveral examples to illustrate the theoretical results.IV
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Chapter 1INTRODUCTIONIn the past several decades delay di�erential equations appeared in an increasing number ofsystem models in biology, engineering, physics, etc. In most of these applications it is assumedthat the delay (discrete or distributed) is either constant or at most time-dependent. (See e.g.[40] for a discussion on the importance of delays, especially distributed delays in biologicalmodels.) However, in recent years there are several proposed models in which it is assumedthat the delay depends not only on time, but on the state as well (see e.g. [1], [6], [18], [20]and [45]).Motivated by these developments, in this paper we study a general nonlinear distributedstate-dependent delay equation of the form_x(t) = f�t; x(t);�(t; xt)�; t 2 [0; T ]; (1:1)where the term �, describing the delay dependencies, has the form�(t; xt) � Z 0�r ds�(s; t; xt) x(t+ s): (1:2)Here r is a positive constant, x(�) 2 Rn, xt denotes the segment xt(s) � x(t+ s) for s 2 [�r; 0].�(�; t;  ) is an n � n matrix valued function of bounded variation on [�r; 0] for all t 2 [0; T ], 2 C � C([�r; 0]; Rn), and the integral is the Stieltjes-integral of x(t + �) with respect to�(�; t; xt).The main goal of this work is to extend the basic theory of delay di�erential equations forthe class of delay equations with distributed state-dependent delays described by (1.1)-(1.2).Note that representation (1.2), describing the dependence on the past, is natural for lineardelay equations of the form _x(t) = Lxt, where L is a bounded linear operator on C (see e.g.[31]). In Example 1.1 and 1.2 we show the construction of � for the constant and time-varyingdelay cases. Example 1.3 and 1.4 show that we can use representation (1.2) to describe delayedarguments for equations including pointwise and distributed state-dependent delays as well.These examples illustrate that equations (1.1) and (1.2) describe a large class of delay systemsimportant in applications.Example 1.1 Consider the linear system with constant delays_x(t) = A0x(t) + mXk=1Akx(t� �k); (1:3)where Ak (k = 0; 1; : : : ; m) are constant n � n matrices, �k (k = 1; 2; : : : ; m) are positiveconstants. 1



2De�ne r � maxf�1; : : : ; �mg, and�(s) � mXk=1Ak�[��k ;0](s) for s 2 [�r; 0];where �[��k;0](s) is the characteristic function of the interval [��k; 0]. It is easy to see that thetotal variation of � satis�es that Var[�r;0][�] �Pmk=1 kAkk, and therefore � is of bounded variationon [�r; 0]. With this � equation (1.3) is equivalent to_x(t) = A0x(t) + Z 0�r d�(s)x(t+ s);therefore (1.3) has the form (1.1)-(1.2) with �(s; t;  ) = �(s), and f(t; x; y) = A0x+ y.Example 1.2 Consider the time-varying linear delay system_x(t) = A0(t)x(t) + mXk=1Ak(t)x(t� �k(t)) + Z 0��0 G(s; t)x(t+ s) ds; t 2 [0; T ]; (1:4)where Ak(t) (k = 0; 1; : : : ; m) are n � n matrices, �k(t) � 0 (k = 1; 2; : : : ; m) are boundedfunctions, and G : [��0; 0]� [0; T ]! Rn�n.De�ne r � maxn�0; supf�k(t) : t 2 [0; T ]; k = 1; : : : ; mgo, and, for t 2 [0; T ],�(s; t) � mXk=1Ak(t)�[��k(t);0](s) + ~�(s; t); s 2 [�r; 0];where ~�(s; t) � ( 0; s 2 [�r;��0];R s��0 G(u; t) du; s 2 (��0; 0]:Clearly, for all t 2 [0; T ] the function �(�; t) is of bounded variation, and (1.4) is equivalent to_x(t) = A0(t)x(t) + Z 0�r ds�(s; t)x(t+ s); t 2 [0; T ];and therefore (1.4) has the form (1.1)-(1.2) with f(t; x; y) = A0(t)x+ y.Example 1.3 Consider the delay system with a point state-dependent delay term_x(t) = f�t; x(t); x(t� �(t; xt))�; t 2 [0; T ]; (1:5)where f : [0; T ]� 
1 � 
2 ! Rn, (where 
1 and 
2 are open subsets of Rn), � : [0; T ] �
3 ! R+ (where 
3 is an open subset of C) is a bounded function, and r > 0 is such thatr � supf�(t;  ) : t 2 [0; T ];  2 
3g.De�ne �(s; t;  ) � �[��(t; );0](s)I; s 2 [�r; 0];where I 2 Rn�n is the identity matrix. It is easy to see that Var[�r;0][�(�; t;  )] = 1 for all t 2 [0; T ]and  2 
3, so �(�; t;  ) is of bounded variation for all t 2 [0; T ],  2 
3, and (1.5) has theform (1.1)-(1.2).



3Example 1.4 Consider the system with discrete and distributed state-dependent delays_x(t) = A0(t)x(t) + mXk=1Ak(t)x(t� �k(t; xt)) + Z 0��0 G(s; t; xt)x(t+ s) ds; t 2 [0; T ]; (1:6)where Ak(t) (k = 0; 1; : : : ; m) are n � n matrices, �k : [0; T ] � 
3 ! R+ are bounded,nonnegative functions for k = 1; 2; : : : ; m, and G [��0; 0]� [0; T ]� 
3 ! Rn�n, where 
3 isan open subset of Rn. We assume that r > 0 is such that r � maxn�0; supf�k(t;  ) : t 2[0; T ];  2 
3; k = 1; : : : ; mgo.Similarly to Example 1.2 we get the following representation of the delay equation. Fort � 0,  2 
3 de�ne�(s; t;  ) � mXk=1Ak(t)�[��k(t; );0](s) + ~�(s; t;  ); s 2 [�r; 0];with ~�(s; t;  ) � ( 0; s 2 [�r;��0];R s��0 G(u; t;  ) du; s 2 (��0; 0]:Then it is easy to see that �(�; t;  ) is of bounded variation for all t 2 [0; T ] and  2 
3, and(1.6) can be rewritten as (1.1)-(1.2) with f(t; x; y) = A0(t)x+ y.The remaining part of this dissertation is organized as follows:In Chapter 2 we introduce some basic notations and de�nitions used throughout this paper,and recall some results for future reference.In Chapter 3 we study well-posedness of the initial value problem corresponding to (1.1)-(1.2). In Sections 3.1{3.3 we present conditions implying existence, uniqueness and continuousdependence of solutions on parameters. In Section 3.4 we discuss other potential state-spaces,W 1;1 and W 1;p.Chapter 4 contains the main results of this work, here we investigate di�erentiability ofsolutions with respect to parameters. This issue has not been discussed yet for delay equationswith state-dependent delays in the literature, not even for the point delay case. By applying anextension of the Uniform Contraction Principle developed by Hale and Ladeira in [33], we areable to show di�erentiability of solutions with respect to parameters in the state-space W 1;p.We consider three cases: di�erentiability with respect to initial functions, a (vector) parameterin the delay term (�), and a (vector) parameter in the equation (f).In Chapters 5, 6 and 7 we address some basic issues of applications. In Chapter 5 weinvestigate stability of solutions by linearization technique.In Chapter 6 we present a simple numerical scheme to approximate solutions of (1.1)-(1.2).In Chapter 7 we apply the numerical scheme de�ned in Chapter 6 for parameter identi�-cation.Finally, in Chapter 8 we brie
y discuss the well-posedness of (1.1)-(1.2) in Lp-spaces.



Chapter 2NOTATIONS, PRELIMINARIESIn this chapter we introduce some basic notations, de�nitions of function spaces and normswe shall use in the sequel, and recall some results for future references.2.1 Function spaces and normsWe denote the set of real numbers, nonnegative real numbers and positive integers by R, R+and N, respectively.Throughout this paper j � j and k � k denote a norm on Rn and the corresponding matrixnorm on Rn�n, respectively. (The constant n is �xed throughout this paper.) In the case whenwe use dimension di�erent from n, we shall use the notation j � jRm for the norm in Rm.The notation f : �A � X�! Y will be used to denote that the function maps the subsetA of the normed linear space X to Y . This notation emphasizes that the topology on A isde�ned by the norm of X .We denote the open ball around a point x0 with radius R in a normed linear space (X; j � jX)by GX(x0; R), i.e., GX(x0; R) � fx 2 X : jx�x0jX < Rg, and the corresponding closed ball byGX(x0; R). If the ball is centered at the origin, we use simply GX(R) and GX(R), respectively.We shall use the following standard function spaces and norms:C�[a; b]; Rn� is the Banach-space of continuous functions  : [a; b] ! Rn with the normj jC([a;b];Rn) � supfj (t)j : t 2 [a; b]g.Lp([a; b]; Rn) (1 � p < 1) is the Banach space of measurable functions  : [a; b] ! Rnsuch that R ba j (u)jp du <1, with the norm j jLp([a;b];Rn) � �R ba j (u)jpdu�1=p.L1([a; b]; Rn) is the Banach space of essentially bounded measurable functions  : [a; b]!Rn with the norm j jL1([a;b];Rn) � ess supa�u�b j (u)j.BC�[0; T ]�
1�
2; Rn� is the Banach-space of bounded continuous functions f : [0; T ]�
1 � 
2 ! Rn (where 
1;
2 � Rn) with norm kfk � supfjf(t; x; y)j : t 2 [0; T ]; x 2 
1; y 2
2g.W 1;p([a; b]; Rn) (1 � p � 1) denotes the Sobolev-space of order 1 of functions  : [a; b]!Rn, where  and its generalized derivative belong to Lp([a; b]; Rn). It is well-known thatW 1;p([a; b]; Rn) is a Banach-spaces with normj jW 1;p([a;b];Rn) �  Z ba j (s)jp+ j _ (s)jp ds!1=p ; 1 � p <1; (2:1)4



5and j jW 1;1([a;b];Rn) � max(ess supa�s�b j (s)j; ess supa�s�b j _ (s)j) ; p =1; (2:2)respectively.Remark 2.1 Let  2 W 1;p([a; b]; Rn) (1 � p � 1). It is known (see e.g. [36]) that  isa.e. equal to an absolutely continuous function, � . By the notation  (s) we mean � (s), thefunction value of the continuous representation of the Lp-function  , i.e., point evaluation offunctions in W 1;p([a; b]; Rn) is well-de�ned.Remark 2.2 It is known (see e.g. [36]), that for an absolutely continuous function,  , thegeneralized derivative is a.e. equal to the classical derivative. Therefore in (2.1), (2.2), andlater, _ ,  0 or @ @s denote the classical derivative of  .The following lemma is the Mean Value Theorem for W 1;1([a; b]; Rn) functions.Lemma 2.3 Let  2 W 1;1([a; b]; Rn)\ C([a; b]; Rn), and [c; d]� [a; b]. Thenj (d)�  (c)j � j _ jL1([a;b];Rn)(d� c):Proof Since by the assumptions and Remark 2.1  is absolutely continuous, it follows thatj (d)�  (c)j = �����Z dc _ (u) du������ Z dc j _ (u)j du� j _ jL1([a;b];Rn)(d� c);which proves the statement.Remarks 2.1, 2.2 and Lemma 2.3 yield the following characterization of W 1;1([a; b]; Rn).Lemma 2.4 The following statements are equivalent(i)  2W 1;1([a; b]; Rn),(ii)  is equivalent (i.e., a.e. equal) to a Lipschitz-continuous function.The constant r > 0 is �xed throughout this dissertation.To keep the notation simple, the spaces C([�r; 0]; Rn), Lp([�r; 0]; Rn), W 1;p([�r; 0]; Rn)and the corresponding norms will be denoted by C, Lp, W 1;p and j � jC , j � jLp and j � jW 1;p ,respectively. Similarly, the spaces C([�r; �]; Rn), Lp([�r; �]; Rn), W 1;p([�r; �]; Rn) and thecorresponding norms will be denoted by C�, Lp�,W 1;p� and j � jC� , j � jLp� and j � jW 1;p� , respectively.NBV � NBV �[�r; 0]; Rn�n� denotes the set of functions � : [�r; 0]! Rn�n which are ofbounded variation, and normalized such that �(s) is right-continuous at each s 2 (�r; 0) and



6�(�r) = 0. The space is a Banach-space with norm k�kNBV � Var[�r;0][�(s)] (the total variationof � over [�r; 0], de�ned as Var[�r;0][�(s)] = supnPmk=1 k�(si)� �(si�1)ko, where the supremum istaken for all possible �nite partition �r � s0 < s1 < : : : < sm � 0 of [�r; 0]).Let 
3 be an open subset of C, and T > 0 or T =1. In the latter case [0; T ] denotes theinterval [0;1). Then de�ne �(T;
3) as the set of functions � : [0; T ]�
3 ! NBV such thatsup�����Z 0�r ds�(s; t;  )�(s)���� : t 2 [0; T ];  2 
3; � 2 GC(1)� <1;where �(�; t;  ) is the image function corresponding to t 2 [0; T ] and  2 C, and the integralR 0�r ds�(s; t;  )�(s) denotes the Stieltjes-integral of the continuous function � over [�r; 0] withrespect to �(�; t;  ). Then, clearly, �(T;
3) is a normed linear space with the normk�k � sup�����Z 0�r ds�(s; t;  )�(s)���� : t 2 [0; T ];  2 
3; � 2 GC(1)� : (2:3)We comment, that according to the inequality����Z 0�r ds�(s; t;  )�(s)���� � k�(�; t;  )kNBVj�jC ; (2:4)we have that for each �xed t 2 [0; T ] and  2 
3 the mapC ! Rn; � 7! Z 0�r ds�(s; t;  )�(s)is a bounded linear functional. The Riesz-representation theorem (see e.g. [47]) implies thatthe opposite result is also true, i.e., to an arbitrary bounded linear functional, A, on C therecorresponds a unique � 2 NBV such that A� = R 0�r d�(s)�(s), and kAk = k�kNBV. From thisresult, and from the equalitysupt2[0;T ]; 2
3 ; �2GC(1) ����Z 0�r ds�(s; t;  )�(s)����= supt2[0;T ]; 2
3 sup�2GC(1) ����Z 0�r ds�(s; t;  )�(s)���� ;we have the following remark.Remark 2.5 The normed linear space �(T;
3) is isometrically isomorphic to the space ofbounded functions from [0; T ]� 
3 to C� (the dual space of C), i.e.,�(T;
3) ' B�[0; T ]� 
3;C��;and k�k = supnk�(�; t;  )kNBV : t 2 [0; T ];  2 
3o:We shall frequently use the following estimate, which easily follows from the de�nition ofk�k: ����Z 0�r ds�(s; t;  )�(s)���� � k�kj�jC; for t 2 [0; T ];  2 
3; � 2 C: (2:5)



7We introduce �C(T;
3), which is the subspace of �(T;
3) consisting of functions � 2�(T;
3) such that for all � 2 C the function[0; T ]� 
3 ! Rn; (t;  ) 7! Z 0�r ds�(s; t;  )�(s)is continuous. This set is, by the next lemma, a closed subspace of �(T;
3) in the k � k�(T;
3)norm.Lemma 2.6 �C(T;
3) is a closed subspace of �(T;
3) in the k � k�(T;
3) norm.Proof Let �k 2 �C(T;
3) such that k�k � ��k ! 0 as k ! 1, and �� 2 �(T;
3). Fix�; � 2 
3, �t 2 [0; T ], and let " > 0. Then by elementary manipulations and estimate (2.5) wehave for  2 C and t 2 [0; T ] that���Z 0�r ds��(s; t;  )�(s)� Z 0�r ds��(s; �t; � )�(s)���� ���Z 0�r dsh��(s; t;  )� �k(s; t;  )i�(s)���+ ���Z 0�r dsh�k(s; t;  )� �k(s; �t; � )i�(s)���+ ���Z 0�r dsh��(s; �t; � )� �k(s; �t; � )i�(s)���� 2k��� �kkj�jC + ���Z 0�r dsh�k(s; t;  )� �k(s; �t; � )i�(s)���: (2.6)The �rst term on the right hand side of (2.6) is less than "=2 for large enough k because�k ! ��. For such a �xed k the second term is less than "=2 if j � � jC + jt � �tj is small,because �k 2 �C(T;
3), and therefore we have proved the statement of the lemma.Remark 2.5 and the de�nition of �C(T;
3) yield the next remark immediately.Remark 2.7 The normed linear space �C(T;
3) is isometrically isomorphic to the space ofbounded continuous maps from [0; T ]�
3 to C�, where C� is equipped with the weak* topology,i.e., �C(T;
3) ' BCw�([0; T ]� 
3; C�):We introduce the functions � and � de�ned by� : [0; T ]� 
3 � C ! Rn; �(t;  ; �)� Z 0�r ds�(s; t;  )�(s); (2:7)and � : [0; T ]� 
3 ! Rn; �(t;  ) � �(t;  ;  ) = Z 0�r ds�(s; t;  ) (s); (2:8)respectively.If we need to emphasize that the functions � and � correspond to a given �, then we shalluse the notations ��(t;  ; �) and ��(t;  ), respectively.



8Lemma 2.8 Assume that � 2 �C(T;
3). Then the function �(�; �) de�ned by (2.8) is contin-uous on [0; T ]� 
3.Proof Fix �t 2 [0; T ] and � 2 
3. Then by applying (2.5) we have for t 2 [0; T ] and  2 
3that���(t;  )� �(�t; � )�� = ����Z 0�r ds�(s; t;  ) (s)� Z 0�r ds�(s; �t; � ) � (s)����� ����Z 0�rdsh�(s; t;  )� �(s; �t; � )i � (s)����+ ����Z 0�rds�(s; t;  )h (s)� � (s)i����� ����Z 0�r dsh�(s; t;  )� �(s; �t; � )i � (s)����+ k�kj � � jC :In the last inequality the �rst term goes to 0 by the de�nition of �C(T;
3), as t ! �t and ! � , and so does the second term.De�ne BC([0; T ] � 
3 ; NBV) as the linear space of bounded continuous functions from[0; T ]�
3 to NBV with the norm k�kBC([0;T ]�
3 ; NBV) = supfk�(�; t;  )kNBV : t 2 [0; T ];  2
3g.Lemma 2.9 Let 
3 � C and T > 0. Then BC([0; T ]� 
3 ; NBV) � �C(T;
3).Proof The inclusion follows immediately from the inequality���Z 0�r dsh�(s; t;  )� �(s; �t; � )i�(s)��� � k�(�; t;  )� �(�; �t; � )kNBVj�jC :2.2 Some integral inequalities and results on di�erentiabilityThe following notations will be used extensively throughout this paper.Let ' 2 C. De�ne the extension ~' of ' to [�r;1) as~'(t) � ( '(t); t 2 [�r; 0]'(0); t � 0: (2:9)Clearly, the de�nition of ~' implies the inequalitysup�r�u�t j ~'(u)j � j'jC ; t � �r: (2:10)For � > 0 and � > 0 and y 2 GC�(�) and ' 2 C de�ne!y(h; �) � supfjy(t1)� y(t2)j : t1; t2 2 [�r; �]; jt1 � t2j � hg;! ~'(h) � supfj ~'(t1)� ~'(t2)j : t1; t2 2 [�r;1); jt1 � t2j � hg;!'(h) � supfj'(t1)� '(t2)j : t1; t2 2 [�r; 0]; jt1 � t2j � hg:Note that each function is nonnegative, and monotone increasing in h.



9By the de�nition of ~'(�) it follows thatj ~'(t1)� ~'(t2)j = 8><>: j'(t1)� '(t2)j; t1; t2 � 0j'(t1)� '(0)j; t1 � 0 � t20; t1; t2 � 0;hence we have that ! ~'(h) = !'(h): (2:11)Let x : [�r; �] ! Rn be a continuous function. For t 2 [0; �] the segment function xt :[�r; 0]! Rn is de�ned as xt(s) � x(t+ s).The following two results discuss the continuity of the map t 7! xt in di�erent spaces.Lemma 2.10 (see e.g. in [31]) If x 2 C�, then the function [0; �]! C, t 7! xt is continu-ous.Lemma 2.11 (see e.g. in [25]) If x 2 Lp�, then the function [0; �]! Lp, t 7! xt is continu-ous.Lemma 2.12 Let x : [�r; �]! Rn be a di�erentiable function. Then the segment functionxt(�) is di�erentiable on [�r; 0], andddsxt(s) = ( _x)t(s); s 2 [�r; 0]; t 2 [0; �]:Proof The result follows from the elementary relationsddsxt(s) = ddsx(t+ s) = _x(t+ s) = ( _x)t(s):Next we present two results for integral inequalities. The �st lemma is the famous Gronwall-Bellman inequality.Lemma 2.13 (see e.g. in [19]) Let c � 0 be a constant, f : [a; b]! R+ be a nonnegativecontinuous function, and x : [a; b]! R+ be a continuous function satisfyingx(t) � c+ Z ta f(s)x(s) ds; t 2 [a; b]:Then x satis�es x(t) � c exp�Z ta f(s) ds� ; t 2 [a; b]:The following simple integral inequality will be used several times in our proofs later.



10Lemma 2.14 Let f : [0; �]! R+, and g : [0; �]� [a; b]! R+ be continuous functions, suchthat f is nondecreasing on [0; �], and g(t; u) is nonnegative on [0; �]� [a; b], and nondecreasingfor u 2 [a; b] for all �xed t 2 [0; �], and let x : [�r; �]! R be a continuous function satisfyingthe inequality jx(t)j � f(t) + Z t0 g(s; jxsjC) ds; t 2 [0; �]:Assume that jx0jC � f(0), then the function y(t) � max�r�u�t jx(u)j (or the function y(t) �jxtjC) satis�es the same inequality, i.e.,y(t) � f(t) + Z t0 g(s; y(s)) ds; t 2 [0; �]:Proof Let t � �t. Then from the relation jxsjC � y(s) and the assumed monotonicityproperties we get jx(t)j � f(t) + Z ta g(s; jxsjC) ds� f(t) + Z ta g(s; y(s)) ds� f(�t) + Z �ta g(s; y(s)) ds:Since this is true for all t � �t, by taking the maximum of the left-hand-side of the inequalityfor t 2 [0; �t] and using that jx0j � f(0) � f(t) for all t � 0 we prove the statement of thelemma.Finally, we recall some results for later reference concerning di�erentiability of functions.Note, that in this paper all the derivatives we use are Frech�et-derivatives.Lemma 2.15 (Chain Rule, see e.g. in [43]) Let X, Y and Z be Banach-spaces, F : U !Y and G : V ! Z, where U and V are open subsets of X and Y , respectively. Then if F isdi�erentiable at u 2 U , and G is di�erentiable at v � F (u) 2 V , then G � F is di�erentiableat u, and (G � F )0(u) = G0(F (u))F 0(u).Lemma 2.16 (see e.g. in [43]) Suppose that X and Y are Banach-spaces, and Q is an opensubset of X, and F : Q! Y is di�erentiable. Let x; y 2 Q and y+�(x�y) 2 Q for � 2 [0; 1].Then jF (y)� F (x)� F 0(x)(y � x)jY � jx� yjX sup0<�<1 kF 0(y + �(x� y))� F 0(x)kL(X;Y )Lemma 2.17 (see e.g. in [16]) Let X; Y and Z be Banach-spaces, and let Q be an open setin X � Y , and let F (x; y) be a continuous function from Q into Z. Then in order that F becontinuously di�erentiable in Q, a necessary and su�cient condition is that F be continuouslydi�erentiable wrt x and y on Q, and then the derivative satis�esF 0(�x; �y)(x; y) = @F@x (�x; �y)x+ @F@y (�x; �y)y:



112.3 Linear delay equations and semigroupsConsider a linear delay equation with constant delays of the form:_x(t) = Lxt; t � 0; (2:12)where L : C ! Rn is a bounded linear operator. It is well-known (e.g. [31]), that (2.12) hasa unique solution, x(t;'), corresponding to any initial function ' 2 C, de�ned on t 2 [�r;1).Moreover (see e.g. [31]), the family of linear operators, fS(t)gt�0, given byS(t)' � x(�;')t; t � 0de�nes a strongly continuous semigroup on C.Let de�ne !0 � supnRe� : det(�I � Le��) = 0o;i.e., !0 is the supremum of the real part of the characteristic roots of (2.12). We shall needthe following lemma:Lemma 2.18 (see e.g. in [31]) If !0 < 0, then for any !0 < ! < 0 there exists M =M(!) � 1 such that kS(t)k �Me!t; t � 0:Consider the perturbed equation_x(t) = Lxt + f(t); t � 0; (2:13)where f 2 L1loc([0;1);Rn). Then (2.13) has a unique solution on [0;1) for all ' 2 C, and thesolution, x(t) satis�es the following abstract variation of constant formula:Lemma 2.19 (see e.g. [30]) The solution, x(t), of (2.13), corresponding to an initial func-tion ' 2 C has the form: xt = S(t)'+ Z t0 S(t� s)X0f(s) ds;where X0 : [�r; 0]! Rn�n; X0(u) � ( 0; u < 0;I; u = 0: (2:14)We shall need the following variation of Lemma 2.19.Lemma 2.20 The solution, x(t), of (2.13) satis�esxt = S(t� r)xr + Z t�r0 S(t� r � s)X0f(s+ r) ds; t � r;where X0 is de�ned by (2.14).



12Proof By applying Lemma 2.19, semigroup properties of S(t), and change of variables weget xt = S(t)'+ Z t0 S(t� s)X0f(s) ds= S(t� r)S(r)'+ S(t� r) Z r0 S(r� s)X0f(s) ds+ Z tr S(t� s)X0f(s) ds= S(t� r)xr + Z t�r0 S(t� r � s)X0f(s+ r) ds;which proves the lemma.2.4 Fixed point theoremsFirst we recall the Schauder �xed point theorem.Theorem 2.21 (see e.g. in [43]) Let U be a closed, convex and bounded subset of a Banach-space X, and f : U ! U be a completely continuous map. Then the map f has a �xed pointin U .Let Y and Z be Banach-spaces, a map S : Y � Z ! Y is called uniform contraction, ifthere exists 0 � � < 1 such that jS(y; z)� S(�y; z)jY � �jy � �yjY for all y; �y 2 Y and z 2 Z.The following theorem holdsTheorem 2.22 (Uniform Contraction Principle, see e.g. in [33]) Let U and V be opensets in the Banach spaces Y and Z, respectively, and let �U be the closure of U , and S : �U�V !�U a uniform contraction on �U . Then for all z 2 V the map S(�; z) has a unique �xed pointg(z). Moreover, if S 2 Ck( �U � V; Y ), 0 � k <1, then g 2 Ck(V; Y ).In [33], Hale and Ladeira proved a generalization of this theorem to quasi-Banach spaces.Let Y be a linear space with two norms: j � j and k � k. We say that (Y; j � j) is a quasi-Banachspace with respect to the norm k � k, if for all R > 0, �G(Y;k�k)(R); j � j� is a complete metricspace, i.e., all the closed balls of Y at the origin corresponding to the k � k norm are completesets in the j � j norm. We consider Y with the topology de�ned by the norm j � j, i.e., byopen, closed sets in Y we mean open, closed sets of Y in the norm j � j. Introduce ~L(Y ), thequasi-Banach space of linear operators S : Y ! Y which are bounded in both j � j and k � knorms. (See [33].)The following generalization of the Uniform Contraction Principle holds for quasi-Banachspaces:Theorem 2.23 (see in [33]) Let Z be a normed space, (Y; j � j) is a quasi-Banach space withrespect to the norm k � k. Let U � Y be open, and V � Z be open, and assume that S :�U � V ! �U satis�es



13(i) S is a uniform j � j and k � k contraction, i.e., there exists 0 � � < 1 such thatjS(y; z)� S(�y; z)j � �jy � �yj; for y; �y 2 �U; z 2 V;and kS(y; z)� S(�y; z)k � �ky � �yk; for y; �y 2 �U; z 2 V:(ii) For each � > 0 there exists R > 0 such thatS�(G(Y;k�k)(R)\ �U)� GZ(�)� � (G(Y;k�k)(R)\ �U):(iii) S 2 Ck( �U � V ) for some k � 1.Then for each z 2 V , there exist a unique �xed point g(z) of S(�; z) in �U , and the map g is inCk(V; Y ).



Chapter 3WELL-POSEDNESS IN CIn this chapter we study the the nonlinear state-dependent delay system_x(t) = f �t; x(t); Z 0�r ds�(s; t; xt) x(t+ s)� ; t 2 [0; T ]; (3:1)where: r > 0, T > 0 or T =1 (in the latter case [0; T ] denotes [0;1)),
1;
2 are open subsets of Rn, 
3 is an open subset of C,f : [0; T ]� 
1 � 
2 ! Rn,�(�; t;  ) 2 NBV for all t 2 [0; T ],  2 
3,xt : [�r; 0]! Rn; xt(s) � x(t + s) for s 2 [�r; 0].In order to evaluate x(t), xt and x(t+ s) in (3.1) at t = 0 we need an initial condition forx(�) on [�r; 0], i.e., x(t) = '(t); t 2 [�r; 0]: (3:2)Using the simplying notation introduced by (2.8), equation (3.1) can be written as_x(t) = f�t; x(t);�(t; xt)�; t 2 [0; T ]: (3:3)Throughout this paper we shall assume that the initial time of the equation is at t = 0,i.e., the solution starts at t = 0. An IVP of the form_�x(t) = �f�t; �x(t); Z 0�r ds��(s; t; �xt) �x(t+ s)�; t 2 [�; � + T ]; (3.4)�x(t) = �'(t); t 2 [� � r; �] (3.5)where: r > 0 , T > 0 (or T =1), � 2 R,�f : [�; �+ T ]� 
1 � 
2 ! Rn,��(�; t;  ) 2 NBV for all t 2 [�; � + T ],  2 
3can be rewritten in the form (3.1)-(3.2) using the transformationsf(t; x; y) = �f(t+�; x; y); �(s; t;  ) = ��(s; t+�;  ); '(t) = �'(t+�) and x(t) = �x(t+�): (3:6)We comment, that if the dependence on the initial time � is relevant (e.g., we study thedependence of the solution on the initial time, or the actual initial time is not known, and theproblem is to identify the initial time), we may explicitly keep � in the equation as a parameter,and consider an equation of the form_x(t) = f�t; x(t);�(t; xt); ��; t 2 [0; T ];14



15where f : [0; T ]� 
1 � 
2 � [�0; �1]! Rn.Note, that in (3.4)-(3.5) the functions �', �� and �f are de�ned on a set which depends on� which is also a parameter in the equation, but in IVP (3.1)-(3.2) the parameters belong to�xed spaces.In Section 3.1 we give conditions, under which IVP (3.1)-(3.2) has a solution on an in-terval [0; �] � [0; T ], and study continuability of solutions. In Section 3.2 we investigate theuniqueness of solutions, and in Section 3.3 we show that solutions depend continuously (inappropriate norms) on the parameters of the IVP, i.e., on ', � and f . In Section 3.4 we studystate-space candidates, e.g., W 1;1 and W 1;p, and argue why W 1;p is the best choice in thestate-dependent case as the state-space of the solutions. In Section 3.5 we give some remarkshow the results can be extended for more general cases.3.1 Existence of solutionsIn this section we show that the hypotheses(A1) f 2 BC�[0; T ]� 
1 � 
2; Rn�,(A2) � 2 �C(T;
3),(A3) ' 2 Care su�cient for local existence of a solution of IVP (3.1)-(3.2).We say that a function x(�) : [�r; T ]! Rn is a solution of IVP (3.1)-(3.2), if it is continuouson [�r; T ], satis�es initial condition (3.2), di�erentiable on [0; T ], and satis�es (3.1). If we wantto emphasize that the solution of IVP (3.1)-(3.2) corresponds to the parameter 
 � ('; �; f),we use the notation x(t; 
).First we show that the functions, �, in Examples 1.1{1.4 satisfy assumption (A2) undernatural assumptions on the original equations.Example 3.1 Clearly �(s) in Example 1.1 satis�es (A2), because it is independent of t and .Example 3.2 In Example 1.2 � depends only on s and t, and it is easy to see that �(�; t)satis�es Z 0�r ds�(s; t)�(s) = mXk=1Ak(t)�(��k(t)) + Z 0��0 G(s; t)�(s) ds:and for � 2 GC(1) we have����Z 0�r ds�(s; t)�(s)���� � mXk=1 kAk(t)k+ Z 0��0 kG(s; t)k ds: (3:7)Clearly, � is in �C(T;
3), if we assume that:(i) each Ak(t) and �k(t) are continuous on [0; T ], (k = 1; : : : ; m),



16(ii) the function G satis�es a Lipschitz-condition of the form kG(s; t)�G(s; �t)k � g(s)jt� �tj,where g 2 L1([��0; 0];R).If T =1, to obtain boundedness of (3.7), we also need that:(iii) Ak(t) be bounded on [0;1), (k = 1; : : : ; m),(iv) kG(s; t)k � g0(s) for t 2 [0;1) where g0 2 L1([��0; 0];R).Example 3.3 The function �(�; t;  ) in Example 1.3 satis�esZ 0�r ds�(s; t;  )�(s) = �(��(t;  ));for arbitrary t 2 [0; T ] and  2 
3, and hence for � 2 GC(1) we have����Z 0�r ds�(s; t;  )�(s)����� 1:Therefore (A2) is satis�ed if �(t;  ) is continuous in t and  .Example 3.4 In Example 1.4 we have thatZ 0�r ds�(s; t;  )�(s) = mXk=1Ak(t)�(��k(t;  )) + Z 0��0 G(s; t;  )�(s)ds;and therefore for � 2 GC(1) it follows that����Z 0�r ds�(s; t;  )�(s)����� mXk=1 kAk(t)k+ Z 0��0 kG(s; t;  )k ds:Similarly to that in Example 1.2, the following assumptions imply (A2):(i) each Ak(t) and �k(t;  ) are continuous on [0; T ] and [0; T ]� 
3, (k = 1; : : : ; m), respec-tively,(ii) the function G satis�es a Lipschitz-condition of the formkG(s; t;  )�G(s; �t; � )k � g(s)�jt� �tj+ j � � jC�; (3:8)for s 2 [��0; 0], t; �t 2 [0; T ], and  ; � 2 
3, where g 2 L1([��0; 0]; R),and for the case T =1,(iii) Ak(t) is bounded on [0;1), (k = 1; : : : ; m),(iv) kG(s; t;  )k � g0(s), for all t 2 [0;1),  2 
3, where g0 2 L1([��0; 0];R).



17Note, that if in Example 1.4 there is no discrete delay, (i.e., Ak(t) = 0 for all t � 0,k = 1; 2; : : : ; m), then the above Lipschitz-continuity of G implies that the corresponding� 2 BC([0; T ]� 
3; NBV).We note that the conditions in the above examples guaranteeing assumption (A2) arenatural assumptions for the existence of solutions of the corresponding equations.We introduce the notation �0(T;
1;
2;
3) � C ��C(T;
3)�BC�[0; T ]�
1�
2; Rn�for our parameter space, which is a normed linear space using the product norm k
k�0 �j'jC + k�k+ kfk.Next we shall study the existence of solutions, x(t; 
), of IVP (3.1)-(3.2) corresponding toa given parameter 
 = ('; �; f). Clearly a necessary condition for existence of x(t; 
) is thatthe second argument of the function f in (3.1) should belong to 
1, the third argument to
2, and the third argument of � should be in 
3. Hence the initial condition for x yields thatx(0) = '(0) 2 
1, x0 = ' 2 
3 andZ 0�r ds�(s; 0; x0) x(s) = Z 0�r ds�(s; 0; ')'(s) 2 
2:Therefore the feasible parameters of IVP (3.1)-(3.2) belong to the set�0(T;
1;
2;
3) � n('; �; f) 2 �0(T;
1;
2;
3) : '(0) 2 
1; ' 2 
3;and Z 0�r ds�(s; 0; ')'(s) 2 
2o: (3.9)We introduce the new variable y(t) � x(t)� ~'(t), where ~' is de�ned by (2.9). Then IVP(3.1)-(3.2) becomes_y(t) = f t; y(t) + ~'(t); Z 0�r ds�(s; t; yt + ~'t)hy(t+ s) + ~'(t+ s)i!; t 2 [0; T ]; (3.10)y(t) = 0; t 2 [�r; 0]: (3.11)Note, that by using the notation (2.7), the third argument of f in (3.10) can be written as�(t; yt + ~'t) or if we want to emphasize the �-dependence, as ��(t; yt + ~'t).The following lemma has important consequences.Lemma 3.5 The function[0; �]� C ��C(T;
3)� GC�(�)! Rn; (u; '; �; y) 7! ��(u; yu + ~'u) (3:12)is continuous, whenever it is de�ned.



18Proof Fix u0 2 [0; �], '0 2 C, �0 2 �C(T;
3), and y0 2 GC�(�) for which ��0(u0; y0u0 + ~'0u)is de�ned. By elementary manipulations and estimate (2.5) we have thatj��(u; yu + ~'u)� ��0(u0; y0u0 + ~'0u)j� �����Z 0�r dsh�0(s; u; yu + ~'u)� �0(s; u; y0u0 + ( ~'0)u0)ihy0(u0 + s) + ~'0(u0 + s)i�����+ �����Z 0�r dsh�(s; u; yu + ~'u)� �0(s; u; yu + ~'u)ihy(u+ s) + ~'(u+ s)i�����+ �����Z 0�r ds�0(s; u; yu + ~'u)hy(u+ s) + ~'(u+ s)� (y0(u0 + s) + ~'0(u0 + s))i������ �����Z 0�r dsh�0(s; u; yu + ~'u)� �0(s; u0; y0u0 + ( ~'0)u0)ihy0(u0 + s) + ~'0(u0 + s)i�����+ k�� �0k sup�r�s�0(jy(u+ s)j+ j ~'(u+ s)j)+ k�0kjyu + ~'u � y0u0 � ( ~'0)u0 jC : (3.13)Inequality (3.13), the de�nition of the norms j � jC , j � jC� , and inequality (2.10) implyj�(u; 
; y)� �(u0; 
0; y0)j� �����Z 0�r dsh�0(s; u; yu + ~'u)� �0(s; u0; y0u0 + ( ~'0)u0)ihy0(u0 + s) + ~'0(u0 + s)i�����+ k�� �0k sup�r�s�u(jy(s)j+ j ~'(s)j) + k�0kjyu + ~'u � y0u0 � ( ~'0)u0 jC� �����Z 0�r dsh�0(s; u; yu + ~'u)� �0(s; u; y0u0 + ( ~'0)u0)ihy0(u0 + s) + ~'0(u0 + s)i�����+ k�� �0k(jyjC� + j'jC) + k�0kjyu + ~'u � y0u0 � ( ~'0)u0 jC : (3.14)In view of (3.14) and Lemma 2.8, it is enough to show for �nishing the proof of the lemma,that jyu + ~'u � y0u0 � ( ~'0)u0 jC ! 0, as '! '0, �! �0, u! u0, and y ! y0. Considerjyu + ~'u � y0u0 � ( ~'0)u0 jC= sup�r�s�0���y(u+ s) + ~'(u+ s)� y0(u0 + s)� ~'0(u0 + s)���� sup�r�s�0�jy(u+ s)� y0(u+ s)j+ j ~'(u+ s)� ~'0(u+ s)j�+ sup�r�s�0�jy0(u+ s)� y0(u0 + s)j+ j ~'0(u+ s) � ~'0(u0 + s)j�: (3.15)Inequality (2.10) yields thatsup�r�s�0 j ~'(u+ s)� ~'0(u+ s)j � j'� '0jC : (3:16)It follows from (3.15) using the de�nition of !y , ! ~', relations (2.11) and (3.16) thatjyu + ~'u � y0u0 � ( ~'0)u0 jC



19� sup�r�s�u jy(s)� y0(s)j+ j'� '0jC + !y0(ju� u0j; �) + ! ~'0(ju� u0j)� jy � y0jC� + j'� '0jC + !y0(ju� u0j; �) + !'0(ju� u0j): (3.17)Using the uniform continuity of functions y0 and '0 over intervals [�r; �] and [�r; 0], respec-tively, we get !y0(h;�)! 0 as h! 0;!'0(h)! 0 as h! 0: (3:18)Relations (3.17) and (3.18) yield that jyu + ~'u � y0u0 � ( ~'0)u0 jC ! 0 as ' ! '0, � ! �0,u! u0, and y ! y0, therefore we have �nished the proof of the lemma.Lemma 3.5 and the continuity of f yield the next lemma immediately.Lemma 3.6 Fix 
 = ('; �; f) 2 �0(T;
1;
2;
3) and y 2 GC�(�). Assume that there exists0 < � � T such that y(u) + ~'(u) 2 
1, yu + ~'u 2 
3 for u 2 [0; �], and the function��(u; yu + ~'u) is de�ned and satis�es ��(u; yu + ~'u) 2 
2 for u 2 [0; �]. Then the function[0; �]! Rn; u 7! f�u; y(u) + ~'(u);��(u; yu + ~'u)�is continuous on [0; �].Using Lemma 3.6 we can make the following observation.Lemma 3.7 IVP (3.10)-(3.11) is equivalent to the integral equationy(t)=8><>: 0; t 2 [�r; 0];Z t0 f u; y(u) + ~'(u); Z 0�rds�(s; u; yu + ~'u)hy(u+ s) + ~'(u+ s)i!du; t 2 [0; T ]:(3:19)The next theorem guarantees the existence of solutions of IVP (3.10)-(3.11) for a �xedparameter 
0 2 �0(T;
1;
2;
3) and in a small neighborhood of this parameter.Theorem 3.8 Given 
0 2 �0(T;
1;
2;
3) then there exist � = �(
0) > 0 and � = �(
0) > 0such that if 
 2 �0(T;
1;
2;
3) and k
 � 
0k�0 < � then 
 2 �0(T;
1;
2;
3), and IVP(3.10)-(3.11) corresponding to 
 has a solution, y(t; 
), on [�r; �].Proof Let 
0 = ('0; �0; f0) 2 �0(T;
1;
2;
3). Then by the de�nition of �0(T;
1;
2;
3)we have thatu0 � '0(0) 2 
1; v0 � Z 0�r ds�0(s; 0; '0)'0(s) 2 
2; and '0 2 
3:Using that 
1;
2;
3 are open subsets of Rn and C, respectively, we have that there exists�1 > 0 such that if ju � u0j < �1, jv � v0j < �1 and j'� '0jC < �1 then x 2 
1, y 2 
2 and' 2 
3.



20Pick M > 0 and �2 > 0 such that jf0(0; u0; v0)j < M � �2. The function f0 is continuous,therefore there exist �� > 0 and �3 > 0 such that �3 � �1, and if t 2 [0; ��], ju� u0j < �3 andjv � v0j < �3 then jf0(t; u; v)j< M � �2. Therefore we have thatjf(t; u; v)j< M for t 2 [0; ��]; ju� u0j < �3; jv � v0j < �3 and kf � f0k < �2: (3:20)The uniform continuity of '0 on [�r; 0] and the de�nition of !'0(h) imply that !'0(h)! 0as h! 0, therefore we can select ��� > 0 such that��� � ��; !'0(���) < �3=3:Then we have for t 2 [0; ���], j'� '0jC < �3=3, and for y 2 GC��� (�3=3) thatjy(t) + ~'(t)� u0j = jy(t) + '(0)� '0(0)j� jy(t)j+ j'(0)� '0(0)j� �3=3 + j'� '0jC< �3=3 + �3=3< �1; (3.21)hence y(t) + ~'(t) 2 
1. Similarly, for t 2 [0; ���], j'� '0jC < �3=3, and for y 2 GC��� (�3=3)the de�nition of ! ~'0(h), relations (2.10), (2.11), (3.16), the monotonicity of !'(h) in h, andthe choice of ��� and �3 imply thatjyt + ~'t � '0jC � sup�r�s�0�jy(t+ s)j+ j ~'(t+ s)� '0(s)j�< �3=3 + sup�r�s�0�j ~'(t+ s)� ~'0(t+ s)j+ j ~'0(t+ s)� '0(s)j�� �3=3 + j'� '0jC + sup�r�s�0 j ~'0(t+ s) � ~'0(s)j� �3=3 + j'� '0jC + ! ~'0(t)= �3=3 + j'� '0jC + !'0(t)< �3=3 + �3=3 + �3=3� �1: (3.22)Inequality (3.22) yields that for t 2 [0; ���], k
�
0k�0 < �3=3 (and hence for j'�'0jC < �3=3),and for y 2 GC��� (�3=3) we have that yt + ~'t 2 
3, hence ��(t; yt + ~'t) is de�ned for all� 2 �C(T;
3). Using our simplifying notation de�ned by (2.7) we have thatv0 = Z 0�r ds�0(s; 0; '0)'0(s) = ��0(0; �00+ ~'00);where �0 2 GC�� (��) is the constant zero function. By the assumption v0 = ��0(0; �00+ ~'00) 2 
2,and by the continuity of the function given in (3.12) in u, ', � and in y (guaranteed byLemma 3.5) there exist constants � > 0, �4 > 0 and � > 0 such that� � ���; �4 � �3=3; and � � �3=3;and j��(t; yt + ~'t)� v0j < �3



21for t 2 [0; �], k
 � 
0k�0 < �4, 
 2 �0(T;
1;
2;
3) and jy � �0jC��� < �. Let � = minf�2; �4g.Then we have thaty(t) + ~'(t) 2 
1; ��(t; yt + ~'t) 2 
2 and yt + ~'t 2 
3 (3:23)for t, y 2 C� and 
 2 �0(T;
1;
2;
3) such that t 2 [0; �], y 2 GC�(�) and k
 � 
0k�0 < �.Similarly, it follows that jf(t; y(t) + ~'(t);��(t; yt + ~'t))j < M; (3:24)for t, y 2 C� and 
 2 �0(T;
1;
2;
3) such that t 2 [0; �], y 2 GC�(�) and k
 � 
0k�0 < �.In particular, we have that'(0) 2 
1; ' 2 
3 and Z 0�r ds�(s; 0; ')'(s) 2 
2; for k
 � 
0k�0 < �;i.e., k
 � 
0k�0 < � implies that 
 2 �0(T;
1;
2;
3).De�ne the operatorS : GC�(�)� �G�0(T;
1;
2 ;
3)�
0; �� \ �0(T;
1;
2;
3)�! C� (3:25)by S(y; 
)(t)� 8<: 0 t 2 [�r; 0]Z t0 f�u; y(u) + ~'(u);��(u; yu + ~'u)�du; t 2 [0; �]: (3:26)Relation (3.23) and Lemma 3.6 insure that S is well-de�ned. Usual estimates and (3.24) implythat jS(y; 
)(t)j � M� (3.27)jS(y; 
)(t)� S(y; 
)(�t)j � M jt� �tj (3.28)hold for all t; �t;2 [0; �]. These inequalities yield that the function S(�; 
) : GC�(�) ! C� iscompletely continuous, because it maps the bounded subset GC�(�) of the space C� into thecompact setK � fw 2 C([�r; �];Rn) : jw(t)j �M�; jw(t)� w(�t)j �M jt� �tj; t; �t;2 [�r; �]g: (3:29)Now choose � small enough thatM� � � is satis�ed. Then S(�; 
) : GC�(�)! GC�(�) holds.Using that GC�(�) is a closed bounded convex subset of C� the Schauder �xed-point theorem(Theorem 2.21) yields that for each 
 2 G�0(T;
1;
2;
3)�
0; �� \ �0(T;
1;
2;
3) there existsa �xed point of S(�; 
) in GC�(�), i.e., there exists a solution of (3.19) on [�r; �].Note that that by using the transformation x(t) = y(t) + ~'(t), Theorem 3.8 provides localexistence of solutions of IVP (3.1)-(3.2).In the remaining part of this section we study the continuation of solutions of (3.1)-(3.2).Fix 
 2 �0(T;
1;
2;
3). Then by Theorem 3.8, IVP (3.10)-(3.11) has a solution, y(t; 
), on[�r; �], i.e., IVP (3.1)-(3.2) has a solution, x(t; 
), on [�r; �].



22We say that x̂ is a continuation of x, if there exists �̂ > � such that x̂ is de�ned on [�r; �̂](or on [�r; �̂)), coincides with x on [�r; �], and x̂ satis�esx(t)=8<: '(t); t 2 [�r; 0]~'(0) + Z t0 f�u; x(u); Z 0�rds�(s; u; xu)x(u+ s)�du; t 2 [0; �̂] (or t 2 [0; �̂)):(3:30)We shall show, that �nding a continuation of a solution, x(t; 
), of IVP (3.1)-(3.2) existingoriginally on a closed interval [�r; �] is equivalent to solving IVP (3.1)-(3.2) with a parameter
1 2 �0(T � �;
1;
2;
3), therefore, by Theorem 3.8, the solution is always continuable to alarger closed time interval.Let x(t) be a solution of (3.1)-(3.2) on [0; �] corresponding to parameter 
 = ('; �; f).Then a continuation of x should satisfy for t > �x(t) = ~'(0) + Z �0 f u; x(u); Z 0�r ds�(s; u; xu)x(u+ s)�du+ Z t� f�u; x(u); Z 0�r ds�(s; u; xu)x(u+ s)�du= x(�) + Z t�f�u; x(u); Z 0�rds�(s; u; xu)x(u+ s)�du:De�ne the function '1 : [�r; 0]! Rn by'1(t) � ( x(t+ �); t 2 [�minf�; rg; 0]'(t+ �); t 2 [�r;�minf�; rg];and let ~'1 : [�r;1) ! Rn be the extension of '1 de�ned by (2.9). Introducing the newvariable y(t) = x(t + �)� ~'1(t)we transform (3.30) intoy(t) = 8>>>><>>>>: 0; t 2 [�r; 0];Z t0 f�u+ �; y(u) + ~'1(u);Z 0�r ds�(s; u+ �; yu + ( ~'1)u)hy(u+ s) + ~'1(u+ s)i�du; t � 0: (3:31)De�ne �1(s; t;  ) � �(s; t+ �;  ); s 2 [�r; 0]; t 2 [�r; T � �];  2 C;f1(t; x; y) � f(t+ �; x; y); t 2 [�r; T � �]; x 2 
1; y 2 
2:Let 
1 � ('1; �1; f1). Then clearly 
1 2 �0(T � �;
1;
2;
3). Moreover, we have that'1(0) = x(�) 2 
1, '1 = x� 2 
3, andZ 0�r ds�1(s; 0; '1)'1(s) = Z 0�r ds�(s; �; '1)'1(s) 2 
2;



23(because x(t) is de�ned by the assumption at t = �), hence 
1 2 �0(T � �;
1;
2;
3).Therefore by Theorem 3.8 there exists �1 = �(
1) such that � + �1 � T , and (3.31) hassolution on [�r; �1], i.e., x(�; 
) is continuable to [�r; � + �1]. If � + �̂ < T , then we canrepeat the process, and extend the solution to a larger interval. If we don't reach T in �nitelymany steps, then using Zorn-lemma we can conclude that the solution has a noncontinuableextension (i.e., a solution which has no extension) de�ned on an open interval. Thus, we haveproved the following lemma.Lemma 3.9 Fix 
 2 �0(T;
1;
2;
3). Then there exists a noncontinuable solution corre-sponding to 
, x(t; 
), of IVP (3.1)-(3.2) which is de�ned either on [�r; T ] or on an interval[�r; b) (where 0 < b < T ).3.2 Uniqueness of solutionsIn this section we show that if f is locally Lipschitz-continuous in its second and third argu-ments, and �(s; t;  ) is \weakly locally Lipschitz-continuous" in its third argument, (by whichwe mean that the corresponding �(t;  ; �) is locally Lipschitz-continuous in  ), and the ini-tial function is Lipschitz-continuous (or equivalently, ' 2 W 1;1), then the solution of IVP(3.10)-(3.11) is unique.We shall use the following assumptions:(A4) f is locally Lipschitz-continuous in its second and third arguments, i.e., for every � > 0,M > 0 there exists a constant L1 = L1(�;M) such that for all t 2 [0; �], x; �x 2 GRn(M)\
1, and y; �y 2 GRn(M) \ 
2jf(t; x; y)� f(t; �x; �y)j � L1�jx� �xj+ jy � �yj�;(A5) for all � 2 W 1;1 the function �(t;  ; �) de�ned by (2.7) is locally Lipschitz-continuousin  with a Lipschitz-constant of the form L2j�jW 1;1 , i.e., for every � > 0 and M > 0there exists a constant L2 = L2(�;M) such that for all � 2 W 1;1, t 2 [0; �] and  ; � 2GC(M)\ 
3 j�(t;  ; �)� �(t; � ; �)j � L2j�jW 1;1 j � � jC ;(A6) ' 2 W 1;1.First we give conditions in Examples 1.1{1.4 which imply assumption (A5). We note thatthe functions � used in Examples 1.1 and 1.2 do not depend on  , therefore assumption (A5)holds trivially in these cases.Example 3.10 Let � be de�ned as in Examples 1.3 and 3.3. Then�(t;  ; �) = �(��(t;  )):Assume that � 2W 1;1. Then Lemma 2.3 yields thatj�(t;  ; �)� �(t; � ; �)j = j�(��(t;  ))� �(��(t; � ))j� j _�jL1 j�(t;  )� �(t; � )j� j�jW 1;1 j�(t;  )� �(t; � )j:



24Thus if �(t;  ) is locally Lipschitz-continuous in  , i.e., for every � > 0, M > 0 there exists aconstant L� (�;M) such thatj�(t;  )� �(t; � )j � L�(�;M)j � � jC ; for  ; � 2 GC(M) \ 
3; t 2 [0; �]; (3:32)then � satis�es (A5) with L2(�;M) = L� (�;M).Example 3.11 Consider � de�ned in Examples 1.4 and 3.4. In addition to assumption (i){(iv) of Example 3.4, we assume that each �k satis�es (3.32) with Lipschitz-constant L�k . Thenit is easy to see thatj�(t;  ; �)� �(t; � ; �)j �  mXk=1 j _�jL1L�k(�;M) sup0�t��kAk(t)k+ Z 0��0 g(s) dsj�jC! j � � jC ;for � 2 W 1;1, t 2 [0; �], and  ; � 2 GC(M) \ 
3. Thus (A5) is satis�ed withL2 = mXk=1L�k(�;M) sup0�t��kAk(t)k+ Z 0��0 g(s) ds:Lemma 3.12 Let � 2 �C(T;
3) satisfy (A5). Then the function �(t;  ) de�ned by (2.8)satis�es the inequalityj�(t;  )� �(t; � )j � �k�k+ L2(�;M)j � jW 1;1�j � � jC ; (3:33)where t 2 [0; �],  ; � 2 GC(M) \ 
3 and � 2 W 1;1.Proof Let �;M > 0 be �xed, and L2(�;M) be the corresponding constant from assumption(A5). Let  and � satisfy the assumptions of the lemma. Assumption (A5), inequality (2.5),and elementary estimates imply the inequalitiesj�(t;  )� �(t; � )j � j�(t;  ;  )� �(t;  ; � )j+ j�(t;  ; � )� �(t; � ; � )j� ���Z 0�r ds�(s; t;  )h (s)� � (s)i���+ L2(�; M)j � jW 1;1 j � � jC� k�kj � � jC + L2(�; M)j � jW 1;1 j � � jC :Lemma 3.13 Assume that the parameter 
 = ('; �; f) 2 �0(T;
1;
2;
3) satisfy (A1){(A6).Let x(t) be a solution of (3.1)-(3.2) on [0; �] corresponding to 
. Then(i) xt 2 W 1;1 for all t 2 [0; �], moreover, xt 2 C1 for t 2 [r; �],(ii) there exists a constant M1 =M1(�; kfk; j'jW 1;1) such that jxtjW 1;1 �M1 for t 2 [0; �].



25Proof Let 
 = ('; �; f), and x(t) be a solution corresponding to 
. By (A6) the initialfunction is from W 1;1, therefore it is di�erentiable a.e. on [�r; 0], hence Lemma 2.12, (3.1)and (3.2) imply thatddsxt(s) = _x(t+ s)= ( f(t + s; x(t+ s);�(t+ s; xt+s)); t+ s > 0;_'(t+ s); t+ s < 0; for a.e. s: (3.34)Therefore xt is di�erentiable for a.e. s. Moreover, if t � r then t + s � 0 for all s 2 [�r; 0],therefore xt is di�erentiable everywhere. Lemma 3.6 yields that the function s 7! f(t+s; x(t+s);�(t+ s; xt+s)) is continuous, therefore we have proved the second part of (i). To prove thatxt 2 W 1;1, we have to show that xt(s) and ddsxt(s) are bounded. It follows from (3.34) that���� ddsxt(s)���� � maxnkfk; j _'jCo:Moreover, (3.3), the de�nition of kfk and j � jC imply that for t � 0jx(t)j � j'(0)j+ Z t0 ���f(u; x(u);�(u; xu)) du���� j'jC + kfkt� j'jC + kfk�;hence jxtjC � j'jC + kfk� for t 2 [0; �]. Therefore we have proved (i), and it is easy to seethat (ii) is also satis�ed with M1 = maxnkfk; j _'jC ; j'jC + kfk�o.The next theorem shows that under assumptions (A1){(A6), IVP (3.1)-(3.2) has a uniquesolution.Theorem 3.14 Let 
 2 �0(T;
1;
2;
3) and assume that (A1){(A6) are satis�ed. Thenthere exists � > 0 such that IVP (3.1)-(3.2) has a unique solution on [0; �].Proof Theorem 3.8 yields that there exists � > 0 such that IVP (3.1)-(3.2) has a solutionon [0; �]. Suppose that x(�) and z(�) are two solutions of (3.1)-(3.2) on [0; �] correspondingto the same parameter 
 = ('; �; f). It follows from Lemma 3.13 that jx(t)j; jz(t)j � M1 fort 2 [0; �]. By (2.5) we have thatj�(t; xt)j � k�kjxtjC � k�kM1;and similarly j�(t; zt)j � k�kM1 for t 2 [0; �]. Let M � M1maxf1; k�kg, and L1 = L1(�;M)given by (A4). The integrated form of (3.3), the Lipschitz-continuity of f , and simple estimatesimply jx(t)� z(t)j � Z t0 ���f(u; x(u);�(u; xu))� f(u; z(u);�(u; zu))���du� Z t0 L1�jx(u)� z(u)j+ j�(u; xu)� �(u; zu)j!du; t 2 [0; �]: (3.35)



26By the de�nition ofM we have that jxtjC ; jztjC �M , therefore if L2 = L2(�;M) is the constantfrom (A5), then using that by Lemma 3.13 zu 2 W 1;1 and jzujW 1;1 � M1, Lemma 3.12 andinequality (3.35) yield thatjx(t)� z(t)j � Z t0 L1�jx(u)� z(u)j+ (k�k+ L2jzujW 1;1)jxu � zujC�du� Z t0 L1�1 + k�k+ L2M1�jyu � zujC du; t 2 [0; �]: (3.36)Lemma 2.14 applied to (3.36), using that y(s) = z(s) for s 2 [�r; 0], leads to the inequalitysup0�s�t jy(s)� z(s)j � Z t0 L1�1 + k�k+ L2M1� sup0�s�u jy(s)� z(s)j du; t 2 [0; �];which by the Gronwall-Bellman inequality yields that sup0�s�t jy(s)�z(s)j = 0 for all t 2 [0; �],and therefore the solution is unique.It is known, that without assumption (A4) we may loose uniqueness (take, e.g., f(t; x; y) =pt). The next example shows, that if f(t; x; y) is not Lipschitz-continuous in y, then thecorresponding IVP can have two solutions. The other two examples in this section show thatif we violate assumptions (A5) and (A6), then we may also loose uniqueness of the solution.Example 3.15 Consider the scalar IVP_x(t) = 4qx(t� �(t)); t � 0; (3.37)x(t) = 0; �1 � t � 0; (3.38)where �(t) = minft=2; 1g:It is easy to see that IVP (3.37)-(3.38) has two solutions on [0; 2]: x1(t) = 0 and x2(t) = t2.Example 3.16 Consider the scalar IVP with state-dependent delay_x(t) = x�t � �(x(t))�; t � 0; (3.39)x(t) = �2t; �2 � t � 0; (3.40)where �(x) � 2min�qjxj; 1� :It is easy to check that this IVP has two solutions: x1(t) = 0, t � 0 and x2(t) = t2 for t 2 [0; 1].We can rewrite (3.39)-(3.40) in the form_x(t) = Z 0�2 ds�(s; xt)x(t+ s); t � 0; (3.41)x(t) = �2t; �2 � t � 0; (3.42)by de�ning �(s;  ) � �[��( (0));0](s); s 2 [�2; 0]:



27We have that if j (0)j � 1 then�( ; �) = Z 0�r ds�(s;  )�(s) = �(��( (0))) = ���2qj (0)j� ;which does not satisfy (A5). (It is enough to consider �(s) = s, and constant functions for  .)Example 3.17 Consider the scalar IVP with state-dependent delay_x(t) = x�t� �(x(t))�; t � 0x(t) = 8><>: 1; �2 � t � �11� 2p1 + t; �1 � t � �3443t + 1; �34 � t � 0;where �(x) = minfjxj; 2g. The initial function is not Lipschitz-continuous (hence (A6) is notsatis�ed), therefore the uniqueness is not guaranteed by Theorem 3.14. In fact, the IVP hastwo solutions: t+1 is solution for t 2 [0; 1] and the analytic expression on [0; 0:5] for the othersolution is t+ 1� t2.3.3 Continuous dependence on parametersIn this section we show that assuming uniqueness of the solution of IVP (3.10)-(3.11), the solu-tion of IVP (3.10)-(3.11) (and therefore the solution of IVP (3.1)-(3.2)) depends continuouslyon the parameters, i.e., on 
.The proof of the continuous dependence based on the following result.Lemma 3.18 The operator S(�; �) de�ned by (3.25)-(3.26) is continuous on its domain.Proof Pick the sequence(yk; 
k) 2 GC�(�)� �G�0(T;
1;
2;
3)�
0; �� \�0(T;
1;
2;
3)�such that(yk; 
k)! (�y; �
) 2 GC�(�)� �G�0(T;
1;
2;
3)�
0; �� \�0(T;
1;
2;
3)� as k!1;where 
k = ('k; �k; fk) and �
 = (�'; ��; �f). Using the continuity of the function �f , and that ofthe function de�ned by (3.12) for any �xed u 2 [0; �], it is easy to see that for u 2 [0; �]���fk�u; yk(u) + ~'k(u);��k(u; yu + ~'ku)�� �f�u; �y(u) + ~�'(u);���(u; �yu + ~�'u)����� kfk � fk+ ��� �f�u; yk(u) + ~'k(u);��k(u; yu + ~'ku)�� �f�u; �y(u) + ~�'(u);���(u; �yu + ~�'u)����! 0; as k !1;



28hence the Lebesgue Dominated Convergence Theorem implies thatZ t0 fk�u; yk(u) + ~'k(u);��k(u; yu + ~'ku)�du! Z t0 �f�u; �y(u) + ~�'(u);���(u; �yu + ~�'u)�du;as k !1, which yields thatS(yk; 
k)(t)! S(�y; �
)(t) for all t 2 [�r; �]: (3:43)On the other hand S(yk; 
k) belongs to a compact subset of GC�(�) according to the proof ofTheorem 3.8, therefore an arbitrary subsequence of it contains a convergent subsubsequence,say S(ykj ; 
kj), i.e., S(ykj ; 
kj)! y� 2 C�; as j !1: (3:44)Combining (3.43) and (3.44) we get that y� = S(�y; �
). Therefore we have that an arbitrarysubsequence of S(yk; 
k) has a subsubsequence, which converges to S(�y; �
), which implies thatthe sequence is convergent and���S(yk; 
k)� S(�y; �
)���C� ! 0; as k !1;which proves the lemma.The following theorem shows that the solutions of IVP (3.10)-(3.11) depend continuouslyon parameters.Theorem 3.19 Suppose that given a parameter 
0 2 �0(T;
1;
2;
3), IVP (3.10)-(3.11)corresponding to 
0 has a unique solution y(t; 
0) on [0; �], (where � is given by Theorem3.8), and moreover a given sequence, 
k 2 �0(T;
1;
2;
3), satis�es that 
k ! 
0 as k !1.Then there exists k0 > 0 such that if k > k0, then IVP (3.10)-(3.11) corresponding to 
k has asolution y(t; 
k), which exists on [0; �], and y(t; 
k)! y(t; 
0) as k !1 uniformly on [0; �].Proof We use the notations of the proof of Theorem 3.8, i.e., let � > 0; � > 0 and � > 0such that (3.23) and (3.24) hold. Choose k0 > 0 such that
k 2 �G�0(T;
1;
2;
3)�
0; �� \�0(T;
1;
2;
3)� for k > k0:Then by Theorem 3.8, for k > k0, we have that y(t; 
k) exists on [0; �], and it is the �xedpoint of the operator S(�; 
k) de�ned by (3.25)-(3.26), i.e.y(�; 
k) = S(y(�; 
k); 
k): (3:45)By the proof of Theorem 3.8 we know that y(�; 
k) 2 K, where K � GC�(�) is the compactset de�ned by (3.29). Take an arbitrary subsequence of fy(�; 
k)gk�k0 , then it contains aconvergent subsubsequence. For notational convenience denote this subsubsequence again byfy(�; 
kj)g, i.e., we can assume that y(�; 
kj) ! y� 2 C�, as j ! 1. Then the continuity ofS(�; �) (see Lemma 3.18) and relation (3.45) imply thaty� = S(y�; 
0);



29i.e., y� is a solution of IVP (3.10)-(3.11) corresponding to parameter 
0. Then the assumeduniqueness of the solution at 
0 yields that y� = y(�; 
0). Then using that this relation isobtained by selecting an arbitrary subsequence of fy(�; 
k)gk�k0 , we get that it is a convergentsequence with limit y(�; 
0). The proof of the theorem is complete.We comment that by using the transformation x(t) = y(t) + ~'(t), Theorem 3.19 providescontinuous dependence on parameters of the solutions of IVP (3.1)-(3.2).3.4 The state-spaces W 1;1 and W 1;pLemma 3.13 yields that the solution corresponding to 
 2 �0(T;
1;
2;
3) always lies inW 1;1, hence we can use W 1;1 as the state-space of solutions. This is a natural choice, becauseuniqueness of solutions of (3.1)-(3.2) is guaranteed only for W 1;1 initial functions.First we introduce a new parameter space accordingly to this new state-space of solutions:�1(T;
1;
2;
3) � W 1;1 ��C(T;
3)�BC�[0; T ]� 
1 � 
2; Rn�;where the norm of 
 = ('; �; f) 2 �1(T;
1;
2;
3) is de�ned by k
k�1 � j'jW 1;1+k�k+kfk.Note, that the only di�erence between �0 and �1 is the space, and hence the norm of the'-component.De�ne the set of feasible parameters in �1 by�1(T;
1;
2;
3) � n('; �; f) 2 �1(T;
1;
2;
3) : ' 2 C; '(0) 2 
1; ' 2 
3;and Z 0�r ds�(s; 0; ')'(s) 2 
2o: (3.46)If we compare (3.46) to (3.9), we can see that�1(T;
1;
2;
3) � �0(T;
1;
2;
3) (3:47)as sets, and hence Theorems 3.8 and 3.14 imply that for all 
 2 �1(T;
1;
2;
3) IVP (3.1)-(3.2) has a unique solution. Sincek
k�0 � k
k�1; 
 2 �1(T;
1;
2;
3); (3:48)Theorem 3.19 yields, that the function��1(T;
1;
2;
3) � �1(T;
1;
2;
3)�! C; 
 7! x(�; 
)tis continuous for all t 2 [0; �]. Here and later x(�; 
)t denotes the segment function at t of thesolution corresponding to parameter 
.The next theorem shows, that if we assume (A1){(A6), then we have a stronger result,namely, the function��1(T;
1;
2;
3) � �1(T;
1;
2;
3)�! W 1;1; 
 7! x(�; 
)tis continuous for all t 2 [0; �], and in fact, it is locally Lipschitz-continuous.



30Theorem 3.20 Assume that �
 = (�'; ��; �f) 2 �1(T;
1;
2;
3) satis�es (A1){(A6). Thenthere exist constants � > 0, � > 0 and L3 = L3(�; �
; �), such that IVP (3.1)-(3.2) has aunique solution on [0; �] for all 
 2 G�1(T;
1;
2;
3)(�
; �), andjx(�; 
)t� x(�; �
)tjW 1;1 � L3k
 � �
k�1 ; t 2 [0; �]:Proof The existence of � > 0 and � > 0 satisfying the �rst part of the statement of thetheorem follows from Theorems 3.8, 3.14 and relations (3.47), (3.48).In this proof, to indicate dependence of � on �, we shall use the notation ��(t;  ) for thefunction de�ned by (2.8) corresponding to �. By using that for 
 = ('; �; f) 2 G�1(�
; �) wehave j'jW 1;1 < k�
k�1 + �; k�k < k�
k�1 + �; and kfk < k�
k�1 + �; (3:49)therefore the constant M1 �M1(�; k�
k�1 + �; k�
k�1 + �) de�ned in Lemma 3.13 satis�esjx(�; 
)tjW 1;1 �M1; 
 2 G�1(�
; �); t 2 [0; �]:This inequality, together with (3.49) and (2.5), implies thatj��(t; x(�; 
)t)j � k�kjx(�; 
)jC< (k�
kW 1;1 + �)M1; 
 2 G�1(�
; �); t 2 [0; �]:De�neM � maxf1; k�
kW 1;1+�gM1, and let L1 = L1(�;M) be the constant from (A4). Usingthe integrated form of (3.3), the de�nition of kfk, and assumption (A4) we get for t 2 [0; �]thatjx(t; 
)� x(t; �
)j� j'(0)� �'(0)j+ Z t0 ��f(u; x(u; 
);��(u; (x(�; 
)u))� �f (u; x(u; �
);���(u; (x(�; �
)u))��du� j'(0)� �'(0)j+ Z t0 ��f(u; x(u; 
);��(u; (x(�; 
)u))� �f (u; x(u; 
);��(u; (x(�; 
)u))��du+ Z t0 �� �f(u; x(u; 
);��(u; (x(�; 
)u))� �f(u; x(u; �
);���(u; (x(�; �
)u))��du� j'(0)� �'(0)j+ �kf � �fk+ L1 Z t0 jx(u; 
)� x(u; �
)j+ j��(u; (x(�; 
)u)� ���(u; (x(�; �
)u)jdu: (3.50)By applying Lemma 3.12, the de�nition of M and M1, we obtain for u 2 [0; �]j��(u; (x(�; 
)u)� ���(u; (x(�; �
)u)j� j��(u; (x(�; 
)u)� ���(u; (x(�; 
)u)j+ j���(u; (x(�; 
)u)� ���(u; (x(�; �
)u)j� k�� ��kjx(�; 
)ujC + (k��k+ L2jx(�; �
)ujW 1;1)jx(�; 
)u� x(�; �
)ujC� k�� ��kM1 + (k��k+ L2M1)jx(�; 
)u� x(�; �
)ujC ; (3.51)where L2 = L2(�;M) is the constant from (A5). Combining (3.50), (3.51) and the de�nitionof j � jW 1;1 , we getjx(t; 
)� x(t; �
)j



31� j'(0)� �'(0)j+ �kf � �fk+ �k� � ��kM1+ L1 Z t0 jx(u; 
)� x(u; �
)j+ (k��k+ L2M1)jx(�; 
)u� x(�; �
)ujC du� j'� �'jW 1;1 + �kf � �fk+ �k� � ��kM1+ L1 Z t0 (1 + k��k+ L2M1)jx(�; 
)u� x(�; �
)ujC du� k
 � �
k�1 maxf1; �; �M1g+ L1 Z t0 (1 + k��k+ L2M1)jx(�; 
)u� x(�; �
)ujC du: (3.52)Using Lemma 2.14, inequality (3.52) yieldsjx(�; 
)t� x(�; �
)tjC� k
 � �
k�1 maxf1; �; �M1g+ L1 Z t0 (1 + k��k+ L2M1)jx(�; 
)u� x(�; �
)ujC du;which, by the Gronwall-Bellman inequality, implies thatjx(�; 
)t� x(�; �
)tjC � k
 � �
k�1 maxf1; �; �M1g exp (L1(1 + k��k+ L2M1)�) :De�ne the constant K1 � maxf1; �; �M1g exp (L1(1 + k��k+ L2M1)�), thenjx(�; 
)t� x(�; �
)tjC � K1k
 � �
k�1 ; t 2 [0; �]: (3:53)To �nish the proof we need to get a similar estimate for the di�erence of the derivatives of thesolutions. By the estimates used in (3.50), and by (3.51) and (3.53) we get for t 2 [0; �]j _x(t; 
)� _x(t; �
)j � ���f�t; x(t; 
);��(t; x(�; 
)t�� �f�t; x(t; �
);���(t; x(�; �
)t����� kf � �fk+ L1�jx(t; 
)� x(t; �
)j+ j��(t; x(�; 
)t� ���(t; x(�; �
)tj�� kf � �fk+ L1�K1k
 � �
k�1 + k�� ��kM1+ (k��k+ L2M1)jx(�; 
)t� x(�; �
)tjC�� kf � �fk+ L1�K1k
 � �
k�1 + k�� ��kM1+ (k��k+ L2M1)K1k
 � �
k�1�� �maxf1;M1L1g+ L1K1(1 + k��k+ L2M1)�k
 � �
k�1 : (3.54)Therefore the inequalityj _x(t; 
)� _x(t; �
)j � K2k
 � �
k�1 ; t 2 [0; �] (3:55)is satis�ed with the constant K2 � maxf1;M1L1g + L1K1(1 + k��k + L2M1). On the otherhand, '; �' 2 W 1;1, hence they are almost everywhere di�erentiable functions, and thereforefrom (3.2) we get that for a.e. t 2 [�r; 0]_x(t; 
)� _x(t; �
) = _'(t)� _�'(t);



32and therefore ess supt2[�r;0]j _x(t; 
)� _x(t; �
)j = ess supt2[�r;0]j _'(t)� _�'(t)j� j'� �'jW 1;1 : (3.56)Using thatK2 � 1, we get from (3.53), (3.55), (3.56), the de�nition of j�jW 1;1, and Lemma 2.12,that jx(�; 
)t� x(�; �
)tjW 1;1 � maxfK1; K2gk
 � �
k�1 ; t 2 [0; �]; (3:57)therefore the constant L3 = maxfK1; K2g satis�es the statement of the theorem.This state-space has an important disadvantage, namely, the solution map, i.e.,[0; �]! W 1;1; t 7! x(�; 
)t (3:58)is not continuous, in general, for t 2 [0; r] (see Remark 3.22 below). The discontinuity of themap (3.58) means, that if we de�ne the solution semigroup byS(t)' � x(�;')t; t � 0; (3:59)then it is easy to see that fS(t)gt�0 is a semigroup (of nonlinear operators) on W 1;1, but it isnot strongly continuous on W 1;1.We get continuity of the map (3.58) on [0; �] only for su�ciently smooth initial functions.In particular, we have the following result.For �xed f and � de�ne the setM� n' 2 C1 : _'(0�) = f(0; '(0);�(0; '))o : (3:60)Lemma 3.21 Let 
 = ('; �; f) satisfy (A1){(A6), and x(�) be the corresponding solution ofIVP (3.1)-(3.2) on [�r; �]. Then(i) the function [r; �]! W 1;1; t 7! xt is continuous.(ii) if ' 2 M then the function [0; �]! W 1;1; t 7! xt is continuous.Proof Lemma 3.13 yields that xt 2 W 1;1 for t 2 [0; �]. By the de�nition of the norm j � jW 1;1,using that x(�) is continuous, we havejxt � x�tjW 1;1 = sup�r�s�0 jx(t+ s)� x(�t+ s)j+ ess sup�r�s�0j _x(t+ s)� _x(�t + s)j:Using that the function [0; �] � [�r; 0] ! Rn, (t; s) 7! x(t + s) is continuous, and henceuniformly continuous, it follows that sup�r�s�0 jx(t+s)�x(�t+s)j ! 0 as t! �t for t; �t 2 [0; �].By Lemma 3.6 the function t 7! _x(t) = f(t; x(t);�(t; xt)) is continuous on [0; �], hence we canrepeat the previous argument for _x(t+ s), and we get that sup�r�s�0 j _x(t+ s)� _x(�t+ s)j ! 0,as t! �t, for t; �t 2 [r; 0], therefore (i) is proved. For (ii) we note that by the de�nition ofM, if' 2 M, then the function_x(t) = ( f(t; x(t);�(t; xt)); t 2 [0; �];_'(t); t 2 [�r; 0)is de�ned, and continuous on [�r; �], hence we can prove the continuity of the map t 7! xt fort 2 [0; �] by repeating the previous argument.If ' 62 M, then we have the following negative result.



33Remark 3.22 If _' has a jump at s0 2 (�r; 0), i.e., " � j _'(s0+) � _'(s0�)j exists and " > 0,then the function [0; �]! W 1;1, t 7! xt is not continuous on (0; r+ s0).Proof Fix �t such that 0 < �t < r + s0. Then �r < s0 � r < 0, so we can select a sequencesk 2 [�r; 0] such that fskg monotone decreasingly converges to s0 � �t. De�ne the sequencetk � 2s0 � 2sk � �t. The it is easy to see that tk ! �t as k! 1, and we have�t � r < tk + sk < s0 < �t+ sk < 0;thereforelimk!1 jxtk � x�tjW 1;1= limk!1 sup�r�s�0 jx(tk + s) � x(�t+ s)j+ limk!1 ess sup�r�s�0j _x(tk + s)� _x(�t+ s)j� limk!1 j _x(tk + sk)� _x(�t+ sk)j= ";i.e., the function is not continuous at �t.To overcome the problem of discontinuity of the solution map, we consider W 1;p as thespate-space of xt. From the elementary estimatej jW 1;p � (2r)1=pj jW 1;1 (3:61)it follows that W 1;1 � W 1;p, and therefore Lemma 3.13 immediately implies the �rst twostatements of the next lemma.Lemma 3.23 Assume that the parameter 
 = ('; �; f) 2 �0(T;
1;
2;
3) satis�es (A1){(A6). Let x(t) be the solution of (3.1)-(3.2) on [0; �] corresponding to 
, and let 1 � p < 1.Then(i) xt 2 W 1;p for all t 2 [0; �], moreover, xt 2 C1 for t 2 [r; �],(ii) there exists a constantM2 =M2(p; �; kfk; j'jW 1;1) such that jxtjW 1;p �M2 for t 2 [0; �],(iii) the map [0; �]! W 1;p, t 7! x(�; 
)t is continuous.Proof To prove (iii), considerjxt � x�tjpW 1;p = Z 0�r jx(t+ s)� x(�t+ s)jp ds+ Z 0�r j _x(t+ s)� _x(�t+ s)jp ds:Since by (i) both x 2 Lp� and _x 2 Lp�, Lemma 2.11 implies (iii).This lemma has the following consequence.Corollary 3.24 The semigroup, de�ned by (3.59) is a C0-semigroup on W 1;p.Estimate (3.61) and Theorem 3.20 has the following consequence.Theorem 3.25 Assume that 1 � p � 1, and �
 = (�'; ��; �f) 2 �1(T;
1;
2;
3) satis�es(A1){(A6). Then there exist constants � > 0, � > 0 and L4 = L4(p; �; �
; �), such that IVP(3.1)-(3.2) has unique solution on [0; �] for all 
 2 G�1(T;
1;
2;
3)(�
; �), andjx(�; 
)t� x(�; �
)tjW 1;p � L4k
 � �
k�1 ; t 2 [0; �]:



343.5 RemarksDelay systems have been studied by many authors. Without completeness, we refer to [7], [8],[19], [24], [31], [38] for discussion of general theory, applications and historical remarks.The standard reference of well-posedness results for state-dependent delay equations is [17],where the results are presented for a system of the form_xi(t) = fi(t; x(t); x(g2(t; x(t))); : : : ; x(gn(t; x(t)))); i = 1; 2; : : : ; n;where x(t) = (x1(t); : : : ; xn(t)), gi(t; x) � t for all t; x. Our results in Sections 3.1{3.3 arestraightforward generalizations of that of [17] for the class of equations described by (3.1),using the methods of [31].We comment that the class of equations described by (3.1) includes the \usual" state-dependent delay equations, _x(t) = f(t; x(t); x(t� �(t; x(t))) (3:62)or _x(t) = f(t; x(t); x(t� �(t; xt))): (3:63)The new feature of (3.1), in addition to the type of representation which has not been usedbefore for the state-dependent case, is that it includes distributed state-dependent delays (likein Example 1.4), and also in�nitely many state-dependent point delays of the form:�(t;  ) = 1Xi=1Ai(t;  ) (��i(t;  )) + Z 0��0 G(s; t;  ) (s)ds:Clearly, the results of Chapter 3 (and the results of the later chapters as well) can begeneralized for equations of the form_x(t) = f�t; x(t);�1(t; xt); : : : ;�m(t; xt)�; t 2 [0; T ];where each delayed term, �i, i = 1; 2; : : : ; m, has the form (1.2). We restrict the presentationfor the case of one delayed term in the equation to keep the notations simple in the discussions.In this paper we assume that r > 0 is �nite, i.e., we consider the �nite (or bounded)delay case. Note, that in Section 3.1 the only point where we used the �niteness of r is theimplication that the continuity of ' on [�r; 0] yields that !'(h) ! 0 as h ! 0. By assuminguniform continuity and boundedness of the initial function on (�1; 0], and using the supremumnorm for the norm of initial functions and solutions, we can extend the existence, uniquenessand continuous dependence results for the in�nite delay case. See also e.g. [29] for this choiceof state-space. The topic of delay equations with unbounded delays has a large literature, werefer to [2], [14], [32] for related works. Note, that in later chapters the boundedness of thedelay will be essential.For the function f : [0; T ] � 
1 � 
2 ! Rn in (3.1) we assumed (in (A1)) that it isbounded (and continuous) on its domain. If the domain is compact, or only the time domain is



35unbounded, then this assumption is of course redundant (if we pick a �nite T in the latter case,which we can do, since we are interested in local existence). On unbounded (with respect tox and/or y) domain it does not follow in general. The boundedness assumption in the proofsis not essential, since the boundedness of f is always true on compact subsets of its domain,and that is enough to use in the arguments we had (since on �nite time intervals the solutionlies in a compact set). (See also Theorems 2.1{2.3 in [31].) We made this assumption mainlyto have a nice normed linear state-space for the parameter f , and so be easy to talk aboutcontinuous dependence on f .For the same reasons, we assumed (in (A2)) that the function �(t;  ; �) is bounded on[0; T ]� 
3 � GC(1). This assumption can also be omitted, with the following argument. Weused this boundedness assumption in many places, but basically we used only in two situations:�rst, that for a given x 2 C� it implies that j�(t; xt; �)j � k�kj�jC , for all t 2 [0; T ]. For a �xed� 2 C, the continuity of � and Lemma 2.10 yield for �nite T that sup0�t�T j�(t; xt; �)j < 1.Since At;xt� � �(t; xt; �) is a linear operator from C to Rn, the Uniform Boundedness Theoremimplies that k�k � supt2[0;T ] kAt;xtk <1, which yields the inequality. The second case is lesstrivial: in the proof of Lemma 3.12 we need the estimate j�(t;  ; �)j � k�kj�jC for all t 2 [0; �]and  2 GC(M) \ 
3. Since the latter set is not compact in C, the continuity does not implythe boundedness of j�(t;  ; �)j for �xed �, and in fact, the statement of Lemma 3.12 is notnecessarily true (without the boundedness assumption). But we always apply Lemma 3.12for estimating j�(t; xt) � �(t; �xt)j, in which case, by the �rst argument, we have the requiredestimate.We mention one class of state-dependent delay equations appearing frequently (especiallyin biological) applications, the threshold-type of delay equations, where our representation ofthe delayed term, (1.2), might not have natural application. Consider the delay equation_x(t) = f(x(t); x(t� �(t; xt)))where the delay is de�ned through a relationZ tt�� g(t; s; x(s)) ds= mor � = t. (See e.g. [23].) We could rewrite the delayed term x(t��(t; xt)) as a Stieltjes-integralof the form (1.2), since it contains only a point delay, but then the threshold rule would behidden in the de�nition of the function �, and more importantly, our conditions (A2) and (A5)are not satis�ed naturally in this case.We close this chapter by recalling that Cooke and Huang in [13] studied the linearizationof the autonomous state-dependent delay system of the form_x(t) = f �xt; Z 0�r0 d�(s)g�x(t+ s � �(xt))�� ; (3:64)where � : C ! [0; r1], r0 > 0, and r is such that r � r0 + r1. Note, that (3.64) includes alsothe autonomous versions of (3.62) and (3.63), but when �(s) has �nitely many jumps and anabsolutely continuous part, then (3.64) gives the following type of delayed term:mXi=1Aig�x(t� ri � �(xt))�+ Z 0�r0 H(s)g�x(t+ s � �(xt))�ds;



36which gives a di�erent type of delay dependences than that of given by (1.2) (in the autonomouscase). In Example 5.8 we show an equation which is not included in (3.64) but we can rewriteit in the form (3.1), and oppositely, there are equations can be written in the form (3.64) butnot in (3.1).



Chapter 4DIFFERENTIABILITY WRT PARAMETERSIn this chapter we study di�erentiability of solutions of IVP (3.1)-(3.2) with respect to (wrt)parameters of the equation. We shall consider three cases. First, we discuss di�erentiabilitywrt the initial function (Section 4.1), then we consider special cases, when the delay termin the equation, i.e., � (and hence � and �), and when the right-hand side of the equation,i.e., the function f , depend explicitly on a parameter c and d, respectively, and investigatedi�erentiability of solutions wrt these parameters, respectively. (See Sections 4.2 and 4.3.) InChapter 3 we considered � and f as parameters, but here we assume that only a \part" of� and f varies, which can be represented by vector parameters. See also the introduction toChapter 3 where we discussed how the initial time can be considered as a parameter of f .(Note, that these parameters could be elements of an in�nite dimensional space, the methodswe use can be applied for that case as well, like in Section 4.1, where the parameter (the initialfunction) is in�nite dimensional.) These assumptions simplify the discussion, and also includethe practically important applications.In order to make our presentation as clear as possible, we discuss these three cases sepa-rately, but we provide full details only in Section 4.1. The remaining two cases (Sections 4.2and 4.3) can be treated similarly (with of course some technical modi�cations), and we shallomit most of the proofs, since they are essentially the same as those in Section 4.1.Di�erentiability results wrt parameters, beside the obvious theoretical importance, havea natural application in the problem of identi�cation of unknown parameters of the equation(such as the initial function, some coe�cients in the equation, or for a constant delay equation,the delay itself). In this direction it is important to know if the solution is di�erentiable wrt theparameters in some sense, since many identi�cation methods require the use of optimizationtechniques, in which the knowledge of the derivative of the solution wrt the parameter isessential.The �rst problem one faces trying to obtain di�erentiability results is the di�erentiabilityof the delay term �(t;  ) of the equation. Clearly, to be able to prove di�erentiability ofthe solution, we need to assume some kind of smoothness of �(t;  ) wrt  . Since �(t;  ) =�(t;  ;  ), then we need to assume di�erentiability of �(t;  ; �) wrt  and � in some sense.The latter is relatively easy, since �(t;  ; �) is linear in �, therefore, it is di�erentiable (in everyspace) with derivative @�@� (t;  ; �)h= �(t;  ; h). It is easy to see that in order to have continuousdi�erentiability of � wrt �, we need to consider, e.g., the space W 1;1, since the inequalityj�(t;  ; h)� �(t; � ; h)j � L2jhjW 1;1 j � � jC ;(provided by (A5)), guarantees the continuous di�erentiability of �(t;  ; �) wrt � for � 2 W 1;1.This suggests the use of W 1;1 for the state-space of solutions, and as we have seen in Sec-tion 3.4, it is a natural choice, since the solution is unique for W 1;1 initial functions.37



38The di�culty with W 1;1 is that for  ; � 2 W 1;1, the function �(t;  ; �) is naturally acomposition of � and  (see e.g. Example 1.3), and therefore we need to guarantee the dif-ferentiability, or preferably, continuous di�erentiability of the composition of W 1;1-functions,which is in general impossible. But in the case when the two functions are C1 functions, thedi�erentiability follows immediately (in our Examples) by the Chain Rule. We have seen inSection 3.4 that the solution is C1 only for special initial functions, if ' 2 C1, and satis�es acertain boundary condition at 0 (see Lemma 3.21.) This is a strong assumption, but assumingit, we are able to prove the di�erentiability of solutions wrt parameters in the state-spaceW 1;1,which is a strong property. We shall discuss this special case in Sections 4.1.1, 4.2.1 and 4.3.1.(Note that in Sections 4.1.1 and 4.3.1 we can prove our results in the state-independent casewithout the restrictive condition on the initial function.) The method we use is a \classical"one, used to prove di�erentiability of the solution wrt parameters in ODEs (see e.g. [39]).Since in W 1;1 the assumption for di�erentiability is too strong, we shall explore di�erentspaces for the more general case, i.e., when the solution, (and the initial function) is a W 1;1function only.In [33], Hale and Ladeira investigated di�erentiability of solutions of the constant delayequation _x(t) = f(x(t); x(t� �))wrt to the delay, � . They showed using an extension of the Uniform Contraction Principle toquasi-Banach spaces (see also Theorem 2.23 in Chapter 2), and selectingW 1;1 as the state-spaceof solutions, that the map [0; r]! W 1;1� ; � 7! x(�; �)is di�erentiable. This result suggests that W 1;p could possible be used as the state-space forsolutions. Again, we recall that in Section 3.4 we have seen that W 1;p is an \ideal" state-space candidate for state-dependent equations, in the sense that the maps t 7! x(�; 
)t and
 7! x(�; 
)t are continuous and Lipschitz-continuous on it, respectively. The method usedin [33] is the following: transform the IVP into an equivalent integral equation, introducethe new variable y(t) = x(t) � ~'(t), and then reformulate the problem as �nding the �xedpoint of an operator, and obtain di�erentiability of the �xed point wrt parameters. (Note,that we followed this method in Section 3.1 to prove existence results.) The transformedintegral equation is (3.10)-(3.11), and the operator S(y; 
) is de�ned by (3.25) and (3.26). TheUniform Contraction Principle says that if S(y; 
) is a contraction in y uniformly in 
, and itis continuously di�erentiable wrt y and 
, then its unique �xed point, as a function of 
, isdi�erentiable wrt 
. If we select W 1;p� for the state-space for y, then we need the continuousdi�erentiability of S(y; 
) wrt y in W 1;p� . This requires the di�erentiability of �(t;  ) in \anLp-type of norm".In [10], Brokate and Colonius studied linearization of the equation_x(t) = f�t; x(t� �(t; x(t)))�; t 2 [0; �]:In particular, they investigated di�erentiability of the composition operatorA : � �X � W 1;1� �! Lp([0; �];Rn); (Ax)(t) � x(t� �(t; x(t))):



39They obtained di�erentiability of this map by selecting an appropriate domain �X. (See moredetails in Section 4.1.4.)To obtain continuous di�erentiability of the operator S(y; 
) in W 1;p for this point delayequation we would need the continuous di�erentiability of this composition map, but usingthe j � jW 1;p� -norm on the domain of the operator. It turns out, that the right choice for ourpurposes is \in between the j � jW 1;1� -norm and j � jW 1;p� -norm". We shall introduce a \productnorm" in Section 4.1.2. Let x 2 W 1;1� (since all solutions are W 1;1� functions, this should bethe space of the solutions), and decompose x as x = y + ~', (where '(t) = x(t) for t 2 [�r; 0]),and de�ne the norm of x byjxjXp� � �Z �0 j _y(u)jpdu�1=p + j'jW 1;1 ;and consider the normed linear space Xp� � (W 1;1� ; j�jXp�). Then this is a norm, which is weakerthan the j � jW 1;1� -norm, but stronger than the j � jW 1;p� norm (see Lemma 4.18). This norm isstill \strong enough" that the method used in [10] go through and provide di�erentiability ofthe composition mapB : �K � Xp��! Lp([0; �];Rn); (Bx)(t) � x(t� �(t; x(t))):On the other hand, j � jXp� is \weak enough" that using the di�erentiability of the operator Babove, we can obtain obtain di�erentiability of the operator S(y; 
) : Xp���! Xp�, and be ableto use a variation of the Uniform Contraction Principle (Theorem 4.14) to get di�erentiabilityof the �xed point (the solution of the IVP) wrt the parameter 
 in the j � jXp� -norm. Sincethis product norm is stronger than the j � jW 1;p� -norm, the result implies the di�erentiability ofsolutions in the latter norm as well. We shall follow this method in Section 4.1.3 with detaileddiscussion, and in Sections 4.2.2 and 4.3.2 without detailed proofs. We provide the necessarytechnical preliminaries in Section 4.1.2, and modifying the method of [10] for our case, showdi�erentiability of the composition operator associated with the delay terms of Examples 1.3and 1.4 in Section 4.1.4.We close this introduction by noting that di�erentiability of solutions of delay equations ofthe form _x(t) = f(t; xt)wrt parameters has been studied e.g., in [31], where it was shown di�erentiability of solution wrtinitial function and f , using C as the state-space of the solution, and the Uniform ContractionPrinciple. Di�erentiability of solutions of state-dependent delay equations wrt parameters (tothe best knowledge of this author) has not been studied in the literature yet.4.1 Di�erentiability of solutions wrt initial functionIn this section we study di�erentiability of solutions of IVP_x(t;') = f�t; x(t;'); �(t; x(�;')t)�; t 2 [0; T ]; (4.1)x(t;') = '(t); t 2 [�r; 0] (4.2)



40wrt initial function. We assume in this section, that f and � are �xed, satisfying assumptions(A1){(A5), and we consider the solution depending only on '. To emphasize the dependenceof the solution on the initial function, we use the notations x(t;') and x(�;')t for the value ofthe solution and for the solution segment function at t, respectively, corresponding to initialfunction '. Note that by Theorems 3.8 and 3.19, assumptions (A1){(A6) guarantee existence,uniqueness of solutions on an interval [0; �], and continuous dependence of solutions on ' for' 2 �, where (see also (3.46))� � �' 2 W 1;1 \ C : '(0) 2 
1; and Z 0�r ds�(s; 0; ')'(s) 2 
2� : (4:3)4.1.1 Special case, di�erentiability in W 1;1In this subsection we shall assume that either the equation is state-independent, i.e., �(s; t;  ),or equivalently, �(t;  ; �) is independent of  ; or in the state-dependent case the initial function' 2 M. In both cases we can assume that �(t;  ) is continuously di�erentiable wrt  (in thej � jW 1;1 norm) along the solution of the equation, (i.e., for each  = x(�;')t, t 2 [0; �]).This is obvious in the state-independent case, i.e., when �(t;  ; �) does not depend on  (seeCorollary 4.5). In the second case ' 2 M guarantees that the corresponding solution iscontinuously di�erentiable for t 2 [�r; �] (see Lemma 3.21), and therefore the correspondingsolution segment functions are C1 functions, hence we need the di�erentiability of �(t;  ) wrt for  2 C1. We shall show in Examples 4.1{4.3 that this is a reasonable assumption. In bothcases we can argue the di�erentiability of solutions in the j � jW 1;1 norm wrt initial functions.In fact, we shall need the following assumptions:(A7) f(t; x; y) has continuous partial derivatives wrt x and y on t 2 [0; T ], x 2 
1 andy 2 
2,(A8a) (i) �(t;  ; �) is locally Lipschitz-continuous in t as well, i.e., for every � > 0 andM > 0there exists a constant L2 = L2(�;M) such that for all � 2 W 1;1, t; �t 2 [0; �] and ; � 2 GC(M) \ 
3j�(t;  ; �)� �(�t; � ; �)j � L2j�jW 1;1�jt� �tj+ j � � jC�:(ii) For all t 2 [0; T ],  2 W 1;1 \ 
3 and � 2 C1 the function �(t;  ; �) is continuouslydi�erentiable wrt  , i.e., for each � 2 C1 the partial derivative @�@ (�; �; �) : �[0; T ]�
3 � [0; T ]�W 1;1�! L(W 1;1;Rn) is continuous.First we give conditions in our particular examples which yield (A8a). The functions�(t;  ; �) used in Examples 1.1 and 1.2 are independent of  , therefore (A8a) holds automati-cally in these Examples.Example 4.1 Let �(t;  ; �) = �(��(t;  ));as in Examples 1.3, 3.3 and 3.10. If we assume that



41(i) �(�; �) : �[0; T ]� 
3 � [0; T ]� C�! R is continuous,(ii) �(t;  ) is locally Lipschitz-continuous in t and  , i.e., for every � > 0,M > 0 there existsa constant L�(�;M) such thatj�(t;  )� �(�t; � )j � L�(�;M)�jt� �tj+ j � � jC�; for  ; � 2 GC(M) \ 
3; t; �t 2 [0; �];(iii) �(t; �) : �W 1;1 \ 
3 � W 1;1�! R is di�erentiable for all t 2 [0; T ],(iv) @�@ (�; �) : �[0; T ]� (W 1;1 \ 
3) � [0; T ]�W 1;1�! L(W 1;1;R) is continuous,then it follows from the chain rule that (A8a) (ii) holds, i.e., the function �(t; �; �) : �W 1;1 \
3 � W 1;1�! Rn is continuously di�erentiable for all t 2 [0; T ], � 2 C1, and@�@ (t;  ; �)h = � _�(��(t;  ))@�@ (t;  )h; h 2 W 1;1:(A8b) (i) follows from the Mean Value Theorem (Theorem 2.3) and (ii).Example 4.2 Consider a special case of Example 4.1, when �(t;  ) is de�ned through afunction, ��(t; x), as follows: �(t;  ) � ��(t;  (0)), i.e., we consider delayed terms of the form�(t;  ; �) = �(���(t;  (0))):Then, clearly, the conditions(i) ��(�; �) : [0; T ]� 
� ! Rn is continuous, where 
� � Rn is an open set,(ii) ��(t; x) is locally Lipschitz-continuous in t and x, i.e., for every � > 0, M > 0 there existsa constant L��(�;M) such thatj��(t; x)� ��(�t; �x)j � L�� (�;M)�jt� �tj+ jx� �xj�; for x; �x 2 GRn(M) \ 
3; t; �t 2 [0; �];(iii) ��(t; x) is continuously di�erentiable wrt x on t 2 [0; T ], x 2 
4imply conditions (i){(iv) of Example 4.1, and hence (A2), (A5) and (A8a) as well. (Here weused that the function g : W 1;1 ! Rn, g( ) �  (0) is continuously di�erentiable withderivative g0( )h = h(0).)Example 4.3 Let�(t;  ; �) = mXk=1Ak(t)�(��k(t;  )) + Z 0��0 G(s; t;  )�(s)ds;as in Examples 1.4, 3.4 and 3.11. Assume that for k = 1; 2; : : : ; m(i) �k(�; �) : �[0; T ]� 
3 � [0; T ]� C�! R is continuous,



42(ii) �k(t;  ) is locally Lipschitz-continuous in t and  , i.e., for every � > 0, M > 0 thereexists a constant L�k(�;M) such thatj�k(t;  )� �k(�t; � )j � L�k(�;M)�jt� �tj+ j � � jC�; for  ; � 2 GC(M); t; �t 2 [0; �];(iii) �k(t; �) : �W 1;1 \ 
3 � W 1;1�! R is di�erentiable for all t 2 [0; T ],(iv) @�k@ (�; �) : [0; T ]�W 1;1 ! L(W 1;1;R) is continuous,(v) the function G satis�es a Lipschitz-condition of the formkG(s; t;  )�G(s; �t; � )k � g(s)�jt� �tj+ j � � jC�;for s 2 [��0; 0], t; �t 2 [0; T ], and  ; � 2 
3, where g 2 L1([��0; 0]; R),(vi) G(s; t;  ) : �[��0; 0]� [0; T ]� 
3 � [��0; 0]� [0; T ]�W 1;1� ! Rn�n has continuouspartial derivative wrt  ,(vii) Ak(t) is continuous on [0; T ].Then it is easy to see that for � 2 C1 the function �(t;  ; �) is di�erentiable wrt  , and@�@ (t;  ; �)h = � mXk=1Ak(t) _�(��k(t;  ))@�k@ (t;  )h+ Z 0��0 �@G@ (s; t;  )h��(s) ds;therefore (A8a) (ii) is satis�ed. (A8a) (i) easily follows from (ii) and (v).We show, that (A8a) implies that �(t;  ) is di�erentiable wrt  for  2 C1. The function�(t;  ) is de�ned as �(t;  ) = �(t;  ;  ), therefore we have to investigate di�erentiability of�(t;  ; �) wrt  and �. The latter is easy, since �(t;  ; �) is linear in �. In particular, we havethe following result:Lemma 4.4 Let t 2 [0; T ] and  2 W 1;1 \ 
3 be �xed. Assume (A2) and (A8a) (i). Then(i) the function �(t;  ; �) :W 1;1 ! Rn is di�erentiable, and for all � 2 W 1;1@�@� (t;  ; �)h = �(t;  ; h); h 2 W 1;1;and moreover,(ii) for all �; h 2 W 1;1 �(t;  ; �+ h)� �(t;  ; �) = @�@� (t;  ; �)h;and(iii) the derivative, @�@� (t;  ; �) is continuous in all its variables (i.e., continuous as a function@�@� : �[0; T ]� 
3 �W 1;1 � [0; T ]�W 1;1 �W 1;1�! L(W 1;1;Rn)).



43Proof The identity�(t;  ; �+ h)� �(t;  ; �) = Z 0�r ds�(s; t;  )��(s) + h(s)�� Z 0�r ds�(s; t;  )�(s)= Z 0�r ds�(s; t;  )h(s)proves the �rst two statements of the lemma. To prove (iii), we �rst comment, that by part(i) the function @�@� (t;  ; �) is independent of �. Let �; h 2W 1;1, t; �t 2 [0; �],  ; � 2 GW 1;1 (M)for some � > 0 and M > 0, and let L2 = L2(�;M) be the constant from (A8a) (i). Then part(i) of this lemma and (A8a) (i) imply that����@�@� (t;  ; �)h� @�@� (�t; � ; �)h���� = j�(t;  ; h)� �(�t; � ; h)j� L2jhjW 1;1�jt� �tj+ j � � jC�;and hence it follows that



@�@� (t;  ; �)� @�@� (�t; � ; �)



L(W 1;1 ;Rn) � L2�jt� �tj+ j � � jW 1;1�;which proves (iii).Corollary 4.5 If �(t;  ; �) is independent of  , then @�@ (t;  ) exists and continuous on t 2[0; T ] and  2 W 1;1, and @�@ (t;  ) = @�@� (t;  ;  ) = �(t;  ; �).Remark 4.6 Note, that if in Example 4.3 there are no point delays, i.e., Ak(t) = 0 for all k =1; : : : ; m, then assumption (vi) on G implies that the corresponding �(t;  ; �) is continuouslydi�erentiable wrt  for t 2 [0; T ],  2 W 1;1 \ 
3 and � 2 W 1;1.Lemma 4.4 and (A8a) together with Lemmas 2.15 and 2.17 imply the di�erentiability of�(t;  ) wrt  2 C1.Lemma 4.7 Assume (A2), (A5) and (A8a). Then(i) the function �(t;  ) is di�erentiable wrt  for any t 2 [0; T ],  2 C1 \ 
3,(ii) for h 2 W 1;1 @�@ (t;  )h = @�@� (t;  ;  )h+ @�@ (t;  ;  )h;and(iii) the function @�@ (�; �) : �[0; T ]� 
3 � [0; T ]�W 1;1�! L(W 1;1;Rn) is continuous.



44Assume that either the equation is state-independent and ' 2 �, or in the state-dependentcase, ' 2 � \ M. Then in both cases @�@ (t; x(�;')t) is well-de�ned (by Corollary 4.5 andLemmas 3.21 and 4.7), moreover, it is a continuous function of t. For h 2 W 1;1 we considerthe linear time-dependent IVP_z(t; h) = @f@x�t; x(t;');�(t; x(�;')t)�z(t; h)+ @f@y �t; x(t;');�(t; x(�;')t)�@�@ (t; x(�;')t)z(�; h)t; t 2 [0; T ]; (4.4)z(t; h) = h(t); t 2 [�r; 0]; (4.5)then (assuming (A7) and (A8a)) the solution, z(�; h), of IVP (4.4)-(4.5) exists and unique on[0; T ], and it is linear in h.The next theorem shows that assumptions (A1){(A8a) imply that the function x(t; �) :W 1;1 ! Rn is di�erentiable for all t 2 [0; T ].Theorem 4.8 Let ('; �; f) 2 �1(T;
1;
2;
3) satisfy (A1){(A8a). Assume moreover thateither(1) equation (4.1) is state-independent, i.e., �(s; t;  ), or equivalently, �(t;  ; �) does notdepend on  ,or(2) in the state-dependent case ' 2 M.Then(i) the solution x(t;') of IVP (4.1)-(4.2) is di�erentiable wrt ' for all t 2 [0; �] and ' 2W 1;1,(ii) x(t;'+ h)� x(t;')jhjW 1;1 converges uniformly to @x@'(t;') on t 2 [0; �],(iii) the derivative is @x@'(t;')h = z(t; h), where z(t; h) is the solution of the linear IVP (4.4)-(4.5).Proof Fix ', � and f satisfying the conditions of the theorem, let � > 0 and � > 0 be thecorresponding constants from Theorem 3.20, let h 2 W 1;1, jhjW 1;1 < �, and let z(t; h) be thecorresponding solution of IVP (4.4)-(4.5). Considerjx(t;'+ h)� x(t;')� z(t; h)j= ����h(0) + Z t0 f�u; x(u;'+ h); �(u; x(�;'+ h)u)�� f�u; x(u;'); �(u; x(�;')u)�du� z(t; h)����� Z t0 ����f�u; x(u;'+ h); �(u; x(�;'+ h)u)�� f�u; x(u;'); �(u; x(�;')u)�� @f@x�u; x(u;');�(u; x(�;')u)�z(u; h)� @f@y�u; x(u;');�(u; x(�;')u)�@�@ (u; x(�;')u)z(�; h)u����du: (4.6)



45By assumption (A7) and Lemma 2.17, the function (x; y) 7! f(u; x; y) is continuously di�er-entiable for each �xed u 2 [0; T ], therefore the function,!1(u; �x; �y; x; y) � f(u; x; y)� f(u; �x; �y)� @f@x(u; �x; �y)(x� �x)� @f@y (u; �x; �y)(y � �y); (4:7)which is de�ned for u 2 [0; T ], x; �x 2 
1 and y; �y 2 
2, satis�es for all u 2 [0; T ] thatj!1(u; �x; �y; x; y)jjx� �xj+ jy � �yj ! 0; as x! �x; and y ! �y: (4:8)By assumptions (A2), (A5) and (A8a) the function!2(u; � ; ) � �(u;  )� �(u; � )� @�@ (u; � )( � � ) (4:9)is de�ned for u 2 [0; �], and for  ; � 2 W 1;1 \ 
3 or for  ; � 2 C1 \ 
3 in case (1) and (2) ofthe theorem, respectively; and for u 2 [0; �] it satis�esj!2(u; � ; )jj � � jW 1;1 ! 0; as j � � jW 1;1 ! 0: (4:10)Using these notations, and applying standard estimates we get from (4.6), thatjx(t;'+ h)� x(t;')� z(t; h)j� Z t0 ����@f@x�u; x(u;');�(u; x(�;')u)�hx(u;'+ h)� x(u;')� z(u; h)i+ @f@y �u; x(u;');�(u; x(�;')u)�h�(u; x(�;'+ h)u)� �(u; x(�;')u)� @�@ (u; x(�;')u)z(�; h)ui+ !1�u; x(u;');�(u; x(�;')u); x(u;'+ h);�(u; x(�;'+ h)u)�����du� Z t0 ����@f@x�u; x(u;');�(u; x(�;')u)�hx(u;'+ h)� x(u;')� z(u; h)i+ @f@y �u; x(u;');�(u; x(�;')u)�@�@ (u; x(�;')u)hx(�;'+ h)u � x(�;')u � z(�; h)ui+ @f@y �u; x(u;');�(u; x(�;')u)�!2�u; x(�;')u; x(�;'+ h)u�+ !1�u; x(u;');�(u; x(�;')u); x(u;'+ h);�(u; x(�;'+ h)u)�����du� Z t0 



@f@x�u; x(u;');�(u; x(�;')u)�



 ���x(u;'+ h)� x(u;')� z(u; h)���+ 



@f@y �u; x(u;');�(u; x(�;')u)�



 



@�@ (u; x(�;')u)



L(W 1;1 ;Rn)� ���x(�;'+ h)u � x(�;')u� z(�; h)u���C+ 



@f@y �u; x(u;');�(u; x(�;')u)�



 ���!2�u; x(�;')u; x(�;'+ h)u����+ ���!1�u; x(u;');�(u; x(�;')u); x(u;'+ h);�(u; x(�;'+ h)u)����du:



46Introduce the scalar functions	(u; h) � 1jhjW 1;1 max0�v�u���x(v;'+ h)� x(v;')� z(v; h)���;F (u) � 



@f@x�u; x(u;');�(u; x(�;')u)�



+ 



@f@y �u; x(u;');�(u; x(�;')u)�



 



@�@ (u; x(�;')u)



L(W 1;1 ;Rn) ;G(u; h) = 



@f@y �u; x(u;');�(u; x(�;')u)�



 1jhjW 1;1 ���!2�u; x(�;')u; x(�;'+ h)u����+ 1jhjW 1;1 ���!1�u; x(u;');�(u; x(�;')u); x(u;'+ h);�(u; x(�;'+ h)u)����:Then Lemma 2.14 implies that 	 satis�es the inequality	(t; h) � Z t0 F (u)	(u; h) +G(u; h) du� Z �0 G(u; h) du+ Z t0 F (u)	(u; h) du;which, by the Gronwall-Bellman inequality, yields that	(t; h) � Z �0 G(u; h) du exp�Z �0 F (u) du� ; t 2 [0; �]: (4:11)We shall show that Z �0 G(u; h) ds! 0; as jhjW 1;1 ! 0; (4:12)which in turn, combined with (4.11) yields that	(t; h)! 0; as jhjW 1;1 ! 0; uniformly in t 2 [0; �]; (4:13)i.e., statements (i){(iii) of the theorem are satis�ed. To prove (4.12), it is enough to show (bythe Lebesgue Dominant Convergence Theorem) that (i) G(u; h) ! 0 as jhjW 1;1 ! 0 for allu 2 [0; �], and (ii) G(u; h) is bounded on [0; �] for small h.(i) By Lemma 3.20 it follows that there exists a constant M1 such thatjx(�;'+ h)tjW 1;1 �M1; t 2 [0; �]; jhjW 1;1 < �: (4:14)Then (4.14) and (2.5) imply thatj�(t; x(�;')t)j � k�kM1; t 2 [0; �]:By assumption (A7) the partial derivatives @f@x and @f@y are continuous on the set A � [0; �]�GRn(M1)� GRn(k�kM1), therefore the constantM2 � max( sup(u;x;y)2A 



@f@x(u; x; y)



 ; sup(u;x;y)2A 



@f@y (u; x; y)



)



47is well-de�ned, and satis�es



@f@y �u; x(u;');�(u; x(�;')u)�



 �M2; u 2 [0; �]: (4:15)Therefore, in view of the de�nition of G(u; h), it is enough to show that for u 2 [0; �]1jhjW 1;1 ���!2�u; x(�;')u; x(�;'+ h)u����! 0; as jhjW 1;1 ! 0; (4:16)and 1jhjW 1;1 ���!1�u; x(u;');�(u; x(�;')u); x(u;'+ h);�(u; x(�;'+ h)u)����! 0; as jhjW 1;1 ! 0:(4:17)By Theorem 3.20 there exists a constant L3 such thatjx(�;'+ h)t � x(�;')tjW 1;1 � L3jhjW 1;1 ; t 2 [0; �]; jhjW 1;1 < �: (4:18)To prove (4.16), consider the following estimate (where we use simple manipulations and(4.18)). Let u 2 [0; �], jhjW 1;1 < �, then���!2�u; x(�;')u; x(�;'+ h)u����jhjW 1;1= jx(�;'+ h)u � x(�;')ujW 1;1jhjW 1;1 � ���!2�u; x(�;')u; x(�;'+ h)u����jx(�;'+ h)u � x(�;')ujW 1;1� L3 ���!2�u; x(�;')u; x(�;'+ h)u����jx(�;'+ h)u � x(�;')ujW 1;1 : (4.19)Note, that of course, the previous calculation is valid when the denominators, jhjW 1;1 andjx(�;'+h)u�x(�;')ujW 1;1 , are not equal to zero, but in the opposite case the de�nition of !2immediately implies that !2�u; x(�;')u; x(�;'+ h)u� = 0. From (4.19), using that by (4.18)for all u 2 [0; �] jx(�;'+ h)u � x(�;')ujW 1;1 ! 0; as jhjW 1;1 ! 0; (4:20)relation (4.10) implies (4.16). Next we prove (4.17). Let L2 = L2(�;M1) be the constant from(A5). Then estimates (4.14), (4.18) and Lemma 3.12 yield that for u 2 [0; �] and jhjW 1;1 < �1jhjW 1;1 ���!1�u; x(u;');�(u; x(�;')u); x(u;'+ h);�(u; x(�;'+ h)u)����= jx(u;'+ h)� x(u;')j+ j�(u; x(�;'+ h)u)� �(u; x(�;')u)jjhjW 1;1� ���!1�u; x(u;');�(u; x(�;')u); x(u;'+ h);�(u; x(�;'+ h)u)����jx(u;'+ h)� x(u;')j+ j�(u; x(�;'+ h)u)� �(u; x(�;')u)j� 0@L3 + (k�k+ L2jx(�;')ujW 1;1)���x(�;'+ h)u)� x(�;')u)���CjhjW 1;1 1A



48� ���!1�u; x(u;');�(u; x(�;')u); x(u;'+ h);�(u; x(�;'+ h)u)����jx(u;'+ h)� x(u;')j+ j�(u; x(�;'+ h)u)� �(u; x(�;')u)j� L3(1 + k�k+ L2M1)� ���!1�u; x(u;');�(u; x(�;')u); x(u;'+ h);�(u; x(�;'+ h)u)����jx(u;'+ h)� x(u;')j+ j�(u; x(�;'+ h)u)� �(u; x(�;')u)j : (4.21)(As above, we could and did assume that either jx(u;'+ h) � x(u;')j 6= 0 or j�(u; x(�;'+h)u)� �(u; x(�;')u)j 6= 0.) From this, using (4.18), the continuity of �, and relations (4.8) weget (4.17), and hence that G(u; h)! 0 as jhjW 1;1 ! 0.(ii) In view of inequalities (4.15), (4.21), and (4.19), we get the boundedness of G(u; h) onu 2 [0; �] for small h, if we show that the functionsj!1(u; �x; �y; x; y)jjx� �xj+ jy � �yj and j!2(u; � ; )jj � � jW 1;1are bounded for u 2 [0; �], x; �x 2 GRn(M1), y; �y 2 GRn(k�kM1), and  ; � 2 GW 1;1(M1),respectively. By the Mean Value Theorem, the de�nition of M2 and !1 yield the inequalityj!1(u; �x; �y; x; y)j � jf(u; x; y)� f(u; �x; �y)j+ ����@f@x(t; �x; �y)(x� �x)����+ ����@f@y (t; �x; �y)(y � �y)����� M2�jx� �xj+ jy � �yj�+M2jx� �xj+M2jy � �yj= 2M2�jx� �xj+ jy � �yj�; (4.22)which proves that the �rst expression is bounded. Let L2 = L2(�;M1) be the constant from(A5), then (A5), Lemma 3.12, the continuity of @�@ (�; � ) guaranteed by Lemma 4.4 (iii) (orCorollary 4.5 in case (1) of the theorem), and inequality (4.14) implyj!2(u; � ; )j � j�(u;  )� �(u; � )j+ ����@�@ (u; � )( � � )����� (k�k+ L2M1)j � � jC + 



@�@ (u; � )



L(W 1;1 ;Rn) j � � jW 1;1�  k�k+ L2M1 + maxu2[0;�]



@�@ (u; � )



L(W 1;1 ;Rn)! j � � jW 1;1 ;which �nishes the proof of the theorem.We recall that � is de�ned by (4.3). The theorem has the following corollary.Corollary 4.9 Assuming the conditions of Theorem 4.8, the function �� � W 1;1� ! C,' 7! x(�; ')t is di�erentiable for all t 2 [0; �].Using the relation j jLp � r1=pj jC, this result implies immediately the next corollary.



49Corollary 4.10 Assuming the conditions of Theorem 4.8, the function �� � W 1;1� ! Lp,' 7! x(�; ')t is di�erentiable for all t 2 [0; �], 1 � p �1.In the next theorem we study the di�erentiability of the map �� � W 1;1�! W 1;1; ' 7!x(�; ')t. In the state-independent case we can show that this map is di�erentiable, but inthe state-dependent case we can show only a weaker result, namely, for all t 2 [0; �] thedi�erentiability of the map �(�\M) � W 1;1�! W 1;1, ' 7! x(�;')t, when we consider therelative topology on its domain. (I.e., the derivative @@'x(�;')t 2 L(� \M; W 1;1)).Theorem 4.11 Assume that the conditions of Theorem 4.8 are satis�ed. Then the function�� � W 1;1�! W 1;1; ' 7! x(�;')tor the function �(�\M) � W 1;1�! W 1;1; ' 7! x(�;')tis di�erentiable for all t 2 [0; �], in case (1) (state-independent equation) and (2) (state-dependent equation) of the theorem, respectively.Proof Let ' 2 � or ' 2 � \M in case (1) or (2) of the theorem, respectively. In view ofCorollary 4.9, to obtain di�erentiability in W 1;1, we need to show thatess sups2[t�r;t]��� _x(s;'+ h)� _x(s;')� _z(s; h)���jhjW 1;1 ! 0; as jhjW 1;1 ! 0; (4:23)where t 2 [0; �], and h 2 W 1;1 if equation (4.1) is state-independent, and h 2 C1 such that'+ h 2 � \M if the equation is state-dependent.First note, that by initial conditions (4.2) and (4.5) we have thatx(t;'+ h)� x(t;')� z(t;') = 0; for t 2 [�r; 0];and each function, x(t;' + h), x(t;') and z(t; h) is a.e. di�erentiable for t 2 [�r; 0], hence_x(t;'+h)� _x(t;')� _z(t;') = 0 for a.e. t 2 [�r; 0]. For t 2 [0; �] each function is di�erentiable,and by (4.1) and (4.4) it follows thatj _x(t;'+ h)� _x(t;')� _z(t; h)j= ����f�t; x(t;'+ h); �(t; x(�;'+ h)t)�� f�t; x(t;'); �(t; x(�;')t)�� @f@x�t; x(t;');�(t; x(�;')t)�z(t; h)� @f@y�t; x(t;');�(t; x(�;')t)�@�@ (t; x(�;')t)z(�; h)t����:Using the notations of the proof of Theorem 4.8, and repeating the estimates we used in theproof we get thatj _x(t;'+ h)� _x(t;')� _z(t; h)���jhjW 1;1 � F (t)	(t; h) + G(t; h); t 2 [0; �]: (4:24)



50In view of (4.13), it is left to prove that: (i) the function F (t) is bounded on [0; �], and (ii)G(t; h)! 0, as jhjW 1;1 ! 0, uniformly on t 2 [0; �].To show (i), from the de�nition of F (t) and M2, and by Lemma 4.4 (ii) we can obtain thefollowing estimates:F (t) � M2 +M2 



@�@ (t; x(�;')t)



L(W 1;1 ;Rn)� M2 +M2 



@�@� (t; x(�;')t; x(�;')t)



L(W 1;1 ;Rn)+ M2 



 @�@ (t; x(�;')t; x(�;')t)



L(W 1;1 ;Rn) : (4.25)By Lemma 4.4 and (2.5) we have that����@�@� (t;  ; �)h���� = j�(t;  ; h)j� k�kjhjW 1;1 ;therefore 


@�@� 


L(W 1;1 ;Rn) is bounded by k�k, and hence (4.25) impliesF (t) �M2 +M2k�k+M2 



@�@ (t; x(�;')t; x(�;')t)



L(W 1;1 ;Rn) : (4:26)In case (1) of the theorem (i.e., when equation (4.1) is state-independent) we have that @�@ is identically zero. In case (2) using that t ! x(�;')t is continuous in the j � jW 1;1 norm andx(�;')t 2 C1 by Lemma 3.21, and @�@ (t;  ; �) is continuous for  ; � 2 C1, we get that the lastterm in the right hand side of inequality (4.26) is bounded for t 2 [0; �], therefore we haveshown (i).To get (ii), by the de�nition of G(t; h) and estimate (4.15), it is enough to show that���!1�t; x(t;');�(t; x(�;')t); x(t;'+ h);�(t; x(�;'+ h)t)����jx(t;'+ h)� x(t;')j+ j�(t; x(�;'+ h)t)� �(t; x(�;')t)j ! 0; uniformly on t 2 [0; �];(4:27)and ���!2�t; x(�;')t; x(�;'+ h)t����jx(�;'+ h)t � x(�;')tjW 1;1 ! 0; uniformly on t 2 [0; �]; (4:28)as jhjW 1;1 ! 0.By applying assumption (A7), Lemmas 2.16 and 2.17, the de�ning relation (4.7) impliesthatj!1(t; �x; �y; x; y)jjx� �xj+ jy � �yj � max� sup0<�<1 



@f@x�t; �x+ �(x� �x); �y + �(y � �y)�� @f@x�t; �x; �y�



 ;sup0<�<1 



@f@y �t; �x+ �(x� �x); �y + �(y � �y)�� @f@y �t; �x; �y�



�: (4.29)Let V1 � fx(t;') : t 2 [0; �]g, and V2 � f�(t; x(�;')t) : t 2 [0; �]g. Then V1 � 
1 andV2 � 
2 are compact subsets of Rn, since they are continuous images of the compact set [0; �].



51(For V2 we used that, by Lemma 2.10, t 7! x(�;')t is continuous as a map [0; �] ! C, and� : �[0; �]� 
3 � [0; �]� C�! Rn is continuous by (A2).) For i = 1; 2, letUi be an open set, such that �Ui compact, and Vi � Ui � �Ui � 
i: (4:30)Note, that such U1 and U2 clearly exist. Let� � minndist(V1;Rn n U1); dist(V2;Rn n U2)o;i.e., the smallest of the distances between Vi and the complement of Ui, i = 1; 2. Then � > 0,and if jx� �xj+ jy� �yj < � then �x+v(x� �x) 2 U1 and �y+v(y� �y) 2 U2 for all 0 < v < 1. Then(4.29) and the continuity, and hence the uniform continuity of @f@x and @f@y on the compact set[0; �]� �U1 � �U2 implies that for all �x 2 V1 and �y 2 V2j!1(t; �x; �y; x; y)jjx� �xj+ jy � �yj ! 0 as x! �x; y ! �y; uniformly in t 2 [0; �]; �x 2 V1 and �y 2 V2: (4:31)Estimate (4.18) and Lemma 3.12 imply thatjx(t;'+ h)� x(t;')j+ j�(t; x(�;'+ h)t)� �(t; x(�;')t)j� L3jhjW 1;1 + (k�k+ L2(�;M1)M1)L3jhjW 1;1 (4.32)< �for jhjW 1;1 < �(1 + k�k+ L2(�;M1)M1)L3 ;and hence for such h and t 2 [0; �] we have that x(t;'+ h) 2 U1 and �(t; x(�;'+ h)t) 2 U2.Estimate (4.32) yields thatjx(t;'+ h)� x(t;')j+ j�(t; x(�;'+ h)t)� �(t; x(�;')t)j ! 0; as jhjW 1;1 ! 0;therefore (4.31) yields (4.27).Next we concentrate on proving (4.28). The linearity of �(t;  ; �) in �, and Lemmas 4.4and 4.7 imply that!2(t; � ; ) = �(t;  )� �(t; � )� @�@ (t; � )( � � )= �(t;  ;  )� �(t; � ; � )� @�@� (t; � ; � )( � � )� @�@ (t; � ; � )( � � )= �(t;  ;  )� �(t; � ; � )� �(t; � ;  � � )� @�@ (t; � ; � )( � � )= �(t;  ;  � � )� �(t; � ;  � � )+ �(t;  ; � )� �(t; � ; � )� @�@ (t; � ; � )( � � ): (4.33)Since by (A5) it follows that for t 2 [0; �] and  ; � 2 GW 1;1(M1)j�(t;  ; � � )� �(t; � ;  � � )j � L2(�;M1)j � � jW 1;1 j � � jC ;



52we have that j�(t;  ;  � � )� �(t; � ;  � � )jj � � jW 1;1 ! 0; as  ! � ; (4:34)uniformly on t 2 [0; �], � 2 GW 1;1(M1). De�ne the function!3(t; � ; )� �(t;  ; � )� �(t; � ; � )� @�@ (t; � ; � )( � � ); (4:35)for t 2 [0; �],  ; � 2 W 1;1 \ 
3. To prove (4.28), in view of (4.33) and (4.34), we need toinsure thatj!3(t; x(�;')t; x(�;'+ h)t)jjx(�;'+ h)t � x(�;')tjW 1;1 ! 0; as h! 0; uniformly on t 2 [0; �]: (4:36)In case (1) of this theorem (i.e., if the delay is state-independent), (4.36) is automaticallysatis�ed, therefore we can assume in the remaining part of the proof case (2) of the assumptions,i.e., that the delay is state-dependent, and we restrict the initial functions to � \M.By Lemma 2.16 we get thatj!3(t; � ; )jj � � jW 1;1 � sup0<�<1 



@�@ (t; � + �( � � ); � )� @�@ (t; � ; � )



L(W 1;1 ;Rn) : (4:37)Unfortunately, for a compact set V in W 1;1, there is no U satisfying (4.30), hence theargument that was used to prove (4.27) does not work in this case. But our �nal goal is toprove (4.23), therefore instead of (4.36), in fact, it is enough to show that for hk 2 W 1;1 suchthat hk ! 0 as k !1 it follows thatj!3(t; x(�;')t; x(�;'+ hk)t)jjx(�;'+ hk)t � x(�;')tjW 1;1 ! 0; as k !1; uniformly in t 2 I: (4:38)Fix a sequence hk 2 W 1;1 such that jhkjW 1;1 < � and hk ! 0 as k !1.De�ne the setV � nx(�;')t+ ��x(�;'+ hk)t � x(�;')t� : t 2 I; � 2 [0; 1]; and k 2 No: (4:39)We show that V is compact subset of W 1;1. Clearly, V � W 1;1. Pick an arbitrary sequence,f jg, from V . Then for each  j there correspond tj 2 I , �j 2 [0; 1] and kj 2 N, such that j = x(�;')tj + �j�x(�;'+ hkj )tj � x(�;')tj�:We need to show, that it has a convergent subsequence with limit in V . Clearly, we can andtherefore do assume, in order to keep the notations simple, that tj ! �t 2 I and �j ! �� 2 [0; 1]as j ! 1. The following two cases can happen: either kj has a subsequence converging to1, or kj has a constant subsequence. Therefore, again, we can and do assume that hkj ! �h,where either �h = 0 or �h = hk for some k 2 N. We claim that j ! � � x(�;')�t+ ���x(�;'+ �h)�t � x(�;')�t�; as j !1:



53Note �rst, that � 2 V . Considerj j � � jW 1;1 � jx(�;')tj � x(�;')�tjW 1;1 + j�j � ��jjx(�;'+ �h)�t � x(�;')�tjW 1;1+ j�j j�jx(�;'+ hkj)tj � x(�;')tj � x(�;'+ �h)�t + x(�;')�tjW 1;1�� jx(�;')tj � x(�;')�tjW 1;1 + j�j � ��jjx(�;'+ �h)�t � x(�;')�tjW 1;1+ jx(�;'+ hkj )tj � x(�;'+ �h)tj jW 1;1+ jx(�;'+ �h)tj � x(�;'+ �h)�tjW 1;1 + jx(�;')tj � x(�;')�tjW 1;1� 2jx(�;')tj � x(�;')�tjW 1;1 + j�j � ��jjx(�;'+ �h)�t � x(�;')�tjW 1;1+ L3jhkj � �hjW 1;1 + jx(�;'+ �h)tj � x(�;'+ �h)�tjW 1;1! 0; as j !1;where we used j�j j � 1, (4.18), Lemma 3.21 and our assumptions. This completes the proofof compactness of V .Since @�@ (t;  ; �) is continuous, and hence uniformly continuous on the compact set I�V�V ,relations (4.18) and (4.37) imply (4.38).We have completed the proof of the theorem.Since j jW 1;p � (2r)1=pj jW 1;1 , the theorem implies immediately:Corollary 4.12 Assuming the conditions of Theorem 4.8, the function�� � W 1;1�! W 1;p; ' 7! x(�; ')t;or �(� \M) � W 1;1�! W 1;p; ' 7! x(�; ')t;is di�erentiable for all t 2 [0; �], 1 � p � 1 for case (1) or (2) of the theorem, respectively.Remark 4.13 Note, that if in Example 4.3 there are no point delays, i.e., Ak(t) = 0 for allk = 1; : : : ; m, then it follows from Remark 4.6 and the proofs of Theorems 4.8 and 4.11, thatthe corresponding solution, x(�;')t, is di�erentiable wrt ' in W 1;1 for all ' 2 �, i.e., theassumption ' 2 M is not needed.4.1.2 PreliminariesIn this subsection we formulate a weaker version of Theorem 2.23, and introduce some newspaces which will be essential to obtain our results in the next section.Theorem 4.14 Let Z be a normed space, (Y; j � j) is a quasi-Banach space wrt the norm k � k.Let W be a closed, convex subset of Y with non-empty interior, and V be an open subset of Z,and assume that S : W � V ! W satis�es:



54(i) S is a uniform j � j and k � k contraction, i.e., there exists 0 � � < 1 such thatjS(y; z)� S(�y; z)j � �jy � �yj; for y; �y 2 W; z 2 V;and kS(y; z)� S(�y; z)k � �ky � �yk; for y; �y 2 W; z 2 V:(ii) For each � > 0 there exists R > 0 such thatS�(G(Y;k�k)(R) \W )� (GZ(�)\ V )� � (G(Y;k�k)(R) \W ):(iii) For all y 2 W the function S(y; �) : �V � Z�! Y is continuous.Then for each z 2 V , there exists a unique �xed point g(z) of S(�; z) in W , which dependscontinuously on z. Moreover, if in addition(iv) S : �W � V � (W \ Y ) � Z� ! Y is continuously di�erentiable on W � V (i.e.,on the domain of S the relative topology generated by W is used when we talk aboutdi�erentiability, but by a derivative @S@y (y; z) we mean a bounded linear operator fromY ! Y ),then the map g : �V � Z�! Y is continuously di�erentiable.Proof The proof is essentially the same as that of Theorem 2.23 (see in [33]), and thereforeonly the main steps are presented here, and we point out the di�erence in the respectivearguments due to the fact that here di�erentiability is required in a weaker sense (in therelative topology on Y \W ).For a �xed z 2 V , assumption (ii) implies that there exists an R > 0 such thatS(�; z) : (G(Y;k�k)(R) \W )! (G(Y;k�k)(R) \W );and since G(Y;k�k)(R) is a complete subset of Y , the existence of a unique �xed point of S(�; z),g(z), follows. A standard argument (using (i) and (iii)) shows that g(�) : V ! Y is continuous.Assumption (i) yields that ���@S@y (y; z)���L(Y;Y ) � � and 


@S@y (y; z)


L((Y;k�k); (Y;k�k)) � � for all(y; z) 2 W � V , and therefore (by using a series of Lemmas in [33]), �I � @S@y (y; z)��1 2 ~L(Y )exists and continuous in (y; z). De�neM(z) � �I � @S@y (g(z); z)��1 @S@z (g(z); z):We shall show that g0(z) =M(z). Let 
 = 
(h) � g(z + h)� g(z). Then it is easy to see that
 = @S@y (g(z); z)
+ @S@z (g(z); z)h+�;where � � S(g(z) + 
; z+ h)� S(g(z); z)� @S@y (g(z); z)
� @S@z (g(z); z)h:



55By Lemmas 2.16 and 2.17, we have the following estimate for j�jj�j � sup0<�<1 ����@S@y (g(z) + �
; z + �h)� @S@y (g(z); z)����L(Y;Y ) j
j+ sup0<�<1 ����@S@z (g(z) + �
; z + �h)� @S@z (g(z); z)����L(Z;Y ) jhjZ :We �rst comment that g(z) 2 W , and g(z) + 
 = g(z + h) 2 W , and since W is convex,g(z) + �
 2 W for all 0 � � � 1. On the domain of S we use the relative topology de�nedby W , in which W itself is an open set, and hence Lemmas 2.16 and 2.17 are applicable forthis case. Then the assumed continuity of the partial derivatives on W �V yields the estimatej�j � "(j
j+ jhjZ), for " > 0 and for su�ciently small 
 and h. The remaining part of theproof is identical that of Theorem 2.23. In particular, it is possible to obtain an estimate ofthe form jg(z + h)� g(z)�M(z)hj < "(1 + k)1� � jhjZ ;which proves the statement. The details are omitted.We de�ne the space Yp� � ny 2W 1;1� : y(t) = 0 on [�r; 0]o;with corresponding normsjyjYp� � �Z �0 j _y(s)jp ds�1=p ; for 1 � p <1;and jyjY1� � ess sups2[0;�] j _y(s)j; for p =1;respectively. Note, that Yp� is the same set for all p, but it is equipped with di�erent norms.Clearly, Yp� is a normed linear space, and Y1� is a Banach-space, (since it is a closed subspaceof W 1;1� ).The following lemma contains some basic properties of these norms.Lemma 4.15 Let y 2 Yp�, 1 � p <1, and q is the conjugate to p, i.e., 1=p+ 1=q = 1. Thenthe following estimates hold:(i) jy(t)j � �1=qjyjYp�, for t 2 [�r; �], 1 � p <1,(ii) jy(t)j � �jyjY1� , for t 2 [�r; �],(iii) jytjC � �1=qjyjYp�, for t 2 [0; �], 1 � p <1,(iv) jytjC � �jyjY1� , for t 2 [0; �],(v) jyjYp� � �1=pjyjY1� , for 1 � p <1,(vi) jyjYp� � jyjW 1;p� � (�p + 1)1=pjyjYp�, i.e., j � jYp� is equivalent to the norm j � jW 1;p� on Yp�,for 1 � p <1,



56(vii) jyjY1� � jyjW 1;1� � maxf�; 1gjyjY1� , i.e., j � jY1� is equivalent to the norm j � jW 1;1� onY1� ,Proof By the absolute continuity of y 2 Yp� and y(0) = 0 it follows thaty(t) = Z t0 _y(s) ds; t 2 [0; �];and therefore the inequality jy(t)j � Z �0 j _y(s)j dsimplies (ii), and together with H�older's inequality, implies (i). Clearly, (i) implies (iii), and(ii) yields (iv). (v) follows directly from the de�nition of the norms, and (vi) and (vii) easilyfollow from (i) and (ii).For 1 � p <1, Yp� is not a Banach-space, but it is a quasi-Banach space wrt the j � jW 1;1�norm. (See Chapter 2 for the de�nition of quasi-Banach spaces.) Hale and Ladeira applied theextension of the Uniform Contraction Theorem (Theorem 2.23) for this space (with p = 1) in[33] to obtain their results.Lemma 4.16 Let 1 � p < 1, 0 < � < 1. Then the space Yp� is a quasi-Banach space wrtthe j � jY1� -norm.Proof The lemma follows from the next result, using �y = 0 and that the j � jY1� and j � jW 1;1�norms are equivalent by Lemma 4.15 (vii).Lemma 4.17 Let �y 2 W 1;1� , � > 0, 1 � p < 1. Then the set GW 1;1� (�y; �) \ Yp� is a closed,complete and convex subset of Yp�.Proof Obviously, GW 1;1� (�y; �) \ Yp� is convex. Let yk 2 GW 1;1� (�y; �) \ Yp� be a Cauchy-sequence in the j � jYp�-norm. By Lemma 4.15 (vi) the j � jYp� and j � jW 1;p� norms are equivalent,therefore fykg is a Cauchy-sequence in W 1;p� as well. Since W 1;p� is a Banach-space, there existsa function y 2 W 1;p� such that jyk � yjW 1;p� ! 0 as k ! 1, and therefore jyk � yjYp� ! 0 ask !1. Lemma 4.15 (i) yields thatjyk(t)� yl(t)j � �1=qjyk � yljYp� ;! 0; as k; l! 1;so fyk(t)g is a Cauchy-sequence for all t 2 [0; �], and hence fyk(t)g is pointwise convergentto y(t). We need to show that y 2 GW 1;1� (�y; �). Since jyk � �yjW 1;1� � �, it follows thatjyk � �yjC � �, and therefore by the pointwise convergence of yk to y we get that jy � �yjC � �.Suppose that y 62 GW 1;1� (�y; �), i.e., jy � �yjW 1;1� > �. Then the previous comment impliesthat ess sup0�u�� j _y(u) � _�y(u)j > � + " for some " > 0, and therefore the set A � fu : j _y(u) �_�y(u)j > � + "g has positive measure. Since ess sup0�u�� j _yk(u)� _�y(u)j � � for all k 2 N, and hencemeas(fu : j _yk(u)� _�y(u)j > �g) = 0, we have that the setB � [0; �] n 1[k=1nu : j _yk(u)� _�y(u)j > �o = nu : j _yk(u)� _�y(u)j � �; k 2 No:



57has measure �. We show that A \ B has positive measure. Suppose that meas(A \ B) = 0.Then we have that meas(A) = meas(A nB) +meas(A\ B)= meas(A nB)� meas([0; �] nB)= 0;which is a contradiction, hence meas(A\ B) > 0. Then elementary estimates imply thatjy � ykjYp� � 0@ ZA\B j _y(u)� _yk(u)jp du1A1=p� 0@ ZA\B �j _y(u)� _�y(u)j � j _�y(u)� _yk(u)j�p du1A1=p� "�meas(A\ B)�1=p> 0;which is a contradiction. Therefore y 2 GW 1;1� (�y; �), i.e., GW 1;1� (�y; �) \ Yp� is complete, andhence also closed in Yp�.Next we introduce a new norm on W 1;1� . Let x 2 W 1;1� . Then let'(s) � x(s); �r � s � 0; (4:40)and y(u) � ( 0; �r � u � 0;x(u)� x(0); 0 � u � �: (4:41)Then we have that x = y+ ~', and y 2 Yp�, ' 2 W 1;1, i.e., we can decompose W 1;1� as a directsum of Yp� and W 1;1. De�ne the projection operators according to (4.40) and (4.41) byPr' : W 1;1� ! W 1;1; (Pr' x)(s) � x(s); s 2 [�r; 0]; (4:42)and Pry : W 1;1� ! Yp�; (Pry x)(u) � ( 0; �r � u � 0;x(u)� x(0); 0 � u � �: (4:43)De�ne a \product norm" on W 1;1� byjxjXp� � jPry xjYp� + jPr' xjW 1;1 ; (4:44)and denote the corresponding normed linear space byXp� � �W 1;1� ; j � jXp��:Part (i) and (ii) of the following lemma shows that this \product" norm is stronger thanthe j � jW 1;p� -norm, and weaker than the j � jW 1;1� -norm on W 1;1� . The estimates (iii) and (iv)will be used later.



58Lemma 4.18 Let 1 � p < 1. There exist constants c1 > 0, c2 > 0, c3 > 0 and c4 > 0 suchthat for all x 2 W 1;1�(i) jxjW 1;p� � c1jxjXp�,(ii) jxjXp� � c2jxjW 1;1� ,(iii) jxjC� � c3jxjXp�.(iv) j _xjLp� � c4jxjXp�.Proof Let x = y + ~' be the direct sum decomposition of x de�ned by (4.40) and (4.41).Using the inequality (a+ b)p � 2p�1(ap + bp) and Lemma 4.15 (i) we getjxjpW 1;p� = Z 0�r j'(s)jp+ j _'(s)jp ds+ Z �0 jy(u) + '(0)jp+ j _y(u)jp du� 2rj'jpW 1;1 + 2p�1 Z �0 jy(u)jp du+ �2p�1j'(0)jp+ Z �0 j _y(u)jp du� (2p�1�+ 2r)j'jpW 1;1 + 2p�1�p=q+1jyjpYp� + jyjpYp�� maxn2p�1� + 2r; 2p�1�p + 1o�jyjpYp� + j'jpW 1;1�� maxn2p�1� + 2r; 2p�1�p + 1o2jxjpXp� ;which proves the �rst statement of the lemma with c1 = maxf(2p� + 4r)1=p; (2p�p + 2)1=pg.To show the second inequality, consider the elementary estimatesjxjXp� = �Z �0 j _y(u)jp du�1=p + j'jW 1;1� �1=pj _yjL1� + j'jW 1;1� (�1=p + 1)jxjW 1;1� ;therefore c2 = (�1=p + 1) in (ii).Consider (iii). Then by Lemma 4.15 (i) and (2.10) we getjxjC� � jyjC� + j ~'jC�� �1=qjyjYp� + j'jW 1;1� maxf�1=q; 1gjxjXp� ;therefore (iii) is satis�ed with c3 = maxf�1=q; 1g.To prove (iv), considerj _xjLp� = �Z ��r j _y(u) + _~'(u)jp du�1=p� �Z �0 j _y(u)jp du�1=p + �Z 0�r j _'(u)jp du�1=p� jyjYp� + r1=pj'jW 1;1� maxfr1=p; 1gjxjXp� : (4.45)Therefore (iv) holds with c4 = maxfr1=p; 1g.This completes the proof of the lemma.



594.1.3 General case, di�erentiability in W 1;pIn this subsection we study the general case of di�erentiability of solutions of IVP (4.1)-(4.2),i.e., when (4.1) is state-dependent, and there is no restriction on the initial functions, they arearbitrary W 1;1-functions.By Lemma 3.7, IVP (4.1)-(4.2) is equivalent to the integral equationy(t)=8<: 0; t 2 [�r; 0]Z t0 f�u; y(u) + ~'(u); �(u; yu + ~'u)�du; t 2 [0; T ]; (4:46)where we have used the transformation y(t) � x(t)� ~'(t).It follows from the proof of Theorem 3.8 that the solution of IVP (4.1)-(4.2) is the �xedpoint of the operatorS(y; ')(t) = 8<: 0; t 2 [�r; 0]Z t0 f�u; y(u) + ~'(u); �(u; yu + ~'u)�du; t 2 [0; T ]: (4:47)In the proof of Theorem 3.8, S was considered as an operatorS : �(GC�(�)� GC( �'; �) � C� � C�! C�(with appropriate � > 0, � > 0 and � > 0), whereGC( �'; �) � �' 2 C : '(0) 2 
1; and Z 0�r ds�(s; 0; ')'(s) 2 
2� :(See (3.9) and (3.25).) It follows from Theorem 3.19 that the solution of IVP (4.1)-(4.2) isunique if ' 2 W 1;1, and Lemma 3.21 implies that the solution is in fact a W 1;1� function.Therefore in this section we shall consider S as an operatorS : �GYp��� ���� GW 1;1( �'; �) � Yp�� �W 1;1�! Yp��; (4:48)where �' 2 � (see (4.3)) is �xed, and the constants �, ��, �� > 0 are speci�ed by the followinglemma.Note, that in the proof of the next lemma, and in some later occasions in the manuscript,we shall need to restrict a function originally de�ned on an interval [�r; ��], e.g., y 2W 1;1�� , toa smaller interval, [�r; ��], �� < ��. Then, of course, the restriction of the function y to [�r; ��]belongs to W 1;1�� , and to keep the notations simple, we shall simply write y 2 W 1;1�� or jyjW 1;1��instead of introducing a new notation for the restriction of y to [�r; ��].Lemma 4.19 Let 1 � p < 1, �' 2 � and R > 0. Then there exist � > 0, �� > 0 and �� > 0such that GW 1;1 ( �'; �) � �, and the operator S de�ned by (4.47) satis�es(i) S : GYp��� ���� GW 1;1( �'; �)! GYp������,



60(ii) S is a uniform contraction on GYp������\ GW 1;1�� (R) both in j � jYp�� and j � jY1�� norms, i.e.,there exists 0 � � < 1 such that for all ' 2 GW 1;1 ( �'; �), y; �y 2 GYp������ \ GW 1;1�� (R)jS(y; ')� S(�y; ')jY1�� � �jy � �yjY1�� ;and jS(y; ')� S(�y; ')jYp�� � �jy � �yjYp�� :Proof (i) Let � > 0, � > 0 and � > 0 be the constants from the proof of Theorem 3.8, i.e.,such that GC( �'; �) � �0, (and hence GW 1;1 ( �'; �) � � as well), and if ' 2 GC( �'; �), y 2 GC(�)then S(y; ') is well-de�ned. Let�� � min��; �kfk� and �� � (��)1=pkfk:We shall show that S(y; ') is well-de�ned for ' 2 GW 1;1( �'; �) and y 2 GYp�� � ���. Let y 2GYp�� � ��� and suppose that there exists �t 2 [0; ��] such that jy(�t)j > �. Then by Lemma 4.15 (i)and (v), the following inequalities hold:� < jy(�t)j � (��)1=qjyjYp�� � (��)1=q+1=pkfk � ��kfk � �;which is a contradiction, therefore y 2 GC������, and hence S(y; ') is well-de�ned on GYp�� � ����GW 1;1( �'; �), and therefore so is on GYp��� ��� � GW 1;1 ( �'; �) for all 0 < �� � ��. Finally, theinequality jS(y; ')jYp�� � (��)1=pkfk = ��completes the proof of (i).(ii) We shall select 0 < �� � �� such that (ii) is satis�ed. Let y; �y 2 GYp�� ���� \ GW 1;1�� � ���.Then for ' 2 GW 1;1( �'; �) it follows that jyt+ ~'tjW 1;1 � jytjW 1;1 + j'jW 1;1 � R+ j �'jW 1;1 + �for t 2 [0; ��], and therefore by (2.5) we have that j�(t; yt + ~'t)j � k�k�(R + j �'jW 1;1 + �).Let M � maxf1; k�kg(R+ j �'jW 1;1 + �), L1 = L1(��;M) be the constant from (A4), L2 =L2(��;M) be the constant from (A5). Then (A4), Lemma 3.12 and Lemma 4.15 (ii) and (iv)yield that for 0 < �� � ��jS(y; ')� S(�y; ')jY1��= ess sup0�u��� ���f(u; y(u) + ~'(u);�(u; yu+ ~'u))� f(u; �y(u) + ~'(u);�(u; �yu+ ~'u))���� L1ess sup0�u��� �jy(u)� �y(u)j+ j�(u; yu + ~'u)� �(u; �yu + ~'u)j�� L1��jy � �yjY1�� + L1(k�k+ L2M) sup0�u�� jyu � �yujC� L1��(1 + k�k+ L2M)jy � �yjY1�� :Similarly, in Yp�� we have thatjS(y; ')� S(�y; ')jpYp��= Z ��0 ���f(u; y(u) + ~'(u);�(u; yu+ ~'u))� f(u; �y(u) + ~'(u);�(u; �yu+ ~'u))���p ds



61� Lp1 Z ��0 �jy(u)� �y(u)j+ j�(u; yu + ~'u)� �(u; �yu + ~'u)j�p ds� Lp1 Z ��0 �(��)1=qjy � �yjYp�� + (k�k+ L2M) sup0�u��� jyu � �yujC�p ds� Lp1(��)p(1 + k�k+ L2M)pjy � �yjpYp�� :Therefore, select 0 < �� � �� such that �� < 1=(L1(1 + k�k+ L2M)), then (ii) is satis�ed.Remark 4.20 Note, that �� depends only on �, �, kfk, k�k, R and p, but does not dependon the initial function. The constant � is the same as in the proof of Theorem 3.8, it does notdepend on R and p.Lemma 4.19 provides the framework for applying Theorem 4.14 to discuss di�erentiabilityof the �xed point of S(�; '), i.e., solutions of IVP (4.1)-(4.2) wrt the initial function. Thistheorem assumes that S has continuous partial derivatives on its domain, for which as one cansee, it is necessary to have some kind of continuous di�erentiability of �(t;  ) wrt  . It turnsout, that we need to have the di�erentiability of the following composition operator.Fix 1 � p < 1 and let K be an open subset of W 1;1� . De�ne the following compositionoperator corresponding to �(�; �).B� : �K � Xp��! Lp([0; �];Rn); B�(x)(t) � �(t; xt); t 2 [0; �]: (4:49)We replace assumption (A8a) of Section 4.1.1 by the following hypothesis:(A8b) the operator B� de�ned by (4.49) is continuously di�erentiable on K.Remark 4.21 For < �� < � we introduce K�� as the set of restriction of the functions x 2 Kto [�r; ��], and consider the composition operatorB�;�� : �K�� � Xp���! Lp([0; ��];Rn); B�;��(x)(t) � �(t; xt); t 2 [0; ��]:Then, clearly, assumption (A8b) implies that B�;�� is continuously di�erentiable on its domain.Later, to keep the notation simple, we freely use B� and K instead of B�;�� and K��, respectively,so if a function x is de�ned on [�r; ��], and we write x 2 K, then we mean that x 2 K��.Note, that in Section 4.1.4 we shall present conditions implying (A8b) for the compositionmap corresponding to Examples 1.3 and 1.4.The following lemma shows that assumption (A8b) yields the existence of continuous partialderivatives of S(y; ') if we restrict y to a certain subset of its domain, and the derivative istaken in the restricted space (in relative topology).



62Lemma 4.22 Let �' 2 �, 1 � p < 1 be �xed, and R > 0 given, and assume (A1){(A7) and(A8b). Let �, ��, �� be the constants from Lemma 4.19, i.e., such that the operator S de�nedby (4.47) satis�es S : GYp��� ���� GW 1;1( �'; �)! GYp������;and it is a uniform contraction on GYp��� ��� \ GW 1;1�� (R). Assume that there exists W � Yp��such that(i) W � (GYp��� ��� \ GW 1;1�� (R)),(ii) for y 2 W and ' 2 GW 1;1 ( �'; �) it follows that y + ~' 2 K.Then the operatorS(y; ') : �W �GW 1;1 ( �'; �) � (W \ Yp��)�W 1;1�! Yp��has continuous partial derivatives wrt y and ' on its domain, and for y 2 W, ' 2 GW 1;1( �'; �),h 2 Yp�� we have that�@S@y (y; ')h� (t)= 8>>>><>>>>: 0; t 2 [�r; 0];Z t0 @f@x�u; y(u) + ~'(u);�(u; yu+ ~'u)�h(u)+ @f@y �u; y(u) + ~'(u);�(u; yu+ ~'u)��@B�@x (y + ~')h�(u) du; t 2 [0; ��];(4.50)and for y 2 W, ' 2 GW 1;1 ( �'; �), h 2 W 1;1 it follows that�@S@'(y; ')h� (t)= 8>>>><>>>>: 0; t 2 [�r; 0];Z t0 @f@x�u; y(u) + ~'(u);�(u; yu+ ~'u)�h(0)+ @f@y �u; y(u) + ~'(u);�(u; yu+ ~'u)��@B�@x (y + ~')~h�(u) du: t 2 [0; ��]:(4.51)Note that we consider di�erentiability of S(y; ') when y is restricted to W , i.e., we use arelative topology on Yp�� de�ned by W , and @S@y (y; ')h is de�ned for all h 2 Yp��.Proof Let y 2 W , ' 2 GW 1;1( �'; �), and h 2 Yp��. We show, that the operator @S@y de�ned by(4.50) is, in fact, the partial derivative of S wrt y. Clearly, @S@y is a linear operator. We needto show, that it is bounded.Since y 2 Yp��, it follows that y 2 W 1;1�� as well, and hence if we de�ne M3 = M3(y; ') �jyjW 1;1�� + j'jW 1;1 then jyt + ~'tjW 1;1 �M3; for t 2 [0; ��]; (4:52)and thus by (2.5) it follows thatj�(t; yt+ ~'t)j � k�kM3; t 2 [0; ��]: (4:53)



63Therefore if we de�ne the compact setA � [0; ��]� GRn(M3)� GRn(k�kM3) (4:54)and the constant M4 � max( sup(t;x;y)2A



@f@x(t; x; y)



 ; sup(t;x;y)2A



@f@y (t; x; y)



) ; (4:55)then M4 <1 by (A7), and it satis�es



@f@x�t; y(t) + ~'(t);�(t; yt+ ~'t)�



 �M4; t 2 [0; ��]; (4:56)and 



@f@y �t; y(t) + ~'(t);�(t; yt+ ~'t)�



 �M4; t 2 [0; ��]: (4:57)Lemma 4.15 (i), and relation 1=p+ 1=q = 1 imply that�Z ��0 jh(u)jp du�1=p � �Z ��0 (��)p=qjhjpYp�� du�1=p� ��jhjYp�� : (4.58)Estimates (4.56), (4.57), (4.58), the de�nition of @S@y , assumption (A8b), and triangle inequalityyield����@S@y (y; ')h����Yp��� �Z ��0 ����@f@x�u; y(u) + ~'(u);�(u; yu+ ~'u)�h(u)����p du�1=p+ �Z ��0 ����@f@y �u; y(u) + ~'(u);�(u; yu+ ~'u)��@B�@x (y + ~')h�(u)����p du�1=p� M4 �Z ��0 jh(u)jp du�1=p +M4 ����@B�@x (y + ~')h����Lp([0;��];Rn)� M4 ��jhjYp�� +M4 



@B�@x (y + ~')



L(Xp��;Lp([0;��];Rn)) jhjYp�� ; (4.59)which shows the boundedness of @S@y (y; ').Next we show that it is the derivative of S(y; ') wrt y. Consider����S(y + h; ')� S(y; ')� @S@y (y; ')h����Yp��= �Z ��0 ����f�u; y(u) + ~'(u) + h(u);�(u; yu+ hu + ~'u)�� f�u; y(u) + ~'(u);�(u; yu+ ~'u)�� @f@x�u; y(u) + ~'(u);�(u; yu+ ~'u)�h(u)� @f@y �u; y(u) + ~'(u);�(u; yu+ ~'u)��@B�@x (y + ~')h�(u)����p du�1=p: (4.60)



64Introduce !4(t; �x; x) � �(t; xt)� �(t; �xt)� �@B�@x (�x)(x� �x)�(t) (4:61)for t 2 [0; ��], x; �x 2 Xp��, �x 2 K. Then it follows from (A8b) that1jx� �xjXp�� �Z ��0 j!4(t; �x; x)jpdt�1=p ! 0; as jx� �xjXp�� ! 0: (4:62)By our assumption, y+ ~' 2 K, hence the de�nition of !1 (de�ned by (4.7)), !4, relation (4.60)yields that����S(y + h; ')� S(y; ')� @S@y (y; ')h����Yp��� �Z ��0 ���!1(u; y(u) + ~'(u);�(u; yu+ ~'u); y(u) + h(u) + ~'(u);�(u; yu+ hu + ~'u))+ @f@y �u; y(u) + ~'(u);�(u; yu+ ~'u)�!4(u; y+ ~'; y + h + ~')����pdu�1=p� �Z ��0 ���!1(u; y(u) + ~'(u);�(u; yu+ ~'u); y(u) + h(u) + ~'(u);�(u; yu+ hu + ~'u))���pdu�1=p+ �Z ��0 ����@f@y �u; y(u) + ~'(u);�(u; yu+ ~'u)�!4(u; y + ~'; y + h+ ~')����pdu�1=p: (4.63)By using (4.57), estimate (4.63) implies that1jhjYp�� ����S(y + h; ')� S(y; ')� @S@y (y; ')h����Yp���  Z ��0 �����!1(u; y(u) + ~'(u);�(u; yu+ ~'u); y(u) + h(u) + ~'(u);�(u; yu+ hu + ~'u))jhjYp�� �����pdu!1=p+ M4  Z ��0 �����!4(u; y + ~'; y + h+ ~')jhjYp�� �����p du!1=p : (4.64)We show �rst that j!1(�; �; �; �)j=jhjYp�� in (4.64) converges to zero pointwise as jhjYp�� ! 0. By(4.8), it is enough to show that for all u 2 [0; ��] it follows that y(u)+h(u)+ ~'(u)! y(u)+ ~'(u)and �(u; yu + hu + ~'u) ! �(u; yu + ~'u) as jhjYp�� ! 0. The �rst relation follows from theinequality jh(u)j � ��1=qjhjYp�� (guaranteed by Lemma 4.15 (i)). Let R1 � R+ j �'jW 1;1 + �. Forthe second relation, by using Lemma 3.12 with L2 = L2(�;M3 + (��)1=q), assumption (ii) ofthe theorem and Lemma 4.15 (i), we get for jhjYp�� � 1 thatj�(u; yu + hu + ~'u)� �(u; yu + ~'u)j � (k�k+ L2jyu + ~'ujW 1;1)jhujC� (k�k+ L2R1)��1=qjhjYp��! 0; as jhjYp�� ! 0:Next we show that j!1(�; �; �; �)j=jhjYp�� is bounded on [0; ��]. As in the proof of (4.22), it followsfrom the Mean Value Theorem and the de�nition ofM4 and the previous estimates for jhjYp�� � 1



65that j!1(u; y(u) + ~'(u);�(u; yu+ ~'u); y(u) + h(u) + ~'(u);�(u; yu+ hu + ~'u))j� 2M4(jh(u)j+ j�(u; yu + hu + ~'u)� �(u; yu + ~'u)j)� 2M4��1=q(1 + k�k+ L2R1)jhjYp�� :Therefore the Lebesgue Dominant Theorem yields that the �rst term in (4.64) goes to zero asjhjYp�� ! 0. So does the second term by (4.62), therefore we have proved (4.50).Next we show that @S@y (y; ') is continuous. Let ' 2 GW 1;1 ( �'; �) and y 2 W , and selectsequences 'k 2 GW 1;1 ( �'; �) and yk 2 W such that j'k � 'jW 1;1 ! 0 and jyk � yjYp�� ! 0 ask !1. Let h 2 Yp��. By (4.29) and Lemma 4.4 (ii) we have that����@S@y (yk; 'k)h� @S@y (y; ')h����Yp��= �Z ��0 ����@f@x(u; yk(u) + ~'k(u);�(u; yku+ ~'ku)�h(u)+ @f@y �u; yk(u) + ~'k(u);�(u; yku + ~'ku)��@B�@x (yk + ~'k)h�(u)� @f@x(u; y(u) + ~'(u);�(u; yu+ ~'u)�h(u)� @f@y �u; y(u) + ~'(u);�(u; yu+ ~'u)��@B�@x (y + ~')h�(u)����p du�1=p� �Z ��0 



@f@x(u; yk(u) + ~'k(u);�(u; yku+ ~'ku)�� @f@x(u; y(u) + ~'(u);�(u; yu+ ~'u)�



pjh(u)jp du�1=p+ �Z ��0 



@f@y �u; yk(u) + ~'k(u);�(u; yku+ ~'ku)�� @f@y (u; y(u) + ~'(u);�(u; yu+ ~'u)�



p�����@B�@x (y + ~')h�(u)����p du�1=p+ �Z ��0 



@f@y (u; yk(u) + ~'k(u);�(u; yku+ ~'ku)�



p� �����@B�@x (yk + ~'k)h� @B�@x (y + ~')h�(u)����p du�1=p:Therefore, using the de�nition of M4, (4.58), we get



@S@y (yk; 'k)� @S@y (y; ')



L(Yp��;Yp��)� �� sup0�u���



@f@x(u; yk(u) + ~'k(u);�(u; yku+ ~'ku)�� @f@x(u; y(u) + ~'(u);�(u; yu+ ~'u)�



+ sup0�u���



@f@y �u; yk(u) + ~'k(u);�(u; yku+ ~'ku)�� @f@y (u; y(u) + ~'(u);�(u; yu+ ~'u)�







@B�@x (y + ~')



L(Xp��;Lp([0;��];Rn))



66+ M4



@B�@x (yk + ~'k)� @B�@x (y + ~')



L(Xp��;Lp([0;��];Rn)): (4.65)Lemma 4.15 (i) and (2.10) imply thatjyk(u) + ~'k(u)� y(u)� ~'(u)j � jyk(u)� y(u)j+ j ~'k(u)� ~'(u)j� ��1=qjyk � yjYp�� + j'k � 'jW 1;1! 0; as k !1; (4.66)and since yk 2 W , and 'k 2 GW 1;1 ( �'; �), by the de�nition of M3, assumption (ii) of thetheorem if follows for u 2 [0; ��] thatjyku � yu + 'ku � 'ujC � jy + ~'jC + jykujC + j'jC + j'k � 'jC� M3 +R+M3 + �;and therefore Lemma 4.15 (iii) and Lemma 3.12 with L2 = L2(��; 2M3 +R+ �) imply thatj�(u; yku + ~'ku)� �(u; yu + ~'u)j � (k�k+ L2jyu + ~'ujW 1;1)(jyku � yujC + j ~'ku � ~'ujC�� (k�k+ L2M3)�(��)1=qjyk � yjYp�� + j'k � 'jW 1;1�! 0; as k! 1: (4.67)Then (4.66), (4.67) and (4.31) (by an argument similar to the proof of (4.27)) yield that the�rst and second terms in the right hand side of (4.65) go to zero as k ! 1. So does thethird term, since by (A8b), @B�@x is continuous on K (in the k � kL(Xp��;Lp([0;��];Rn ))-norm). Thiscompletes the proof of continuity of @S@y .The proof of (4.51) is similar. Clearly, @S@' is linear, and similarly to (4.59), we can get����@S@'(y; ')h����Yp�� � M4(��)1=pjhjW 1;1 +M4 



@B�@x (y + ~')



L(Xp��;Lp([0;��];Rn)) jhjW 1;1 ;which implies the boundedness of @S@'(y; ').Let h 2 W 1;1, then using the de�nitions of !1 and !4, estimates (4.57) and (4.51), we get1jhjW 1;1 ����S(y; '+ h)� S(y; ')� @S@'(y; ')h����Yp���  Z ��0 �����!1(u; y(u) + ~'(u);�(u; yu+ ~'u); y(u) + ~'(u) + ~h(u);�(u; yu+ ~'u + ~hu))jhjW 1;1 �����pdu!1=p+ M4 Z ��0 �����!4(u; y + ~'; y + ~'+ ~h)jhjW 1;1 �����p du!1=p : (4.68)Lemma 3.12 yields that for jhjW 1;1 < ��j~h(t)j+ j�(t; yt + ~'t + ~ht)� �(t; yt + ~'t)j � jhjC + (k�k+ L2(��;M3 + ��)M3)jhjC! 0; as jhjW 1;1 ! 0; (4.69)



67therefore j!1(�; �; �; �)j=jhjW 1;1 converges to zero pointwise as jhjW 1;1 ! 0, and since it is clearlybounded, the Lebesgue Dominant Convergent Theorem implies that the �rst term in the righthand side of (4.68) goes to zero as jhjW 1;1 ! 0. Sincej~hjXp�� = jhjW 1;1 ; (4:70)(4.70) and (4.62) yield that�R ��0 j!4(t; y + ~'; y + ~'+ ~h)jpdt�1=pjhjW 1;1 = �R ��0 j!4(t; y + ~'; y + ~'+ ~h)jpdt�1=pj~hjXp��! 0; as jhjW 1;1 ! 0; (4.71)therefore @S@' de�ned by (4.51) is really the partial derivative of S wrt '.Finally, we show that @S@' is continuous. Let ' 2 GW 1;1 ( �'; �) and y 2 W , and selectsequences 'k 2 GW 1;1 ( �'; �) and yk 2 W such that j'k � 'jW 1;1 ! 0 and jyk � yjYp�� ! 0 ask !1. Similarly to (4.65) we can show that



@S@'(yk; 'k)� @S@'(y; ')



L(W 1;1 ;Yp��)� ��1=p sup0�u���



@f@x�u; yk(u) + ~'k(u);�(u; yku+ ~'ku)�� @f@x�u; y(u) + ~'(u);�(u; yu+ ~'u)�



+ sup0�u���



@f@y�u; yk(u) + ~'k(u);�(u; yku+ ~'ku)�� @f@y �u; y(u) + ~'(u);�(u; yu+ ~'u)�







@B�@x (y + ~')



L(Xp��;Lp([0;��];Rn))+ M4



@B�@x (yk + ~'k)� @B�@x (y + ~')



L(Xp��;Lp([0;��];Rn)):which implies the continuity of @S@' , since it is essentially the same as (4.65).This completes the proof of the lemma.Theorem 4.23 Assume that �', � and f satisfy (A1){(A7), (A8b). Then there exist � >0, � > 0 such that IVP (4.1)-(4.2) has unique solution, x(t;'), on [0; �] corresponding toany initial function ' 2 GW 1;1 (�'; �). Assume that x(�; �') 2 K, then x(t;') is continuouslydi�erentiable wrt ', as a function�GW 1;1( �'; �) � W 1;1�! Xp�; ' 7! x(�;'):Proof The existence of � > 0 and �1 > 0, such that the solution of IVP (4.1)-(4.2) existsand is unique on [0; �] for ' 2 GW 1;1 � �'; �1� follows from Theorems 3.8 and 3.14.Since x(�; �') 2 K, and K is open in W 1;1� , there exists �2 > 0 such thatGW 1;1� �x(�; �'); �2� � K: (4:72)



68We shall use the notation �y � Pry x(�; �'), i.e., x(�; �') = �y + ~�'. By (4.72) we have thatif y 2 GW 1;1� ��y; �2=2�; ' 2 GW 1;1� �'; �2=2� then y + ~' 2 K; (4:73)since jy + ~'� �y � �'jW 1;1� � �2.Let R � maxnjx(�; �')jW 1;1� + �2=2; kfko. Then by Lemma 4.19 there exist �3 > 0, �� > 0and �� > 0 such that �� � �, and the operator S de�ned by (4.47) satis�esS : GYp��� ���� GW 1;1� �'; �3�! GYp��� ���;and S is uniform contraction on GYp������ \ GW 1;1� (R). Let � � minf�1; �2=2; �3g, and considerS as an operator: S : W �GW 1;1 ( �'; �)! GYp������;where W � GYp��� ��� \ GW 1;1�� ��y; �2=2�:Then W � (GYp������ \ GW 1;1� (R)), and by Lemma 4.17, W is convex and closed in Yp��. It iseasy to see that jS(y; ')jY1� � kfk for all y and  , and henceS�(GY1�� (R)\W)� GW 1;1( �'; �)� � (GY1�� (R) \W);and the operator S : �W �GW 1;1 ( �'; �) � (W \ Yp��)�W 1;1�! Yp��is continuously di�erentiable by assumption (A8b), (4.73), and Lemma 4.22. Therefore anapplication of Theorem 4.14 yields that the �xed point of S(�; '), (i.e., the solution of (4.50)),called y(�;'), is continuously di�erentiable as a map�GW 1;1( �'; �) � W 1;1�! Yp��; ' 7! y(�;'):Now we show that the function, x(t;') � y(t;') + ~'(t), i.e., the solution of IVP (4.1)-(4.2)with initial function ', is continuously di�erentiable as a map�GW 1;1( �'; �) � W 1;1�! Xp��; ' 7! x(�;');with derivative @x@'(t;')h = @y@'(t;')h+ ~h; h 2 W 1;1:To prove the claim, it is enough to consider the obvious relation����x(�;'+ h)� x(�;')� @x@'(�;')h����Xp�� = ����y(�;'+ h)� y(�;')� @y@'(�;')h����Yp�� :Suppose that �� < �. Then we need to show that x(�;') is continuously di�erentiable wrt' in Xp� as well. Consider the equation_z(t) = f(t+ ��; z(t);�(t+ ��; zt)); t 2 [0; �� ��]; (4:74)



69with initial condition z(t) = x(t+ ��;'); t 2 [�r; 0]: (4:75)Then, clearly, z(t) = x(t + ��;') is the unique solution of IVP (4.74)-(4.75) on [0; �� ��]. Onthe other hand, Lemma 4.19 and Remark 4.20 imply that if we de�ne �� � minf��; �� ��g thenthe operator S corresponding to (4.74)-(4.75) satis�esS : GYp�� � ���� GW 1;1(x(��+ �;'); ��)! GYp�� ����with some �� > 0. But then the �rst part of this theorem yields that z is continuouslydi�erentiable wrt its initial function on [0; ��]. Therefore, since for h 2 W 1;1 Lemma 3.20implies that jx(�;'+ h)� x(�;')jW 1;1��+�� � L3jhjW 1;1 ;it follows that x(�;') is continuously di�erentiable wrt ' on [0; �� + ��]. By repeating thisargument �nitely many times, we obtain that x(�;') is actually continuously di�erentiable inXp�.Since by Lemma 4.18 (i) the j � jXp�-norm is stronger than the j � jW 1;p� -norm, the theoremhas the following corollary.Corollary 4.24 Assume the conditions of Theorem 4.23. Then x(t;') is continuously di�er-entiable wrt ', as a function�GW 1;1( �'; �) �W 1;1�! W 1;p� ; ' 7! x(�;'):4.1.4 Di�erentiability of the composition map B�In this section we study di�erentiability the composition map B� de�ned by (4.40), and showconditions in our examples implying assumption (A8b), i.e., the di�erentiability of B� on a setK. We introduce the composition map B� corresponding to �:B� : �K �W 1;1� � Xp� � Xp��! Lp([0; �];Rn); B�(x; z)(t) � �(t; xt; zt); (4:76)where 1 � p <1, 0 < � � T �nite.By Lemma 2.17, to obtain (A8b), we need to show, that B�(x; z) has continuous partialderivatives wrt x and z on K�W 1;1� for some K � W 1;1� .In [10], Brokate and Colonius studied linearization of the equation_x(t) = f�t; x(t� �(t; x(t)))�; t 2 [0; �]:In particular, they investigated di�erentiability of the composition operatorA : � �X � W 1;1� �! Lp([0; �];Rn); (Ax)(t) � x(t� �(t; x(t)));



70where it was assumed that �(t; x) is twice continuously di�erentiable satisfying 0 � �(t; x) � rfor all t 2 [0; �] and x 2 R, and�X � nx 2 W 1;1� : there exists " > 0 s.t. ddt�t � �(t; x(t))� � " a.e. t 2 [0; �]o:It was shown in [10], that under these assumptions, A is continuously (Frech�et-)di�erentiableon its domain with derivative((A0x)h)(t) = h(t � �(t; x(t))) + _x(t� �(t; x(t)))@�@x(t; x(t))h(t): (4:77)The key idea of obtaining the result in [10] is the choice of the domain, �X. With minormodi�cations, the argument of [10] is applicable to obtain di�erentiability of B� : �K �(W 1;1� ; j � jXp�)� ! Lp([0; �];Rn) in our examples as well. (The main di�erence between ourcase and that of [10] is that we need di�erentiability of B� in the j � jXp�-norm.) We can proceedas follows.Examples 1.1 and 1.2 are state-independent equations (and also can be considered as specialcases of Example 1.4), and therefore omitted here.Example 4.25 First we study Example 1.3, i.e., the equation_x(t) = f�t; x(t); x(t� �(t; xt))�; t 2 [0; T ]: (4:78)Fix �' 2 W 1;1 and � > 0 such that (4.78) have a unique solution on [0; �] corresponding toall initial function ' 2 GW 1;1� �'; ��� for some �� > 0. Consider the function � corresponding to(4.78): �(t;  ; �)� �(��(t;  )): (4:79)(See also Examples 1.3, 3.3 and 3.10.) We assume that � satis�es the following assumptions:(i) �(t;  ) is locally Lipschitz-continuous in  , i.e., for every M > 0 there exists a constantL� = L�(�;M) such thatj�(t;  )� �(t; � )j � L� j � � jC ; for  ; � 2 GC(M); t 2 [0; �];(ii) �(t;  ) : �[0; �]� 
3 � [0; �]� C�! R is continuously di�erentiable wrt t and  ,(iii) @�@t (t;  ) and @�@ (t;  ) are locally Lipschitz-continuous in  , i.e., for every M > 0 thereexists L�� = L�� (�;M) such that for all t 2 [0; �],  ; � 2 GC(M) \ 
3 it follows that����@�@t (t;  )� @�@t (t; � )���� � L�� j � � jC ;and 



 @�@ (t;  )� @�@ (t; � )



L(C;R) � L�� j � � jC :



71For each " > 0 de�ne the setX" � nx 2 W 1;1� : ddt�t � �(t; xt)� � " a.e. t 2 [0; �]o: (4:80)We shall need the following lemma (see also Lemma 3.1 in [10]).Lemma 4.26 Assume that � satis�es (i) and (ii), and let g 2 Lp�, x 2 X" for some " > 0.Then Z �0 jg(t� �(t; xt))jp dt � 1" jgjpLp�:Moreover, if xk 2 X", jxk � xjW 1;1� � � for k 2 N with some � > 0, and jxk � xjXp� ! 0 ask !1, then limk!1 Z �0 ���g(t� �(t; xkt ))� g(t� �(t; xt))���p dt = 0:Proof Elementary manipulations giveZ �0 jg(t� �(t; xt))jp dt = Z �0 jg(t� �(t; xt))jp� ddt(t� �(t; xt))� 1ddt(t� �(t; xt)) dt� 1" Z ���(�;x�)��(0;x0) jg(u)jp du� 1" jgjpLp�;which proves the �rst part of the lemma.For the second part, �rst assume that g(t) = �[a;b](t) for some [a; b] � [�r; �]. Then it iseasy to see (see also the proof of Lemma 3.1 in [10]) thatmeasnt : �[a;b](t� �(t; xkt )) 6= �[a;b](t� �(t; xt))o � 4" sup0�t�� jt � �(t; xkt )� (t� �(t; xt))j;therefore by assumption (i) with L� = L� (�; jxjC� + �), and Lemma 4.18 (iii) we get thatZ �0 ���g(t� �(t; xkt ))� g(t� �(t; xt))���p dt � 4"L� sup0�t�� jxkt � xtjC� 4"L�c3jxk � xjXp� ;! 0; as k!1;which proves the statement for this case. Clearly, we can extend this result for the case wheng is a step function. Let s be a step function on [�r; �]. Then by the �rst part of the lemmawe have that Z �0 ���g(t� �(t; xt))� s(t � �(t; xt))���p dt � 1" jg � sjpLp� ;and Z �0 ���g(t� �(t; xkt ))� s(t � �(t; xkt ))���p dt � 1" jg � sjpLp� ;



72therefore the triangle inequality yields that�Z �0 ���g(t� �(t; xkt ))� g(t� �(t; xt))���p dt�1=p� 2" jg � sjLp� + �Z �0 ���s(t � �(t; xkt ))� s(t� �(t; xt))���p dt�1=p ;and the statement follows from that it is true for step functions, and that the step functionsare dense in Lp�.Lemma 4.27 Let x0 2 X"0 for some "0 > 0. Assume that � satis�es (i){(iii). Then thereexists � > 0 and " > 0 such that GW 1;1� �x0; �� � X".Proof Since x0 is a.e. di�erentiable, the assumption x0 2 X"0 is equivalent to1� @�@t (t; x0t )� @�@ (t; x0t ) _x0t � "0; for a.e. t 2 [0; �];and hence it is equivalent to@�@t (t; x0t ) + @�@ (t; x0t ) _x0t � 1� "0; for a.e. t 2 [0; �]:Consider@�@t (t; xt) + @�@ (t; xt) _xt� @�@t (t; x0t ) + @�@ (t; x0t ) _x0t + @�@t (t; xt)� @�@t (t; x0t )+ �@�@ (t; xt)� @�@ (t; x0t )� _x0t + @�@ (t; xt)( _xt � _x0t )� 1� "0 + ����@�@t (t; xt)� @�@t (t; x0t )����+ 



 @�@ (t; xt)� @�@ (t; x0t )



L(C;R) j _x0t jC+ 



 @�@ (t; xt)



L(C;R) j _xt � _x0t jC :Fix 0 < �" < "0, and Let L�� = L�� (�; jx0jC� + 1). Then for jx� x0jC� � 1 we have that@�@t (t; xt) + @�@ (t; xt) _xt� 1� "0 + L�� jxt � x0t jC(1 + j _x0t jC) +  



 @�@ (t; x0t )



L(C;R) + L��! j _xt � _x0t jC� 1� "0 +  L��(1 + j _x0t jC) + max0�t�� 



 @�@ (t; x0t )



L(C;R) + L��! jx� x0jW 1;1� :Therefore, there exists � > 0 such that for jx� x0jW 1;1� � � it follows that@�@t (t; xt) + @�@ (t; xt) _xt � 1� "0 + �"; for a.e. t 2 [0; �];



73i.e., x 2 X" with " = "0 � �".De�ne K � GW 1;1� �x0; ��; (4:81)where x0, � > 0 satisfy the previous lemma, i.e., x0 2 X"0 for some "0 > 0, and � > 0 is suchthat GW 1;1� �x0; �� � X" for some " > 0. We use this notation throughout the discussion ofExample 4.25.Next we show that B�(x; z) has continuous partial derivatives wrt x and z for x 2 K,z 2 W 1;1� .Lemma 4.28 Assume that � satis�es (i){(iii), and let K de�ned by (4.81). Then the com-position operator B�(x; z) de�ned by (4.76) has continuous partial derivatives wrt x and z forx 2 K, z 2 Xp�. Moreover, @B�@z (x; z)h = B�(x; h); h 2 Xp�; (4:82)and �@B�@x (x; z)h�(t) = � _z(t� �(t; xt))@�@ (t; xt)ht; h 2 Xp�; t 2 [0; �]: (4:83)Proof Since the map z 7! B�(x; z) is linear, it is obvious, that it is di�erentiable, and (4.82)is satis�ed provided that @B�@z (x; z) is bounded. Let h 2 Xp�, x 2 K and z 2 Xp�. Then sincex 2 X", Lemma 4.26 and Lemma 4.18 (i) imply that����@B�@z (x; z)h����Lp([0;�];Rn) = �Z �0 jh(t� �(t; xt))jpdt�1=p� 1"1=p jhjLp�� c1"1=p jhjXp� ;which shows the boundedness of @B�@z (x; z).Next we show the continuity of the derivative. First we comment that @B�@z (x; z) is inde-pendent of z. Let x; �x 2 K, z; �z 2 Xp�, and consider����@B�@z (x; z)h� @B�@z (�x; �z)h����pLp ([0;�];Rn)= jB�(x; h)�B�(�x; h)jpLp([0;�];Rn)= Z �0 jh(t� �(t; xt))� h(t� �(t; �xt))jp dt= Z �0 ����Z 10 _h�t� �(t; �xt) + u(�(t; �xt)� �(t; xt))�du��(t; �xt)� �(t; xt)�����p dt� Z �0 ����Z 10 ��� _h�t � �(t; �xt) + u(�(t; �xt)� �(t; xt))����du����(t; xt)� �(t; �xt)�������p dt:



74The de�nition of K implies that jx � x0jW 1;1� � � and j�x � x0jW 1;1� � �, hence x; �x 2GC�jx0jW 1;1� + ��. Let L� = L�(�; jx0jW 1;1� + �), then by (i), H�older's inequality and Fu-bini's theorem it follows that����@B�@z (x; z)h� @B�@z (�x; �z)h����pLp([0;�];Rn)� Lp� Z �0 ����Z 10 ��� _h�t� �(t; �xt) + u(�(t; �xt)� �(t; xt))���� du���xt � �xt���C ����p dt� Lp� jx� �xjpC� Z �0 Z 10 ��� _h�t� �(t; �xt) + u(�(t; �xt)� �(t; xt))����p du dt� Lp� jx� �xjpC� Z 10 Z �0 ��� _h�t� �(t; �xt) + u(�(t; �xt)� �(t; xt))����p dt du: (4.84)Since x; �x 2 X", we have for u 2 [0; 1] thatddt�(t� �(t; �xt) + u(�(t; �xt)� �(t; xt))� = ddt�u(t� �(t; xt)) + (1� u)(t� �(t; �xt))�= u ddt�t� �(t; xt)�+ (1� u) ddt�t � �(t; �xt)�> u"+ (1� u)"= "; (4.85)therefore (4.84), Lemma 4.18 (iii), (iv) and Lemma 4.26 imply that����@B�@z (x; z)h� @B�@z (�x; �z)h����pLp([0;�];Rn) � 1"Lp� jx� �xjpC� j _hjpLp�� 1"Lp�cp3cp4jx� �xjpXp� jhjpXp� ;i.e., 



@B�@z (x; z)� @B�@z (�x; �z)



L(Xp�;Lp ([0;�];Rn)) � L�c3c4"1=p jx� �xjXp� ; (4:86)hence @B�@z is continuous on its domain.Now we shall show that the function de�ned by (4.83) is, in fact, the partial derivative ofB� wrt x. The boundedness of @B�@x (x; z) follows from Lemma 4.18 (iii) and from the estimates����@B�@x (x; z)h����Lp([0;�];Rn) = �Z �0 ���� _z(t� �(t; xt))@�@ (t; xt)ht����p dt�1=p� jzjW 1;1� sup0�t�� 



 @�@ (t; xt)



L(C;R) jhjC��1=p� jzjW 1;1� sup0�t�� 



 @�@ (t; xt)



L(C;R) c3jhjXp��1=p:Elementary manipulations yield that����B�(x+ h; z)�B�(x; z)� @B�@x (x; z)h����pLp([0;�];Rn)



75= Z �0 ����z(t � �(t; xt + ht))� z(t� �(t; xt)) + _z(t� �(t; xt)) @�@ (t; xt)ht����p dt= Z �0 ����Z 10 _z�t � �(t; xt) + u(�(t; xt)� �(t; xt + ht))�du(�(t; xt)� �(t; xt + ht))+ _z(t� �(t; xt))@�@ (t; xt)ht����p dt= Z �0 ����Z 10 � _z�t� �(t; xt) + u(�(t; xt)� �(t; xt + ht))�� _z(t � �(t; xt))�du� (�(t; xt)� �(t; xt + ht))+ _z(t� �(t; xt))��(t; xt)� �(t; xt + ht) + @�@ (t; xt)ht�����p dt:Then by the triangle and H�older's inequalities it follows that����B�(x+ h; z)� B�(x; z)� @B�@x (x; z)h����Lp ([0;�];Rn)� �Z �0 ����Z 10 � _z�t� �(t; xt) + u(�(t; xt)� �(t; xt + ht))�� _z(t � �(t; xt))�du� (�(t; xt)� �(t; xt + ht))����p dt�1=p+ �Z 10 ���� _z(t� �(t; xt))��(t; xt)� �(t; xt + ht) + @�@ (t; xt)ht�����p dt�1=p� �Z �0 Z 10 ���� _z�t� �(t; xt) + u(�(t; xt)� �(t; xt + ht))�� _z(t� �(t; xt))���p du� �����(t; xt)� �(t; xt + ht)����p dt�1=p+ �Z 10 ���� _z(t� �(t; xt))����p�����(t; xt)� �(t; xt + ht) + @�@ (t; xt)ht����p dt�1=p : (4.87)First consider the �rst term of the right hand side of (4.87). Since x + h 2 K, we have thatjx+ hjC � jx0jC + �. Let L� = L� (�; jx0jC� + �). Then assumption (i), Fubini's theorem, andLemma 4.18 (iii) imply that�Z �0 Z 10 ���� _z�t � �(t; xt) + u(�(t; xt)� �(t; xt + ht))�� _z(t� �(t; xt))���p du� �����(t; xt)� �(t; xt + ht)����p dt�1=p� L� jhjC��Z �0 Z 10 ���� _z�t � �(t; xt) + u(�(t; xt)� �(t; xt + ht))�� _z(t� �(t; xt))���pdu dt�1=p= L� jhjC��Z 10 Z �0 ���� _z�t � �(t; xt) + u(�(t; xt)� �(t; xt + ht))�� _z(t� �(t; xt))���pdt du�1=p� L�c3jhjXp��Z 10 Z �0 ���� _z�t � �(t; xt) + u(�(t; xt)� �(t; xt + ht))�� _z(t� �(t; xt))���pdt du�1=p:(4.88)



76Lemma 4.26 yields thatZ �0 ���� _z�t� �(t; xt) + u(�(t; xt)� �(t; xt + ht))�� _z(t� �(t; xt))���p dt! 0;as jhjXp� ! 0, since����t � �(t; xt) + u(�(t; xt)� �(t; xt + ht))� �t � �(t; xt)����� = u����(t; xt)� �(t; xt + ht)���! 0; as jhjXp� ! 0;by the continuity of � and Lemma 4.18 (iii), and because, similarly to (4.85), we can show thatddt�t� �(t; xt) + u(�(t; xt)� �(t; xt + ht))� � ":Since z 2 W 1;1� , we get that the functionu 7! Z �0 ���� _z�t � �(t; xt) + u(�(t; xt)� �(t; xt + ht)�� _z(t� �(t; xt))���p dtis bounded on [0; 1], therefore the Lebesgue Dominant Convergence Theorem yields thatZ 10 Z �0 ���� _z�t��(t; xt)+u(�(t; xt)��(t; xt+ht)�� _z(t��(t; xt))���p dt du! 0; as jhjXp� ! 0: (4:89)Consider the second term of the right hand side of (4.87). By applying Lemma 2.16, assumption(iii) with L�� = L��(�; jx0jC� + �), Lemma 4.18 (iii) and (iv), Lemma 4.26, and that x 2 X", weget �Z 10 ���� _z(t� �(t; xt))����p�����(t; xt)� �(t; xt + ht) + @�@ (t; xt)ht����p dt�1=p�  Z 10 ���� _z(t � �(t; xt))����p sup0���1



 @�@ (t; xt + �ht)� @�@ (t; xt)



pL(C;R)jhtjpC dt!1=p� L�� �Z 10 ���� _z(t� �(t; xt))����pjhtj2pC dt�1=p� L�� jhj2C� �Z 10 ���� _z(t� �(t; xt))����p dt�1=p� 1"1=pL�� jhj2C� j _zjLp�� 1"1=pL��c23c4jhj2Xp� jzjXp� : (4.90)Combining (4.87), (4.88), (4.89) and (4.90), we get that1jhjXp� ����B�(x+ h; z)� B�(x; z)� @B�@x (x; z)h����pLp([0;�];Rn)� L�c3�Z 10 Z �0 ��� _z�t � �(t; xt) + u(�(t; xt)� �(t; xt + ht))�� _z(t� �(t; xt))���p dt du�1=p + 1"1=pL�� c23c4jhjXp� jzjXp�! 0; as jhjXp� ! 0;



77which proves (4.83).Next we show that @B�@x is continuous on K� Xp�.����@B�@x (x; z)h� @B�@x (�x; �z)h����Lp([0;�];Rn)= �Z �0 ��� _z(t� �(t; xt))@�@ (t; xt)ht � _�z(t� �(t; �xt))@�@ (t; �xt)ht���p dt�1=p� �Z �0 ��� _z(t� �(t; xt))� _�z(t� �(t; xt))���p��� @�@ (t; xt)ht���p dt�1=p+ �Z �0 ��� _�z(t� �(t; �xt))���p��� @�@ (t; xt)ht � @�@ (t; �xt)ht���p dt�1=p : (4.91)Assumption (iii) with L�� = L�� (�; jx0jW 1;1� + �), Lemma 4.26 and Lemma 4.18 (iii) and (iv)yield����@B�@x (x; z)h� @B�@x (�x; �z)h����Lp ([0;�];Rn)� �Z �0 ��� _z(t� �(t; xt))� _�z(t� �(t; xt))���p


 @�@ (t; xt)


pL(C;R)jhtjC dt�1=p+ L�� �Z �0 ��� _�z(t� �(t; �xt))���p���xt � �xt���pC jhtjpC dt�1=p� �max0�t��


 @�@ (t; �xt)


L(C;R) + L��2�� jhjC� �Z �0 ��� _z(t� �(t; xt))� _�z(t� �(t; xt))���p dt�1=p+ L�� jx� �xjC� jhjC��1=pjzjW 1;1�� 1"1=p �max0�t��


 @�@ (t; �xt)


L(C;R) + L��2�� jhjC� j _z � _�zjLp� + L�� jx� �xjC� jhjC��1=pjzjW 1;1�� 1"1=p �max0�t��


 @�@ (t; �xt)


L(C;R) + L��2�� c3c4jhjXp� jz � �zjXp�+ L��c3c4jx� �xjXp� jhjXp��1=pjzjW 1;1� ;which implies the continuity of @B�@x .This concludes the discussion of Example 4.25.Example 4.29 Consider a special case of Example 4.25, when �(t;  ) (t 2 [0; �],  2 C)is de�ned through a function, ��(t; x), by �(t;  ) � ��(t;  (0)). (See also Example 4.2.) It iseasy to check, that the assumptions (i){(iii) of Example 4.2 on �� together with the continuousdi�erentiability of ��(t; x) wrt t on [0; �]�
� imply conditions (i){(iii) of Example 4.25. (Herewe use that the function G : C ! Rn, G( ) �  (0) is continuously di�erentiable withderivative G0( )h = h(0).)Example 4.30 Let�(t;  ; �) = mXk=1Ak(t)�(��k(t;  )) + Z 0��0 G(s; t;  )�(s)ds;



78as in Examples 1.4, 3.4 and 3.11. Assume that for k = 1; 2; : : : ; m each �k satis�es condition(i){(iii) of Example 4.25, then it is easy to see that if there exists x 2 W 1;1� such thatddt (t � �k(t; xt)) � " > 0; k = 1; 2; : : : ; m;for some " > 0, then the composite operator B�1 corresponding to�1(t;  ; �)� mXk=1Ak(t)�(��k(t;  ))is di�erentiable for some K. De�ne�2(t;  ; �) = Z 0��0 G(s; t;  )�(s)ds:This is not a composite function of � and  , therefore it is easy to discuss di�erentiability ofthe corresponding composition map, B�2 , e.g., if we assume that(iv) G(s; t;  ) : �[�r; 0]� [0; �]� 
3 � [�r; 0]� [0; �]� C�! Rn�n has continuous partialderivative wrt  ,then B�2(x; z) (de�ned by (4.76)) is continuously di�erentiable wrt x and z. Since B� =B�1 +B�2 , we can get continuous di�erentiability of B� wrt x and z.4.2 Di�erentiability wrt a parameter in the delayIn this section we study di�erentiability of solutions of IVP_x(t; c) = f�t; x(u; c); �(t; x(�; c)t; c)�; t 2 [0; T ]; (4.92)x(t; c) = '(t); t 2 [�r; 0] (4.93)wrt the parameter c of the delayed term. Here we use the notation�(t;  ; c)� Z 0�r ds�(s; t;  ; c) (s); (4:94)where c 2 Rm, i.e., � : [�r; 0]� [0; T ]� 
3 � 
4 ! NBV, and 
4 is an open subset of Rm.In this section the initial function, � and f are considered to be �xed, and hence the solutiondepends only on the parameter c of �. We shall use x(t; c) and x(�; c)t to denote the value ofthe solution and the solution segment function at t, respectively, corresponding to parameterc. De�ne the function �(t;  ; �; c)� Z 0�r ds�(s; t;  ; c)�(s): (4:95)In this section we modify assumptions (A2), (A5) (since � depends on the variable c aswell) as follows:



79(A2') the function � : �[�r; 0]� [0; T ]�
3�
4 � [�r; 0]� [0; T ]�C � Rm�! NBV is suchthat the function[0; T ]� 
3 � 
4 ! Rn; (t;  ; c) 7! Z 0�r ds�(s; t;  ; c)�(s)is continuous and bounded on its domain for all � 2 GC(1), (where �(�; t;  ; c) denotesthe image function corresponding to t;  and c),(A5') for every � > 0, M1;M2 > 0 there exists a constant L2 = L2(�;M1;M2) such that forall � 2 W 1;1, t 2 [0; �],  ; � 2 GC(M1) \ 
3 and c; �c 2 GRm(M2) \ 
4j�(t;  ; �; c)� �(t; � ; �; �c)j � L2j�jW 1;1�j � � jC + jc� �cjRm�;For a given c 2 
4 de�ne the function�c(s; t;  ) � �(s; t;  ; c):Assume that c, ', and � are such that'(0) 2 
1; ' 2 
3 and Z 0�r ds�(s; 0; '; c)'(s) ds 2 
2; (4:96)(see (3.9)). By (A2') and (A5') the function �c satis�es (A2) and (A5), thus assumption (4.96)together with Theorems 3.8 and 3.19 imply that IVP (3.1)-(3.2) corresponding to ('; �c; f)has a unique solution, and consequently, IVP (4.92)-(4.93) with the �xed parameter value, c,has a unique solution on an interval [0; �]. By assumption (A2') and the facts that 
2 and 
4are open, it follows that the unique solution exists in a neighborhood of c as well.De�ne the norm of a function � satisfying (A2') byk�k � sup�����Z 0�r ds�(s; t;  ; c)�(s)���� : t 2 [0; T ];  2 
3; c 2 
4; � 2 GC(1)� : (4:97)The following lemma is an easy consequence of the de�nition of k � k and (A5'). (See the proofof Lemma 3.12.)Lemma 4.31 Assume (A2') and (A5'). Thenj�(t;  ; c)� �(t; � ; �c)j � �k�k+ L2(�;M1;M2)j � jW 1;1��j � � jC + jc� �cjRm�;where t 2 [0; �],  ; � 2 GC(M1) \ 
3, � 2 W 1;1 and c; �c 2 GRm(M2)\ 
4.The following theorem can be proved the same way we proved Theorem 3.25, using Lemma4.31. The proof is omitted.Theorem 4.32 Assume that ', �, f and �c satisfy (A1), (A2'), (A3), (A4), (A5'), (A6) and(4.96), and let 1 � p � 1. Then there exist constants � > 0, � > 0 and L3 = L3(p; �; �'; �c; �),such that IVP (4.92)-(4.93) has a unique solution on [0; �] for all c 2 
4 with jc� �cjRm < �,and jx(�; c)t� x(�; �c)tjW 1;p � L3jc� �cjRm ; t 2 [0; �]:



804.2.1 Special case, di�erentiability in W 1;1In this subsection case we shall obtain di�erentiability of solutions wrt c in a special case(similarly to Section 4.1.1). In particular, we assume that the initial function guarantees thatthe solution is a C1 function, i.e., ' satis�es that' 2 C1 and _'(0�) = f(0; ';�(0; '; c)):We make the following assumption (see (A8a) of Section 4.1.1 for comparison):(A8a') (i) For every � > 0, M1;M2 > 0 there exists a constant L2 = L2(�;M1;M2) suchthat for all � 2 W 1;1, t; �t 2 [0; �],  ; � 2 GC(M1) \ 
3, and c; �c 2 GRm(M2) \ 
4,j�(t;  ; �; c)� �(�t; � ; �; �c)j � L2j�jW 1;1�jt� �tj+ j � � jC + jc� �cjRm�;(ii) For all t 2 [0; T ],  2 W 1;1 \ 
3, � 2 C1 and c 2 
4 the function �(t;  ; �; c) iscontinuously di�erentiable wrt  and c on its domain,(iii) For all  2 
3 we have that �(0;  ; c) is independent of c 2 
4.We comment, that even in the state-independent case, c appears naturally inside the ar-gument of � in �(t;  ; �; c) (see Example 4.35 below), therefore di�erentiability of � wrt c cannot be obtained for arbitrary � 2 W 1;1 functions.The next lemma shows that (A2') and (A8a') (i) yield that �(t;  ; �; c) is continuouslydi�erentiable wrt � on its domain.Lemma 4.33 Assume (A2') and (A8a') (i). Then the function �(t;  ; �; c) is continuouslydi�erentiable wrt �, and for t 2 [0; T ],  2 W 1;1 \ 
3, � 2 W 1;1 and c 2 
4, and@�@� (t;  ; �; c)h= �(t;  ; h; c); h 2 W 1;1;Proof The di�erentiability of �(t;  ; �; c) wrt � with the above derivative follows from thelinearity of � in �. The continuity of the derivative is the consequence of assumption (A8a')(i) using the inequality����@�@� (t;  ; �; c)h� @�@� (�t; � ; �; �c)h���� � L2jhjW 1;1�jt� �tj+ j � � jC + jc� �cjRm�for t; �t 2 [0; �],  ; � 2 GW 1;1 (M1), c; �c 2 GRm(M2), L2 = L2(�;M1;M2).Assumption (A8a') (i), and (ii), Lemma 4.33, Lemma 2.17 and the Chain Rule implyimmediately:Lemma 4.34 Assume (A2'), (A5') and (A8a') (i), (ii). Then the function �(t;  ; c) is con-tinuously di�erentiable wrt  for t 2 [0; T ],  2 W 1;1 \ 
3, c 2 
4 � Rm.



81Example 4.35 We illustrate conditions (A2'), (A5'), and (A8a') on the delay function ofExample 1.3. Consider the equation_x(t) = f�t; x(t); x(t� �(t; xt; c))�; t 2 [0; T ]; (4:98)where we assume that the point delay function, �(t;  ; c), depends on a parameter c 2 
4 aswell. As in Example 1.3, we can see that by de�ning the function �(s; t;  ; c)� �[��(t; ;c);0](s)I ,Equation (4.98) transforms into the form of (4.92). The function � corresponding to � has theform �(t;  ; �; c) = �(��(t;  ; c)): (4:99)(See also Examples 1.3, 3.3 and 3.10.) Assume that � satis�es(i) �(�; �; �) : �[0; T ]� 
3 � 
4 � [0; T ]� C � Rm�! R is continuous,(ii) �(t;  ; c) is locally Lipschitz-continuous in  and c, i.e., for every � > 0,M1 > 0,M2 > 0there exists a constant L� = L� (�;M1;M2) such that for t; �t 2 [0; �],  ; � 2 GC(M1)\
3and c; �c 2 GRm(M2) \ 
4j�(t;  ; c)� �(�t; � ; �c)j � L��jt� �tj+ j � � jW 1;1 + jc� �cjRm�;(iii) �(t;  ; c) : �[0; T ] � (W 1;1 \ 
3) � 
4 � [0; T ]� W 1;1 � Rm� ! R is continuouslydi�erentiable wrt  and c,(iv) @�@c is bounded on [0; T ]� (W 1;1 \ 
3)� 
4, and(v) �(0;  ; c) is independent of c, (e.g., � has the form �(t;  ; c) = ct + ��( ) for some �� :C ! R+).Then it is easy to see that these conditions imply (A2'), (A5') and (A8a').Now we are at the position to state our results concerning the di�erentiability of the solutionwrt a parameter in the delay.For c 2 
4, h 2 Rm de�ne the function z(�; h) as the solution of the linear IVP_z(t; h) = @f@x�t; x(t; c);�(t; x(�; c)t; c)�z(t; h)+ @f@y �t; x(t; c);�(t; x(�; c)t; c)��@�@ (t; x(�; c)t; c)z(�; h)t+ @�@c (t; x(�; c)t; c)h�; t 2 [0; T ]; (4.100)z(t; h) = 0; t 2 [�r; 0]: (4.101)We comment, that assuming (A1){(A8a'), the solution, z(�; h), of this IVP exists, and dependslinearly on h.The next theorem shows that (the modi�ed) assumptions (A1){(A8a') imply that thefunction �
4 � Rm�! Rn; c 7! x(t; c) is di�erentiable for all t 2 [0; T ].



82Theorem 4.36 Let ', c, � and f be �xed satisfying (A1), (A2'), (A3), (A4), (A5'), (A6),(A7), (A8a') and (4.96), and assume that ' 2 C1, _'(0�) = f(0; ';�(0; '; c)). Then(i) the solution x(t; c) of IVP (4.92)-(4.93) is di�erentiable wrt c for all t 2 [0; �] and c 2 
4,(ii) x(t; c+ h)� x(t; c)jhjRm converges uniformly to @x@c (t; c) on t 2 [0; �],(iii) the derivative is @x@c (t; c)h = z(t; h), where z(t; h) is the solution of the linear IVP (4.100)-(4.101).Proof The proof is analogous to that of Theorem 4.8, and therefore it is omitted.Corollary 4.37 Assuming the conditions of Theorem 4.36, the function
4 ! C; c 7! x(�; c)tis di�erentiable for all t 2 [0; �].Next we state the result for di�erentiability of the map �
4 � Rm�! W 1;1; c 7! x(�; c)twithout the proof, which is analogous to that of Theorem 4.11.Theorem 4.38 Assume that the conditions of Theorem 4.36 are satis�ed. Then the function
4 ! W 1;1, c 7! x(�; c)t is di�erentiable for all t 2 [0; �].4.2.2 General case, di�erentiability in W 1;pIn this section we study the general case of di�erentiability of solutions of IVP (4.92)-(4.93),without the strong assumption (A8a') of the previous section. We shall use the same methodthat was used in Section 4.1.3. We transform (4.92)-(4.93) by the new variable y(t) � x(t)� ~'(t)into y(t)=8<: 0; t 2 [�r; 0]Z t0 f�u; y(u) + ~'(u); �(u; yu + ~'u; c)�du; t 2 [0; T ]; (4:102)and introduce the operatorS(y; c)(t) = 8<: 0; t 2 [�r; 0]Z t0 f�u; y(u) + ~'(u); �(u; yu + ~'u; c)�du; t 2 [0; T ]: (4:103)As in Section 4.1.3, we consider S(y; c) as a mapS : GYp��� ���� GRm(�c; �)! Yp��for some �� > 0, �� > 0 and � > 0.It is easy to see, by repeating the proof of Lemma 4.19, that the following result holds.



83Lemma 4.39 Let 1 � p < 1, �c 2 
4 and R > 0. Then there exist � > 0, �� > 0 and �� > 0such that GRm(�c; �) � 
4, and the operator S de�ned by (4.103) satis�es(i) S : GYp��� ���� GRm(�c; �)! GYp��� ���,(ii) S is a uniform contraction on GYp������\ GW 1;1�� (R) both in j � jYp�� and j � jY1�� norms, i.e.,there exists 0 � � < 1 such that for all c 2 GRm(�c; �), y; �y 2 GYp��� ��� \ GW 1;1�� (R)jS(y; c)� S(�y; c)jY1�� � �jy � �yjY1�� ;and jS(y; c)� S(�y; c)jYp�� � �jy � �yjYp�� :Next we de�ne the composite operator B� in this section. Fix 1 � p <1 and let K be anopen subset of W 1;1� . Then de�neB� : �K � 
4 � Xp� � Rm�! Lp([0; �];Rn); B�(x; c)(t)� �(t; xt; c); t 2 [0; �]:(4:104)We assume that:(A8b') the operator B� de�ned by (4.104) is continuously di�erentiable on K� 
4 wrt x andc.The following lemma shows that assumption (A8b) yields the existence of continuous partialderivatives of S(y; ') if we restrict y to a certain subset of its domain, and the derivative istaken in the restricted space (in relative topology).Lemma 4.40 Let �c 2 
4, 1 � p < 1 be �xed, and R > 0 given, and assume (A1){(A7) and(A8b'). Let �, ��, �� be the constants from Lemma 4.39, i.e., such that the operator S de�nedby (4.103) satis�es S : GYp��� ���� GRm(�c; �)! GYp��� ���;and it is a uniform contraction on GYp��� ��� \ GRm(R). Assume that there exists W � Yp�� suchthat(i) W � (GYp��� ��� \ GRm(R)),(ii) for y 2 W it follows that y + ~' 2 K.Then the operator S(y; c) : �W �GRm(�c; �) � (W \ Yp��)� Rm�! Yp��has continuous partial derivatives wrt y and c on its domain, and for y 2 W, c 2 GRm(�c; �),h 2 Yp�� we have that�@S@y (y; c)h� (t)= 8>>>><>>>>: 0; t 2 [�r; 0];Z t0 @f@x�u; y(u) + ~'(u);�(u; yu+ ~'u; c)�h(u)+ @f@y �u; y(u) + ~'(u);�(u; yu+ ~'u; c)��@B�@x (y + ~'; c)h�(u) du; t 2 [0; ��];(4.105)



84and for y 2 W, c 2 GRm(�c; �), h 2 Rm it follows that�@S@c (y; c)h�(t)= 8<: 0; t 2 [�r; 0];Z t0 @f@y�u; y(u) + ~'(u);�(u; yu+ ~'u; c)��@B�@c (y + ~'; c)h�(u) du: t 2 [0; ��]:(4.106)Proof Relation (4.105) is a restatement of (4.50) using �c in the equation. The continuityof @S@y (y; c) for a �xed c also follows from Lemma 4.22, but the continuity wrt y and c needs tobe proved. The proof goes similarly to that in Lemma 4.22, using the assumed continuity of@B�@x (x; c), and (A5'), and it is omitted.To show the second part of the lemma, �rst note, that the operator @S@c (y; c) de�ned by(4.106) is clearly linear. Fix y 2 W , c 2 
4. Then for this �xed c consider �c, and with itwe can de�ne the constant M4 (which then depends on c), repeating (4.52){(4.55). Then M4satis�es the estimates (4.56) and (4.57) (with using �c), and hence it is easy to obtain that



@S@c (y; c)



L(Rm;Yp��) �M4 



@B�@c (y + ~'; c)



L(Rm;Lp([0;��];Rn)) ;which gives the boundedness of @S@c (y; c).To show that it is the derivative of S(y; c) wrt c, let h 2 Rm, and consider����S(y; c+ h)� S(y; c)� @S@c (y; c)h����Yp��= �Z ��0 ����f(u; y(u) + ~'(u);�(u; yu+ ~'u; c+ h))� f(u; y(u) + ~'(u);�(u; yu+ ~'u; c))� @f@y �u; y(u) + ~'(u);�(u; yu+ ~'u; c)��@B�@c (y + ~'; c)h�(u)����p du�1=p: (4.107)De�ne the function!5(t; x; c; h)� �(t; xt; c+ h)� �(t; xt; c)� �@B�@c (x; c)h� (t)for t 2 [0; ��], x 2 K, c 2 
4 and h 2 Rm. Then (A8b') implies that1jhjRm �Z ��0 j!5(t; x; c; h)jpdt�1=p ! 0; as jhjRm ! 0: (4:108)Using this notation and the function !1 de�ned by (4.7), (4.107) and the de�nition ofM4 yield����S(y; c+ h)� S(y; c)� @S@c (y; c)h����Yp��= �Z ��0 ���!1(u; y(u) + ~'(u);�(u; yu+ ~'u; c); y(u)+ ~'(u);�(u; yu+ ~'u; c+ h))���p du�1=p+ �Z ��0 ���@f@y �u; y(u) + ~'(u);�(u; yu+ ~'u; c)�!5(u; y + ~'; c; h)���p du�1=p



85� �Z ��0 ���!1(u; y(u) + ~'(u);�(u; yu+ ~'u; c); y(u)+ ~'(u);�(u; yu+ ~'u; c+ h))���p du�1=p+ M4�Z ��0 ���!5(u; y + ~'; c; h)���p du�1=p ;which by (4.108), and by that the �rst integral divided by jhjRm goes to zero, as jhjRm ! 0proves that @S@c (y; c) is, in fact, the partial derivative of S wrt c. (Here to prove the �rst fact,we use (4.8), and that by (A5'), j�(u; yu+ ~'u; c+ h)��(u; yu+ ~'u; c)j ! 0 as jhjRm ! 0, andthe Lebesgue Dominant Convergence Theorem.)Finally, we show the continuity of @S@c (y; c). Let yk 2 Yp�� and ck 2 
4 such that jyk�yjYp�� !0 and jck � cjRm ! 0 as k !1. Let h 2 Rm, and consider����@S@c (yk; ck)h� @S@c (y; c)h����Yp���  Z t0 




@f@y �u; yk(u) + ~'(u);�(u; yku+ ~'u; ck)�� @f@y �u; y(u) + ~'(u);�(u; yu+ ~'u; c)�




p� �����@B�@c (y + ~'; c)h�(u)����p du!1=p+  Z t0 



@f@y �u; yk(u) + ~'(u);�(u; yku+ ~'u; ck)�



p� �����@B�@c (yk + ~'; ck)h� @B�@c (y + ~'; c)h�(u)����p du!1=p� sup0�u���




@f@y �u; yk(u) + ~'(u);�(u; yku+ ~'u; ck)�� @f@y�u; y(u) + ~'(u);�(u; yu+ ~'u; c)�




 � 



@B�@c (y + ~'; c)



L(Rm;Lp ([0;��];Rn )) jhjRm+ M4 



@B�@c (yk + ~'; ck)� @B�@c (y + ~'; c)



L(Rm;Lp([0;��];Rn)) jhjRm ;which yields the continuity of @S@c , using the assumed continuity of @B�@c , and the continuity of@f@y and �, and that jyk(u) + ~'(u) � (y(u) + ~'(u))j ! 0 and jyku + ~'u � (yu + ~'u)jC ! 0 ask !1, which follows from the proof of Lemma 4.22.Using Lemmas 4.39 and 4.40, the proof of the following theorem is essentially the same asthat of Theorem 4.23, and therefore it is omitted.Theorem 4.41 Assume that ', �, f and �c satisfy (A1){(A7) and (A8b'). Then there exist� > 0 and � > 0 such that IVP (4.1)-(4.2) has a unique solution, x(t; c), on [0; �] corre-sponding to any parameter c 2 GRm(�c; �). Assume that x(�; �c) 2 K, then x(�; c) is continuouslydi�erentiable wrt c, as a functionGRm(�c; �)! Xp�; c 7! x(�; c):



86To conclude this section, we present conditions applying (A8b') in two special examples.Example 4.42 Consider again Example 1.1, i.e.,_x(t) = A0x(t) + mXk=1Akx(t� �k); (4:109)where Ak 2 Rn�n. Here we can think of the delays, c = (�1; �2; : : : ; �m)T , as a vector parameter.De�ne 
4 � n(c1; : : : ; cm)T 2 Rm : 0 < ci < r; i = 1; 2; : : : ; mo:Let c = (c1; : : : ; cm)T . As we have seen in Example 1.1, by de�ning�(s; c) � mXk=1Ak�[�ck ;0](s);we can rewrite (4.109) in the form_x(t) = A0x(t) + Z 0�r ds�(s; c)xt:It is easy to see that the function � corresponding to � depends only on � and c, and has theform �(�; c) = mXk=1Ak�(�ck): (4:110)Then, clearly, j�(�; c)j � Pmk=1 kAkk is satis�ed for � 2 �GC(1) and c 2 
4, therefore (A2')is satis�ed. The equivalence of norms on a �nite dimensional space implies that there existconstants P1; P2 > 0 (depending on the norm j � jRm) such thatP1jcjRm � mXk=1 jckj � P2jcjRm (4:111)for all c = (c1; : : : ; cm)T 2 Rm. Let � 2 W 1;1, c = (c1; : : : ; cm)T ; �c = (�c1; : : : ; �cm)T 2 
4. Thenit follows from (4.110) using the Mean Value Theorem and (4.111) thatj�(�; c)� �(�; �c)j � mXk=1 kAkkj�(�ck)� �(��ck)j� j�j1;1 maxk=1;:::;m kAkk mXk=1 jck � �ckj� j�j1;1P2 maxk=1;:::;m kAkkjc� �cjRm :This shows that (A5') is satis�ed, moreover, the constant L2 = P2maxk=1;:::;m kAkk is globalin c. The composition operator corresponding to (4.110) has the form:B� : Xp� � 
4 ! Lp([0; �];Rn); B�(x; c)(t) = mXk=1Akx(t� ck); t 2 [0; �]:



87Then we show that (A8b') is satis�ed with K = W 1;1� , and for x 2 Xp� and h 2 Xp� we havethat �@B�@x (x; c)h�(t) = mXk=1Akh(t� ck); t 2 [0; �]; (4:112)and for h = (h1; h2; : : : ; hm)T 2 Rm it follows that�@B�@c (x; c)h�(t) = � mXk=1Ak _x(t � ck)hk; t 2 [0; �]: (4:113)To prove (4.112), �rst note, that the formula follows trivially from the linearity of B�(x; c) inx, we need to show that this is a bounded operator, and then that @B�@x (x; c) is continuous inx and c. The boundedness follows from����@B�@x (x; c)h����Lp([0;�];Rn) � C1jhjXp� mXk=1 kAkk;which is easy to obtain, using Lemma 4.18 (i) with constant C1. For the continuity �rst notethat @B�@x (x; c) is independent of x. Let jci � cjRm ! 0 as i ! 1, ci = (ci1; : : : ; cim)T , andconsider ����@B�@x (x; ci)h� @B�@x (x; c)h����Lp([0;�];Rn)� mXk=1 kAkk�Z �0 jh(t� cik)� h(t � ck)jpdt�1=p= mXk=1 kAkk Z �0 ����Z 10 _h(t� ck + u(ck � cik)) du����p dt!1=p jcik � ckj� mXk=1 kAkkj _hjLp�jcik � ckj:Then Lemma 4.18 (iv) with constant C4 and (4.111) imply that����@B�@x (x; ci)h� @B�@x (x; c)h����Lp([0;�];Rn) � maxk=1;:::;m kAkkC4jhjXp� mXk=1 jcik � ckj� maxk=1;:::;m kAkkC4P2jhjXp� jci � cjRm ;which proves the continuity of @B�@x .Next we show (4.113). The boundedness of @B�@c follows from����@B�@c (x; c)h����Lp ([0;�];Rn) � mXk=1 kAkkjxjW 1;1� jhkj� maxk=1;:::;m kAkkjxjW 1;1� P2jhjRm :



88To show that this is the derivative, consider����B�(x; c+ h)� B�(x; c)� @B�@c (x; c)h����Lp ([0;�];Rn)=  Z �0 ����� mXk=1Ak�x(t � ck � hk)� x(t � ck) + _x(t� ck)hk������p dt!1=p� mXk=1 kAkj�Z �0 ���x(t� ck � hk)� x(t� ck) + _x(t � ck)hk���pdt�1=p ;which implies (4.113), since for a.e. t 2 [0; �]1jhjRm ���x(t � ck � hk)� x(t � ck) + _x(t� ck)hk���! 0; as jhjRm ! 0;and therefore the Lebesgue Dominant Convergence Theorem implies the statement. To showcontinuity of @B�@c (x; c), let jxi�xjXp� ! 0 and jci�cjRm ! 0, then by applying similar estimatesthat we used above we get����@B�@c (xi; ci)h� @B�@c (x; c)h����Lp([0;�];Rn)� mXk=1 kAkk�j _xi � _xjLp� + j _xjLp� jcik � ckj�jhkj� maxk=1;:::;m kAkk�C4jxi � xjXp� + j _xjLp� maxk=1;:::;m jcik � ckj�jhjRm ;which proves the continuity of @B�@c (x; c).Example 4.43 Consider the delay function of Example 4.35:�(t;  ; �; c) = �(��(t;  ; c)):Assume that � satis�es condition (i) and (ii) of Example 4.35. Then (A2') and (A5') aresatis�ed. The composite function B� of this example isB�(x; c)(t) = x(t� �(t; xt; c)):If we assume that(iii) �(t;  ; c) : �[0; �]� 
3 � 
4 � [0; �]� C � Rm�! R is continuously di�erentiable wrtt,  and c,(iv) @�@t (t;  ; c), @�@ (t;  ; c) and @�@c (t;  ; c) are locally Lipschitz-continuous in  and c, i.e., forevery M1 > 0, M2 > 0 there exists L�� = L�� (�;M1;M2) such that for all t 2 [0; �], ; � 2 GC(M1)\ 
3 and c; �c 2 GRm(M2) \ 
4 it follows that����@�@t (t;  ; c)� @�@t (t; � ; �c)���� � L���j � � jC + jc� �cjRm�;



 @�@ (t;  ; c)� @�@ (t; � ; �c)



L(C;R) � L���j � � jC + jc� �cjRm�:and 



@�@c (t;  ; c)� @�@c (t; � ; �c)



R1�m � L���j � � jC + jc� �cjRm�:



89and assuming that ddt�t� �(t; xt; c)� � "; a.e. t 2 [0; �];for some x 2 W 1;1� , c 2 
4 and " > 0, then by repeating the proofs of Example 4.25 we canshow that (A8b') is satis�ed in a neighborhood of (x; c). The details are omitted.4.3 Di�erentiability wrt a parameter in the equationIn this section we study di�erentiability of solutions of IVP_x(t; d) = f�t; x(u; d); �(t; x(�; d)t); d�; t 2 [0; T ] (4.114)x(t; d) = '(t); t 2 [�r; 0] (4.115)wrt the parameter d of the equation. We assume that d 2 Rm, i.e., f : [0; T ]�
1�
2�
5 !Rn, where 
5 is an open subset of Rm. In this section the initial function, f and � are �xed,and only the parameter d of the equation varies, and therefore, to emphasize the dependenceof the solution on d, we use the notations x(t; d) and x(�; d)t for the value of the solution andfor the solution segment function at t, respectively, corresponding to parameter d.In this section we replace assumptions (A1), (A4) and (A7) by the following ones, respec-tively.(A1') the function f : [0; T ]� 
1 � 
2 � 
5 ! Rn is bounded and continuous on its domain,(A4') for each d the function f(t; x; y; d) is locally Lipschitz-continuous in its second and thirdvariables, i.e., for every d 2 
5, � > 0, M > 0 there exists a constant L1 = L1(d; �;M)such that for all t 2 [0; �], x; �x 2 �GRn(M)\ 
1 and y; �y 2 �GRn(M) \ 
2jf(t; x; y; d)� f(t; �x; �y; d)j � L1�jx� �xj+ jy � �yj�;(A7') (i) The function f(t; x; y; d) : [0; T ]�
1�
2�
5 ! Rn is continuously di�erentiablewrt x, y and d, and(ii) @f@d (t; x; y; d) is bounded on [0; T ]� 
1 � 
2 � 
5.By (A1'), the following de�nition is meaningful.kfk � supnjf(t; x; y; d)j : t 2 [0; T ]; x 2 
1; y 2 
2 and d 2 
5o: (4:116)For given d 2 
5 de�ne the functionfd(t; x; y)� f(t; x; y; d):Then by (A1') and (A4') the function fd satis�es (A1) and (A4), and then by applying Theo-rems 3.8 and 3.19, we get that IVP (3.1)-(3.2) corresponding to the function fd has a uniquesolution, and consequently, IVP (4.114)-(4.115) has a unique solution on an interval [0; �] forthe �xed parameter value d.



90By assumption (A7'), the constantN � sup�



@f@d (t; x; y; d)



Rn�m : t 2 [0; T ]; x 2 
1; y 2 
2; d 2 
5� (4:117)is well-de�ned and satis�eskfd � f �dk � N jd� �djRm ; for d; �d 2 
5; (4:118)therefore Theorems 3.20 and 3.25 imply the following result.Theorem 4.44 Assume (A1'), (A2), (A3), (A4'), (A5){(A6) and (A7'), and let 1 � p � 1.For a given �d 2 
5 there exist constants � > 0, � > 0 and L3 = L3(p; �; �d; �), such that IVP(4.114)-(4.115) has a unique solution on [0; �] for all d 2 
5 with jd� �djRm < �, andjx(�; d)t� x(�; �d)tjW 1;p � L3jd� �djRm ; t 2 [0; �]:We comment, that condition (A7') (ii) is assumed only for simplicity of the discussion. (The-orem 4.44 could be proved without this assumption.) Note also that, of course, (A7') implies(A4').4.3.1 Special case, di�erentiability in W 1;1In this subsection we study the special case corresponding to that in Section 4.1.1, i.e., we shallassume that either the equation is state-independent, (i.e., �(s; t;  ), or equivalently, �(t;  ; �)is independent of  ) or in the state-dependent case the initial function ' 2 C1 such that_'(0�) = f(0; '(0);�(0; '); d), and we assume that f(0; x; y; d) is independent of d for x 2 
1,y 2 
2. As in Section 4.1.1, we shall use assumption (A8a) on the delay function to obtainour results.For d 2 
5, h 2 Rm let z(�; h) be the solution of the linear IVP_z(t; h) = @f@x�t; x(t; d);�(t; x(�;d)t); d�z(t; h)+ @f@y �t; x(t; d);�(t; x(�;d)t); d�@�@ (t; x(�; d)t)z(�; h)t+ @f@d�t; x(t; d);�(t; x(�;d)t); d�h; t 2 [0; T ]; (4.119)z(t; h) = 0; t 2 [�r; 0]: (4.120)We comment, that the solution, z(�; h) of this IVP exists, and depends linearly on h.Next we state the results corresponding to Theorems 4.8 and 4.11. The proofs are omitted,since they are analogous to those in Section 4.1.1.Theorem 4.45 Let ', d, � and f be �xed satisfying (A1'), (A2), (A3), (A4'), (A5), (A6),(A7') and (A8a), and assume that either(1) the equation is state-independent, i.e., �(t;  ; �) is independent of  ,



91or(2) in the state-dependent case(a) f(0; x; y; d) is independent of d for x 2 
1, y 2 
2, and(b) ' 2 C1 and _'(0�) = f(0; '(0);�(0; '); d).Then(i) the solution, x(t; d), of IVP (4.114)-(4.115) is di�erentiable wrt d for all t 2 [0; �] andd 2 
5,(ii) x(t; d+ h)� x(t; d)jhjRm converges uniformly to @x@d(t; d) on t 2 [0; �],(iii) the derivative is @x@d(t; d)h = z(t; h), where z(t; h) is the solution of the linear IVP (4.119)-(4.120).Corollary 4.46 Assuming the conditions of Theorem 4.45, the function�
5 � Rm�! C; d 7! x(�; d)tis di�erentiable for all t 2 [0; �].Theorem 4.47 Assume that the conditions of Theorem 4.45 are satis�ed. Then the function�
5 � Rm�! W 1;1, d 7! x(�; d)t is di�erentiable for all t 2 [0; �].4.3.2 General case, di�erentiability in W 1;pIn this subsection we show that assumptions (A1){(A7') and (A8b) imply that the solutionis di�erentiable wrt d in the state-space W 1;p. As in Sections 4.1.3 and 4.2.2, we transform(4.114)-(4.115) intoy(t)=8<: 0; t 2 [�r; 0]Z t0 f�u; y(u) + ~'(u); �(u; yu + ~'u); d�du; t 2 [0; T ]; (4:121)and introduce the operatorS(y; d)(t) = 8<: 0; t 2 [�r; 0]Z t0 f�u; y(u) + ~'(u); �(u; yu + ~'u); d�du; t 2 [0; T ]; (4:122)where we consider S as S : GYp��� ���� GRm� �d; ��! Yp��where �� > 0, �� > 0 and � > 0 is speci�ed by the next lemma.



92Lemma 4.48 Let 1 � p < 1, �d 2 
5 and R > 0. Then there exist � > 0, �� > 0 and �� > 0such that GRm� �d; �� � 
5, and the operator S de�ned by (4.122) satis�es(i) S : GYp��� ���� GRm� �d; ��! GYp������,(ii) S is a uniform contraction on GYp������\ GW 1;1�� (R) both in j � jYp�� and j � jY1�� norms, i.e.,there exists 0 � � < 1 such that for all d 2 GRm� �d; ��, y; �y 2 GYp������ \ GW 1;1�� (R)jS(y; d)� S(�y; d)jY1�� � �jy � �yjY1�� ;and jS(y; d)� S(�y; d)jYp�� � �jy � �yjYp�� :The proof is an obvious modi�cation that of Lemma 4.19.The next lemma guarantees continuous di�erentiability of S(y; d) wrt y and d.Lemma 4.49 Let �d 2 
5, 1 � p < 1 be �xed, and R > 0 given, and assume (A1'), (A2),(A3), (A4'), (A5), (A6), (A7') and (A8b). Let �, ��, �� be the constants from Lemma 4.48,i.e., such that the operator S de�ned by (4.122) satis�esS : GYp��� ���� GRm� �d; ��! GYp������;and it is a uniform contraction on GYp��� ��� \ GRm(R). Assume that there exists W � Yp�� suchthat(i) W � (GYp��� ��� \ GRm(R)),(ii) for y 2 W it follows that y + ~' 2 K.Then the operator S(y; d) : �W �GRm� �d; �� � (W \ Yp��)� Rm�! Yp��has continuous partial derivatives wrt y and d on its domain, and for y 2 W, d 2 GRm� �d; ��,h 2 Yp�� we have that�@S@y (y; d)h� (t)= 8>>>><>>>>: 0; t 2 [�r; 0];Z t0 @f@x�u; y(u) + ~'(u);�(u; yu+ ~'u); d�h(u)+ @f@y�u; y(u) + ~'(u);�(u; yu+ ~'u); d��@B�@x (y + ~')h�(u) du; t 2 [0; ��];(4.123)and for y 2 W, d 2 GRm� �d; ��, h 2 Rm it follows that�@S@d (y; d)h� (t) = 8<: 0; t 2 [�r; 0];Z t0 @f@d�u; y(u) + ~'(u);�(u; yu+ ~'u); d�h du: t 2 [0; ��]:(4.124)



93Proof Relation (4.123) follows from (4.50) by applying Lemma 4.22 for fd, only the conti-nuity of @S@d (y; d) wrt y and d requires a proof, which is omitted, since it follows like that inLemma 4.22.Let h 2 Rm, y 2 W , d 2 
5. Assumption (A7') (ii), and (4.117) yield that����@S@d (y; d)h����Yp�� � N ��1=pjhjRm ;which proves the boundedness of @S@d (y; d). Consider1jhjRm ����S(y; d+ h)� S(y; d)� @S@d (y; d)h����Yp��= 1jhjRm �Z ��0 ����f(u; y(u) + ~'(u);�(u; yu+ ~'u); d+ h)� f(u; y(u) + ~'(u);�(u; yu+ ~'u); d)� @f@d�u; y(u) + ~'(u);�(u; yu+ ~'u); d�h����p du�1=p;from which (4.124) follows, using di�erentiability of f wrt d, and the Lebesgue DominantConvergence Theorem. It is easy to see the continuity of @S@d (y; d).The following theorem is based on Lemmas 4.48 and 4.49 and Theorem 4.14. The proof isomitted, since it is the same as that of Theorem 4.23.Theorem 4.50 Assume that ', �, f and �c satisfy (A1'), (A2), (A3), (A4'), (A5), (A6), (A7')and (A8b). Then there exist � > 0, � > 0 such that IVP (4.114)-(4.115) has unique solution,x(t; d), on [0; �] corresponding to any parameter d 2 GRm� �d; ��. Assume that x(�; �d) 2 K, thenx(t; d) is continuously di�erentiable wrt d, as a functionGRm� �d; ��! Xp�; d 7! x(�; d):



Chapter 5STABILITY BY LINEARIZATIONStability properties of solutions of a modeling di�erential equation are of great importancein applications. For linear delay equations the stability of the trivial (x(t) = 0) solution ischaracterized by the location of the zeros of its characteristic equation. Necessary and su�cientconditions for stability in terms of the parameters (coe�cients, delays) of the equation areknown only for the simplest equations, even in the case of linear constant delay equations.There are numerous su�cient conditions for guaranteeing stability for special equations (seee.g. [31]). One possible approach to �nd su�cient stability conditions is, analogously to theODEs case, by Liapunov's method. But, unfortunately, there is no general strategy to constructa Liapunov functional for a given equation, and if the equation is complicated (nonlinear, withseveral time- or state-dependent delays), obtaining a Liapunov functional can be very di�cultif not impossible.For nonlinear autonomous ODEs the linearization method is a very useful one, since wecan deduce stability properties of the solution of the nonlinear equation from that of thecorresponding linear equation, which is signi�cantly easier to check. Recently, Cooke andHuang ([13]) introduced this method for nonlinear delay equations with state-dependent delaysof the form (3.64). Since this technique is a very powerful tool to discuss local stabilityproperties of a nonlinear delay equation, in this chapter we shall obtain a similar linearizationtest for the autonomous version of our equation, (3.1). Note, that despite the signi�canttechnical di�erences between our presentation and that of [13] due to the di�erent form of thetwo equations, the main ideas are of course the same, since both follow the steps of the proofof the ODEs case (see e.g. [39]), and the two results are equivalent in the sence that they bothprovide the same linear equation for nonlinear equations which can be rewritten in both forms.Example 5.8 will show an equation, which is not included in (3.64), but is covered by (3.1),and of course, examples can be constructed for the opposite direction as well.We note, that the main di�culty to obtain linearization results for state-dependent de-lay equations is that it is di�cult to di�erentiate the delayed term in the presence of state-dependent delays (see in Chapter 4). We shall de�ne a bounded linear operator, F : C ! Rn(see (5.6) below), as a candidate for the linearized equation about the trivial solution. Thisis not the \true" linearization at zero, since the delayed term is not necessarily di�erentiableat zero (in the space C), but using assumption (A5), we can get an estimate on the errorreplacing the right hand side of the equation by Fxt (see Lemma 5.2 below), which turns outto be su�cient to prove that the asymptotic stability of the corresponding linearized equation,(5.9), implies that of the nonlinear equation, (5.1).Section 5.1 contains the main results, and in Section 5.2 we illustrate the method on severalexamples with constant, time- and state-dependent delays.94



955.1 Main resultsConsider the autonomous version of (3.1)_x(t) = f�x(t);�(xt)�; t � 0; (5:1)with corresponding initial conditionx(t) = '(t); �r � t � 0: (5:2)In this section we use the notations�( ; �)� Z 0�r ds�(s;  )�(s);  2 
3; � 2 C;and �( ) � �( ;  );  2 
3;i.e., we use the notations of the previous chapters but omitting t from the arguments. Weassume hypotheses (A1){(A7) (with the understanding that t is missing from the argumentsof f and �), and we also assume that(H) 0 2 
1 \ 
2, and f(0; 0) = 0,i.e., x� = 0 is an equilibrium point of equation (5.1). Note, that by Theorems 3.8 and 3.14,IVP (5.1){(5.2) has a unique solution on [�r; �] for some � > 0.First we introduce constants which we shall use throughout this section.It follows from the assumption that 
1 and 
2 are open subsets of Rn and 0 2 
1 \ 
2that there exists a constant �1 > 0 such that GRn(�1) � 
1 \ 
2. Assumption (A4) (or (A7))implies that there exists a constant L1 = L1(�1) such thatjf(x; y)� f(�x; �y)j � L1(jx� �xj+ jy � �yj); for x; �x; y; �y 2 GRn(�1): (5:3)Inequality (2.5) and jx(t)j � jxtjC yield thatx(t) 2 GRn(�1) and �(xt) 2 GRn(�1) for xt 2 GC(�2); (5:4)where �2 � �1minf1; 1=k�kg.We shall need the following estimate.Lemma 5.1 Assume (A1){(A7) and (H). Let x be the solution of (5.1)-(5.2) corresponding toinitial function ' satisfying j'jC � �2. Assume that � > 0 is such that jxtj � �2 for 0 � t � �.Then the solution x satis�es the inequalityjxtj � j'jC exp�L1(1 + k�k)t�; t 2 [0; �]:



96Proof Let � > 0 satisfy the condition of the lemma, and let t 2 [0; �]. The integrated formof (5.1), and relations (5.3), (5.4) and (H) yield the following estimates.jx(t)j � j'(0)j+ Z t0 jf(x(u);�(xu))j du� j'jC + L1 Z t0 jx(u)j+ j�(xu)j du� j'jC + L1 Z t0 jx(u)j+ k�kjxujC du: (5.5)Lemma 2.14, the assumption j'jC � �2 and (5.5) imply thatmax�r�v�t jx(v)j � j'jC + L1(1 + k�k) Z t0 max�r�v�u jx(v)j du; t 2 [0; �];which, using Gronwall-Bellman inequality, yields the statement of the lemma.De�ne the linear operatorF : C ! Rn; F � @f@x(0; 0) (0)+ @f@y (0; 0)�(0;  ) (5:6)and the function G : C ! Rn; G( ) � f( (0);�( ))� F : (5:7)Note, that F is a bounded operator, since by (2.5) it follows thatjF j � �



@f@x(0; 0)



+ 



@f@y (0; 0)



k�k� j jC:By this notation we can rewrite (5.1) as_x(t) = Fxt +G(xt); t � 0; (5:8)and therefore we can consider it as a perturbation of the constant delay equation_x(t) = Fxt; t � 0 (5:9)by the function G.We shall need the following estimate of G.Lemma 5.2 Assume (A1){(A7) and (H). There exists a constant N > 0 such that for every� > 0 there exists a constant � = �(�) > 0 such thatjG( )j � N�� + j jW 1;1�j jC (5:10)for all  2W 1;1 such that j jC � �.



97Proof The de�nition of F , (A7), (H), Lemmas 2.16 and 2.17 implyjG( )j � ����f� (0);�( )�� @f@x(0; 0) (0)� @f@y (0; 0)�(0;  )����= ����f� (0);�( )�� f(0; 0)� @f@x(0; 0) (0)� @f@y (0; 0)�(0;  )����� sup0���1 



@f@x(� (0); ��( ))� @f@x(0; 0)



 j (0)j+ 



@f@y (0; 0)



 j�( )� �(0;  )j+ sup0���1 



@f@y (� (0); ��( ))� @f@x(0; 0)



 j�( )j : (5.11)By the continuous di�erentiability of f guaranteed by (A7), for every � > 0 there exists0 < �1(�) � �1 such that if jxj; jyj < �1(�) then



@f@x(x; y)� @f@x(0; 0)



 < � and 



@f@y (x; y)� @f@y (0; 0)



 < �It follows from (2.5), �1(�) � �1 and the de�nition of �2 that the constant � = �(�) ��1(�)minf1; 1=k�kg satis�es � � �2, and if  2 GC(�) then



@f@x(� (0); ��( ))� @f@x(0; 0)



 < � and 



@f@y (� (0); ��( ))� @f@y (0; 0)



 < � (5:12)for all 0 � � � 1. It follows from assumption (A5) with L2 = L2(�1), � � �2 and (5.4), thatfor  2 GC(�) \W 1;1 j�( )� �(0;  )j = j�( ;  )� �(0;  )j� L2(�1)j jW 1;1j jC: (5.13)By combining (5.11), (5.12) and (5.13) we get for  2 GC(�) \W 1;1 thatjG( )j � �j jC + �k�kj jC + 



@f@y (0; 0)



L2(�1)j jW 1;1j jC� N(�+ j jW 1;1)j'jC ;where N � maxn1 + k�k; 


@f@y (0; 0)


L2(�1)o.Let S(t) be the semigroup generated by the linear constant-delay equation (5.9), and !0be the supremum of the real part of the characteristic roots of equation (5.9). (See Section 2.3for the de�nition of S(t) and !0.) We show that the stability properties of the trivial solutionof the nonlinear state-dependent autonomous equation (5.1) can be obtained by that of thelinear constant-delay equation (5.9).Theorem 5.3 Assume (A1){(A7) and (H), and that the semigroup S(t) is asymptoticallystable, i.e., !0 < 0. Then for every ! > !0 there exist K = K(!) > 0 and � = �(!) > 0such that for all ' 2 GC(�) the corresponding solution, x(t), of IVP (5.1)-(5.2) is de�ned fort 2 [0;1), and satis�es jx(t)j � Ke!tj'jC ; t � 0:



98Proof Fix an arbitrary !0 < ! < 0 and �x !� such that !0 < !� < !. Then by Lemma 2.18,there exists a constant M =M(!�) � 1 such thatjS(t)'jC �Me!�tj'jC; t � 0; ' 2 C: (5:14)Let x(t) be the solution of (5.8) (or equivalently (5.1)) corresponding to an initial function' 2 C. By Lemma 2.20 we get thatxt = S(t� r)xr + Z t�r0 S(t� r � s)X0G(xs+r) ds; t � r; (5:15)where X0 is de�ned by (2.14).Let N > 0 be the constant given by Lemma 5.2, de�ne� � ! � !�4MN ;and let �(�) be the constant corresponding to this � from Lemma 5.2. Finally, de�ne two moreconstants �3 � min��2; ! � !�4MN ; ! � !�4MNL1(1 + k�k)�2 ; �(�)� ;and � � �3 exp��L1(1 + k�k)r� 1M e!�r:We comment, that 1M e!�r � 1 since M � 1 and !� < 0, and hence � � �3 � �2.Let j'jC < �. Then by (5.4) and � � �2 it follows that '(0) 2 
1 and �(') 2 
2, andtherefore Theorem 3.8 implies that there exists a solution if IVP (5.1)-(5.2) x(t) correspondingto ' on an interval [0; �]. Since, by (5.4) and Theorem 3.8, the solution is continuable tillxt 2 GC(�2), and since Lemma 5.1 and the de�nition of � imply the relation jxrjC < �3 � �2,it follows that there exists r < t1 � � such that jxtjC < �3 on t 2 [0; t1). Suppose that thereexists t2 such that r < t2 � � and the solution satis�esjxtjC < �3 for t 2 [0; t2); and jxt2 jC = �3: (5:16)For t 2 [r; t2) and j'jC � �, estimate (5.3), (2.5), (5.16), �3 � �2 and the de�nition of �3 implythat j _x(t)j = jf(x(t);�(xt))j� L1(jx(t)j+ j�(xt)j)� L1(1 + k�k)jxtj� L1(1 + k�k)�3� ! � !�4MN : (5.17)Then (5.17) yields that supt�r�s�t j _x(s)j � ! � !�4MN ;and hence, by using (5.16), we also havejxtjW 1;1 � ! � !�4MN ; for t 2 [r; t2); j'jC � �: (5:18)



99Since for t 2 [r; t2), j'jC < �3 and 0 � s � t relation (5.16) yields that jxs+rjC � �3 � �(�),then Lemma 5.2, (5.14), (5.15), (5.18) and the relation jX0zjC = jzj (for z 2 Rn) imply thatjxtjC � kS(t� r)kjxrjC + Z t�r0 kS(t� r � s)kjG(xs+r)j ds� Me!�(t�r)jxrjC + Z t�r0 MNe!�(t�r�s)�� + jxs+r jW 1;1�jxs+rjC ds� Me!�(t�r)jxrjC + Z tr MNe!�(t�s)�� + ! � !�4MN �jxsjC ds:By multiplying both sides by e�!�t and changing variable in the integral we getjxtjCe�!�t �Me�!�rjxrjC + Z tr MNe�!�s�� + ! � !�4MN �jxsjC ds:By applying Gronwall-Bellman inequality for the function jxtjCe�!�t we getjxtjCe�!�t �Me�!�rjxrjC exp�MN �� + ! � !�4MN � t�; r � t � t2;or equivalently, for r � t � t2jxtjC �Me�!�rjxrjC exp��MN �� + ! � !�4MN �+ !�� t�:From the de�nition of � it follows thatjxtjC � Me�!�rjxrjC exp��! � !�2 + !�� t�< Me�!�rjxrjCe!t; r � t � t2: (5.19)Then this estimate, Lemma 5.1 and the de�nition of � imply for j'jC < � thatjxtjC < Me�!�rj'jCeL1(1+k�k)re!t< �3; r � t � t2;which contradicts to the de�nition of t2. Therefore jxtj < �3 for r � t � �, but this impliesthat � = 1, and (5.19) holds for all t � r, therefore, by (5.16) and (5.19), the statement ofthe theorem is proved with K �Me!�r�3.Remark 5.4 We note, that if !0 > 0, i.e., the trivial solution of the linear equation is unstable,then so is the trivial solution of the nonlinear equation. Since unstability results are of lessinterest in applications, and the detailed proof is rather lengthy, technical, and also similarto the state-independent case, we omit it. (See Section 10.1 in [31] for the state-independentcase.)



1005.2 ApplicationsIn this section we show examples, when by the linearization technique of the previous section,we can �nd conditions implying asymptotic stability of a nonlinear delay equation. The appli-cability of this linearization method depends on whether we are able to check the asymptoticstability of the linearized equation, which is a di�cult problem in general, but in the exampleswe present in this section we can refer to existing conditions from the literature.Example 5.5 Consider the scalar constant delay equation_x(t) = �ax(t� 1)(1 + x(t)); t � 0; (a > 0): (5:20)This equation arises as we transform the delayed logistic equation_x(t) = �x(t)(1� x(t� �)=K)by the new variable y(t) = �1+x(t)=K, and change the time scale. (See e.g. [38].) It is known(e.g. [38]), that the trivial solution of (5.20) is asymptotically stable for a < �=2, and unstablefor a > �=2. We can obtain this result by using Theorem 5.3. Equation (5.20) has the form(5.1) with r = 1, f(x; y) = �ay(1+x) and �( ; �) = �(�1). Since @f@x(0; 0) = 0, @f@y (0; 0) = �a,the linearized equation (5.9) for this equation is_x(t) = �ax(t� 1); t � 0: (5:21)Since the trivial solution of (5.21) is asymptotically stable for a < �=2, and unstable fora > �=2 (see e.g. [31]), the same result holds for the trivial solution of (5.20) by Theorem 5.3and Remark 5.4.Example 5.6 Consider the scalar delay equation_x(t) = x(t)�a+ bx(t� �)� cx2(t� �)�; t � 0;where a > 0 and c > 0. This is a delayed Lotka-Volterra type population model introducedby Gopalsamy and Ladas (see e.g. in [38]). The equation has a unique positive equilibriumpoint, �x = (b + pb2 + 4ac)=(2c). By the new variable y(t) = x(t) � �x we can transform theequilibrium point to zero, and get the equation_y(t) = �(y(t) + �x)�(2c�x� b)y(t� �) + cy2(t� �)�; t � 0: (5:22)We can rewrite (5.22) in the form (5.1) with f(u; v) = �(u + �x)�(2c�x � b)v + cv2� and�( ; �) = �(��). Since @f@u (0; 0) = 0 and @f@v (0; 0) = ��x(2c�x � b), the linearized form of(5.22) is _x(t) = ��x(2c�x� b)x(t� �); t � 0;which is asymptotically stable if 0 < �x(2c�x� b)� < �=2, or equivalently,bpb2 + 4ac+ b2 + 4ac2c � < �2 ;



101and therefore under this assumption the trivial solution of (5.22) is asymptotically stable aswell.Example 5.7 Consider the scalar delay equation with state-dependent delay_x(t) = x(t)�a� bx(t)� mXi=1 bix(t� �i)� cx(t� �(xt))�; t � 0;where a > 0; and b > mXi=1 jbij+ jcj: (5:23)This population model with state-dependent delay term was studied in [12], where it wasshown that (5.23) yields that the unique positive equilibrium, �x = a=(b+Pmi=1 bi + c), of theequation is globally asymptotically stable (for initial functions '(s) > M with some M > 0).We can show this result (for local asymptotic stability) by using linearization technique. Bythe new variable y(t) = x(t) � �x we transform the equilibrium point to the origin, and thecorresponding equation is_y(t) = �(y(t) + �x)�by(t) + mXi=1 biy(t � �i) + cy(t� �(yt + �x))�; (5:24)which has the form (5.1) with f(u; v) = �(u+ �x)(bu+v), �( ; �) =Pmi=1 bi�(��i)+c�(��( +�x)). (Here and later, �x in the argument of � denotes a constant function with value equal to�x.) We have that @f@u(0; 0) = �b�x, @f@v (0; 0) = ��x, and �(0; �) = Pmi=1 bi�(��i) + c�(��(�x)).Therefore the linearized equation of (5.24) is_x(t) = �b�xx(t)� �x mXi=1 bix(t � �i) + cx(t� �(�x))! : (5:25)By a result from [31] (page 154) it follows that (5.23) yields the asymptotic stability of thetrivial solution of (5.25), for arbitrary delay function �(�), which, by Theorem 5.3, implies thatthe trivial solution of (5.24) is asymptotically stable as well.Example 5.8 Consider the scalar constant delay equation_x(t) = 
x(t) 1� mXi=1 aix(t� �i)1 + cix(t� �i)! : (5:26)This is the so-called Michaelis-Menton single species growth equation (see e.g. in [38]). Weassume that 
 > 0; ai > 0; ci > 0; �i > 0; and mXi=1 ai1 + ci = 1:The last assumption yields that �x = 1 is a positive equilibrium point of (5.26). It was shownin [38] that 
r � 1 implies the global asymptotic stability of �x, where r = maxi=1;:::;m �i.By letting y(t) = x(t)� 1, we get_y(t) = �
(y(t) + 1) mXi=1 aiy(t� �i)(1 + ci)(1 + ci + ciy(t� �i)) : (5:27)



102We can rewrite (5.27) in the form of (5.1), by selecting f(u; v) = �
(u+ 1)v, and�( ; �) = mXi=1 ai(1 + ci)(1 + ci + ci (��i))�(��i):Note, that this delayed term is not covered by Example 1.4, but it is clear, that we can replaceAk(t) of Example 1.4 by functions Ak(t;  ), and assuming that each Ak(t;  ) is continuouson [0; T ] � 
3, and locally Lipschitz-continuous in  , we can extend the example for thiscase as well, i.e., we can rewrite the corresponding delay term in the form (1.2), and thecorresponding � satis�es (A2) and (A5). It is clear that the function � de�ned above has thisproperties, therefore (5.27) has the form (5.1) with this f and �. We have that @f@u(0; 0) = 0and @f@y (0; 0) = �
, therefore the corresponding linearized equation is_x(t) = �
 mXi=1 ai(1 + ci)2x(t� �i): (5:28)By a condition from e.g. [28] or [37], it follows that the trivial solution of (5.27) is asymptoti-cally stable if 
 mXi=1 ai(1 + ci)2 �i < 1:It follows from the assumptions Pmi=1 ai1+ci = 1, ci > 0 and r = maxi=1;:::;m �i that
 mXi=1 ai(1 + ci)2�i < 
r mXi=1 ai1 + ci = 
r;therefore the condition 
r � 1 implies that trivial solution of (5.28), and hence that of (5.27)is asymptotically stable.Note, that the delayed term of (5.27) can not be written in the form given by the Stieltjes-integral in (3.64), and hence this equation is not included in (3.64) (without multiple delayterms).Example 5.9 In [38] the scalar equation_x(t) = f �Z ���r x(t+ s) d�(s)�� g(x(t))has been studied, where r > � > 0, and(i) �(s) is nondecreasing and �(��)� �(�r) = 1,(ii) f(x) is strictly decreasing, f(0) > 0, limx!1 f(x) = 0,(iii) g(x) is strictly increasing, g(0) = 0, limx!1 g(x) =1,and a condition was derived for the global asymptotic stability of the unique positive equilib-rium.We study the local asymptotic stability of the state-dependent version of this equation, i.e.,consider _x(t) = f �Z ���r x(t+ s) d�(s; xt)�� g(x(t)); (5:29)where we assume r > � > 0, (ii), (iii) above and modify (i) as



103(i') for all  2 C, the function �(�;  ) is nondecreasing and �(��;  )� �(�r;  ) = 1.Under this assumptions, (5.29) has a unique positive equilibrium point, �x, since the functionf �Z ���r �x d�(s; �x)�� g(�x) = f��x(�(��; �x)� �(�r; �x))�� g(�x)= f(�x)� g(�x)has a unique positive zero. (Here and later, �x in the second argument of � denotes a constantfunction with value �x.) Using y(t) = x(t) � �x and an argument similar to the one above, weget _y(t) = f �Z ���r y(t+ s) d�(s; xt) + �x�� g�y(t) + �x�: (5:30)We can rewrite (5.30) in the form (5.1) with F (u; v) = f(v + �x) � g(u + �x), and �( ; �) =R���r �(s) d�(s;  ). We have that @F@u (0; 0) = �g0(�x) and @F@v (0; 0) = f 0(�x). Therefore thelinearized version of (5.30) is_x(t) = �g0(�x)x(t) + f 0(�x) Z ���r x(t+ s) d�(s; �x): (5:31)Note that g0(�x) > 0 and f 0(�x) < 0 by the assumptions. Theorem 1.1 of [37] yields that thetrivial solution of (5.31) is asymptotically stable if�f 0(�x) Z ���r s d�(s; �x) < 32 ;and therefore by our theorem, if this condition is satis�ed, then the trivial solution of (5.30) isasymptotically stable as well.



Chapter 6APPROXIMATION OF SOLUTIONS IN CNumerical methods for solving delay equations have been investigated by many authors(without completeness, we refer to [3], [15], [22], [34], [42], [46]).In this chapter we de�ne a sequence of delay equations with piecewise constant argumentswhich approximate equation (3.1), and obtain a discrete recurrence relation for the approximatesolution, which can be evaluated numerically easily. We comment that this method is identicalto Euler's method, and hence it is a one step method guaranteeing only �rst order convergence.It was introduced for point state-dependent equations in [21] (see also [46]), but with the aidof the approximating equations we can obtain a nice new proof (di�erent from those in [21] or[46]) for the convergence of the approximate solutions.The usage of equations with piecewise constant arguments for approximating delay equa-tions was originally introduced in [26] for linear delay equations with constant delays, and ithas been generalized for nonlinear delay equations with point state-dependent delay terms in[27]. Note, that the methods of [27] and that of this chapter are not exactly the same for thepoint delay case, but we can use the same technique to prove the convergence results.We present the convergence results in Section 6.1, and show numerical experiments inSection 6.2. In Chapter 7 we shall apply the method de�ned in this chapter for parameteridenti�cation.By using these approximating piecewise constant equations and following the steps of theCauchy-Peano existence theorem for ODEs (see e.g. in [11]), it is possible to obtain an al-ternative proof for the existence and uniqueness of solutions of (3.1) (see this method for thepoint state-dependent case in [27]).6.1 Theoretical convergenceThroughout this section we shall use the notation [t]h � [t=h]h, where [�] is the greatest integerfunction. For later reference we mention some elementary properties of this function:t � h < [t]h � t; (6.1)j[t]h � tj � h; (6.2)limh!0[t]h = t: (6.3)Let h be a positive number. We associate the following FDE with piecewise constantright-hand side to (3.1)._yh(t) = f �[t]h; yh([t]h); Z 0�r ds�(s; [t]h; (yh)[t]h) yh([t]h + s)� ; t 2 [0; T ]: (6:4)104



105The subscript h of yh(t) emphasizes that yh(t) is the solution of (6.4) corresponding to thediscretization parameter h. The notation (yh)[t]h denotes the solution segment of the functionyh(�) at time [t]h, i.e., (yh)[t]h : [�r; 0]! Rn, (yh)[t]h(s) � yh([t]h + s). The associated initialcondition to (6.4) is yh(t) = '(t); t 2 [�r; 0]: (6:5)By a solution of the initial value problem (6.4)-(6.5) we mean a function yh : [�r; T ]! Rn,which is de�ned on [�r; 0] by (6.5) and satis�es the following properties on [0; T ]:(i) the function yh is continuous on [0; T ],(ii) the derivative _yh(t) exists at each point t 2 [0;1) with the possible exception of thepoints ih (i = 0; 1; 2; : : :) where �nite one-sided derivatives exist,(iii) the function yh satis�es (6.4) on each interval [ih; (i+ 1)h)\ [0; T ] for i = 0; 1; 2; : : :Note, that by using the notation �(t;  ), we can rewrite (6.4) as_yh(t) = f�[t]h; yh([t]h);�([t]h; (yh)[t]h)�; t 2 [0; T ]:Lemma 6.1 Let 
 2 �(T;
1;
2;
3).(i) Let yh(t) be a continuous function on [0; T ] such that (yh)[t]h 2 
3 for t 2 [0; �] (� � T ).Then the function t 7! ��[t]h; (yh)[t]h� is de�ned and piecewise-constant on [0; �].(ii) (6.4) is equivalent to the integral equationyh(t) = ('(t); t 2 [�r; 0];'(0) + R t0 f�[u]h; yh([u]h);�([u]h; (yh)[u]h)�du; t 2 [0; T ]: (6:6)(iii) For an arbitrary �xed h > 0 there exists a constant 0 < � � T such that IVP (6.4)-(6.5)has unique solution on [�r; �], which is piecewise linear on [0; �].Proof Part (i) is obvious, part (ii) follows from (i). Using part (i) and the method of steps onintervals [ih; (i+ 1)h) we get existence and uniqueness of solution of IVP (6.4)-(6.5) for �xedh > 0 while yh([u]h) 2 
1, the third argument of f in (6.4) remains in 
2, and (yh)[u]h 2 
3.The following lemma shows that the solutions corresponding to h > 0 on a compact timeinterval form a uniformly bounded, equicontinuous family of functions.Lemma 6.2 Assume (A1){(A6) and let 
 2 �(T;
1;
2;
3).(i) For an arbitrary �nite � � T there exists a constant K1 = K1(�; 
)> 0 such that for everyh > 0 jyh(t)j � K1; t 2 [�r; �]: (6:7)(ii) For an arbitrary �nite � � T there exists a constant K2 = K2(�; 
) > 0 such that forevery h > 0 jyh(t)� yh(�t)j � K2jt� �tj; t; �t 2 [�r; �]; (6:8)and j(yh)t � (yh)�tjC � K2jt � �tj; t; �t 2 [0; �]: (6:9)



106(iii) There exists � � T such that IVP (6.4)-(6.5) has a unique solution on [0; �] for anarbitrary h > 0.Proof It is easy to see that K1 � j'jC + kfk� satis�es (6.7).To �nd K2, let t; �t 2 [�r; 0]. Then by (A6) and Lemma 2.3 we have thatjyh(t)� yh(�t)j = j'(t)� '(�t)j � j'jW 1;1 jt � �tj:For t; �t � 0 it follows from (6.4) thatjyh(t)� yh(�t)j � kfkjt� �tj:For �r � t � 0 � �t � �, using the previous two estimates, we getjyh(t)� yh(�t)j � jyh(t)� yh(0)j+ jyh(0)� yh(�t)j� j'jW 1;1 jtj+ kfk�t� maxfj'jW 1;1 ; kfkgjt� �tj:Therefore K2 � maxfj'jW 1;1 ; kfkg satis�es (6.8), and thus (6.9) as well.Inequality (6.8) yields for arbitrary h > 0 that jyh(t) � '(0)j � K2t, which, using that'(0) 2 
1 and 
1 is open, implies that there exists �1 � T such that yh(t) 2 
1 for t 2 [0; �1]and for all h > 0.Similarly to that in the proof of Lemma 3.13, we can show that for all u 2 [0; �1] it followsthat (yh)u 2 W 1;1, and j(yh)uj1;1 �M1 � maxfkfk; j'jW 1;1; K1g. By (6.2), (6.7), (6.8), (6.9)with K2 = K2(�1; 
), and Lemma 3.12 with the constant L2 = L2(�;M1) we have thatj�([u]h; (yh)[u]h)� �(0; (yh)0)j� j�([u]h; (yh)[u]h)� �([u]h; (yh)0)j+ j�([u]h; (yh)0)� �(0; (yh)0)j� (k�k+ L2(�1;M1)j'jW 1;1)j(yh)[u]h � (yh)0jC + j�([u]h; ')� �(0; ')j� (k�k+ L2(�1;M1)j'jW 1;1)K2j[u]hj+ j�([u]h; ')� �(0; ')j� (k�k+ L2(�1;M1)j'jW 1;1)K2u+ j�([u]h; ')� �(0; ')j;therefore, using (6.1), Lemma 2.8 and that 
2 is open, there exists �2 � �1 such that the thirdargument of f in (6.4) remains in 
2 for t 2 [0; �2] and for all h > 0. Finally, it follows from(6.9) that j(yh)t � 'jC � K2t; t 2 [0; �2];therefore there exists � � �2 such that (yh)t 2 
3 for t 2 [0; �] and for all h > 0. With this �by repeating the proof of Lemma 6.1 part (iii) we can �nish the proof of this Lemma.The next theorem shows that the solutions of IVP (6.4)-(6.5) uniformly approximate thesolution of IVP (3.1)-(3.2) on compact time intervals as h! 0+.Theorem 6.3 Assume (A1){(A6) and let 
 2 �(T;
1;
2;
3). Then the solutions of IVP(6.4)-(6.5) uniformly approximate the solution of IVP (3.1)-(3.2) on compact time intervalsas h! 0+, i.e., limh!0+ max0�t�� jx(t)� yh(t)j = 0; (6:10)where � � T is a �nite positive number satisfying Lemma 6.2 (iii). Moreover, assume that



107(i) f is locally Lipschitz-continuous in all of its arguments, i.e., for every � > 0, M > 0there exists a constant ~L1 = ~L1(�;M) such that for all t; �t 2 [0; �], x; �x 2 GRn(M)\ 
1,y; �y 2 GRn(M)\ 
2 it follows thatjf(t; x; y)� f(�t; �x; �y)j � ~L1�jt� �tj+ jx� �xj+ jy � �yj�;(ii) for every � > 0, M > 0 there exists a constant ~L2 = ~L2(�;M) such that for all � 2W 1;1 \ 
3, t; �t 2 [0; �],  ; � 2 GC(M2) \ 
3 it follows thatj�(t;  ; �)� �(�t; � ; �)j � ~L2j�jW 1;1�jt� �tj+ j � � jC�;then the convergence is linear in h, i.e., there exists a constant M3(�; 
) > 0 such thatjx(t)� yh(t)j �M3h; t 2 [0; �]; h > 0: (6:11)Proof Let � > 0 be a �nite constant satisfying Lemma (6.2) part (iii), and de�neM � maxfk�k; 1g �maxnjxjW 1;1� ; K1(�; 
)o;where K1(�; 
) is the constant from Lemma 6.2 (i). Then the de�nition of M , inequalities(6.7) and (2.5) imply that xt, (yh)t and �(t; xt), �(t; (yh)t) remain in �GC(M) for t 2 [0; �].Let L1 = L1(�;M) be the constant given by (A4). Then equation (6.6), assumption (A4) andstandard estimates yield the following inequalitiesjx(t)� yh(t)j � Z t0 �����f�u; x(u);�(u; xu)�� f�[u]h; x(u);�(u; xu)������du+ Z t0 �����f�[u]h; x(u);�(u; xu)�� f�[u]h; yh([u]h);�([u]h; (yh)[u]h)������ du� Z t0 �����f�u; x(u);�(u; xu)�� f�[u]h; x(u);�(u; xu)������du+ Z t0 L1 �jx(u)� yh([u]h)j+ ����(u; xu)� �([u]h; (yh)[u]h)���� du: (6.12)Inequalities (6.8) with K2 = K2(�; 
) and (6.2) implyjx(u)� yh([u]h)j � jx(u)� yh(u)j+ jyh(u)� yh([u]h)j� jx(u)� yh(u)j+K2ju� [u]hj� jx(u)� yh(u)j+K2h; (6.13)and therefore jxu � (yh)[u]h jC � jxu � (yh)ujC +K2h: (6:14)Using (6.13), (6.14), Lemma 3.12 with L2 = L2(�;M), we can estimate the last term in theright hand side of (6.12) as follows:����(u; xu)� �([u]h; (yh)[u]h)���� j�(u; xu)� �([u]h; xu)j+ ����([u]h; xu)� �([u]h; (yh)[u]h)���� j�(u; xu)� �([u]h; xu)j+ (k�k+ L2jxujW 1;1)jxu � (yh)[u]h jC� j�(u; xu)� �([u]h; xu)j+ (k�k+ L2M)jxu � (yh)ujC + (k�k+ L2M)K2h: (6.15)



108By combining (6.12), (6.13) and (6.15) we getjx(t)� yh(t)j � gh(t) + Z t0 L1(1 + L2M + k�k) max0�s�u jx(s)� yh(s)j du; (6:16)where gh(t) � Z t0 �����f�u; x(u);�(u; xu)�� f�[u]h; x(u);�(u; xu)������du+ Z t0 j�(u; xu)� �([u]h; xu)j du+ L1(1 + L2M + k�k)K2ht:The function gh(t) is monotone increasing in t, therefore Lemma 2.14 and (6.16) imply fort 2 [0; �] thatmax0�s�t jx(s)� yh(s)j � gh(�) + Z t0 L1(1 + L2M + k�k) max0�s�u jx(s)� yh(s)j du; (6:17)which, by Gronwall-Bellman inequality, implies thatmax0�s�t jx(s)� yh(s)j � gh(�) exp�L1(1 + L2M + k�k)t�; t 2 [0; �]: (6:18)To �nish the proof of (6.10), it is enough to show that gh(�) ! 0 as h ! 0+. Relation (6.3)and the continuity of f yield that for all u � 0f�[u]h; x(u);�(u; xu)�! f�u; x(u);�(u; xu)�; as h! 0+;and by Lemma 2.8 and (6.3) we have for all u � 0 that �([u]h; xu) ! �(u; xu), as h ! 0+,therefore by the Lebesgue Dominated Convergence Theorem we getZ �0 �����f�u; x(u);�(u; xu)�� f�[u]h; x(u);�(u; xu)������du! 0; as h! 0+:Similarly, R �0 ����(u; xu)� �([u]h; xu)���du! 0 as h! 0+, hence gh(�)! 0 as h! 0+.By assumption (i), (ii) and (6.2) we havejgh(�)j � Z �0 (~L1 + ~L2M)ju� [u]hj du+ L1(1 + L2M + k�k)K2ht� (~L1 + ~L2M + L1(1 + L2M + k�k)K2)h�: (6.19)Relations (6.18) and (6.19) yield thatM3 = (~L1 + ~L2M + L1(1 + L2M + k�k)K2)� exp�L1(1 + L2M + k�k)��satis�es (6.11).Next we address the issue of computing the solutions of (6.4). Fix N 2 N, and let h = r=N .By integrating (6.4) from kh to (k+ 1)h for some k 2 N and using that the right hand side of(6.4) is constant on [kh; (k+ 1)h), we gety((k + 1)h) = y(kh) + hf(kh; (yh)kh;�(kh; (yh)kh)); (6:20)



109By introducing the notation a(k) � yh(hk) we can reformulate (6.20) asa(k + 1) = a(k) + hf(kh; (yh)kh;�(kh; (yh)kh)); k = 0; 1; 2; : : : ; (6:21)which is a recursive formula for a(k), i.e., for yh(kh), k 2 N. The question is reduced tocomputing �(kh; (yh)kh) in (6.21). In the case when the delayed term contains only pointdelays, i.e., �(t;  ) =Pmi=1Ai(t) (��i(t;  (0))), we get�(kh; (yh)kh) = mXi=1Ai(kh)yh(kh� �i(kh; a(k)));which is easy to evaluate, using the linearity of yh(t) on the intervals [jh; (j+1)h]. The generalcase is similar, we get�(kh; (yh)kh) = Z 0�r ds�(s; kh; (yh)kh)yh(kh+ s)= N�1Xj=0 Z (j+1�N)h(j�N)h ds�(s; kh; (yh)kh)yh(kh+ s)= N�1Xj=0 Z (j+1�N)h(j�N)h ds�(s; kh; (yh)kh)�a(k + j �N)+ a(k + j + 1�N)� a(k + j �N)h �s � (j �N)h��;which shows how to compute �(kh; (yh)kh) for a given �, assuming that it is easy to computethe integral of a constant and the function s with respect to �(�; kh; (yh)kh).6.2 Numerical examplesIn this section we present numerical examples for the approximating scheme described inSection 6.1.Example 6.4 Consider the nonlinear scalar initial value problem_x(t) = �x2�t � �(x(t))�+ sin 2t+ sin4(t� sin2 t); t � 0; (6.22)x(t) = sin2 t; t 2 [�2; 0]; (6.23)where �(x) � minfjxj; 2g. Clearly, equation (6.22) can be written in the form (3.1) by choosingr = 2, f(t; x; y) � �y2 + sin 2t + sin4(t � sin2 t), and �(s; t;  ) � �[��( (0));0](s). It is easyto verify that assumptions (A1){(A6) are satis�ed, and x(t) = sin2 t is the unique solution of(6.22)-(6.23). The approximating initial value problem is_yh(t) = �y2h�[t]h � �(yh([t]h))�+ sin(2[t]h) + sin4([t]h � sin2([t]h)); t � 0;yh(t) = sin2(t); t 2 [�2; 0]:



110Table 6.1h t x(t) yh(t) jx(t)� yh(t)j10�2 20.0 0.833469 0.828241 5.228e-0340.0 0.555194 0.565731 1.054e-0260.0 0.092910 0.088392 4.518e-0380.0 0.987815 0.985422 2.393e-0310�3 20.0 0.833469 0.832948 5.212e-0440.0 0.555194 0.556241 1.047e-0360.0 0.092910 0.092457 4.526e-0480.0 0.987815 0.987578 2.362e-0410�3 20.0 0.833469 0.833417 5.210e-0540.0 0.555194 0.555298 1.046e-0460.0 0.092910 0.092864 4.526e-0580.0 0.987815 0.987791 2.359e-05The corresponding numerical runnings are printed out in Table 6.1. This experiment showsthat, in agreement with the theoretical expectations, the approximating sequence convergeslinearly to the true solution of the initial value problem.Example 6.5 Consider the scalar distributed delay equation with constant delays_x(t) = 4� Z 0�1 sin(2�s)x(t+ s) ds; t � 0; (6.24)x(t) = cos(2�t); �1 � t � 0: (6.25)Note that (6.24) has the form (3.1) with f(t; x; y) = 4�y and ds�(s; t;  ) = sin(2�s) ds. Itis easy to check that x(t) = cos(2�t) the analytical solution of IVP (6.24)-(6.25). Table 6.2contains the corresponding approximate solutions and the error of the approximation.Example 6.6 Our next example is a scalar equation_x(t) = � Z 0�1(t+ s+ 2)x(t+ s) ds+ 1� 1(t+ 2)2 ; t � 0; (6.26)x(t) = 1(t+ 2) ; �1 � t � 0: (6.27)With f(t; x; y) = 1 � 1=(t + 2)2 � y and ds�(s; t;  ) = (t + s + 2) ds, (6.26) has the form(3.1), and clearly, the conditions (A1){(A6) are satis�ed. The solution of IVP (6.26)-(6.27)is x(t) = 1=(t + 2), and the numerical results are presented in Table 6.3. The numericalapproximation exhibits a �rst order convergence.Example 6.7 Finally, consider_x(t) = Z 0�1 x2(t+ s) ds� 12 + � cos(�t); t � 0; (6.28)x(t) = sin(�t); �1 � t � 0: (6.29)We can rewrite (6.28) in the form of (3.1), by choosing f(t; x; y) = �1=2 + � cos(�t) + y, andds�(s; t;  ) =  (s) ds. The solution of IVP (6.28)-(6.29) is x(t) = sin(�t). The approximate



111Table 6.2h t x(t) yh(t) jx(t)� yh(t)j10�2 0.50 -1.000000 -1.017396 1.740e-021.00 1.000000 1.028012 2.801e-021.50 -1.000000 -1.037858 3.786e-022.00 1.000000 1.047843 4.784e-022.50 -1.000000 -1.056361 5.636e-023.00 1.000000 1.065118 6.512e-0210�3 0.50 -1.000000 -1.001863 1.863e-031.00 1.000000 1.003022 3.022e-031.50 -1.000000 -1.004231 4.231e-032.00 1.000000 1.005431 5.431e-032.50 -1.000000 -1.006619 6.619e-033.00 1.000000 1.007810 7.810e-0310�4 0.50 -1.000000 -1.000188 1.876e-041.00 1.000000 1.000304 3.043e-041.50 -1.000000 -1.000427 4.274e-042.00 1.000000 1.000549 5.492e-042.50 -1.000000 -1.000671 6.710e-043.00 1.000000 1.000793 7.929e-04solutions of this IVP for di�erent values of h are presented in Table 6.4, and they show linearconvergence to the true solution. Table 6.4h t x(t) yh(t) jx(t)� yh(t)j10�2 1.5 -1.000000 -0.970243 2.976e-023.0 0.000000 0.020626 2.063e-024.5 1.000000 1.000778 7.780e-046.0 0.000000 -0.015040 1.504e-027.5 -1.000000 -0.999821 1.791e-0410�3 1.5 -1.000000 -0.997056 2.944e-033.0 0.000000 0.001982 1.982e-034.5 1.000000 1.000070 6.982e-056.0 0.000000 -0.001513 1.513e-037.5 -1.000000 -0.999982 1.779e-0510�4 1.5 -1.000000 -0.999706 2.941e-043.0 0.000000 0.000197 1.974e-044.5 1.000000 1.000007 6.920e-066.0 0.000000 -0.000151 1.514e-047.5 -1.000000 -0.999998 1.784e-06
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Table 6.3h t x(t) yh(t) jx(t)� yh(t)j10�2 2.0 0.250000 0.250163 1.625e-044.0 0.166667 0.166823 1.563e-046.0 0.125000 0.125195 1.954e-048.0 0.100000 0.099868 1.317e-0410.0 0.083333 0.081792 1.542e-0310�3 2.0 0.250000 0.250016 1.564e-054.0 0.166667 0.166681 1.467e-056.0 0.125000 0.125017 1.703e-058.0 0.100000 0.099984 1.552e-0510.0 0.083333 0.083207 1.263e-0410�4 2.0 0.250000 0.250002 1.558e-064.0 0.166667 0.166668 1.458e-066.0 0.125000 0.125002 1.680e-068.0 0.100000 0.099998 1.570e-0610.0 0.083333 0.083321 1.237e-05



Chapter 7IDENTIFICATION OF PARAMETERSIn this chapter we study the parameter identi�cation (estimation) problem for IVP (3.1)-(3.2). We assume that some parameters (
) of the equation are unknown, but we have mea-surements (X0; X1; : : : ; Xl) at discrete time values (t0; t1; : : : ; tl) for the solution of the IVP.The goal is to �nd the parameter value, which minimizes the least squares �t-to-data criterionJ(
) = lXi=0 jx(ti; 
)�Xij2; 
 2 �;i.e., which is the best-�t parameter for the measurements. (Denote this problem by P). Prob-lem P has been studied by many authors, for di�erent classes of di�erential equations (see e.g.[4] and the references therein), including delay equations as well ([5], [41]).All the above cited papers use the same idea to �nd the solution of the optimization problemP : 1) First take �nite dimensional approximations of the parameters, 
N , (i.e., 
N 2 �N � �,dim�N <1, 
N ! 
 as N !1).2) Take approximate initial value problems (forM = 1; 2; : : : ;) corresponding to parametersfrom �N , (N = 1; 2; : : :), with solutions yM (�; 
N), such that yM (t; 
N) ! x(t; 
) as N;M !1, uniformly on compact time intervals.3) De�ne the least square minimization problems (PN;M) for each N;M = 1; 2; : : :, i.e.,�nd 
N;M 2 �N , which minimizes the least squares �t-to-data criterionJN;M(
N) = lXi=0 jyM(ti; 
N)�Xij2; 
N 2 �N :4) Assuming that the actual parameters belong to a compact subset of �, argue, that thesequence of solutions, 
N;M (N;M = 1; 2; : : :), of the �nite dimensional minimization problemsPN;M has a convergent subsequence with limit �
 2 �.5) Show that �
 is the solution of the minimization problem P .Note, that step 4) and 5) can be argued without using the particular approximation methodof the initial value problem, using only compactness arguments and step 2) (see e.g. in [41]).In Section 7.1 we show that the approximation scheme de�ned in Chapter 6 has the propertyrequired in step 2), and in Section 7.2 we present numerical examples for estimating parametersof IVP (3.1)-(3.2) by applying our approximation scheme and the method described above. Wenote that the proof of step 2), by using the approximating technique of Chapter 6, is elementary,and it is an easy modi�cation of the proof of Theorem 6.3. On the other hand, in [41], thesame proof, using �rst order spline scheme, requires long and technical argument, especiallyfor the point state-dependent case.We assume throughout this chapter, that only a part of the delay function � and thefunction f , represented by vector parameters c and d, respectively, and the initial function areunknown in the equation. 113



1147.1 Main resultsConsider the delay equation_x(t) = f�t; x(t);�(t; xt; c); d�; t 2 [0; T ]; (7:1)where c 2 
4, d 2 
5, 
4 and 
5 are open subsets of Rm, and the corresponding initialcondition x(t) = '(t); t 2 [�r; 0]: (7:2)In this section we use the notations of Sections 4.2 and 4.3, i.e., �, �, k�k and kfk arede�ned by (4.94), (4.95), (4.97) and (4.116), respectively. We assume that f and � are givenin the equation, but the parts of f and � represented by d and c, and the initial function areunknown, i.e., considered as parameters.De�ne the parameter space in this section by�2 � W 1;1 � Rm � Rm;and the set of feasible parameters by�2 � n('; c; d) 2W 1;1 � 
4 � 
5 : '(0) 2 
1; ' 2 
3; Z 0�r ds�(s; 0; '; c)'(s)2 
2o:(See also (3.46).)We assume that f , ' and � satisfy (A1'), (A2'), (A3), (A4'), (A5') and (A6). Theseconditions imply by Theorems 3.8, 4.32 and 4.44 that IVP (7.1)-(7.2) has unique solution onan interval [0; �] for parameters from a neighborhood of ('; c; d).Theorem 7.1 Assume that f , � and ( �'; �c; �d) 2 �2 satisfy (A1'), (A2'), (A3), (A4'), (A5')and (A6). Then there exist constants � > 0, � > 0 and L3 = L3(�; �'; �c; �d; �), such thatIVP (7.1)-(7.2) has unique solution on [0; �] for all ' 2 W 1;1, c 2 
4 and d 2 
5 withj'� �'jW 1;1 + jc� �cjRm + jd� �djRm < �, andjx(�;'; c; d)t� x(�; �'; �c; �d)tjW 1;1 � L3�j'� �'jW 1;1 + jc� �cjRm + jd� �djRm�; t 2 [0; �]:Let h be a positive constant, and assume that for each k 2 N given a �nite dimensionalsubspace �k of W 1;1, such that for each ' 2 W 1;1, the projection of ' onto �k, denoted by'k, satis�es that j'k � 'jW 1;1 ! 0, as k ! 1. Let ck; dk 2 Rm. Then de�ne the followingdelay equation with piecewise constant arguments_yh;k(t) = f�[t]h; yh;k([t]h);�([t]h; (yh;k)[t]h ; ck); dk�; t 2 [0; T ]; (7:3)with initial condition yh;k(t) = 'k(t); t 2 [�r; 0]: (7:4)Here, to emphasize that the solution corresponds to a given h > 0 and ('k; ck; dk), we denote thesolution and the solution segment function of IVP (7.3)-(7.4) by yh;k(t) and (yh;k)t, respectively.Lemma 6.1 implies, that for each �xed h > 0 and ('k; ck; dk) 2 �2, IVP (7.1)-(7.2) has uniquesolution on some interval [0; �].We shall need the following lemma.



115Lemma 7.2 Assume that f and � satisfy (A1'), (A2'), (A4') and (A5'), and ('; c; d) 2 �2.Fix sequences 'k 2 �k, ck 2 
4 and dk 2 
5 such that j'k�'jW 1;1+jck�cjRm+jdk�djRm < �,where � > 0 is such that G�2(('; c; d); �) � �2. Then we have that:(i) For an arbitrary �nite � � T there exists a constant K1 = K1(�; �; '; c; d) > 0 such thatfor every h > 0 and k 2 N it follows thatjyh;k(t)j � K1; t 2 [�r; �]: (7:5)(ii) For an arbitrary �nite � � T there exists a constant K2 = K2(�; �; '; c; d) > 0 such thatfor every h > 0 and k 2 N it follows thatjyh;k(t)� yh;k(�t)j � K2jt� �tj; t; �t 2 [�r; �]; (7:6)and j(yh;k)t � (yh;k)�tjC � K2jt � �tj; t; �t 2 [0; �]: (7:7)(iii) There exists � � T and �� > 0 such that IVP (7.3)-(7.4) has a unique solution on [0; �]for every h > 0 and k such that j'k � 'jW 1;1 + jck � cjRm + jdk � djRm < ��.Proof The proof follows the steps of that of Lemma 6.2. It is easy to see that K1 �j'jC + � + kfk� satis�es (7.5).To �nd K2, let t; �t 2 [�r; 0]. Then by (A6) and Lemma 2.3 we have thatjyh;k(t)� yh;k(�t)j = j'k(t)� 'k(�t)j� j'kjW 1;1 jt� �tj� (j'jW 1;1 + �)jt� �tj:For t; �t � 0 it follows from (7.3) that jyh;k(t) � yh;k(�t)j � kfkjt � �tj. Then, clearly, K2 �maxfj'jW 1;1 + �; kfkg satis�es (7.6), and thus (7.7) as well.Inequality (7.6) yields for arbitrary h > 0 that jyh;k(t)�'(0)j � K2t, which, by using that'(0) 2 
1 and 
1 is open, implies that there exists �1 � T such that yh;k(t) 2 
1 for t 2 [0; �1]and for all h > 0 and k 2 N.Since yh;k is a piecewise linear function, it follows that (yh;k)u 2 W 1;1 for all u 2 [0; �1],and it is easy to see that j(yh;k)uj1;1 �M1 � maxfkfk; j'jW 1;1+�;K1g. By (6.2), (7.5), (7.6),(7.7), and Lemma 4.31 with the constant L2 = L2(�;M1; jcjRm + �) we have thatj�([u]h; (yh;k)[u]h ; ck)� �(0; (yh;k)0; ck)j� j�([u]h; (yh;k)[u]h ; ck)� �([u]h; '; c)j+ j�([u]h; '; c)� �(0; '; c)j+ j�(0; '; c)� �(0; (yh;k)0; ck)j� (k�k+ L2j'jW 1;1)�j(yh;k)[u]h � 'jC + jc� ckjRm�+ j�([u]h; '; c)� �(0; '; c)j+ (k�k+ L2j'jW 1;1)�j'� 'kjC + jc� ckjRm�� (k�k+ L2M1)�j(yh;k)[u]h � (yh;k)0jC + j'k � 'jC + jc� ckjRm�+ j�([u]h; '; c)� �(0; '; c)j+ (k�k+ L2M1)�j'� 'kjC + jc� ckjRm�� (k�k+ L2M1)�K2[u]h + 2jc� ckjRm + 2j'� 'kjW 1;1�+ j�([u]h; '; c)� �(0; '; c)j;



116therefore, using (6.1), Lemma 2.8 and the facts that 
2 and 
5 are open, there exist 0 < �2 ��1 and �� > 0 such that the third and fourth arguments of f in (7.3) remain in 
2 and 
5,respectively, for t 2 [0; �2], h > 0 and for k such that j'k�'jW 1;1+ jck�cjRm+ jdk�djRm < ��.It follows from (7.7) that j(yh;k)t � 'jC � K2t; t 2 [0; �2];therefore there exist � � �2 such that (yh;k)t 2 
3 for t 2 [0; �] and for all h > 0. Finally, it iseasy to show, by using the method of steps, that for k such that j'k � 'jW 1;1 + jck � cjRm +jdk � djRm < ��, and for all h > 0, IVP (7.3)-(7.4) has unique solution on [0; �].The following theorem guarantees step 2) of the identi�cation method described in theintroduction of this chapter, using the approximation method of Chapter 6.Theorem 7.3 Assume that f , � and ' satisfy (A1'), (A2'), (A3), (A4'), (A5') and (A6). Let('; c; d) 2 �2, and �x sequences 'k 2 �k, ck 2 
4, and dk 2 
5 such that j'k � 'jW 1;1 ! 0,jck � cjRm ! 0, and jdk � djRm ! 0 as k !1, and let � > 0 be the constant from Lemma 7.2(iii). Then the solution, yh;k, of IVP (7.3)-(7.4) converges uniformly on [0; �] to the solution,x, of IVP (7.1)-(7.2) as h! 0+ and k !1, i.e.,limh!0+k!1 max0�t�� jx(t)� yh;k(t)j = 0:Proof We follow the steps of the proof of Theorem 6.3.Let �� be the constant from Lemma 7.2 (iii), and we assume throughout the proof that k islarge enough that j'k � 'jW 1;1 + jck � cjRm + jdk � djRm < ��. Let K1 = K1(�; ��; '; c; d) andK2 = K2(�; ��; '; c; d) be the constants from Lemma 7.2 (i) and (ii), respectively. De�neM � maxfk�k; 1g �maxnjxjW 1;1� ; K1o;Then the de�nition of M , inequalities (6.7) and (2.5) imply that xt, (yh;k)t and �(t; xt),�(t; (yh;k)t) remain in �GC(M) for t 2 [0; �]. Let L1 = L1(�;M) be the constant given by(A4'). Then equation (6.6), assumption (A4') and standard estimates yield the followinginequalitiesjx(t)� yh;k(t)j� j'(0)� 'k(0)j+ Z t0 �����f�u; x(u);�(u; xu; c); d�� f�[u]h; x(u);�(u; xu; c); d������ du+ Z t0 �����f�[u]h; x(u);�(u; xu; c); d�� f�[u]h; yh;k([u]h);�([u]h; (yh;k)[u]h ; ck); dk������du� j'� 'kjC + Z t0 �����f�u; x(u);�(u; xu; c); d�� f�[u]h; x(u);�(u; xu; c); d������du (7.8)+ Z t0 L1 �jx(u)� yh;k([u]h)j+ ����(u; xu; c)� �([u]h; (yh;k)[u]h ; ck)���+ jd� dkjRm�du:Similarly to (6.13) and (6.14), inequalities (7.6) and (6.2) imply thatjx(u)� yh;k([u]h)j � jx(u)� yh;k(u)j+K2h; u 2 [�r; �]; (7:9)



117and jxu � (yh;k)[u]h jC � jxu � (yh;k)ujC +K2h; u 2 [0; �]: (7:10)Using (7.9), (7.10), Lemma 4.31 with L2 = L2(�;M; jcjRm + ��), we can estimate the last termin the right hand side of (7.8) as follows.����(u; xu; c)� �([u]h; (yh;k)[u]h ; ck)���� j�(u; xu; c)� �([u]h; xu; c)j+ ����([u]h; xu; c)� �([u]h; (yh;k)[u]h ; ck)���� j�(u; xu; c)� �([u]h; xu; c)j+ (k�k+ L2jxujW 1;1)�jxu � (yh;k)[u]h jC + jc� ckjRm�� j�(u; xu; c)� �([u]h; xu; c)j+ (k�k+ L2M)jxu � (yh;k)ujC+ (k�k+ L2M)�K2h + jc� ckjRm�: (7.11)By combining (7.8), (7.9) and (7.11) we getjx(t)� yh;k(t)j � gh;k(t) + Z t0 L1(1 + L2M + k�k) max0�s�u jx(s)� yh;k(s)j du; (7:12)where gh;k(t) � Z t0 �����f�u; x(u);�(u; xu; c); d�� f�[u]h; x(u);�(u; xu; c); d������du+ Z t0 j�(u; xu; c)� �([u]h; xu; c)j du+ L1(1 + L2M + k�k)K2ht+ L1�(L2M + k�k)jc� ckjRm + jd� dkjRm�t+ j'� 'kjC : (7.13)Then (7.12), Lemma 2.14 and the Gronwall-Bellman inequality imply thatmax0�s�t jx(s)� yh;k(s)j � gh;k(�) exp�L1(1 + L2M + k�k)t�; t 2 [0; �]: (7:14)As in the proof of Theorem 6.3, by using the Lebesgue Dominated Convergence Theorem forthe �rst two integrals in (7.13), and the assumptions that  k !  , ck ! c, and dk ! d ask ! 1, we get that gh;k(�) ! 0 as h ! 0+ and k ! 1, which �nishes the proof of thetheorem.7.2 Numerical examplesIn this section we present applications of the identi�cation method described in the introductionand in Section 7.1. Consider an identi�cation problem corresponding to IVP (7.1)-(7.2), thenwe de�ne the approximating IVPs by (7.3)-(7.4). De�ne the corresponding �nite dimensionalminimization problems, and �nd the solutions of them. Choose small enough h and largeenough k, and use the solution of the minimization problem corresponding to this h and k asan approximation of the solution of the original identi�cation problem.We note, that in each example we used the built in numerical minimization routine of Math-ematica (which does not require the knowledge of the derivative of the minimizing function)for solving the �nite dimensional minimization problems, i.e., for computing the minimum of



118Table 7.1ti 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0Xi 1.1300 1.5003 1.9921 2.6451 3.5121 4.6632 6.1917 8.2212 10.915Table 7.2h �� Jh(�� ) steps0.050 0.968794 0.0174081 210.010 0.988730 0.0174045 210.005 0.991233 0.0174043 210.001 0.993233 0.0174042 21the least square cost functions, and we also used Mathematica for evaluating the cost functionfor each required value of the parameter, i.e., for computing the solution of IVP (7.3)-(7.4).Example 7.4 Consider the scalar delay equation_x(t) = x(t� �); t 2 [0; 4]; (7:15)where we assume that � 2 [0:2; 3:0], with initial conditionx(t) = 1; t 2 [�3; 0]: (7:16)The solution of this IVP corresponding to � = 1:0 isx(t; 1) = [t]Xi=0 (t� i)ii! :We used this formula to generate the \measured data" corresponding to the following timevalues presented in Table 7.1.Since the parameter is one dimensional, there is no need for discretizing the parameterspace. Let h > 0 and de�ne the approximating IVP_yh(t) = yh([t]h � �); t 2 [0; 4]; (7:17)where we assume that � 2 [0:2; 3:0], with initial conditionx(t) = 1; t 2 [�3; 0]: (7:18)Consider the minimization problem: minimizeJh(�) = 9Xi=1(yh(ti; �)�Xi)2; � 2 [0:2; 3:0];where yh(t; �) is the solution of (7.17)-(7.18). We present the numerical solution of theseminimization problems in Table 7.2 for di�erent h values. We print out the computed �� , whichminimizes the cost function Jh(�), the value of the cost function at �� , and the number of steps



119Table 7.3ti 0.0 0.5 1.0 1.5 2.0 2.5 3.0Xi 0.000000 0.229849 0.708073 0.994996 0.826822 0.358169 0.0199149Table 7.4h �a �b Jh(�a;�b) steps0.050 -1.02202 2.02076 0.00093899 920.010 -1.00427 2.00415 0.00003634 950.005 -1.00213 2.00208 0.00000905 930.001 -1.00042 2.00042 0.00000036 94done by the numerical minimization routine to reach the minimum value (in each case thestarting two value (required by the routine) for � are 2.5 and 1.5).Example 7.5 Consider the scalar delay equation with state-dependent delay_x(t) = ax2(t � jx(t)j) + sin(bt) + sin4(t � sin2(t)); t 2 [0; 3]; (7:19)with initial condition x(t) = sin2(t); t � 0; (7:20)where a and b are unknown parameters, but we assume that a; b 2 [�5; 5]. It is easy to seethat the solution of IVP (7.19)-(7.20) corresponding to parameter values a = �1:0 and b = 2:0is x(t;�1; 2) = sin2(t). We used this function to generate data shown in Table 7.3.The approximating equation corresponding to (7.19) is_yh(t) = ay2h([t]h � jyh([t]h)j) + sin(b[t]h) + sin4�[t]h � sin2([t]h)�; t 2 [0; 3]:The minimizing function isJh(a; b) = 7Xi=1(yh(ti; a; b)�Xi)2; a; b;2 [�5; 5]:Table 7.4 contains the numerical runnings corresponding to this equation. We used the startingvalues 2.5 and 1.5 for both a and b in the numerical optimization routine of Mathematica ineach cases.Example 7.6 Consider the scalar equation_x(t) = x�t � 1� 1t+ 1� ; t 2 [0; 2]; (7:21)with initial condition x(t) = '(t); t 2 [�2; 0]: (7:22)It is easy to check that the solution of IVP (7.21)-(7.22) with initial function'(t) = ( 23(t+ 2); �2 � t � �0:5;1; �0:5 � t � 0 (7:23)



120Table 7.5ti 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75Xi 1.00000 1.02311 1.10469 1.26755 1.5379 1.7879 2.0379 2.2879Table 7.6h �a1 �a2 �a3 Jh(�a1; �a2; �a3) steps0.050 -0.296021 0.880291 1.01774 0.002681 1450.010 -0.350648 0.863814 1.01823 0.002874 1500.005 -0.357622 0.861696 1.01828 0.002897 1480.001 -0.363224 0.859983 1.01832 0.002915 140is x(t) = ( 1 + 23 t+ t33 � 23 log (t+ 1); t 2 [0; 1];1� 23 log 2 + t; t 2 [1; 2]:We generate measurements by using this function (see Table 7.5).Consider the corresponding approximate equation_yh(t) = yh �[t]h � 1� 1[t]h + 1� ; t 2 [0; 2]:First we approximate the unknown initial function on [�2; 0] by linear spline functions withthree node points at -2, -1 and 0, with corresponding values a1, a2 and a3 at the node points.(It is known that su�ciently smooth functions can be approximated by linear spline functionsin the W 1;1� norm, see e.g. [44].) We assume that the parameter values satisfy ai 2 [�4; 4],i = 1; 2; 3. Then the parameter space is three dimensional. The corresponding minimizingfunction is of three variables:Jh(a1; a2; a3) = 8Xi=1(yh(ti; a1; a2; a3)�Xi)2; a1; a2; a3;2 [�4; 4]:We present the numerical solution of this problem in Table 7.6 for several h values.Next we consider linear spline approximation of the initial function with node points at -2,-1.5, -1, -0.5 and at 0, and with the corresponding values ai (i = 1; 2; : : : ; 5) at these points.Then the parameter space is �ve dimensional, and the minimizing function isJh(a1; : : : ; a5) = 8Xi=1(yh(ti; a1; : : : ; a5)�Xi)2; ai 2 [�4; 4]; i = 1; 2; : : : ; 5:The following numerical results are shown in Table 7.7. In Figure 7.1 we plotted the trueinitial function, de�ned by (7.23) (solid line), and the computed approximate initial functionswith three and �ve node points (dotted linear splines) corresponding to h = 0:001.



121Table 7.7h �a1 �a2 �a3 �a4 �a5 Jh(�a1; : : : ; �a5) steps0.050 0.0565933 0.165824 0.782140 1.07451 0.997993 0.00051494 3170.010 0.0536655 0.147732 0.739048 1.08165 0.997858 0.00047607 3370.005 0.0540436 0.145239 0.733611 1.08239 0.997840 0.00047021 3220.001 0.0534458 0.143636 0.729410 1.08284 0.997831 0.00046543 314Figure 7.1
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Chapter 8WELL-POSEDNESS IN LpIn many applications (e.g. in control theory) we can not assume the continuity of thefunction f in equation (3.1), therefore it is important to extend well-posedness results for thecase when the functions f(�; x; y) and �(�;  ) are Lp functions only. In this case it turns out,that the natural state-space for solutions is a product space of the form Rn � Lp (see e.g. [8],[9] or [35] for Lp theory of delay equations).In [34] Ito and Kappel studied the well-posedness and approximation of semilinear Cauchyproblems, in particular, the delay system_x(t) = f�t; x(t); x(t� �(t; xt))� (8:1)in the state-space Rn�Lp. They proved an abstract well-posedness result, and used it to provewell-posedness of (8.1). We state their results in Section 8.1, and in Section 8.2 we show howit can be applied to our problem, to the state-dependent delay system_x(t) = f �t; x(t); Z 0�r ds�(s; t; xt) x(t+ s)� ; t 2 [0; T ]; (8:2)with initial condition x(t) = '(t); t 2 [�r; 0]: (8:3)8.1 An abstract well-posedness result of Ito and KappelIn this section we state the abstract well-posedness result of [34].Fix T > 0 and 1 � p < 1. Let W � V � H and U be Banach spaces such thatthe embedding V � H is dense and continuous, the embedding W � V is just continuous.Consider the equation in the space V :x(t) = S(t)'+ Z t0 S(t� s)BF (s; x(s)) ds; 0 � t � T; ' 2 W: (8:4)A function x : [0; T ]! V is called a solution of (8.4) if x is continuous and satis�es (8.4)on [0; T ].We have the following assumptions:(B1) fS(t) : t � 0g is a C0-semigroup onH , which leaves the spaces V andW invariant. More-over, S(t)jV , t � 0 is a C0-semigroup on V and we de�neM0 � max0�t�T kS(t)kL(V ). Wealso assume that there exists a constantM1 > 0 such that kS(t)kL(W ) �M1, 0 � t � T ,122



123(B2) B 2 L(U;H) and there exist nonnegative constants M2 and M3 such that(i) ����Z t0 S(t� s)Bf(s) ds����V �M2jf jLp([0;T ];U); 0 � t � T , f 2 Lp([0; T ]; U);and(ii) ����Z t0 S(t� s)Bf(s) ds����W �M3jf jL1([0;T ];U); 0 � t � T , f 2 L1([0; T ]; U),(B3) F is a mapping [0; T ]� V ! U . For any M > 0 there exists a constant K = K(M) > 0such that(i) jF (t;  )� F (t; � )jU � K(1 + j � jW )j � � jV a.e. on 0 � t � T for all  ; � 2 Vwith � 2 W and  ; � 2 GV (M),and(ii) jF (t;  )jU � K(1+ j jV ) a.e. on 0 � t � T for all  2 GV (M). Moreover, for any 2 V the mapping t! F (t;  ) is strongly measurable on [0; T ],(B4) For any M > 0 there exists a constant K = K(M) > 0 such thatjF (t;  )� F (�t;  )jU � K(1 + j jW )jt� �tj for a.e. t; �t 2 [0; T ]; all  2 GV (M) \W:We note, that the inequalityjF (t;  )� F (�t; � )jU � K(1 + j � jW ) �jt� �tj+ j � � jV � ; (8:5)for a.e. 0 � t; �t � T , � 2 W ,  2 V ,  ; � 2 GV (M) implies (B3) (i) and (B4).The in�nitesimal generator of S(�) (considered as a C0-semigroup over H) and its domainare denoted by AH and domAH , respectively.Under the above assumptions the following theorems hold:Theorem 8.1 (see Theorem 2.2 in [34]) Assume that (B1){(B3) are satis�ed and let R >0 be given. Then there exists � = �(R) > 0 such that equation (8.4) for any ' 2 W satisfyingj'jW � R has a unique solution x(�; ') = S' 2 C([0; �]; V )\L1([0; �]; W ). Moreover, S is aLipschitzean mapping on f' 2 W : j'jW � Rg into C([0; �]; V ) and also into L1([0; �]; W ).Theorem 8.2 (see Theorem 2.4 in [34])Assume that (B1){(B4) are satis�ed and the spaceU is re
exive. Furthermore let ' 2 W \ domAH such that AH' + BF (0; ') 2 V . Then theunique solution of (8.4) is in C1([0; �]; V )\C([0; �]; domAH) for any closed subinterval [0; �]of the maximal interval of existence for x(�), and_x(t) = AHx(t) +BF (t; x(t)); 0 � t � �in H.



1248.2 Well-posednessNext we list the assumptions on the parameters of IVP (8.2)-(8.3) which guarantee the well-posedness of IVP (8.2)-(8.3).(C1) The function f : [0; T ]� 
1 � 
2 ! Rn satis�es:(i) For any M > 0 there exists a constant L1 = L1(M) > 0 such thatjf(t; x; y)� f(�t; �x; �y)j � L1�jt� �tj+ jx� �xj+ jy � �yj�;for a.e. 0 � t; �t � T , and all x; �x 2 GRn(M) \ 
1 and y; �y 2 GRn(M) \ 
2,(ii) there exists a constant N � 0 such thatjf(t; 0; 0)j � N; a.e. 0 � t � T;and(iii) the function t 7! f(t; x; y) is measurable on [0; T ] for any x 2 
1, y 2 
2.(C2) The function �(�; t;  ) : [�r; 0] ! Rn�n is de�ned, and is of bounded-variation for allt 2 [0; T ] and  2 
3 and it satis�es:(i) k�k � ess supfj�(t;  ; �)j : a.e. t 2 [0; T ]; all  2 
3; � 2 GC(1)g <1,(ii) for every �nite � > 0 with � � T , and M > 0 there exists a constant L2 =L2(�;M) > 0 such that for a.e. t; �t 2 [0; �], and for all � 2 W 1;1 \ 
3, and ; � 2 GC(M) \ 
3 it follows thatj�(t;  ; �)� �(�t; � ; �)j � L2j�jW 1;1�jt� �tj+ j � � jC�;and(iii) for all  ; � 2 
3 the function t 7! �(t;  ; �) is measurable on [0; T ].(C3) The initial function ' 2 W 1;1 \ C.Next we show that under natural conditions the functions f and � de�ned in Examples1.1{1.4 satisfy assumptions (C1) and (C2), respectively.Example 8.3 Consider Example 1.1, where�(s; t;  ) = mXk=1Ak�[��k;0](s)and f(t; x; y) = A0x+ y:Then, clearly, f satis�es (C1), and � is of bounded variation, and satis�es (C2) (i). We havethat �(t;  ; �) = Pmk=1Ak�(��k) is independent of t and  , therefore (C2) (ii) and (iii) aresatis�ed as well.



125Example 8.4 Consider the functions�(s; t;  ) = mXk=1Ak(t)�[��k(t);0](s) + ~�(s; t);where ~�(s; t) � ( 0; s 2 [�r;��0];R s��0 G(u; t) du; s 2 (��0; 0];and f(t; x; y) = A0(t)x+ y;as de�ned in Example 1.2. The assumptions(i) Ak(�) 2 W 1;1([0; T ]; Rn�n); k = 0; 1; : : : ; m,(ii) �k(�) 2 W 1;1([0; T ]; R); k = 1; 2; : : : ; m,(iii) the function [��0; 0]� [0; T ]! Rn�n : (s; t) 7! G(s; t) is measurable,(iv) kG(s; t)�G(s; �t)k � g(s)jt� �tj, for s 2 [��0; 0], t; �t 2 [0; T ], where g 2 L1([��0; 0];R);(v) kG(s; t)k � g0(s), for s 2 [��0; 0], t 2 [0; T ], where g0 2 L1([��0; 0];R)imply conditions (C1) and (C2). This example is included in Example 8.6, therefore the proofis omitted here.Example 8.5 Consider �(s; t;  ) = �[��(t; );0](s)Ias de�ned in Example 1.3 with the corresponding function�(t;  ; �) = �(��(t;  )):Then it is easy to see that (C2) (i) is satis�ed. Assume that(i) the function �(�;  ) is measurable for all  2 
3,(ii) � is locally Lipschitz-continuous in  , i.e., for all M > 0 there exists a constant L� =L�(M) such that j�(t;  )� �(�t; � )j � L� (jt� �tj+ j � � jC), for a.e. 0 � t; �t � T and all ; � 2 GC(M) \ 
3.Then it follows from (ii) and Lemma 2.3 for � 2 W 1;1 and  ; � 2 GC(M) \ 
3 thatj�(t;  ; �)� �(�t; � ; �)j = j�(��(t;  ))� �(��(�t; � ))j� j�jW 1;1 j�(t;  )� �(�t; � )j� j�jW 1;1L��jt � �tj+ j � � jC�; for a.e. t; �t 2 [0; T ];so condition (C2) (ii) holds. Assumption (i) implies condition (C2) (iii).Example 8.6 Let �(s; t;  ) = mXk=1Ak(t)�[��k(t; );0](s) + ~�(s; t;  );



126with ~�(s; t;  ) � ( 0; s 2 [�r;��0];R s��0 G(u; t;  ) du; s 2 (��0; 0];and f(t; x; y) = A0(t)x+ y, as in Example 1.4.We shall show that the assumptions(i) Ak(�) 2 W 1;1([0; T ]; Rn�n); k = 0; 1; : : : ; m,(ii) the functions �k(�;  ) : [0; T ]! R are measurable for all  2 
3, k = 1; 2; : : : ; m,(iii) �k is locally Lipschitz-continuous in  , for all k = 1; 2; : : :, i.e., for all M > 0 there existsa constant L� = L� (M) such that j�k(t;  )� �k(�t; � )j � L�(jt � �tj + j � � jC), for a.e.0 � t; �t � T and all  ; � 2 GC(M) \ 
3, k = 1; 2; : : : ; m,(iv) the function [��0; 0]� [0; T ]! Rn�n : (s; t) 7! G(s; t;  ) is measurable for all  2 
3,(v) kG(s; t;  )� G(s; �t; � )k � g(s)�jt � �tj + j � � jC�, for s 2 [��0; 0], t; �t 2 [0; T ], and ; � 2 
3, where g 2 L1([��0; 0];R),(vi) kG(s; t;  )k � g0(s), for all t 2 [0; T ],  2 
3, where g0 2 L1([��0; 0];R)imply conditions (C1) and (C2).Let x; �x 2 GRn(M) \ 
1 and y; �y 2 GRn(M) \ 
2. Then the triangle inequality and thede�nition of the norm k � kW 1;1([0;T ];Rn�n) yield the following inequalitiesjf(t; x; y)� f(�t; �x; �y)j� kA0(t)� A0(�t)kjxj+ kA0(�t)kjx� �xj+ jy � �yj� kA0(t)� A0(�t)kM + kA0(�t)kjx� �xj+ jy � �yj� kA0kW 1;1([0;T ];Rn�n)M jt � �tj+ kA0kW 1;1([0;T ];Rn�n)jx� �xj+ jy � �yj:Therefore condition (C1) (i) holds. Condition (C1) (ii) is satis�ed with N = 0. The assumedmeasurability of A0 implies (C1) (iii).We have seen in Example 1.2 that if Ak(�) are bounded functions on [0; T ] and kG(s; t;  )k �g0(s) for s 2 [��0; 0], t 2 [0; T ],  2 
3, where g0(s) is integrable on [��0; 0], then � satis�es(C2) (i). The corresponding � is�(t;  ; �) = mXk=1Ak(t)�(��k(t;  )) + Z 0��0 G(s; t;  )�(s)ds;therefore for � 2 W 1;1 simple estimates yieldj�(t;  ; �)� �(�t; � ; �)j� mXk=1 kAk(t)kj�(��k(t;  ))� �(��k(�t; � ))j+ mXk=1 kAk(t)�Ak(�t)kj�(��k(�t; � ))j+ Z 0��0 kG(s; t;  )�G(s; �t; � )kj�(s)j ds



127� mXk=1 kAk(t)kj�jW 1;1 j�k(t;  )� �k(�t; � )j+ mXk=1 kAk(t)� Ak(�t)kj�jC+ Z 0��0 kG(s; t;  )�G(s; �t; � )kdsj�jC� � mXk=1 kAkkW 1;1([0;T ];Rn�n)L��jt� �tj+ j � � jC�+ mXk=1 kAkkW 1;1([0;T ];Rn�n)jt� �tj+ Z 0��0 jg(s)jds�jt� �tj+ j � � jC��j�jW 1;1 ; for a.e. t; �t 2 [0; T ]:This inequality shows that (C2) (ii) is satis�ed. By elementary properties of measurablefunctions and by Tonelli's theorem we get that assumptions (i), (ii) and (iv) yield condition(C2) (iii). This completes the discussion of Example 8.6.Next we de�ne the spaces H , V , W and U used in the abstract formulation in Section 8.1. Asin [34], let H = Rn � Lp;V = f('(0);  ) :  2 Cg;W = f( (0);  ) :  2 W 1;1 \ Cgand U = Rn, with the norms j(�;  )jpH � j�jp + j jpLp;j( (0);  )jV � j jC;j( (0);  )jW � j jW 1;1 :Then, clearly, W � V � H is satis�ed with dense embeddings. Simple estimates show for( (0);  ) 2 V that j( (0);  )jH = (j (0)jp+ j jpLp)1=p� (j jpC + rj jpC)1=p= (1 + r)1=p j jC= (1 + r)1=p j( (0);  )jV ;and for ( (0);  ) 2 W we have thatj( (0);  )jV = j jC� sup�r�t�0 j (t)�  (0)j+ j (0)j� r � ess sup�r�t�0j _ (t)j+ j (0)j� (r+ 1)j jW 1;1= (r+ 1)j( (0);  )jW ;therefore both embeddings in W � V � H are continuous as well.



128De�ne B : U ! H by Bu = (u; 0); (8:6)and F : [0; T ]� V ! U by F (t;  ) = f�t;  (0);�(t;  )�: (8:7)Lemma 8.7 Assume (C1) and (C2). Then the function F de�ned by (8.7) satis�es assump-tions (B3) and (B4).Proof Let M > 0 and ( (0);  ); (� (0); � ) 2 GV (M). The de�nition of k�k implies thatj�(t;  )j � k�kj jC; for a.e. t 2 [0; T ]:De�ne M1 � M maxf1; k�kg. Then the second and third argument of f in (8.7) remains inGRn(M1)\
1 and in GRn(M1)\
2 for a.e. t 2 [0; T ], respectively, therefore by the Lipschitz-continuity of f with Lipschitz-constant L1 = L1(M1) we get for a.e. t; �t 2 [0; T ] thatjF (t;  )� F (�t; � )jU= ���f�t;  (0);�(t;  )�� f��t; � (0);�(�t; � )����� L1�jt� �tj+ j (0)� � (0)j+ ���(t;  )� �(�t; � )���� L1�jt� �tj+ j (0)� � (0)j+ j�(t;  ;  )� �(�t; � ;  )j+ j�(�t; � ;  )� �(�t; � ; � )j�� L1�jt� �tj+ j � � jC + L2(M)j jW 1;1�jt� �tj+ j � � jC�+ k�kj � � jC�� L1maxf1 + k�k; L2(M)g(1 + j jW 1;1)�jt� �tj+ j � � jC�;therefore K1 � L1maxf1 + k�k; L2(M)g satis�es the constant K in (8.5), and consequentlywe have proved (B3) (i) and (B4). To show (B3) (ii), considerjF (t;  )jU � jF (t;  )� F (t; 0)jU + jF (t; 0)jU� K1j jC + jf(t; 0; 0)j= K1j jC +N� maxfK1; Ng(1+ j jC);hence K � maxfK1; Ng is good in both part of (B3) and in (B4).Finally, we have to show that the functiont 7! F (t;  ) = f�t;  (0);�(t;  )�is measurable for all �xed  2 
3. First we show that assumption (C2) (iii) implies that thefunction t 7! f(t; x; g(t)) is measurable for all simple function g : [0; T ] ! 
2, x 2 
1. LetBi (i = 1; 2; : : : ; k) be disjoint measurable subsets of [0; T ] such that Ski=1Bi = [0; T ], andg(t) =Pki=1 yi�Bi(t) where yi 2 
2. It is easy to see thatf(t; x; g(t)) = kXi=1 �(t)f(t; x; yi);



129therefore assumption (C1) (iii) yields that the function t 7! f(t; x; g(t)) is measurable. By(C2) (iii) the function t 7! �(t;  ) is measurable for all  2 
3. Approximate it by simplefunctions �i(t;  ), i.e., limi!1 �i(t;  ) = �(t;  ) for all t 2 [0; T ],  2 
3. We have shown thatthe functions t 7! f�t;  (0);�i(t;  )� are measurable functions, and using assumption (C1) (i)we can see that���f�t;  (0);�i(t;  )�� f�t;  (0);�(t;  )���� � j�i(t;  )� �(t;  )j; for a.e. t 2 [0; T ];hence limi!1 f�t;  (0);�i(t;  )�= f�t;  (0);�(t;  )�;for a. e. t 2 [0; T ],  2 
3, and therefore we get that F (�;  ) is measurable.De�ne the C0-semigroup on H byS(t)(�;  )� (�; gt); (8:8)where g : [�r;1)! Rn is de�ned byg(s) � ( '(s); �r � s < 0;�; 0 � s:(I.e., S(�) is the solution semigroup of the Cauchy-problem _x(t) = 0, x(0) = �, x(s) = '(s),�r � s < 0.) Lemma 3.2 in [34] yields that S(�) is a C0-semigroup de�ned on H , andassumptions (B1) and (B2) are satis�ed. Let A be the in�nitesimal generator of S(�). It isknown (see e.g. [9]) that domAH = f( (0);  ) :  2 W 1;pg;AH( (0);  ) = (0; _ ):We conclude, that with this particular choice of the spaces U;H; V and W , the semigroupS(t), the function F , and the assumed conditions (C1){(C3), IVP (8.2)-(8.3) can be written inabstract form as (8.4), and Theorems 8.1 and 8.2 give the following local existence, uniquenessand continuous dependence on initial data result for IVP (8.2)-(8.3).Theorem 8.8 Assume that conditions (C1){(C3) hold. Then for an arbitrary R > 0 thereexists � = �(R) > 0 such that for all ' 2 W 1;1\C with j'jW 1;1 � R it follows that IVP (8.2)-(8.3) has a unique solution x(�;') on the interval [0; �]. Moreover, there exists L = L(R) > 0such that maxn sup0�t�� jx(t; ')� x(t; �')j; sup0�t�� j _x(t; ')� _x(t; �')jo � Lj'� �'jW 1;1 :for '; �' 2 W 1;1 \ C, j'jW 1;1 ; j �'jW 1;1 � R.We close this chapter by noting that Ito and Kappel presented an abstract approximationframework for the integral equation (8.4), and constructed a particular approximation schemeusing �rst order spline functions, and showed that the scheme satis�es the requirements of theabstract framework, and therefore it provides an approximation method for equation (8.1).Since (8.2) can be written in abstract form as (8.4), the spline scheme de�ned in [34] can beapplied for (8.2) as well.
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