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In this dissertation we study a class of nonlinear functional differential
equations (FDEs) with state-dependent delays given by

0

i(t) = f (t,x(t),/ ds,u(s,t,xt)x(t—l—s)), i >0, (1)
T

where the term describing the delay dependence is a Stieltjes-integral of the

solution segment z(t + -) with respect to u(-,t,2;), which is a matrix valued

function of bounded variations depending on time, ¢, and the state of the

equation, ;.

The main objective of this work is to extend the basic theory of delay
equations for the type of FDEs described by (1). We establish well-posedness
of the initial value problem corresponding to (1) in the state-space C', and
we discuss other potential state-spaces, namely, W% and WP, Then we
investigate differentiability of solutions with respect to parameters in these
state-spaces. We can summarize our findings as follows: In special cases
we prove differentiability of solutions in the state-space W1°°, but in order
to obtain differentiability under less restrictive assumptions on the class of
equations under consideration we study differentiability in a weaker sense,
i.e., in the norm |- |y1p. In particular, we define a special norm on the
set W which is weaker than the |- |j1,00 norm and stronger than the
| - |w1.» norm, and consider W1 equipped with this norm. The resulting
normed linear space is a so-called quasi-Banach space, and using a mod-
ified version of the Uniform Contraction Principle (which was generalized
for quasi-Banach spaces by Hale and Ladeira) we obtain differentiability of
solutions wrt parameters in this norm, and therefore in the weaker norm,
| - [1p, as well.

In the second part of the dissertation we discuss three important issues
of applications. First we obtain stability results for the autonomous version
of (1) using a linearization technique. Then we formulate an Euler’s scheme
for computing approximate solutions of (1), and present a new proof for
convergence of this method using equations with piecewise constant argu-
ments. As an application of this numerical scheme, we discuss the problem
of parameter identification for equation (1). In all applications we present
several examples to illustrate the theoretical results.

v
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Chapter 1
INTRODUCTION

In the past several decades delay differential equations appeared in an increasing number of
system models in biology, engineering, physics, etc. In most of these applications it is assumed
that the delay (discrete or distributed) is either constant or at most time-dependent. (See e.g.
[40] for a discussion on the importance of delays, especially distributed delays in biological
models.) However, in recent years there are several proposed models in which it is assumed
that the delay depends not only on time, but on the state as well (see e.g. [1], [6], [18], [20]
and [45]).

Motivated by these developments, in this paper we study a general nonlinear distributed
state-dependent delay equation of the form

i) = f(La(0), At z)), e 0,T], (1.1)

where the term A, describing the delay dependencies, has the form

0
At ) = / dop(s,t,00) 2(1 + 5). (1.2)
Here r is a positive constant, z(-) € R™, 2, denotes the segment z,(s) = a(t+s) for s € [-7,0].
p(-,t,1) is an n X n matrix valued function of bounded variation on [—r,0] for all ¢ € [0,77,
¢ € C = C([-r,0]; R"), and the integral is the Stieltjes-integral of z(¢ 4+ -) with respect to

,M(',t,$t).

The main goal of this work is to extend the basic theory of delay differential equations for
the class of delay equations with distributed state-dependent delays described by (1.1)-(1.2).

Note that representation (1.2), describing the dependence on the past, is natural for linear
delay equations of the form #(¢) = La;, where L is a bounded linear operator on C' (see e.g.
[31]). In Example 1.1 and 1.2 we show the construction of u for the constant and time-varying
delay cases. Example 1.3 and 1.4 show that we can use representation (1.2) to describe delayed
arguments for equations including pointwise and distributed state-dependent delays as well.
These examples illustrate that equations (1.1) and (1.2) describe a large class of delay systems
important in applications.

Example 1.1 Consider the linear system with constant delays

&(t) = Apa(t) + Z Apa(t — 1), (1.3)
k=1
where Ay (K = 0,1,...,m) are constant n x n matrices, 7, (kK = 1,2,...,m) are positive

constants.



Define r = max{7y,..., 7}, and
p(s) = Z ApX[=rp,0)(8) for s € [-r,0],
k=1

where x[_;, o)(s) is the characteristic function of the interval [—7,0]. It is easy to see that the
total variation of p1 satisfies that [Var][,u] < 3iL ||Agl|, and therefore p is of bounded variation
—r,0

)

n [—7,0]. With this u equation (1.3) is equivalent to
0
Bt) = Age(t) + [ du(s)e(t + ),

therefore (1.3) has the form (1.1)-(1.2) with pu(s,t,v¢) = u(s), and f(t,z,y) = Aoz + y.

Example 1.2 Consider the time-varying linear delay system

(1) = Ao(t)z(t) + f:Ak(t)x(t_rk(t))Jr DG telt+s)ds,  te[0,T],  (14)
k=1

—70

where Ag(t) (k = 0,1,...,m) are n x n matrices, 74(¢) > 0 (k = 1,2,...,m) are bounded
functions, and G' : [—7g,0] X [0,T] — R™*".
Define r = max{ro, sup{re(t) : t€[0,T],k=1,.. .,m}}, and, for t € [0,7T],

,u(s, t) = Z Ak(t)X[—Tk(t),O](S) + ﬂ(sv t)v s € [_Tv 0]7
k=1

where
s € [—r, —70),

0,
{ J2. Glu,t)du, s € (—To,0].
Clearly, for all ¢ € [0,7'] the function u(-,?) is of bounded variation, and (1.4) is equivalent to

s 1)

@(t) = Ao(t)a(t) + ’ dsp(s, t)z(t + ), tel0,T],

-7

and therefore (1.4) has the form (1.1)-(1.2) with f(¢,2z,y) = Ao(t)z + y.
Example 1.3 Consider the delay system with a point state-dependent delay term

i(t) = f(to(), 2t = 1(t20)),  1€[0,7], (1.5)

where f : [0,T] X Q1 X Q3 — R", (where €, and 3 are open subsets of R"), 7 : [0,7] X
Q3 — RT (where Q3 is an open subset of () is a bounded function, and r > 0 is such that

P> sup{r(t) £ 1€ 0.7, v € Q).
Define

,u(s, t, ¢) = X[—T(t,w),O](S)Iv s € [_Tv 0]7
where I € R"*" is the identity matrix. It is easy to see that [Var][,u(-, t,)]=1forallt € [0,T]
—7,0

and @ € Qs, so p(-,t,1) is of bounded variation for all ¢ € [0,T], ¢ € 3, and (1.5) has the
form (1.1)-(1.2).



Example 1.4 Consider the system with discrete and distributed state-dependent delays

0
&(t) = 1)+ ZAk x(t—mi(t, ze)) + G(s,t,xp)z(t+ s)ds, tel0, 7], (1.6)
—0
where Ag(t) (k = 0,1,...,m) are n X n matrices, 7, : [0,7] x Q3 — RT are bounded,
nonnegative functions for k = 1,2,....,m, and G [—70,0] x [0,T] X Q3 — R"*"™, where Q3 is

an open subset of R”. We assume that r > 0 is such that r > max{ro, sup{ri(t,?p) : t €
[OvT]7¢€ Qs, k = 1,...,77”&}}.

Similarly to Example 1.2 we get the following representation of the delay equation. For

t >0, € Qs define
87t7¢ ZAk —75(t,4),0 ]( )+ﬂ(87t7¢)7 s € [_Tv 0]7

with

) _ 0, s € [—7‘, —T ]7
a(s,t,) = { fjm G(u,t,v)du, s € (—7'070]?

) is of bounded variation for all ¢ € [0,T] and @ € Q3, and
2) with f(t,,y) = Ao(t)z + 5.

Then it is easy to see that u(-,,
(1.6) can be rewritten as (1.1)-(1

The remaining part of this dissertation is organized as follows:

In Chapter 2 we introduce some basic notations and definitions used throughout this paper,
and recall some results for future reference.

In Chapter 3 we study well-posedness of the initial value problem corresponding to (1.1)-
(1.2). In Sections 3.1-3.3 we present conditions implying existence, uniqueness and continuous
dependence of solutions on parameters. In Section 3.4 we discuss other potential state-spaces,
Wl and Wi,

Chapter 4 contains the main results of this work, here we investigate differentiability of
solutions with respect to parameters. This issue has not been discussed yet for delay equations
with state-dependent delays in the literature, not even for the point delay case. By applying an
extension of the Uniform Contraction Principle developed by Hale and Ladeira in [33], we are
able to show differentiability of solutions with respect to parameters in the state-space WP,
We consider three cases: differentiability with respect to initial functions, a (vector) parameter
in the delay term (i), and a (vector) parameter in the equation (f).

In Chapters 5, 6 and 7 we address some basic issues of applications. In Chapter 5 we
investigate stability of solutions by linearization technique.

In Chapter 6 we present a simple numerical scheme to approximate solutions of (1.1)-(1.2).

In Chapter 7 we apply the numerical scheme defined in Chapter 6 for parameter identifi-
cation.

Finally, in Chapter 8 we briefly discuss the well-posedness of (1.1)-(1.2) in LP-spaces.



Chapter 2
NOTATIONS, PRELIMINARIES

In this chapter we introduce some basic notations, definitions of function spaces and norms
we shall use in the sequel, and recall some results for future references.

2.1 Function spaces and norms

We denote the set of real numbers, nonnegative real numbers and positive integers by R, R
and N, respectively.

Throughout this paper |- | and || - || denote a norm on R™ and the corresponding matrix
norm on R"*", respectively. (The constant n is fixed throughout this paper.) In the case when
we use dimension different from n, we shall use the notation | - |gm for the norm in R™.

The notation f : (A C X) — Y will be used to denote that the function maps the subset

A of the normed linear space X to Y. This notation emphasizes that the topology on A is
defined by the norm of X.

We denote the open ball around a point g with radius R in a normed linear space (X, |-|x)
by Gx(zo; R),i.e.,Gx(xo; R) ={2 € X : |z —zo|x < R}, and the corresponding closed ball by
Gx(zo; R). If the ball is centered at the origin, we use simply Gx(R) and G x(R), respectively.

We shall use the following standard function spaces and norms:

C([a,b]; R”) is the Banach-space of continuous functions v : [a,b] — R"™ with the norm
[Vl ¢ (la,:mr) = supt|e(t)] « t € [a,b]}.

LP([a,b]; R™) (1 < p < oo) is the Banach space of measurable functions ¢ : [a,b] — R"
such that ff [¥(u)|P du < oo, with the norm [¢[pp((q R = (ff |h(u)|P du)l/p.

L*>([a,b]; R™) is the Banach space of essentially bounded measurable functions ¢ : [a,b] —
R™ with the norm [[peo((q,5,R7) = ess supli(u)|.
a<u<b

BC([O, T]x Qq X Qa; R”) is the Banach-space of bounded continuous functions f : [0, 7] x
Q) X Qy — R (where Q,Q5 C R") with norm || f|| = sup{|f(¢t,z,y)| : t € [0,T], 2 € Qy, y €
0}

Whe([a,b]; R™) (1 < p < 00) denotes the Sobolev-space of order 1 of functions ¢ : [a,b] —

R™, where 1 and its generalized derivative belong to LP([a,b]; R"). It is well-known that
WhP([a,b]; R") is a Banach-spaces with norm

b . 1/p
|¢|W17P([a,b];Rn) = (A |¢(8)|p + |¢(8)|p dS) ) 1 <p<oo, (21)

4



and

|9l w100 ([a,0);R7) = Max {ess sup|y(s)], esi SEIJPW(SN} , p = 0o, (2.2)

a<s<b

respectively.

Remark 2.1 Let v € W'P([a,0; R") (1 < p < o0). It is known (see e.g. [36]) that ¢ is
a.e. equal to an absolutely continuous function, 1. By the notation 1(s) we mean P(s), the
function value of the continuous representation of the LP-function 1, i.e., point evaluation of

functions in W1P([a,b]; R"™) is well-defined.
Remark 2.2 [t is known (see e.g. [36]), that for an absolutely continuous function, 1, the
generalized derivative is a.e. equal to the classical derivative. Therefore in (2.1), (2.2), and
later, ¥, ¥’ or % denote the classical derivative of 1.
The following lemma is the Mean Value Theorem for W*°([a, b]; R™) functions.
Lemma 2.3 Let ¢ € Wh*°([a,b]; R") N C([a,b]; R"), and [¢,d] C [a,b]. Then
[(d) — (c)| < |¢|L<>o([a,b];|R")(d —c).

Proof Since by the assumptions and Remark 2.1 1) is absolutely continuous, it follows that

d .
)= vlell = | ) du
d .
< [l du
<l peo qap Ry (d — ),
which proves the statement. [

Remarks 2.1, 2.2 and Lemma 2.3 yield the following characterization of W%*°([a, b]; R™).

Lemma 2.4 The following statements are equivalent
(i) ¥ € Wh>([a,b]; R"),

(ii) 1 is equivalent (i.e., a.e. equal) to a Lipschitz-continuous function.

The constant r > 0 is fixed throughout this dissertation.

To keep the notation simple, the spaces C'([—r,0]; R"), LP([—r,0]; R*), WP([—r, 0]; R™)
and the corresponding norms will be denoted by C, L, WY and |- |¢, | - | and | - |ypis,
respectively. Similarly, the spaces C([—r,a]; R™), LP([-r,a]; R"), WLP([-r,a]; R") and the
corresponding norms will be denoted by C, L, W, * and |-|¢,,, ||z and |- |y1e, Tespectively.

NBV = NBV ([-r,0]; R"*") denotes the set of functions 7 : [-r,0] — R"*" which are of
bounded variation, and normalized such that 7(s) is right-continuous at each s € (—r,0) and



n(—r) = 0. The space is a Banach-space with norm ||n||npv = [Var][n(s)] (the total variation
-r,0

of v over [—r,0], defined as [Vag][n(s)] = sup{Z}le In(s;) — 77(52'_1)\]}, where the supremum is
taken for all possible finite palitition —r <sp <51 < ... < Sy <0 0f [—7,0]).

Let Q3 be an open subset of €', and T' > 0 or T' = oo. In the latter case [0, 7] denotes the
interval [0, 00). Then define ©(1',Q3) as the set of functions p : [0,7] x Q3 — NBV such that

0 J—
sup {| [ dunss )60 s 1€ 0100 e 2. €€ To1) | < .
where p(-,t,1) is the image function corresponding to ¢ € [0,7] and ¢ € C, and the integral
fET dgp(s,t,1)E(s) denotes the Stieltjes-integral of the continuous function £ over [—r, 0] with
respect to u(-,t,1). Then, clearly, ©(T,€3) is a normed linear space with the norm

||| = sup {‘/_OT dop(s,t,)E(s)| : t €]0,T], % € 3, & € Gc(l)} . (2.3)

We comment, that according to the inequality

\ / 0 dopa(s, 1, 0)E(S)| < e 0 Ixpv €l (2.4)

we have that for each fixed ¢ € [0,T] and ¥ € Q3 the map

0
C — Rn, 5 = dsﬂ(87t7¢)£(8)

-7

is a bounded linear functional. The Riesz-representation theorem (see e.g. [47]) implies that
the opposite result is also true, i.e., to an arbitrary bounded linear functional, A, on C' there
corresponds a unique 7 € NBV such that A¢ = [© dn(s)&(s), and [|A]| = ||9|lnsv. From this
result, and from the equality

sup
te[0,T],9€Qs,£€0(1)

[ ot e

-7

0
| dunts,t.0)e(s) = swp_ sup

—r t€[0,T],9€Q £€G(1)

we have the following remark.

Remark 2.5 The normed linear space O(T,Q3) is isometrically isomorphic to the space of
bounded functions from [0,T] x Qs to C* (the dual space of C'), i.e.,

O(T, Q) ~ B([O,T] % Qs C*),
and

lull = sup{llC-,t.)llnpy = ¢ € [0,T]. 4 € Qs }.

We shall frequently use the following estimate, which easily follows from the definition of
[l

[t el

-7

< HHH|£|07 for t € [OvT]7¢ €3, el (25)



We introduce ©¢(T,3), which is the subspace of O(7,Q3) consisting of functions p €
O(T, Q3) such that for all £ € C' the function

0,7]% Qs — R",  (t,0) — /_0 dypi(s,t,0)E(s)

is continuous. This set is, by the next lemma, a closed subspace of ©(T',Q23) in the || - [|e(7,0.)
norm.

Lemma 2.6 O¢ (T, 3) is a closed subspace of O(T,Q3) in the || - |lo(r,0,) norm.

Proof Let pk € Oc(T,Qs) such that [|u* — || — 0 as k — oo, and 1 € O(T,Q3). Fix
£, € Q3,1 €[0,T], and let £ > 0. Then by elementary manipulations and estimate (2.5) we
have for ¢ € C and ¢ € [0,7'] that

[ sttt - [ ot %)5(8)\

-7

< [ afutsstn) - i@+ | d it - st ecs)|
| afats. o -t @}as)\
< 2= ptllele + | [ it = b7 et (2.6)

The first term on the right hand side of (2.6) is less than ¢/2 for large enough k because
p* — fi. For such a fixed k the second term is less than ¢/2 if |[¢p — | + |t — #| is small,
because p* € Oc(T,3), and therefore we have proved the statement of the lemma. (]

Remark 2.5 and the definition of @¢ (7, 23) yield the next remark immediately.

Remark 2.7 The normed linear space O¢(T,83) is isometrically isomorphic to the space of
bounded continuous maps from [0,T] x Q3 to C*, where C* is equipped with the weak™ topology,
i.€.,

@C(T, 93) ~ BCw*([O,T] X Qg,c*).

We introduce the functions A and A defined by

0
A [0,T]% Qax C—R", AL, ,6) z/ dypl(s, 1, 0)E(s), (2.7)

-7
and

A[0,T] X Q5 —R™,  A(t0) = At b, ) = /0 dyp(s, 1, 8)0(s), (2.8)

—r

respectively.

If we need to emphasize that the functions A and A correspond to a given u, then we shall
use the notations A,(¢, v, &) and A,(¢, ), respectively.



Lemma 2.8 Assume that p € ©Oc(T,Q3). Then the function A(-,-) defined by (2.8) is contin-
uous on [0,T] x Q.

Proof Fix t € [0,7T]and ¥ € Q3. Then by applying (2.5) we have for ¢ € [0, 7] and 1 € Q3
that

M) = AGD] = | [ datst, 0006 = [ dats 1, 01005)

—r —p

< | et 10— s, ) )| +

-7

< | ol 1) - pts 20 00s)

-7

(o) [65) = (5

‘—7’

+lpllle = vle.

In the last inequality the first term goes to 0 by the definition of Oc(T,Q3), as t — ¢ and
1 — 1, and so does the second term. (]

Define BC(]0,7] x Q3; NBV) as the linear space of bounded continuous functions from
[0,T] x Q3 to NBV with the norm [|u||Bc((o,1)x 0, ;NBY) = sup{||u(-, ¢, ¥)|lngv : t €[0,T], ¥ €
Q3}.

Lemma 2.9 Let Q3 CC and T > 0. Then BC([0,T] x Q3; NBV) C O¢(T, Q3).

Proof The inclusion follows immediately from the inequality

[ oot 700 66)] < G 6) = s v el
. .

2.2 Some integral inequalities and results on differentiability

The following notations will be used extensively throughout this paper.

Let ¢ € C. Define the extension ¢ of ¢ to [—7,00) as

~ — @(t)v LS [_Tv 0]
Pl = { Q0,120 (29)
Clearly, the definition of ¢ implies the inequality
sup [p(u)] < lele, £ - (2.10)
—r<u<t
For @ > 0 and 8> 0 and y € G, (3) and ¢ € C define
wy(h; ) = supfly(tr) —y(ta)] : 1 ta € [=ra], |t — 1o < A,
wp(h) = sup{|@(iy) — At2)] = t1,t2 € [-r,00), [ty — 12| < A},
w@(h) = Sup{“‘o(tl) @(t2)| Lt € [_Tv 0]7 |t1 - t2| < h}

Note that each function is nonnegative, and monotone increasing in h.



By the definition of ¢(-) it follows that

lo(t1) — @(t2)], 1,12 <0

|P(11) = @(t2)| = ¢ le(t1) —@(0)], 1 <0<ty
0, t1,t2 > 0,
hence we have that
wi(h) = wy(h). (2.11)

Let « : [-r,a] — R"™ be a continuous function. For ¢ € [0, a] the segment function x; :
[—7,0] — R" is defined as x4(s) = z(t + ).

The following two results discuss the continuity of the map ¢t — a; in different spaces.

Lemma 2.10 (see e.g. in [31]) If z € C,, then the function [0,a] — C, t — x is continu-
ous.

Lemma 2.11 (see e.g. in [25]) Ifz € L2, then the function [0,a] — L?, t — z, is continu-
ous.

Lemma 2.12 Letz : [—r,a] — R" be a differentiable function. Then the segment function
x(+) is differentiable on [—r,0], and

disxt(s) = (2)4(s), se[-r0], telo,al

Proof The result follows from the elementary relations

d d . ,
Tai(s) = (i s) = #(1+ ) = (d(s).

[

Next we present two results for integral inequalities. The fist lemma is the famous Gronwall-
Bellman inequality.

Lemma 2.13 (see e.g. in [19]) Let ¢ > 0 be a constant, f : [a,b] — RT be a nonnegative
continuous function, and x : [a,b] — RT be a continuous function satisfying

2(1) < c+/: f(s)a(s)ds,  t€ [a,b].

Then x satisfies

x(t) < cexp (/at f(s) ds) , t€la,b].

The following simple integral inequality will be used several times in our proofs later.



10

Lemma 2.14 Let f : [0,a] = RT, and g : [0,a] x [a,b] — RT be continuous functions, such
that f is nondecreasing on [0, a], and g(t,u) is nonnegative on [0, a] X [a, b], and nondecreasing
for u € [a,b] for all fired t € [0,a], and let x : [—r,a] — R be a continuous function satisfying
the inequality

w01 < 10+ [ glslede)ds,  tefoal

Assume that |xo|c < f(0), then the function y(t) = max_,<,<¢ |x(u)| (or the function y(t) =
|z¢|c ) satisfies the same inequality, i.e.,

t) + /Otg(s, y(s)) ds, te[0,a]

Proof Let ¢ < {. Then from the relation |z5/c < y(s) and the assumed monotonicity
properties we get

w0 < 50+ [ gt lede)d
< )+ / g(s,y(s)) ds
< S0+ [ gtsatends

Since this is true for all ¢ < ¢, by taking the maximum of the left-hand-side of the inequality
for ¢t € [0,t] and using that |zg| < f(0) < f(¢) for all ¢ > 0 we prove the statement of the
lemma. [

Finally, we recall some results for later reference concerning differentiability of functions.
Note, that in this paper all the derivatives we use are Frechét-derivatives.

Lemma 2.15 (Chain Rule, see e.g. in [43]) Let X, Y and Z be Banach-spaces, F' : U —
Y and G : V. — Z, where U and V are open subsets of X and Y, respectively. Then if F is
differentiable at w € U, and G is differentiable at v = F(u) € V, then G o F is differentiable
at u, and (G o F)'(u) = G'(F(u))F'(u).

Lemma 2.16 (see e.g. in [43]) Suppose that X andY are Banach-spaces, and Q) is an open
subset of X, and F' : Q — Y is differentiable. Letz,y € Q and y+v(z—y) € Q) forv €[0,1].
Then

1) = F(a) = P =2l < o= ylx sup [1F(y+v(z = 9) = F(@)llecr)

Lemma 2.17 (see e.g. in [16]) Let X,Y and Z be Banach-spaces, and let Q be an open set
in X XY, and let F(z,y) be a continuous function from @) into Z. Then in order that F be
continuously differentiable in @), a necessary and sufficient condition is that F be continuously
differentiable wrt x and y on @), and then the derivative satisfies

Fa.0)(e.) = (e m)e + 5@ 0.
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2.3 Linear delay equations and semigroups
Consider a linear delay equation with constant delays of the form:
&(t) = Lay, t>0, (2.12)

where L : €' — R™ is a bounded linear operator. It is well-known (e.g. [31]), that (2.12) has
a unique solution, z(; ¢), corresponding to any initial function ¢ € C, defined on ¢ € [—7, 00).
Moreover (see e.g. [31]), the family of linear operators, {5(%)};>0, given by

Stye=x(5¢) 20

defines a strongly continuous semigroup on C'.
Let define
wo = sup{Re A det(M = Le™) = 0},

i.e., wp is the supremum of the real part of the characteristic roots of (2.12). We shall need
the following lemmas:

Lemma 2.18 (see e.g. in [31]) If wo < 0, then for any wy < w < 0 there exists M =
M(w) > 1 such that
IS < Me*', >0,

Consider the perturbed equation
&(t) = Lxy + f(2), t>0, (2.13)

where f € Ly ([0,00),R"). Then (2.13) has a unique solution on [0, 00) for all ¢ € ', and the
solution, x(t) satisfies the following abstract variation of constant formula:

Lemma 2.19 (see e.g. [30]) The solution, z(t), of (2.13), corresponding to an initial func-
tion ¢ € C' has the form:

t
v = S(p+ [ (1= 5)Xof(s)ds
where

0, u < 0,

I ou—o (2.14)

Xo : [-7r,0] = R™*", Xo(u) = {

We shall need the following variation of Lemma 2.19.

Lemma 2.20 The solution, z(t), of (2.13) satisfies
t—r
xt:S(t—r)xT—l—/ S(t—r—s)Xof(s+r)ds, t>r,
0

where Xg is defined by (2.14).
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Proof By applying Lemma 2.19, semigroup properties of S(¢), and change of variables we
get

e = S(t)c,o—l—/OtS(t—s)Xof(s)ds
= S(t—r)S(r)e+ S(t—r)/OT S(r—s)Xof(s)ds—l—/: S(t — )Xo f(s) ds
- S(t—r)xT—l—/Ot_T S(t—r— )Xo f(s+7) ds,
which proves the lemma. a

2.4 Fixed point theorems

First we recall the Schauder fixed point theorem.

Theorem 2.21 (see e.g. in [43]) Let U be a closed, convex and bounded subset of a Banach-

space X, and f : U — U be a completely continuous map. Then the map [ has a fixed point
m U.

Let Y and Z be Banach-spaces, a map § : Y X Z — Y is called uniform contraction, if
there exists 0 < 6§ < 1 such that |S(y,z) — S(y,2)|ly < 0ly —yly forall y,y € Y and z € Z.
The following theorem holds

Theorem 2.22 (Uniform Contraction Principle, see e.g. in [33]) Let U and V be open
sets in the Banach spacesY and Z, respectively, and let U be the closure of U, and S : UXV —
U a uniform contraction on U. Then for all z € V the map S(-, z) has a unique fized point

g(2). Moreover, if S € C*(U x V,Y), 0 < k < oo, then g € C*(V,Y).

In [33], Hale and Ladeira proved a generalization of this theorem to quasi-Banach spaces.
Let Y be a linear space with two norms: |-| and || -||. We say that (Y,]|-]) is a quasi-Banach

space with respect to the norm || - ||, if for all R > 0, (g(y7||.||)(R),| . |) is a complete metric

space, i.e., all the closed balls of Y at the origin corresponding to the || - || norm are complete
sets in the |- | norm. We consider Y with the topology defined by the norm |- |, i.e., by
open, closed sets in ¥ we mean open, closed sets of Y in the norm |- |. Introduce £(Y), the
quasi-Banach space of linear operators S : Y — Y which are bounded in both |- | and || - ||
norms. (See [33].)

The following generalization of the Uniform Contraction Principle holds for quasi-Banach
spaces:

Theorem 2.23 (see in [33]) Let Z be a normed space, (Y,|-|) is a quasi-Banach space with
respect to the norm || - ||. Let U C Y be open, and V. C Z be open, and assume that 9
U xV — U satisfies
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(i) S is a uniform | -| and || - || contraction, i.e., there exists 0 < 8 < 1 such that
|S(y,z)—5(gj,z)|§0|y—@7|, fOT@/,?/EU,ZEV,
and B
15(y, 2) = S, )| < Olly —9ll,  fory,yeU,zeV.

(i1) For each p > 0 there exists R > 0 such that

S((Gryp(B) N T) % Gz(p)) € Gy pp(R)N D).

(iii) S € CH(U x V) for some k > 1.

Then for each z € V, there exist a unique fized point g(z) of S(-,2) in U, and the map g is in
CrHV,Y).



Chapter 3
WELL-POSEDNESS IN C

In this chapter we study the the nonlinear state-dependent delay system

0
M) = f (t,x(t),/ dopl(s,t,20) 2(t + 5)) . telo,T], (3.1)
where: 7> 0,7 >0 or T = oo (in the latter case [0,7] denotes [0, 00)),

Q1,§); are open subsets of R™, 23 is an open subset of (',

f: [O,T] X 1 x 2y = R",

p(-,t,7) € NBV for all t € [0,T], ¢ € s,

z: [-1,0] = R, x4(s) = z(t + s) for s € [-r,0].

In order to evaluate z(t), z; and 2(¢+ s) in (3.1) at ¢ = 0 we need an initial condition for
z(-) on [—r,0], i.e.,
2(t) = p(t),  te[-r0] (3.2)

Using the simplying notation introduced by (2.8), equation (3.1) can be written as

i(t) = f(t2(D), At 2p),  te[0,T). (3.3)

Throughout this paper we shall assume that the initial time of the equation is at t = 0,
i.e., the solution starts at ¢ = 0. An IVP of the form

0

#1) = f(t,fc(t),/_Tdsﬂ(s,t,a’ct)fc(t—l—s)), t € [o,0+T], (3.4)

#(t) = ¢t), telo—ro] (3.5)

where: r>0,7T>0(or T =00),0€R,
filo,04+ T x Q1 x Q3 — R",
(-, t, ) € NBV forall ¢t € [o,0 +T], ¥ € Q3

can be rewritten in the form (3.1)-(3.2) using the transformations

f(tvxvy) = f(t—l—a,ac,y), H(57t7¢) = ﬂ(57t+07¢)7 @(t) = @(t—l_g) and x(t) = j(t—|—a), (3'6)

We comment, that if the dependence on the initial time o is relevant (e.g., we study the
dependence of the solution on the initial time, or the actual initial time is not known, and the
problem is to identify the initial time), we may explicitly keep o in the equation as a parameter,
and consider an equation of the form

i(t) = f(t.2(0), At 20),0),  tE0,T],

14
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where f @ [0,T] x Q1 x Q3 X [0g,01] — R".

Note, that in (3.4)-(3.5) the functions ¢, it and f are defined on a set which depends on
o which is also a parameter in the equation, but in IVP (3.1)-(3.2) the parameters belong to
fixed spaces.

In Section 3.1 we give conditions, under which IVP (3.1)-(3.2) has a solution on an in-
terval [0,«] C [0,7], and study continuability of solutions. In Section 3.2 we investigate the
uniqueness of solutions, and in Section 3.3 we show that solutions depend continuously (in
appropriate norms) on the parameters of the IVP, i.e., on ¢, p and f. In Section 3.4 we study
state-space candidates, e.g., W1> and WP, and argue why WP is the best choice in the
state-dependent case as the state-space of the solutions. In Section 3.5 we give some remarks
how the results can be extended for more general cases.

3.1 Existence of solutions
In this section we show that the hypotheses
(Al) fe BC([O,T] % O % Qo H”),

(A2) p € Oc(T,93),

(A3) pe C

are sufficient for local existence of a solution of IVP (3.1)-(3.2).

We say that a function z(-) : [—7, 7] — R™ is a solution of IVP (3.1)-(3.2), if it is continuous

n [—r, T, satisfies initial condition (3.2), differentiable on [0, 7], and satisfies (3.1). If we want

to emphasize that the solution of IVP (3.1)-(3.2) corresponds to the parameter v = (¢, i, f),
we use the notation z(;7).

First we show that the functions, yu, in Examples 1.1-1.4 satisfy assumption (A2) under
natural assumptions on the original equations.

Example 3.1 Clearly p(s) in Example 1.1 satisfies (A2), because it is independent of ¢ and
.

Example 3.2 In Example 1.2 ;i depends only on s and ¢, and it is easy to see that pu(-,?)
satisfies

’ dsp(s, )¢ ZAk (1) + ’ G(s,t)€(s)ds.

—r —70

and for £ € G (1) we have

0
‘ dop(s,t)€

Z ol + [ sl s (3.7)

Clearly, p is in Q¢ (7', Q3), if we assume that:

(i) each Ag(t) and 73(t) are continuous on [0,T], (k=1,...,m),
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(ii) the function G satisfies a Lipschitz-condition of the form ||G(s,t) — G(s,t)|| < g(s)[t —1],
where g € L([~79,0]; R).

If T' = oo, to obtain boundedness of (3.7), we also need that:
(iii) Ag(t) be bounded on [0,00), (k=1,...,m),

(iv) [|G(s,1)]| < go(s) for t € [0,00) where go € LY([~70,0]; R).

Example 3.3 The function u(-,%,1) in Example 1.3 satisfies
0
| s, 6)6(s) = €(=r(1.)).

for arbitrary ¢ € [0,T] and ¢ € Q3, and hence for £ € G (1) we have

\/%mwuwa$SL

-7

Therefore (A2) is satisfied if 7(¢, 1) is continuous in ¢ and .

Example 3.4 In Example 1.4 we have that

0

0
dop(s,t, )€ Z A(t (t,0)+ [ G(s,t,9)E(s)ds

—r —70

and therefore for £ € Go(1) it follows that

[ amter | < S+ [ 166 oia

Similarly to that in Example 1.2, the following assumptions imply (A2):

(i) each Ag(t) and 7%(¢,) are continuous on [0,7] and [0,7] x Qs, (k = 1,...,m), respec-
tively,

(ii) the function ¢ satisfies a Lipschitz-condition of the form
1G (s, 1) = G(s, 10| < g(s) ([t = €]+ [¥ = Pl), (3.8)
for s € [=70,0], t,1 € [0,T], and ¢, € Q3, where g € L*([—79,0]; R),
and for the case T = oo,
(iii) Ag(t) is bounded on [0,00), (k=1,...,m),

(iv) IG(s,t, )] < go(s), for all £ € [0,00), ¥ € O3, where go € L'([=70,0); R).
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Note, that if in Example 1.4 there is no discrete delay, (i.e., Ax(t) = 0 for all ¢ > 0,
k = 1,2,...,m), then the above Lipschitz-continuity of ¢ implies that the corresponding
p € BC([0,T] x Qs3; NBV).

We note that the conditions in the above examples guaranteeing assumption (A2) are
natural assumptions for the existence of solutions of the corresponding equations.

We introduce the notation I'g(T, £y, Qs,Q3) = C' x Oc(T,Q3) X BC([O,T] X Qq X Qy; R”)
for our parameter space, which is a normed linear space using the product norm ||y||r, =

lple + el + 111

Next we shall study the existence of solutions, z(¢;7), of IVP (3.1)-(3.2) corresponding to
a given parameter v = (¢, pt, f). Clearly a necessary condition for existence of z(¢;7) is that
the second argument of the function f in (3.1) should belong to €4, the third argument to
5, and the third argument of u should be in 3. Hence the initial condition for x yields that
2(0) = (0) € Qy, 29 = ¢ € Q3 and

0 0

/ dsp(s,0,20) z(s) = / dspi(s,0,0) o(s) € Q.

Therefore the feasible parameters of IVP (3.1)-(3.2) belong to the set
Ho(T,21,92,Q3) = {(%Haf) € Lo(T,801,05,93) = ©(0) € 2y, ¢ € {3,

and [ dopi(5,0, ) ¢(5) € Q. (3.9)

—r

We introduce the new variable y(¢) = z(t) — ¢(t), where ¢ is defined by (2.9). Then IVP
(3.1)-(3.2) becomes

i dspi(s,t, ye + B1) [y(t +s)+ 4t + 5)])7 t€[0,T], (3.10)

y(t) = 0, tE[—T,O]. (3.11)

it = f(t, o(0)+ (0. |

Note, that by using the notation (2.7), the third argument of f in (3.10) can be written as
A(t,y¢ + ¢¢) or if we want to emphasize the p-dependence, as A, (¢, y¢ + @).

The following lemma has important consequences.
Lemma 3.5 The function

[0,a] X € x Oc(T,Q3) X Goo (B) = R, (w0, 0,y) = Ap(w, yo + Pu) (3.12)

s continuous, whenever it is defined.
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Proof Fix u® € [0,a], ¢° € C, pu° € O¢(T,€s), and y° € G, (3) for which A o(u®, y% + 9;2)
is defined. By elementary manipulations and estimate (2.5) we have that

Al g + @) = A0 (u gl + 0)

<

/0 ds [HO(Sv Uy Yu + @u) - :uo(sv u, @/20 + (Q;O)uo)] [yo(uo + 8) + Q;O(UO + 8)] ‘

-7

_I_

-7

/0 s 15,0, o+ @) = 10,0,y + @) [0+ 5) + Pu + 9)] ‘

0
_I_

Aot (s, o+ @) [y + 5) + P(u+ 5) = (1°(u° +5) + £0(u” + 5)] ‘

0 ~ ~
< ‘ | it @) = 050 gl + (000 [5°0° 4+ 5)+ 900 + 5)] ‘

+ =l sup [y(uts)l+[@(u + 5)))

+ 11y + B = 400 — (%)l (3.13)
Inequality (3.13), the definition of the norms |- |¢, | - |c,, and inequality (2.10) imply
In(us 7, y) = n(u®; 7%, 9°)]

n(u’s 77,
‘ /_ 0 da[10(s, w50 + Bu) = 1005, 0%, 9% + (£9),0)] [1°(u0 + 5) + 2O + 5)] ‘

<
=l sup () + 1D+ o+ B = oo = ()l
0 ~ ~
< ‘ [ st @) = 105w+ (£9)0)] [1°0 4 5) + 2 + )] ‘

+ = 10Nyl en + lele) + 1E v + Gu — 3 — (#°)uolc- (3.14)

In view of (3.14) and Lemma 2.8, it is enough to show for finishing the proof of the lemma,

that |y, + @u — ¥% — (¢°)wolc — 0, as ¢ — %, p— 1% uw — u°, and y — y°. Consider

|3/u + Py — 3/20 - (9;0)u0 |C
= sup [y(uts)+pluts) = 2w+ s) = O+ 5)|

—r<s<0
< sup (Jy(uts) = g%(ut s)| 4 |F(ut s) — @Out 5)])
—r<s<0
+ sup (Is%(ut 5) = 5°(u® + )| + [¢0(u+ 5) — O(u® +5)]).  (3.15)
—r<s<0

Inequality (2.10) yields that
sup[5(u+s) = G+ < o= ol (3.16)

It follows from (3.15) using the definition of w,,, wg, relations (2.11) and (3.16) that

[Yu + Pu — Yoo — (¢%)0]c
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< sup fy(s) =y () + e = le +wp(lu =l o) Fwp(fu— o))

< y=1lca + 1o = @le +wpollu—u’l; @) + weo(lu—u°)). (3.17)

Using the uniform continuity of functions y° and ¢° over intervals [—r, a] and [—r, 0], respec-
tively, we get

wo(h;a)—=0  ash—0,

weo(h)—0  as h—0. (3.18)

Relations (3.17) and (3.18) yield that |y, + @y — y% — (c,;o)uo|c —0as o — ¢, u— u°,
u — u’, and y — y°, therefore we have finished the proof of the lemma. (]

Lemma 3.5 and the continuity of f yield the next lemma immediately.
Lemma 3.6 Fizy = (o, u, f) € Uo(T,Qy,Q9,03) and y € G (B). Assume that there ewists

0 < a < T such that y(u) + ¢(u) € Y, yu + Pu € Q3 for u € [0,a], and the function
Au(u, yy + @u) is defined and satisfies A, (u, yy + @) € Qg for u € [0, ). Then the function

[0,0] =R, w— f{uy(w)+ F(u), Au(u, o + 20))

is continuous on [0, a].

Using Lemma 3.6 we can make the following observation.

Lemma 3.7 IVP (3.10)-(3.11) is equivalent to the integral equation

0, te[-r0],
y(t) - /0 f (u, y(u) + cfo(u), _Tds,u(sv Uy Yoy + @u) [y(u + 8) + @(u + 8)] ) du’ L€ [0’ T]
(3.19)

The next theorem guarantees the existence of solutions of IVP (3.10)-(3.11) for a fixed
parameter 7° € Tlo(T, Qy,Q3,Q3) and in a small neighborhood of this parameter.

Theorem 3.8 Given v° € Tlo(T, Qy, Qa, Q3) then there exist a = a(y%) > 0 and 6§ = §(7°) > 0
such that if v € To(T,Q1,Q9,Q3) and ||v — 7%, < & then v € Wo(T,Q1,Q2,93), and IVP
(3.10)-(3.11) corresponding to v has a solution, y(t;v), on [—r, a].

Proof Let 7% = (¢ u®, f9) € Mo(T, 01,22, Q3). Then by the definition of Tlo(T, Qy, Qa, Q3)
we have that

0

w=¢%0) e, o' = | dip®(s,0,0%)9°%(s) € Qy, and ¢ € Q.
Using that 4,5, Q3 are open subsets of R™ and (', respectively, we have that there exists
61 > 0 such that if |[u — u®| < 61, |[v —v°| < 61 and | — ¢°|c < 61 then z € Qy, y € Qy and
2 € 93.
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Pick M > 0 and §; > 0 such that | f°(0,u® v°)] < M — ;. The function f° is continuous,
therefore there exist a* > 0 and 63 > 0 such that 63 < 6;, and if ¢ € [0,a*], |u — u°| < é5 and
|v — 00| < 63 then |fO(¢,u,v)| < M — ;. Therefore we have that

|f(t,u,v)| < M for te€[0,a], |u—u’] <83, |v—0° <é3and | f— fO <. (3.20)

The uniform continuity of ¢° on [—r, 0] and the definition of wo(h) imply that wo(h) — 0
as h — 0, therefore we can select o™ > 0 such that

@ <o, wee(a™) < 83/3.
Then we have for ¢ € [0, ], |¢ — ¢°|c < é5/3, and for y € G¢_..(63/3) that

y(t) + ©(0) — °(0)]

ly(t) + (1) — u”|

<y + 10(0) — °(0)]

< b3/3+ e —¢'lo

< 03/34 63/3

< &, (3.21)

hence y(t) + @(t) € Q4. Similarly, for ¢ € [0,a™], |¢ — ¢°lc < 83/3, and for y € Ge_ .. (83/3)
the definition of w 5 (h), relations (2.10), (2.11), (3.16), the monotonicity of w,(h) in %, and
the choice of @™ and 63 imply that

it @ ¢%le < sup (Jylt+s)] + [+ ) — °(s)])
—r<s<0

< Baf34 sup (10 s) = QU+ 8) 1601+ 8) = ¢s)])

§3/34 o — @l + sup_ POt + 5) — ¢O(s)]

83/3+ o = ¢°lo +w (1)

83/3 4 | — %l + wyo (1)

63/3 4 63/3 4 63/3

6. (3.22)

AN VAN

IN A

Inequality (3.22) yields that for ¢ € [0, @], |7 —7°|Ir, < 85/3 (and hence for |p—¢°|c < é5/3),
and for y € ?ca**(63/3) we have that y; + @; € Q3, hence A (¢, y; + @¢) is defined for all
i€ Oc(T,Qs). Using our simplifying notation defined by (2.7) we have that

0 ~
00 = ds,uo(sv 0, 990)990(8) = AMO(O, 60 + 998)7

-7

where 0 € G, (3%) is the constant zero function. By the assumption v” = A ,0(0, 60+9;8) € Qy,
and by the continuity of the function given in (3.12) in u, ¢, g and in y (guaranteed by
Lemma 3.5) there exist constants @ > 0, 64 > 0 and § > 0 such that

a < Oé**, 64 < 63/37 and ﬁ < 63/37

and
|AL(t, ye + Pi) — ”0| < 03
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for t € [0,a], |7 —7°|lr, < 84,7 € Wo(T, 0y, Q2,Q3) and |y — 6|Oa** < (. Let 6 = min{éy, é4}.
Then we have that

y(t) + @(t) € Qy, At ye 4+ @) € Qo and  yi 4 @1 € Q3 (3.23)

for t, y € Cy, and v € Mo(T, Ry, Qa,Q3) such that t € [0,0], y € G (B) and ||y — vollr, < 6.
Similarly, it follows that

70,500+ 30, At + @) < M, (321
for t, y € Cy, and v € (T, Ry, Qy,Q3) such that ¢ € [0,0], y € G (B) and ||y — vollr, < 6.
In particular, we have that

0

»(0) € Q1, ¢ € Q3 and dsp(s,0,0)p(s) € Qq, for ||y — ’yOHro < 6,

—r

i.e., |7 —7°|r, < & implies that v € Io(T, Qy, Qa, Q3).
Define the operator

S : aca (ﬁ) X (gFO(T,Ql,QQ,Qg) (707 6) m HO(T7 Ql? 927 93)) - Ca (325)

b
y 0 te[-r0]
Sy, 7)(t) = { /0 F (o y(w) + E(u), A, o + @u)) du, 1€ [0,a].

Relation (3.23) and Lemma 3.6 insure that S is well-defined. Usual estimates and (3.24) imply
that

(3.26)

1S5 (y,7)(t)]
15 (y, 7)) = Sy, 7)(@)]

hold for all ¢,7, € [0,a]. These inequalities yield that the function S(-,v) : G (8) — C, is
completely continuous, because it maps the bounded subset G, (3) of the space C,, into the
compact set

Ma (3.27)

<
< M|t—1 (3.28)

K={wel([-r,a;R") : |w(t)| < Ma, |w(t)—w(t)] < M|t -1, t,t,€ [-r,a]}. (3.29)

Now choose a small enough that Ma < § is satisfied. Then S(-,7) : Ge,(8) — Ge,(3) holds.
Using that G¢, () is a closed bounded convex subset of C,, the Schauder fixed-point theorem
(Theorem 2.21) yields that for each v € gFO(T7QhQ27QS)<’}/O; 6) N 1Io(T, 4, Q2,23) there exists
a fixed point of S(-,7)in Ge,(3), i.e., there exists a solution of (3.19) on [—r, a]. ]

Note that that by using the transformation z(t) = y(¢) + ¢(¢), Theorem 3.8 provides local
existence of solutions of IVP (3.1)-(3.2).

In the remaining part of this section we study the continuation of solutions of (3.1)-(3.2).
Fix v € Io(T, 1, Q2,3). Then by Theorem 3.8, IVP (3.10)-(3.11) has a solution, y(#; 7), on
[—7,a],ie., IVP (3.1)-(3.2) has a solution, z(t; v), on [—7, a.
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We say that & is a continuation of z, if there exists & > a such that & is defined on [—r, &]
(or on [—7,&)), coincides with z on [—r, @], and & satisfies

te[-r0]

(1),
x(t)= { . ¢ 0 R R
20+ [ 1(weto), [ dptsotus9)du, te0.) (oree0.a)).
(3.30)
We shall show, that finding a continuation of a solution, z(¢;v), of IVP (3.1)-(3.2) existing
originally on a closed interval [—r, o] is equivalent to solving IVP (3.1)-(3.2) with a parameter
e (T — a,Q4,92,Q3), therefore, by Theorem 3.8, the solution is always continuable to a
larger closed time interval.
Let z(t) be a solution of (3.1)-(3.2) on [0, @] corresponding to parameter v = (¢, f, f).
Then a continuation of z should satisfy for ¢t > «

x(t) = 95(0)—|—/0af(u,x(u),/j dop(s,u, x,,)
+f tf(mﬂ@(ﬂ), / (s, uy ot s
= —|—/ (u z( ds,u(s Uy Ty )T (u—l—s))du.

z(u+s)|du

))d
)) du

Define the function ¢! : [-r,0] — R™ by

1 . z(t+ ), t € [~ min{a,r},0]
pt) = { o(t+ a), t € [—r,— min{a,r}],

and let @' : [—r,00) — R be the extension of ! defined by (2.9). Introducing the new
variable

y(1) = 2(t +a) = 1(1)
we transform (3.30) into
0, te[-r0],
y(t) — /0 f(u+a7y(u)+9;1(u)v

/0 dsp(s,u+ a, yu + (1)) [y(u +5)+ @l (u+ S)Ddu, t>0.

-7

(3.31)
Define
H1(57t7¢) = H(Svt‘l' a7¢)7 s € [_Tv 0]7 LS [_TvT_ Oé], ¢ € Cv
fl(t,$,y) = f(t‘|‘a7$7y)7 tE[-T,T-O[],$EQl,yEQQ.
Let v1 = (¢!, pt, f1). Then clearly 4! € To(T — a,Qy,Qs,Q3). Moreover, we have that
21(0) = #(0) € 011 1 = 2o € Oy, and

0 0
dsp (5,0, 0" (s) =/ dsp(s, a, 0 )e'(s) € Qa,

—r —p
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(because z(t) is defined by the assumption at ¢ = «), hence y' € Io(T — a, Qy,Q2,Q3).
Therefore by Theorem 3.8 there exists a' = a(y') such that @ + o' < T, and (3.31) has
solution on [—r,al], i.e., z(+; v) is continuable to [-r,a + a!]. If @ + & < T, then we can
repeat the process, and extend the solution to a larger interval. If we don’t reach T in finitely
many steps, then using Zorn-lemma we can conclude that the solution has a noncontinuable
extension (i.e., a solution which has no extension) defined on an open interval. Thus, we have
proved the following lemma.

Lemma 3.9 Fiz v € 1lo(T,Q,Q2,Q3). Then there exists a noncontinuable solution corre-
sponding to v, x(t; v), of IVP (3.1)-(3.2) which is defined either on [—r,T| or on an interval
[—7,b) (where 0 < b < T).

3.2 Uniqueness of solutions

In this section we show that if f is locally Lipschitz-continuous in its second and third argu-
ments, and p(s,t,1)is “weakly locally Lipschitz-continuous” in its third argument, (by which
we mean that the corresponding A(t, 1, ) is locally Lipschitz-continuous in ), and the ini-
tial function is Lipschitz-continuous (or equivalently, ¢ € W), then the solution of IVP
(3.10)-(3.11) is unique.

We shall use the following assumptions:
(A4) fis locally Lipschitz-continuous in its second and third arguments, i.e., for every a > 0,

M > 0 there exists a constant Ly = Ly(a, M) such that for all ¢ € [0,a], z,Z € Grn(M)N
Qy, and y,y € Grr (M) N Qy

[f(t2,y) = f(7,9)] < La(le = 3l + 1y - 91),

(A5) for all £ € W™ the function A(t,1,&) defined by (2.7) is locally Lipschitz-continuous
in ¢ with a Lipschitz-constant of the form Lg|&|y1,, i.e., for every @ > 0 and M > 0
there exists a constant Ly = Ly(a, M) such that for all £ € W™ ¢ € [0,a] and 1,1 €
Go(M)N Q3 - -

[A(L 0, 8) = AL, 0, )] < Lalélwre [t — Yo,

(A6) @ € Whe.
First we give conditions in Examples 1.1-1.4 which imply assumption (A5). We note that

the functions p used in Examples 1.1 and 1.2 do not depend on 1, therefore assumption (A5)
holds trivially in these cases.

Example 3.10 Let p be defined as in Examples 1.3 and 3.3. Then

/\(t7¢7£) = 5(_T(tv¢))‘

Assume that £ € W5, Then Lemma 2.3 yields that
(9, €) = A(t, 9, €)] [E(=7(t,9)) = €(=(
|£|L°°|T(t7¢) - T(tﬂz”
[Elwace|T(1,90) = 7(

IAN A

\’@F
\% [
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Thus if 7(¢,) is locally Lipschitz-continuous in v, i.e., for every @ > 0, M > 0 there exists a
constant L,(a, M) such that

|T(t7¢)_7—(t7$)| < LT(avM)“b_Qva for MQLG?C(M)QQ& te [0,&], (332)
then p satisfies (A5) with Lo(a, M) = L,(a, M).
Example 3.11 Consider p defined in Examples 1.4 and 3.4. In addition to assumption (i)-

(iv) of Example 3.4, we assume that each 7, satisfies (3.32) with Lipschitz-constant L, . Then
it is easy to see that

0

IA(t, 9, 6) = A1, ,€)] < (ZléleLm(a,M)Oigg | Ax()]] +

k=1

g(s) d5|5|0) [ — e,

—70

for £ € Wh*° ¢ € [0,a], and ¥, ¥ € Go(M) N Q3. Thus (A5) is satisfied with

m 0
L= Lo, M) sup |4kt + [ gls)ds.
k=1 0<t<a —To

Lemma 3.12 Let pp € O¢(T,Q3) satisfy (A5). Then the function A(t,1) defined by (2.8)
satisfies the inequality

AL ) = AL D) < ([lull + Do, M)|$lwree ) [0 = Bl (3.33)
where t € [0,a], 1,9 € Go(M)N Q3 and ¥ € WHe,

Proof Let a, M > 0 be fixed, and Lo(a, M) be the corresponding constant from assumption
(A5). Let ¢ and 1 satisfy the assumptions of the lemma. Assumption (A5), inequality (2.5),
and elementary estimates imply the inequalities

ALY = AL S ML ) = ALty )] 4 AL . 6) = AL &, )
0 _ _ _
< | duntsste0)[es) = 009)]| + Lata, M)l — Dl
<l = Bl + La(a, M)elyn <l = dle.

[

Lemma 3.13 Assume that the parameter v = (@, p, f) € Ho(T, Q1, Q2,Q3) satisfy (A1)-(A6).
Let z(t) be a solution of (3.1)-(3.2) on [0, «] corresponding to ~v. Then

(i) xy € WH* for all t € [0, a], moreover, x; € C1 for t € [r, a],

(71) there exists a constant My = My(a, || f|], |¢lwie) such that |z¢|y10 < My fort € [0,a].
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Proof Let v = (¢,p, f), and z(¢) be a solution corresponding to 7. By (A6) the initial
function is from W1°° therefore it is differentiable a.e. on [—r,0], hence Lemma 2.12, (3.1)
and (3.2) imply that

ixt(s) = &(t+s)

ds
flt+s,2(t+3), AT+ s, 2045)), t+s>0, (3.34)
ot +s), t+ s <0, for a.e. s. )

Therefore x4 is differentiable for a.e. s. Moreover, if ¢ > r then ¢t + s > 0 for all s € [—r,0],
therefore x is differentiable everywhere. Lemma 3.6 yields that the function s — f(t+s,z(t+
s), A(t+ s,x¢45)) is continuous, therefore we have proved the second part of (i). To prove that
x; € W, we have to show that z4(s) and “La,(s) are bounded. It follows from (3.34) that

‘%ms) < max{||/]l, |¢lc}-

Moreover, (3.3), the definition of ||f|| and |- |¢ imply that for ¢ > 0

1
2O < e+ [ |flusa(u) Auo,) du
< el + 11l
< el + I fllo

hence |z¢|c < |¢|c + || f||a for ¢ € [0,a]. Therefore we have proved (i), and it is easy to see
that (ii) is also satisfied with My = maX{HfH, léles lele + HfHa} ]

The next theorem shows that under assumptions (A1)—~(A6), IVP (3.1)-(3.2) has a unique
solution.

Theorem 3.14 Let v € 1o(T,Qq,Qy,Q3) and assume that (A1)-(A6) are satisfied. Then
there exists o > 0 such that IVP (3.1)-(3.2) has a unique solution on [0, a].

Proof Theorem 3.8 yields that there exists o > 0 such that IVP (3.1)-(3.2) has a solution
on [0,a]. Suppose that z(-) and z(-) are two solutions of (3.1)-(3.2) on [0, @] corresponding
to the same parameter v = (¢, u, f). It follows from Lemma 3.13 that |z(t)], |2(¢)] < M; for
t €10,a]. By (2.5) we have that

(AL 2] < lplllede < flull My,

and similarly |A(¢, 2¢)| < ||p||M; for t € [0,a]. Let M = My max{1l, ||g||}, and Ly = Li(a, M)
given by (A4). The integrated form of (3.3), the Lipschitz-continuity of f, and simple estimates
imply

e -=0] < [ ), A ,)) = £, ), A, )|

IN

IN

/Ot Ly <|$(u) — z(w)] + [A(u, 2y) — Alu, zu)|)du, te0,a]l. (3.35)
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By the definition of M we have that |2¢|c, |2¢|c < M, therefore if Ly = La(a, M) is the constant
from (A5), then using that by Lemma 3.13 2, € W1 and |z,|y1,0 < My, Lemma 3.12 and
inequality (3.35) yield that

|2(1) = 2(1)]

IN

/Ot L1<|x(U) — 2(w)| + (||p]] + Lol zupree )|w — Zu|0) du

IN

t
Lo (vl maon Y= mdede, €0l (336)
0

Lemma 2.14 applied to (3.36), using that y(s) = z(s) for s € [-r,0], leads to the inequality

£
sup [y(s) = () < [ La(1+ 1l + M) sup lyls) = =()ldu 1€ (0,01,
0<s<t 0 0<s<u

which by the Gronwall-Bellman inequality yields that supg<,<; |y(s)—2(s)] = 0 forall ¢t € [0, a],
and therefore the solution is unique. o [

It is known, that without assumption (A4) we may loose uniqueness (take, e.g., f(t,z,y) =
V). The next example shows, that if f(t,z,y) is not Lipschitz-continuous in y, then the
corresponding IVP can have two solutions. The other two examples in this section show that
if we violate assumptions (A5) and (A6), then we may also loose uniqueness of the solution.

Example 3.15 Consider the scalar IVP
#(t) = 4Ja(t—T1(1)), t>0, (3.37)
x(t) = 0, —-1<t<0, (3.38)

where
7(t) = min{t/2, 1}.

It is easy to see that IVP (3.37)-(3.38) has two solutions on [0,2]: z1(¢) = 0 and x5(t) = ¢2.
Example 3.16 Consider the scalar IVP with state-dependent delay

it) = w(t—r(z@)), t>0, (3.39)
e(t) = =26, —2<1<0, (3.40)

T(z) = Qmin{\/m,l}.

It is easy to check that this IVP has two solutions: @1(¢) = 0,¢ > 0 and z2(¢) = ¢* for t € [0, 1].
We can rewrite (3.39)-(3.40) in the form

where

i) = /_Ost,u(s,wt)x(t—l—s), >0, (3.41)
2(t) = -2,  —2<t<0, (3.42)

by defining
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We have that if [¢/(0)] < 1 then
N6 = [ dls,)els) = E-r((0) = & (~2/l0000])

—r

which does not satisfy (A5). (It is enough to consider {(s) = s, and constant functions for 1.)

Example 3.17 Consider the scalar IVP with state-dependent delay

i(t) = w(t=r(a(1), 120
1, —2<t< —1
z(t) = 1-2y1+¢t, —-1<t<-3
3+ 1, —2<1<0,

where 7(z) = min{|z|,2}. The initial function is not Lipschitz-continuous (hence (A6) is not
satisfied), therefore the uniqueness is not guaranteed by Theorem 3.14. In fact, the IVP has
two solutions: ¢+ 1 is solution for ¢ € [0, 1] and the analytic expression on [0, 0.5] for the other
solution is t + 1 — ¢2.

3.3 Continuous dependence on parameters

In this section we show that assuming uniqueness of the solution of IVP (3.10)-(3.11), the solu-
tion of IVP (3.10)-(3.11) (and therefore the solution of IVP (3.1)-(3.2)) depends continuously
on the parameters, i.e., on ~.

The proof of the continuous dependence based on the following result.

Lemma 3.18 The operator S(-,-) defined by (3.25)-(3.26) is continuous on its domain.
Proof Pick the sequence

(yk77k) S Gca (ﬁ) X (gFo(T,Qth,Qg) (707 6) n HO(T7 le Q?v 93))

such that
(v*,7") — (9.7) € Ge. (B) x (QFO(T,Ql,QQ,QS)(V(J; 5) N (T, 91792793)) as k — oo,

where v* = (¢, ¥, f¥) and ¥ = (@, 1, f). Using the continuity of the function f, and that of
the function defined by (3.12) for any fixed u € [0, a], it is easy to see that for u € [0, a]

7 () (), A (w4 08)) = F (1, 9(0) + (), A, B+ 2))|
< rF=7l ) N
+ ‘f(u, ¥ (u) + OF(u), A,y + %’i)) - f(u, g(u) + o(u), Ag(u, §o + @Nu))‘

— 0, as k — oo,
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hence the Lebesgue Dominated Convergence Theorem implies that

t . . t
/0 (0¥ () + (), Ay (s + 98)) du — / £ (s 3u) + ), Mg, 5 + 8)) du,
as k — oo, which yields that
S(y*, AN ) — S(7,7)(1) for all t € [—r, a]. (3.43)

On the other hand S(y*,+*) belongs to a compact subset of G¢_ (/3) according to the proof of
Theorem 3.8, therefore an arbitrary subsequence of it contains a convergent subsubsequence,
say S(yh, %), i.e.,

Syt vk — gyt e Oy, as j — oo. (3.44)

Combining (3.43) and (3.44) we get that y* = S(y,7). Therefore we have that an arbitrary

subsequence of S(y*,~v*) has a subsubsequence, which converges to 5(7,7), which implies that
the sequence is convergent and

— 0, as k — oo,

‘S(yk77k) - 5(3777}/) o

which proves the lemma. [

The following theorem shows that the solutions of IVP (3.10)-(3.11) depend continuously
on parameters.

Theorem 3.19 Suppose that given a parameter v° € o(T,Qy,Q9,Q3), IVP (3.10)-(3.11)
corresponding to v° has a unique solution y(t; v°) on [0,a], (where a is given by Theorem
3.8), and moreover a given sequence, v* € Ilo(T, 0y, Qy, Q3), satisfies that v — 7° as k — oo.
Then there exists ko > 0 such that if k > ko, then IVP (3.10)-(3.11) corresponding to v* has a
solution y(t; ¥), which exists on [0, a], and y(t; v¥) — y(t; 1Y) as k — oo uniformly on [0, .

Proof We use the notations of the proof of Theorem 3.8, i.e., let @ > 0,3 > 0 and 6 > 0
such that (3.23) and (3.24) hold. Choose kg > 0 such that

v* e (QFO(T,Ql,QQ,Qg)(V(J% 5) N (T, 91792793)) for k > kq.

Then by Theorem 3.8, for k > ko, we have that y(¢; v*) exists on [0, a], and it is the fixed
point of the operator 5(-,7%) defined by (3.25)-(3.26), i.e.

(57" = S(y(575),75). (3.45)

By the proof of Theorem 3.8 we know that y(-; v*) € K, where K C G¢_ () is the compact
set defined by (3.29). Take an arbitrary subsequence of {y(-; v*)}i>k,, then it contains a
convergent subsubsequence. For notational convenience denote this su_bsubsequence again by
{y(+; v}, i.e., we can assume that y(-; v¥) — y* € C,, as j — oo. Then the continuity of
S(-,-) (see Lemma 3.18) and relation (3.45) imply that

v = S(y",7Y),
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i.e., y* is a solution of IVP (3.10)-(3.11) corresponding to parameter v°. Then the assumed
uniqueness of the solution at 7° yields that y* = y(-; 7%). Then using that this relation is
obtained by selecting an arbitrary subsequence of {y(-; ’Vk)}kzko, we get that it is a convergent
sequence with limit y(-; v°). The proof of the theorem is complete. [

We comment that by using the transformation z(¢) = y(t) + @(¢), Theorem 3.19 provides
continuous dependence on parameters of the solutions of IVP (3.1)-(3.2).

3.4 The state-spaces W™ and W1'»

Lemma 3.13 yields that the solution corresponding to v € (7,4, 2, 23) always lies in
W1o° hence we can use W1 as the state-space of solutions. This is a natural choice, because
uniqueness of solutions of (3.1)-(3.2) is guaranteed only for W' initial functions.

First we introduce a new parameter space accordingly to this new state-space of solutions:

I4(T, Q1 Q2,Q3) = W x Oc(T, Q5) x BC([O,T] % O % Qg H”),

where the norm of ¥ = (¢, 1, f) € 't (T, 1,02, Qs) is defined by [|y||r, = [@lwre + (|l + 1]/
Note, that the only difference between I'y and I'y is the space, and hence the norm of the
(-component.

Define the set of feasible parameters in I'y by

L (T, Q4,99,Q03) = {(%Haf) € Ii(T,921,92,93) : weC, 9(0)€Q, €,

0
and dsp(s,0,0) p(s) € Qg}. (3.46)

If we compare (3.46) to (3.9), we can see that
Hl(T, 91792793) C Ho(T, 91792793) (347)

as sets, and hence Theorems 3.8 and 3.14 imply that for all v € 1I;(7, Q4,Q3,Q3) IVP (3.1)-
(3.2) has a unique solution. Since

I71Ire < [I7[lrys 7 € (T, 2, Qy, Q3), (3.48)
Theorem 3.19 yields, that the function

(H1(T7 1, Q9,Q3) C (T, 91792793)) — C, v a5y

is continuous for all ¢ € [0, a]. Here and later z(-;7); denotes the segment function at ¢ of the
solution corresponding to parameter 7.

The next theorem shows, that if we assume (A1)-(A6), then we have a stronger result,
namely, the function

(H1(T7 1, Qo, Q) C I'(T, 91792793)) — whee, v a5y )

is continuous for all ¢ € [0, @], and in fact, it is locally Lipschitz-continuous.
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Theorem 3.20 Assume that ¥ = (¢, i1, f) € (T, 91,92,93) satisfies (A1)—(A6). Then
there exist constants a > 0, 6 > 0 and Ls = Ls(«a,¥,6), such that IVP (3.1)-(3.2) has a
unique solution on [0, a] for all ¥ € Gr, (1.0,.0,,0.)(7; 6), and

2(57)e = 2 (5 7)elwree < Lally =3[y, 1 €[0,a],

Proof The existence of @ > 0 and § > 0 satisfying the first part of the statement of the
theorem follows from Theorems 3.8, 3.14 and relations (3.47), (3.48).

In this proof, to indicate dependence of A on yu, we shall use the notation A,(t,1) for the
function defined by (2.8) corresponding to p. By using that for v = (¢, u, f) € Gr, (7; 6) we
have

el < Illes +6, lll < 1900, + 8 and A< Iles +6, (3.49)

therefore the constant My = Mi(e, [|¥|Ir, + 6, [|7||r, + 6) defined in Lemma 3.13 satisfies
237 )dwree < My, v €Gr,(3; 8),  te0,a].
This inequality, together with (3.49) and (2.5), implies that
Atz < lelllz (7)o
< (I7llwre +6)My, v €Gr, (35 6), t€0,al.

Define M = max{1, ||¥||w1.~ +0} M1, and let Ly = Li(a, M) be the constant from (A4). Using
the integrated form of (3.3), the definition of || f||, and assumption (A4) we get for ¢ € [0, a]
that

|2(t;7) = a(t;7)]

< I@(O)—¢(0)I+/O [ (2 y)s A (25 9)u)) = Flus 2(us9), Al (2(57)0))| du

< 1600 = @00+ [ 170 A 5 7)000) = ) A (a5 )
[ s ) At (o 57)0) = o 053), A (57
(0) = #(0)] +allf = 7]

L [ o) = o)+ Auts ((37)0) = Aa(s (a5 7))l (3.50)

IN

By applying Lemma 3.12, the definition of M and My, we obtain for u € [0, a]
A (2 (57 )u) = Al (2(57))]
< A (e (s 7)u) = Ag(us (25 7))] 4 [AR(u; (205 7)a) = Ap(u; (2(57)u)]
<l = alllz(sy)ule + Ul + Lale (s 3)ulwee)|2(57)u = 2(57)ule
<l = My + (lall + L M)l (57 ) — 25 7)ule, (3.51)

where Ly = Ly(a, M) is the constant from (A5). Combining (3.50), (3.51) and the definition
of |+ 1,00, we get

la(t;y) — 2(67)]
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< 1@(0) = @O + allf = [l + allp = Al My

+ [ leu7) = o)+ ]+ LMl ) = (57 )ule du
< o= @lwre +allf = fll + allp - Al My

L [l LMl 237l do
< Iy =3l max{l.a, )

b [+ 20 (57— 25Tl da (3.52)
Using Lemma 2.14, inequality (3.52) yields
[2(57)e = 2(7)ele
< b=l ma{la b} + Lo [ LMl = (52l du
which, by the Gronwall-Bellman inequality, implies that
[2(57)e = 2(57)elo < My = 7l max{1, a, aby}exp (La(1+ ||zl + L2 My)a) .
Define the constant K1 = max{l, o, aM;}exp (L1(1 + ||| + L2 M7 )a), then
[2(7)e — (5 3)le < Kally =9lley, £ €[0,0]. (3.53)

To finish the proof we need to get a similar estimate for the difference of the derivatives of the
solutions. By the estimates used in (3.50), and by (3.51) and (3.53) we get for ¢ € [0, o]

@) =B 9)] < | F(Balt), At 2(59)) = F(62(67) Aalt, (7)) |
<= A+ L (Jot9) = 269+ At 2(57) = Aa(t, 2(57)))
< NF= Pl 2 (Kally = Al + o= Al
+ (7l + LM ) = 2(57)ilo)
< NF= Pl 2 (Kally = Al + o= Al
+ (7l + LMy Kally = AIr,)
< (max{l, MiLi} + Lok (1+ (|l + L) 1y = 7l - (3.54)

Therefore the inequality
[2(t;7) = 2(t:7)] < Kolly =3llr,, 1 €(0,0] (3.55)

is satisfied with the constant Ko = max{1l, M1L1} + L1 K1(1 + ||i]] + L2M7). On the other
hand, ¢, € W1, hence they are almost everywhere differentiable functions, and therefore
from (3.2) we get that for a.e. ¢ € [—r,0]

E(t;y) — &(t;7) = (1) — p(1),
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and therefore

esssup|z(t;y) — 2(t;7)] = esssup|@(t) — o(1)]
te[_Tvo] te[_Tvo]
< e —@lwre. (3.56)

Using that K3 > 1, we get from (3.53), (3.55), (3.56), the definition of |-|y1,, and Lemma 2.12,
that

|$(-; 7)15 - $(-; :y)t|le°° < max{l(lv ](2}“7 - 7HF17 te [07 Oé], (357)

therefore the constant L = max{ Ky, Ko} satisfies the statement of the theorem. [

This state-space has an important disadvantage, namely, the solution map, i.e.,
[0,a] — Whee, t () (3.58)

is not continuous, in general, for ¢ € [0, 7] (see Remark 3.22 below). The discontinuity of the
map (3.58) means, that if we define the solution semigroup by

Se=a(i0)k 20, (3.59)

then it is easy to see that {S(¢)};>0 is a semigroup (of nonlinear operators) on W', but it is
not strongly continuous on W1te°,

We get continuity of the map (3.58) on [0, a] only for sufficiently smooth initial functions.
In particular, we have the following result.

For fixed f and p define the set

M={peC : ¢(0-)= f(0,£(0),A0,¢))}. (3.60)
Lemma 3.21 Let v = (@, pu, f) satisfy (A1)-(A6), and z(-) be the corresponding solution of
IVP (3.1)-(3.2) on [—r,a]. Then
(i) the function [r,a] — WH,  { — x, is continuous.
(ii) if ¢ € M then the function [0,a] — WYt — a; is continuous.

Proof Lemma 3.13 yields that 2; € W% for ¢ € [0, a]. By the definition of the norm ||y1,c,
using that z(+) is continuous, we have
|2: — aglpie = sup |e(t+s)— x(t+ s)| +esssup|@(t + s) — 2(t + 3.
—r<s<0 —r<s<0

Using that the function [0,a] x [-7,0] — R™, (¢,s) — z(t + s) is continuous, and hence
uniformly continuous, it follows that sup_, o |2(t+3)—a(t+s)] — 0ast — t for t,t € [0, ].
By Lemma 3.6 the function ¢ + @(t) = f(t,z(t), A(t,2¢)) is continuous on [0, a], hence we can
repeat the previous argument for (¢ + s), and we get that sup_,c,q |&(t+ ) —2(t+s)] — 0,
ast — t, for t,t € [r, 0], therefore (i) is proved. For (ii) we note that by the definition of M, if
@ € M, then the function

ﬂﬂ:{f@ﬂmA@%D, t €0, al,

@(t)v LS [—7‘,0)
is defined, and continuous on [—7, a], hence we can prove the continuity of the map ¢ — z; for
t € [0, a] by repeating the previous argument. [

If ¢ ¢ M, then we have the following negative result.
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Remark 3.22 If ¢ has a jump at s° € (—=r,0), i.e., ¢ = |p(s°+) — @(s°—)| exists and ¢ > 0,
then the function [0,a] — WH° ¢ x, is not continuous on (0,r + s°).

Proof Fix ¢ such that 0 < ¢ < 7+ s°. Then —r < s% — 7 < 0, so we can select a sequence

sk € [—r,0] such that {s*} monotone decreasingly converges to s° — 7. Define the sequence

t" = 25° — 25F — 1. The it is easy to see that t* — t as k — oo, and we have
t—r<th+sf<s®<i4+s8 <o,
therefore

lim |z, — z¢|lwie
k—oo

= lim sup |z(t"+s)—2(f+s)|+ lim esssup|é(t® 4+ s) — &(1 + s)|
k—oo —r<s<0 k—oo —r<s<0
> lim |@(t*F + s5) — @1+ 7))
k—o0
= 57
i.e., the function is not continuous at ¢. [

To overcome the problem of discontinuity of the solution map, we consider W' as the
spate-space of z;. From the elementary estimate

[lwie < (20)Y7) 0l (3.61)

it follows that W' C WP, and therefore Lemma 3.13 immediately implies the first two
statements of the next lemma.

Lemma 3.23 Assume that the parameter v = (@, u, f) € o(T,Q4,Q2,Q3) satisfies (Al)-
(A6). Let x(t) be the solution of (3.1)-(3.2) on [0,a] corresponding to v, and let 1 < p < oc.
Then

(i) x;, € WP for all t € [0, a], moreover, x; € C* for t € [r,a],
(71) there exists a constant My = My(p, o, || f||, |[¢lwr. ) such that |x¢|y1e < My fort € [0,al,
(iii) the map [0,a] — WP ¢ z(;7); is continuous.

Proof To prove (iii), consider

0 0
o= ol = [ o) s+ P dst [ it s) - ali+ )] ds.

—r —p

Since by (i) both # € L? and & € LE, Lemma 2.11 implies (iii). ]
This lemma has the following consequence.

Corollary 3.24 The semigroup, defined by (3.59) is a Co-semigroup on WP,

Estimate (3.61) and Theorem 3.20 has the following consequence.

Theorem 3.25 Assume that 1 < p < oo, and 5 = (@, i, f) € W (T,Q,Q9,93) satisfies
(A1)~(A6). Then there exist constants a > 0, 6 > 0 and Ly = L4(p,a,7,8), such that IVP
(3.1)-(3.2) has unique solution on [0,a] for all ¥ € Gr (1., 0,.0.)(7; 6), and

2(57)e = 2(57)elwrr < Lally =3llry, €10, 0],
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3.5 Remarks

Delay systems have been studied by many authors. Without completeness, we refer to [7], [8],
[19], [24], [31], [38] for discussion of general theory, applications and historical remarks.

The standard reference of well-posedness results for state-dependent delay equations is [17],
where the results are presented for a system of the form

#i(t) = filt, 2 (), 2(galt, 2(1))), - 2(gnlt, 2(1)),  i=1,2,0000m,

where z(t) = (21(1),...,2,(1)), gi(t,z) < t for all £,z. Our results in Sections 3.1-3.3 are
straightforward generalizations of that of [17] for the class of equations described by (3.1),
using the methods of [31].

We comment that the class of equations described by (3.1) includes the “usual” state-
dependent delay equations,

(t) = ft,a(t),z(t — 7(t,2(1))) (3.62)

(t) = f(t,z(t), 2(t — 7(t,24))). (3.63)

The new feature of (3.1), in addition to the type of representation which has not been used
before for the state-dependent case, is that it includes distributed state-dependent delays (like
in Example 1.4), and also infinitely many state-dependent point delays of the form:

0

A #) = S At ey (-mlt) + [ Gt oy(s)ds,

—70

Clearly, the results of Chapter 3 (and the results of the later chapters as well) can be
generalized for equations of the form

(1) = f(t,x(t),Al(t,xt),...,Am(t,xt)), t e 0,7,

where each delayed term, A;, ¢ = 1,2,...,m, has the form (1.2). We restrict the presentation
for the case of one delayed term in the equation to keep the notations simple in the discussions.

In this paper we assume that r > 0 is finite, i.e., we consider the finite (or bounded)
delay case. Note, that in Section 3.1 the only point where we used the finiteness of r is the
implication that the continuity of ¢ on [—r,0] yields that w,(h) — 0 as h — 0. By assuming
uniform continuity and boundedness of the initial function on (—oc, 0], and using the supremum
norm for the norm of initial functions and solutions, we can extend the existence, uniqueness
and continuous dependence results for the infinite delay case. See also e.g. [29] for this choice
of state-space. The topic of delay equations with unbounded delays has a large literature, we
refer to [2], [14], [32] for related works. Note, that in later chapters the boundedness of the
delay will be essential.

For the function f : [0,7] X 1 x Q3 — R"™ in (3.1) we assumed (in (Al)) that it is
bounded (and continuous) on its domain. If the domain is compact, or only the time domain is
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unbounded, then this assumption is of course redundant (if we pick a finite 7" in the latter case,
which we can do, since we are interested in local existence). On unbounded (with respect to
z and/or y) domain it does not follow in general. The boundedness assumption in the proofs
is not essential, since the boundedness of f is always true on compact subsets of its domain,
and that is enough to use in the arguments we had (since on finite time intervals the solution
lies in a compact set). (See also Theorems 2.1-2.3 in [31].) We made this assumption mainly
to have a nice normed linear state-space for the parameter f, and so be easy to talk about
continuous dependence on f.

For the same reasons, we assumed (in (A2)) that the function A(¢,%,£) is bounded on
[0,7] x Q3 x Go(1). This assumption can also be omitted, with the following argument. We
used this boundedness assumption in many places, but basically we used only in two situations:
first, that for a given z € C,, it implies that |A(¢, 24, &) < ||p|||€|c, for all ¢ € [0,T]. For a fixed
¢ € C, the continuity of A and Lemma 2.10 yield for finite 7" that supgc,«r |A(f, 24, &)| < 0.
Since Ay 5,& = A(t, 24, &) is a linear operator from C' to R™, the Uniform Boundedness Theorem
implies that [|u]| = sup,eo 71l Atz || < oo, which yields the inequality. The second case is less
trivial: in the proof of Lemma 3.12 we need the estimate |A(¢, ¢, )| < [|u]||€|c for all ¢ € [0, a]
and ¥ € Go(M) N Q3. Since the latter set is not compact in C, the continuity does not imply
the boundedness of |A(¢,,£)| for fixed £, and in fact, the statement of Lemma 3.12 is not
necessarily true (without the boundedness assumption). But we always apply Lemma 3.12
for estimating |A(t,2,) — A(t,Z)|, in which case, by the first argument, we have the required
estimate.

We mention one class of state-dependent delay equations appearing frequently (especially
in biological) applications, the threshold-type of delay equations, where our representation of
the delayed term, (1.2), might not have natural application. Consider the delay equation

(1) = fla(t), a(t = 7(1,24)))

where the delay is defined through a relation

¢
| sltsa(9)ds = m
t—1
or 7 =1t. (Seee.g. [23].) We could rewrite the delayed term z(t—7(¢,2;)) as a Stieltjes-integral
of the form (1.2), since it contains only a point delay, but then the threshold rule would be
hidden in the definition of the function p, and more importantly, our conditions (A2) and (A5)
are not satisfied naturally in this case.

We close this chapter by recalling that Cooke and Huang in [13] studied the linearization
of the autonomous state-dependent delay system of the form

0
i(t) = f (xt/ dy(s)g (w(t + s —T(xt)))), (3.64)
—ro
where 7 1 C' — [0,71], 7o > 0, and r is such that r > ro 4+ r1. Note, that (3.64) includes also
the autonomous versions of (3.62) and (3.63), but when #(s) has finitely many jumps and an
absolutely continuous part, then (3.64) gives the following type of delayed term:

0

> Aig (ot = ri=rte) + [ Bt s - wi) ds,

—7Q
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which gives a different type of delay dependences than that of given by (1.2) (in the autonomous
case). In Example 5.8 we show an equation which is not included in (3.64) but we can rewrite
it in the form (3.1), and oppositely, there are equations can be written in the form (3.64) but
not in (3.1).



Chapter 4
DIFFERENTIABILITY WRT PARAMETERS

In this chapter we study differentiability of solutions of IVP (3.1)-(3.2) with respect to (wrt)
parameters of the equation. We shall consider three cases. First, we discuss differentiability
wrt the initial function (Section 4.1), then we consider special cases, when the delay term
in the equation, i.e., u (and hence A and \), and when the right-hand side of the equation,
i.e., the function f, depend explicitly on a parameter ¢ and d, respectively, and investigate
differentiability of solutions wrt these parameters, respectively. (See Sections 4.2 and 4.3.) In
Chapter 3 we considered p and f as parameters, but here we assume that only a “part” of
i and f varies, which can be represented by vector parameters. See also the introduction to
Chapter 3 where we discussed how the initial time can be considered as a parameter of f.
(Note, that these parameters could be elements of an infinite dimensional space, the methods
we use can be applied for that case as well, like in Section 4.1, where the parameter (the initial
function) is infinite dimensional.) These assumptions simplify the discussion, and also include
the practically important applications.

In order to make our presentation as clear as possible, we discuss these three cases sepa-
rately, but we provide full details only in Section 4.1. The remaining two cases (Sections 4.2
and 4.3) can be treated similarly (with of course some technical modifications), and we shall
omit most of the proofs, since they are essentially the same as those in Section 4.1.

Differentiability results wrt parameters, beside the obvious theoretical importance, have
a natural application in the problem of identification of unknown parameters of the equation
(such as the initial function, some coefficients in the equation, or for a constant delay equation,
the delay itself). In this direction it is important to know if the solution is differentiable wrt the
parameters in some sense, since many identification methods require the use of optimization
techniques, in which the knowledge of the derivative of the solution wrt the parameter is
essential.

The first problem one faces trying to obtain differentiability results is the differentiability
of the delay term A(?,7) of the equation. Clearly, to be able to prove differentiability of
the solution, we need to assume some kind of smoothness of A(¢,1) wrt . Since A(t,¢) =
A(t, 1, 1), then we need to assume differentiability of A(¢,1,&) wrt ¢ and £ in some sense.
The latter is relatively easy, since A(t,1, &) is linear in &, therefore, it is differentiable (in every
space) with derivative %(t, P, E)h = A(t,1, h). It is easy to see that in order to have continuous

differentiability of A wrt £, we need to consider, e.g., the space W1, since the inequality

|A(t7¢7h) - A(tvlzv h)| < L2|h|W17‘X’|¢ - QE|07

(provided by (A5)), guarantees the continuous differentiability of A(¢,, &) wrt & for £ € W2,
This suggests the use of W for the state-space of solutions, and as we have seen in Sec-
tion 3.4, it is a natural choice, since the solution is unique for W1 initial functions.

37
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The difficulty with W is that for ¢,& € W the function A(¢,4, &) is naturally a
composition of £ and 1 (see e.g. Example 1.3), and therefore we need to guarantee the dif-
ferentiability, or preferably, continuous differentiability of the composition of W1*°-functions,
which is in general impossible. But in the case when the two functions are C'! functions, the
differentiability follows immediately (in our Examples) by the Chain Rule. We have seen in
Section 3.4 that the solution is C'! only for special initial functions, if ¢ € C'!, and satisfies a
certain boundary condition at 0 (see Lemma 3.21.) This is a strong assumption, but assuming
it, we are able to prove the differentiability of solutions wrt parameters in the state-space W1,
which is a strong property. We shall discuss this special case in Sections 4.1.1, 4.2.1 and 4.3.1.
(Note that in Sections 4.1.1 and 4.3.1 we can prove our results in the state-independent case
without the restrictive condition on the initial function.) The method we use is a “classical”
one, used to prove differentiability of the solution wrt parameters in ODEs (see e.g. [39]).

Since in W1 the assumption for differentiability is too strong, we shall explore different
spaces for the more general case, i.e., when the solution, (and the initial function) is a W1
function only.

In [33], Hale and Ladeira investigated differentiability of solutions of the constant delay
equation
#(t) = fla(t),2(t = 7))
wrt to the delay, 7. They showed using an extension of the Uniform Contraction Principle to
quasi-Banach spaces (see also Theorem 2.23 in Chapter 2), and selecting Wh! as the state-space

of solutions, that the map
[0,7] = WE 7= a(7)

is differentiable. This result suggests that W1 could possible be used as the state-space for
solutions. Again, we recall that in Section 3.4 we have seen that W!? is an “ideal” state-
space candidate for state-dependent equations, in the sense that the maps ¢t — a(-;7v), and
v +— &(-;7)¢ are continuous and Lipschitz-continuous on it, respectively. The method used
in [33] is the following: transform the IVP into an equivalent integral equation, introduce
the new variable y(¢) = x(t) — ¢(¢), and then reformulate the problem as finding the fixed
point of an operator, and obtain differentiability of the fixed point wrt parameters. (Note,
that we followed this method in Section 3.1 to prove existence results.) The transformed
integral equation is (3.10)-(3.11), and the operator S(y,v)is defined by (3.25) and (3.26). The
Uniform Contraction Principle says that if S(y,7) is a contraction in y uniformly in v, and it
is continuously differentiable wrt y and 7, then its unique fixed point, as a function of v, is
differentiable wrt v. If we select WP for the state-space for y, then we need the continuous
differentiability of S(y,v) wrt y in W2P. This requires the differentiability of A(¢,) in “an
LP-type of norm”.

In [10], Brokate and Colonius studied linearization of the equation
i(t) = f(ta(t = r(t,2(1),  1€[0,al.
In particular, they investigated differentiability of the composition operator

A (X cwhe) — LP([0,aiR"),  (Az)(1) = o(t = 7(1,2(1)).
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They obtained differentiability of this map by selecting an appropriate domain X. (See more
details in Section 4.1.4.)

To obtain continuous differentiability of the operator S(y,v)in W1 for this point delay
equation we would need the continuous differentiability of this composition map, but using
the | - |Wé,p—norm on the domain of the operator. It turns out, that the right choice for our
purposes is “in between the | - [y1.0-norm and | - [1.,-norm”. We shall introduce a “product
norm” in Section 4.1.2. Let x € W1 (since all solutions are W!> functions, this should be
the space of the solutions), and decompose z as z = y + @, (where ¢(t) = z(¢) for ¢t € [-r,0]),

and define the norm of x by

o 1/p
ol = ([ lauPdn) "+ felse.

and consider the normed linear space X2, = (W2>,|-|xe ). Then this is a norm, which is weaker
than the |- |;;1,.0-norm, but stronger than the |- |1, norm (see Lemma 4.18). This norm is
still “strong enough” that the method used in [10] go through and provide differentiability of
the composition map

B (KcXe) — LP([0,aliRY), (Ba)(t) = a(t - 7(t,2(1))).

On the other hand, |- [xr is “weak enough” that using the differentiability of the operator B
above, we can obtain obtain differentiability of the operator S(y,7v) : XE xI' — XE, and be able
to use a variation of the Uniform Contraction Principle (Theorem 4.14) to get differentiability
of the fixed point (the solution of the IVP) wrt the parameter v in the |- [xr-norm. Since
this product norm is stronger than the | - |W;,p—norm, the result implies the differentiability of
solutions in the latter norm as well. We shall follow this method in Section 4.1.3 with detailed
discussion, and in Sections 4.2.2 and 4.3.2 without detailed proofs. We provide the necessary
technical preliminaries in Section 4.1.2, and modifying the method of [10] for our case, show

differentiability of the composition operator associated with the delay terms of Examples 1.3
and 1.4 in Section 4.1.4.

We close this introduction by noting that differentiability of solutions of delay equations of
the form

(1) = f(t, )
wrt parameters has been studied e.g., in [31], where it was shown differentiability of solution wrt
initial function and f, using C' as the state-space of the solution, and the Uniform Contraction

Principle. Differentiability of solutions of state-dependent delay equations wrt parameters (to
the best knowledge of this author) has not been studied in the literature yet.

4.1 Differentiability of solutions wrt initial function

In this section we study differentiability of solutions of IVP

itie) = f(talte), Alta(ie))), t€0,7), (4.1)
$(t;g0) = @(t)v te[-r0] (4'2)



40

wrt initial function. We assume in this section, that f and p are fixed, satisfying assumptions
(A1)-(A5), and we consider the solution depending only on ¢. To emphasize the dependence
of the solution on the initial function, we use the notations x(¢; ) and #(-; ¢) for the value of
the solution and for the solution segment function at ¢, respectively, corresponding to initial
function ¢. Note that by Theorems 3.8 and 3.19, assumptions (A1l)-(A6) guarantee existence,
uniqueness of solutions on an interval [0, a], and continuous dependence of solutions on ¢ for
¢ € &, where (see also (3.46))

0

o= {Lp ewhencC @ ¢0)eQ, and dsp(s,0,0)p(s) € Qg}. (4.3)

-7

4.1.1 Special case, differentiability in W'

In this subsection we shall assume that either the equation is state-independent, i.e., u(s,t, ),
or equivalently, A(¢,1, &) is independent of ; or in the state-dependent case the initial function
¢ € M. In both cases we can assume that A(¢, ) is continuously differentiable wrt + (in the
| - |1, norm) along the solution of the equation, (i.e., for each ¥ = z(-;¢), t € [0,a]).
This is obvious in the state-independent case, i.e., when A(%,1,£) does not depend on ¥ (see
Corollary 4.5). In the second case ¢ € M guarantees that the corresponding solution is
continuously differentiable for ¢ € [—7,a] (see Lemma 3.21), and therefore the corresponding
solution segment functions are C'* functions, hence we need the differentiability of A(t, ) wrt
¢ for ¢» € C''. We shall show in Examples 4.1-4.3 that this is a reasonable assumption. In both
cases we can argue the differentiability of solutions in the |- |j1,00 norm wrt initial functions.

In fact, we shall need the following assumptions:

(A7) f(t,z,y) has continuous partial derivatives wrt z and y on t € [0,7], z € £; and
/RS 927

(A8a) (i) A(t,v,&)is locally Lipschitz-continuous in ¢ as well, i.e., for every a > 0 and M > 0
there exists a constant Ly = Ly(a, M) such that for all £ € W ¢, € [0,a] and
¢7¢ € gC(M) mQS

AL 10, €) = AT 0, 6] < Lolélywse ([t =1+ [0 = $lc).
(ii) For all t € [0,T], ¥ € WE> N Q3 and ¢ € C! the function A(Z,v,£) is continuously
differentiable wrt 1, i.e., for each £ € C'! the partial derivative %(-, S €) ([0, T] x
Q3 C[0,7] X Wl’oo) — L(We R™) is continuous.
First we give conditions in our particular examples which yield (A8a). The functions

A(t, 1, €) used in Examples 1.1 and 1.2 are independent of 1, therefore (A8a) holds automati-
cally in these Examples.

Example 4.1 Let
A(tv ¢7 5) = 5(_T(t7 ¢))7
as in Examples 1.3, 3.3 and 3.10. If we assume that
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(i) 7(-) - ([OvT] x Q3 C [0,T] x C) — R is continuous,

(ii) 7(t,%)is locally Lipschitz-continuous in ¢ and v, i.e., for every @ > 0, M > 0 there exists
a constant L («, M) such that

(1) = 7(5, )] < Lo(e, M) (|t = 2] + |0 = de), for &, € Go(M) N Qs, 1,1 € [0,0],

(iii) 7(¢,-) = (Wl’oo N C Wl’oo) — R is differentiable for all ¢ € [0,77,
(iv) g—;(-, D ([O,T] X (Wheen Q) C [0,T] x Wl’oo) — L(We R) is continuous,

then it follows from the chain rule that (A8a) (ii) holds, i.e., the function A(¢,-,§) : (Wl’oo N
Q3 C Wl’oo) — R™ is continuously differentiable for all ¢ € [0,7], £ € C!, and

OA : or
%(tv ¢7 f)h = _5(_T(t7 Qb))%

(A8b) (i) follows from the Mean Value Theorem (Theorem 2.3) and (ii).

(t,0)h,  he Wb

Example 4.2 Consider a special case of Example 4.1, when 7(¢,%) is defined through a
function, 7(¢, z), as follows: 7(¢,%) = 7(t,1(0)), i.e., we consider delayed terms of the form

/\(tv ¢7 5) = 5(_%(t7 ¢(0)))
Then, clearly, the conditions
(i) 7(-,+) : [0,7] x * — R" is continuous, where * C R" is an open set,

(ii) 7(¢, ) is locally Lipschitz-continuous in ¢ and z, i.e., for every a > 0, M > 0 there exists
a constant Lz(a, M) such that

(1 2) = 71, 3)] < Le(a, M)([t =] + |2 = 5[}, for 2,5 € Ggn(M) N D, 1,1 € [0, 0],

(iii) 7(t,2) is continuously differentiable wrt z on ¢ € [0,T], z € Q4

imply conditions (i)-(iv) of Example 4.1, and hence (A2), (A5) and (A8a) as well. (Here we
used that the function ¢ : Wh* — R™ g(¢) = ¢(0) is continuously differentiable with
derivative ¢'(¢)h = h(0).)

Example 4.3 Let

Mt €)= 3 A0 (=rilt i)+ [ s, t,0)e(s) ds,
k=1 —70

as in Examples 1.4, 3.4 and 3.11. Assume that for k = 1,2,...,m

(i) 7(--) - ([OvT] x Q3 C [0,T] x C) — R is continuous,



42

(ii) mk(t,v) is locally Lipschitz-continuous in ¢ and #, i.e., for every a > 0, M > 0 there
exists a constant L., (a, M) such that

|Tk(t7¢) - Tk( )| < LTk(a M)(|t - ﬂ + |¢ - QE|C)7 for valz € EC(M)v tvfe [0,&],

(iil) 7x(t,-) : (Wl’oo NQs C Wl’oo) — R is differentiable for all ¢ € [0, 7],
(iv) %’j(-, ) [0,T] x Whee — £(W1* R) is continuous,
(v) the function G satisfies a Lipschitz-condition of the form

1G5, t,18) = Gls, 1, )| < g(s) ([t = 1] + [ = ¥e),
for s € [~79,0],t, € [0,T], and ¥, v € Q3, where g € L'([~79,0]; R),

(vi) G(s,t,7) : ([—TO,O] x [0,T] x Q3 C [—70,0] x [0,T] x Wl’oo) — R™*™ has continuous
partial derivative wrt ),

(vii) Ag(?) is continuous on [0, 7.
Then it is easy to see that for £ € C'! the function A(¢,v, &) is differentiable wrt ¢, and

8/\
¢

therefore (A8a) (ii) is satisfied. (A8a) (i) easily follows from (ii) and (v).

oty 0

-3 Animen e [ (G on) o

—70

We show, that (A8a) implies that A(,) is differentiable wrt ¢ for ¢» € C'*. The function
A(t,7) is defined as A(t,1) = A(t, 4, 1), therefore we have to investigate differentiability of
A(t, 1, &) wrt o and €. The latter is easy, since A(¢,,£) is linear in €. In particular, we have
the following result:

Lemma 4.4 Lett € [0,T] and v € W1 N Q3 be fived. Assume (A2) and (A8a) (i). Then
(i) the function A(t,1,-): W1 — R" is differentiable, and for all £ € W1o°

5( 0 Oh = At h),  he W,

and moreover,
(ii) for all £, h € W™

At 9,64 h) = AL, £) = ( &, E)h,

23

and

(iii) the derivative, 85( 0, €) is continuous in all its variables (i.e., continuous as a function

20 ([0,77 % Q5 x WHoe € [0,T] x W x W1oo) — L(W1o, R™)).
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Proof The identity

0

NG et 0 = A6 = [ dplo, ) (60 + b)) = [ dupls1,0)E05)

—r —p

[ dunts, 1, 090(s)

-7

proves the first two statements of the lemma. To prove (iii), we first comment, that by part
(i) the function %(t, ¥, £)is independent of £&. Let £,h € WL ¢, 1 € [0,a], ¥, ¢ € Gyyieo (M)
for some a > 0 and M > 0, and let Ly = Ly(a, M) be the constant from (A8a) (i). Then part
(i) of this lemma and (A8a) (i) imply that

oA oA

Get b Oh= S BON = NG 0= A )

Lolhlyee (1t = 2 + [ = ¥le),

IN

and hence it follows that

(¢€)

< La(Jt = 1+ [0 = Pl )

(W17007R77«)

|00~ 5

which proves (iii). ]

Corollary 4.5 If \(t,v,&) is independent of 1, then %( , W) exists and continuous on t €
[0,7] and & € W=, and Z(t, ) = 21,6, %) = A1, b, ).

Remark 4.6 Note, that if in Fxample 4.3 there are no point delays, i.e., Ax(t) = 0 for all k =
1,...,m, then assumption (vi) on G implies that the corresponding \(t,v, &) is continuously

differentiable wrt ¢ for t € [0,T], ¥ € W N Q3 and £ € WH,

Lemma 4.4 and (A8a) together with Lemmas 2.15 and 2.17 imply the differentiability of
At ) wrt o € CL.

Lemma 4.7 Assume (A2), (A5) and (A8a). Then
(i) the function A(1,) is differentiable wrt ¢ for any t € [0,T], ¥ € C1 N Q3,

(ii) for h € Whee
A
0N =

oA
5 (),

(¢¢) o0

23

and

(i) the function %( ) ([O,T] x Q3 C [0,7] X Wl’oo) — L(We R™) is continuous.
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Assume that either the equation is state-independent and ¢ € @, or in the state-dependent
case, ¢ € ® N M. Then in both cases %(t,x(-;@)t) is well-defined (by Corollary 4.5 and

Lemmas 3.21 and 4.7), moreover, it is a continuous function of ¢. For h € W* we consider
the linear time-dependent IVP

Ath) = 8_f(tvx(t§99)7A(t7$('§99)t))2(t§h)

Oz
OA

+ g—;(t,w(t;@),A(t,$(‘;@)t))%(tvx(';@)t)z(';h)“ te[0,T], (44)

z(t;h) = h(t), te-r0], (4.5)

then (assuming (A7) and (A8a)) the solution, z(-; ), of IVP (4.4)-(4.5) exists and unique on
[0, 7], and it is linear in h.

The next theorem shows that assumptions (Al)-(A8a) imply that the function (;-)
Whee — R" is differentiable for all ¢ € [0, T].

Theorem 4.8 Let (¢, p, f) € I4(T,Q4,Q9,Q3) satisfy (Al)-(A8a). Assume moreover that
either

1) equation (4.1) is state-independent, i.e., u(s,t,%), or equivalently, A(t,,€) does not
I
depend on 1,

or

(2) in the state-dependent case ¢ € M.

Then
(1) the solution x(t;¢) of IVP (4.1)-(4.2) is differentiable wrt ¢ for all t € [0,a] and ¢ €
Wl,oo’
t; h) — x(t;
(ii) wtipth)—altiv) converges uniformly to g—z(t;tp) onte€|0,ql,

|h|W1,oo

(1ii) t(he ()ierz'vatz've is g—z(t; @)h = z(t; h), where z(t; h) is the solution of the linear IVP (4.4)-
4.5).

Proof Fix ¢, p and f satisfying the conditions of the theorem, let & > 0 and é > 0 be the
corresponding constants from Theorem 3.20, let A € W10 |h]y1,00 < 6, and let 2(¢; k) be the
corresponding solution of IVP (4.4)-(4.5). Consider

|2(t; 0+ h) = 2(t;¢) = 2(8 h)]
= ‘h(o) +/0 Fus 2o+ h), Aw a4 b)) = £, o(ui @), Au,a(9).)) du

- z(t;h)‘

IN

F (s w(us o+ h), Au, 250+ ) = £ 2(us ), Alu, 2 ¢))

_ g_i (u, z(u; ), Au,z(; @)u)) z(u; h)

- I (watus) A at00) 5

[

du. (4.6)
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By assumption (A7) and Lemma 2.17, the function (z,y) — f(u,z,y) is continuously differ-

entiable for each fixed u € [0, 7], therefore the function,

Mz, ) = flu.9) = fw2.9) - o) -0 - e p- o).

which is defined for u € [0,T], 2,z € Q1 and y,y € Qq, satisfies for all u € [0, 7] that

wh(u, 2, g5 2, y)|
|z =2+ 1y~ 9l
By assumptions (A2), (A5) and (A8a) the function

— 0, asx —z, and y— 9.

W (u, ¥39) = Au, ) = Au, ¥) — (u OICERD

1#

(4.7)

(4.8)

(4.9)

is defined for u € [0, ], and for 1,1 € W N Q3 or for ¥, v € C' N Q3 in case (1) and (2) of

the theorem, respectively; and for u € [0, a] it satisfies

|2 (u, s 0))
| — Pl

Using these notations, and applying standard estimates we get from (4.6), that
[2(t; 0+ h) — 2(t;0) — 2(L; )]

t
g/a
0

8_52(%, w(us; ), Alu, 2(-; @)u)) [x(u; o+ h) — a(u; @) — 2(u; h)]
+ g_;(u,$(u§ 99)7A(U,$(-§99)u)) [A(u,x(.; o+ h)u)

— 0, as |1 — |10 — 0.

- Al 9)a) = o a5 )20
+ ! (2w 0), Aw, a5 9)a)s 2(us o4 h), A, a0+ b)) |du
15 (vwtus 01, At 00) [ 4+ 1) = (s ) = =(as )

+ g—; (u, z(u; ), AMu,z(-50)u)

S SN
=

w? (u z(50)us (50 + h)u)

! (w o (w0), A, 2(5 @) 2 (us o+ h), A, 2(5 0+ )

NG

+ g—; (u, x(u; @), A, 2(+59)u)

du

7o (we(ui), Alu 2 9)) | [elus o+ h) = a(us ) - i)
1+ z_;(uv$(u?99)7/&(u7$(';@)“)) g_iz(uv$('§99)u)

: (x(-; @+ h)u = 2(50)u = 2(55h),y
+ %(U,x(u;@),A(u,w(-;@)u)) (w2 @) a0+ b))

+‘wl(WC(U;99)7A(uaw(-;99)u);w(uw+h)aA( 2(39+ h)y )‘dw

LW R

c

(4.10)

(w25 0)a) [255 0+ B = 2(5 )0 = 2 )]
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Introduce the scalar functions

W(ush) = |h|;m max [o(vi g+ h) = a(os ) = (03 )]
) = |5 (netu o) a0
+ Hg—;(u,w(w@)A(u,w(-;@)u))H Hg—i(uaw(-;w)u) .
Gush) = Hg—;(uaw(w@)A(u,w(-;@)u))H |h|;1,oo ‘wz(u,w(-;@)u;w(-;wr h))
+ ot (s ), At @)oo ). A a5+ )|

Then Lemma 2.14 implies that ¥ satisfies the inequality

V(s h) < /OtF(u)\Il(u;h)—l—G(u;h)du

IN

/Oa G(u;h)du+ /Ot F(u)¥(u; k) du,

which, by the Gronwall-Bellman inequality, yields that

U(t;h) < /Oa G(u;h) duexp (/Oa F(u) du) ; t €[0,a]. (4.11)
We shall show that N
: G(u;h)ds — 0, as |h|w10 — 0, (4.12)
which in turn, combined with (4.11) yields that
U(t;h) — 0, as |hly1,00 — 0, uniformly in ¢ € [0, ], (4.13)

i.e., statements (i)—(iii) of the theorem are satisfied. To prove (4.12), it is enough to show (by
the Lebesgue Dominant Convergence Theorem) that (i) G(u;h) — 0 as k|1, — 0 for all
u € [0,a], and (ii) G(u; h) is bounded on [0, a] for small A.

(i) By Lemma 3.20 it follows that there exists a constant My such that
[2(io+ D)l < My, 1€[0,0], [hlwre <. (4.14)
Then (4.14) and (2.5) imply that
(At a(i)d)l < lullMs T e[0,a].

By assumption (A7) the partial derivatives % and % are continuous on the set A = [0, a] x

Grr(My) x Grr(||pt|| My), therefore the constant
ool

O ()

, Sup

My = max{ sup
(w,z,y)EA

(w,z,y)EA
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is well-defined, and satisfies
Hg—;(u,x(u, @),A(u,x(-;cp)u)) H < Ms, u € [0, a]. (4.15)

Therefore, in view of the definition of G'(u;h), it is enough to show that for u € [0, ]

‘wz (u,x( ez e+ h)u) — 0, as |hlyi,00 — 0, (4.16)
|h|W1,oo
and
1
. ! (w3 00, Al 2 9)u)s @i o+ h), Alu, 250+ b)) )| — 0, as Al — 0.
(4.17)
By Theorem 3.20 there exists a constant Ls such that
[2(50 4 h)e —a(5@)idwree < Lalhlyree, T €[0,0], [hlpre <6 (4.18)

To prove (4.16), consider the following estimate (where we use simple manipulations and
(4.18)). Let u € [0, a], |h|lp1, < &, then

w2 (w2 (s @hus a0+ h)a)
| Alpree
ol + s = alighpne (05 000+ )
[lyr.cc aCiet ) — (5 )ulwr e
L w2 (w2 (s @hus a0+ h)a) |
[2(-5 04 h)u — 2(-5@)uli e

IN

(4.19)

Note, that of course, the previous calculation is valid when the denominators, |h|y1,c and
|2(+; 0+ h)y — 2(+; ©)ulwi.0 , are not equal to zero, but in the opposite case the definition of w?

immediately implies that w? (u,x(-;c,o)u;x(-;cp—l— h)u) = 0. From (4.19), using that by (4.18)
for all u € [0, a]
|2(5 04 h)y — 2(5@)ulwre — 0, as |hlwie — 0, (4.20)

relation (4.10) implies (4.16). Next we prove (4.17). Let Ly = La(a, My) be the constant from
(A5). Then estimates (4.14), (4.18) and Lemma 3.12 yield that for u € [0, a] and |h|y1,0 < 6

1
|h|W1,oo

! (w25 ), Aws 2 (5 @) a(us 0 + ), Aw, 2504 h)w))|

lz(us o+ h) —a(us )|+ [Alu, x50+ h)u) — Alu, 2(+5 0)u)|
|31, o0
et (2 0, A2 (5 @) (s o+ 1), Alw a0 4 h))|
lz(us o+ h) —a(us @) + [Alu, 250+ h)u) — Alu, 2(+50)u)|
(hall + Lala(s @ulwro) o0+ Bla) = 200
Ls+
|31, o0
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[t (s (w3 00, Al (s 9)u)s @i o+ h), A, 2504 h)))|

e(uet+ h) = 2(u @)+ [A(w, 2 (50 + ) — AMu, 2 (5 9)u)]
< Ls(L+ lpll + Lo My)

[t (s (w3 00, Al (s 9)u)s @i o+ h), A, 2504 h)))|

e(uiet h) = a(us )+ [A(u, 2 (50 + ) = Alu,2(59)u)]

(4.21)

(As above, we could and did assume that either |z(u;p 4+ h) — 2(u; )| # 0 or |[A(u,z(-;¢ +
h)y) — Alu, z(+59),)] # 0.) From this, using (4.18), the continuity of A, and relations (4.8) we
get (4.17), and hence that G(u;h) — 0 as |h|y1,00 — 0.

(ii) In view of inequalities (4.15), (4.21), and (4.19), we get the boundedness of G/(u,h) on
u € [0, a] for small h, if we show that the functions

1 5 e 2 Ty
wiwz.gie. gl g Wi i)
|z — [+ [y — ¥ |4 — Pl

ate bounded for u € [0,a], 2.7 € Gar(My), 4,5 € Trr([lull M), and ¥, € Tynoo (M),
respectively. By the Mean Value Theorem, the definition of M, and w! yield the inequality

e - o)+ [fenm-p

My (|2 = + |y = 3l) + Male — 3| + Maly - gl

2Ms(|a — 7| + |y — 91), (4.22)

wh(w. 2,552, 9)| < |f(w,2,y) — flu,2,5)] +

IN

which proves that the first expression is bounded. Let Ly = Lo(a, My) be the constant from
(A5), then (A5), Lemma 3.12, the continuity of %(-,1&) guaranteed by Lemma 4.4 (iii) (or
Corollary 4.5 in case (1) of the theorem), and inequality (4.14) imply

Pl di)] < A6 - A D)+ [ D - D)
< (l+ LMol = dlo + | 50 ) 46—
L(Wheo R
< + Lo M,y + —(u, — Y|y,
< (HHH 2My+ max, 8¢(u ¥ E(leooﬂn)) ¥ — Ylw
which finishes the proof of the theorem. [

We recall that @ is defined by (4.3). The theorem has the following corollary.

Corollary 4.9 Assuming the conditions of Theorem 4.8, the function (<I> C Wl’oo) — (),
o — x(-, )¢ is differentiable for all t € [0, a].

Using the relation |¢|rr < rl/p|¢|(;, this result implies immediately the next corollary.
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Corollary 4.10 Assuming the conditions of Theorem 4.8, the function (<I> C Wl’oo) — L7,
@ — x(-, @) is differentiable for allt € [0,a], 1 < p < 0.

In the next theorem we study the differentiability of the map (<I> C Wl’oo) — Wbt o

z(-, ). In the state-independent case we can show that this map is differentiable, but in
the state-dependent case we can show only a weaker result, namely, for all ¢ € [0,a] the

differentiability of the map ((<I> nM) C Wl’oo) — Whe o a(-; ), when we consider the
relative topology on its domain. (IL.e., the derivative %x(-; @) € L(D N M, Whe)).

Theorem 4.11 Assume that the conditions of Theorem 4.8 are satisfied. Then the function
(<I> C Wl’“) — Whe o (o)

or the function
((@na)cwhe) —whee g alie)
is differentiable for all t € [0,a], in case (1) (state-independent equation) and (2) (state-

dependent equation) of the theorem, respectively.

Proof Let o € ® or ¢ € ® N M in case (1) or (2) of the theorem, respectively. In view of
Corollary 4.9, to obtain differentiability in W'°°, we need to show that

B804 h) = i(s;0) = 2(s; h)‘

ess sup

s€[t—r,1] — 0, as |h|W1,oo — 0, (4.23)

| hlwre

where t € [0,a], and h € W™ if equation (4.1) is state-independent, and & € C! such that
o+ h € ®nN M if the equation is state-dependent.
First note, that by initial conditions (4.2) and (4.5) we have that

r(typ+h)—a(tip)—2(t;0)=0,  forte[-r,0],

and each function, x(¢;¢ + h), z(t;¢) and z(¢t;h) is a.e. differentiable for ¢ € [—r,0], hence
(t;o+h)—a(t;p)—2(t; ) = 0 for a.e. t € [—r,0]. Fort € [0, a] each function is differentiable,
and by (4.1) and (4.4) it follows that

@t + ) = &(t; ) = 215 1)
= ‘f(t, e(tip+h) At a(so+ h))) = 1 (1 2(t), Mt el 0)0)

_ g_i(t,x(t;@,A(t,w(-;sa)t))z(t;h)
of OA

(t,2(50)0)2(+1 B )yl

- 8_y(tv$(t§99)7A(t7$('§99)t))%

Using the notations of the proof of Theorem 4.8, and repeating the estimates we used in the
proof we get that

[6(t; 0+ h) = a(t; @) = 2(1:h)|
|h|W1,oo

< F(OU( ) + Gt h),  telo,al. (4.24)
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In view of (4.13), it is left to prove that: (i) the function F(¢) is bounded on [0, o], and (ii)
G(t;h) — 0, as |h|yr,0 — 0, uniformly on ¢ € [0, al.

To show (i), from the definition of F(¢) and M, and by Lemma 4.4 (ii) we can obtain the
following estimates:

OA
F(t) < My+ My | = (t2(59))
(0 LWL R7)
aA
< M2 + M2 _(tv $('; 99)157 $('; 99)15)
o0& LWL R™)

dA
+ My | = (s (5 0)e (5 9):) : (4.25)
o LWL RY)
By Lemma 4.4 and (2.5) we have that
dA
—(t hl = |\t ¥,k
S ]
< lullielwee
@ . . .
therefore H 5z HL(WLOO,IR") is bounded by ||xt]|, and hence (4.25) implies
dA
F(t) < My + Mo|lul] + Mo || 2= (t, (-5 )i (-5 ¢):) : (4.26)
o LWL R?)

In case (1) of the theorem (i.e., when equation (4.1) is state-independent) we have that %

is identically zero. In case (2) using that ¢ — z(-; ), is continuous in the |- |y1,0 norm and
z(+;¢); € C! by Lemma 3.21, and %(t,¢,f) is continuous for 1, & € C'!, we get that the last
term in the right hand side of inequality (4.26) is bounded for ¢ € [0, @], therefore we have
shown (i).

To get (ii), by the definition of G(¢; h) and estimate (4.15), it is enough to show that

! (12t 00 Alt (5 9)e)s 2t o+ B), At 2504 b))
[2(t; o+ ) —a(t @)+ [Alt 2 (5o + h)) = Al 2 (5 0)0)|

— 0, uniformly on ¢ € [0, a],

(4.27)
and

w2 (a5 @) a0+ b)) |
l2(50+ h)e — a(-5 @) wies

— 0, uniformly on ¢ € [0, ], (4.28)

as k|1, — 0.
By applying assumption (A7), Lemmas 2.16 and 2.17, the defining relation (4.7) implies
that

S

0 - o B 9 o
o gy _f(t,x—l-l/(ac—x)ay-l-y(y—y))—8_52(1579673/)

Oz

sup
0<v<1

sup Z—f(t,x +v(z—2),y+v(y— 37)) - g—;(t,x,y) H} (4.29)

0<v<l Y

Let Vi = {a(t;¢) : t € [0,a]}, and Vu = {A(t,2(:;9)) : t € [0,a]}. Then Vi C Qy and

Va C Qy are compact subsets of R”, since they are continuous images of the compact set [0, a].

b
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(For V3 we used that, by Lemma 2.10, ¢ — z(-;¢), is continuous as a map [0,a] — C, and
A ([0,&] X Q3 C [0,a] x C) — R™ is continuous by (A2).) For ¢ = 1,2, let

U; be an open set, such that U; compact, and V; C U; C U; C Q;. (4.30)
Note, that such U; and U; clearly exist. Let
p = min{dist(Vy,R"\ U1), dist(Va,R" \ Us)},
i.e., the smallest of the distances between V; and the complement of U;, ¢ = 1,2. Then p > 0,
and if |z —z|+|y—y| < pthen z+v(z—7) € Uy and y+v(y—y) € Uy for all 0 < v < 1. Then

(4.29) and the continuity, and hence the uniform continuity of % and % on the compact set
[0,a] x U; x Uy implies that for all # € V; and § € V;

lw(t, 2,752, )|
|z — 2| + |y — ¥l

—0 asa— 2, y— Yy, uniformlyint € [0,a],z€ V; and y€ V. (4.31)

Estimate (4.18) and Lemma 3.12 imply that

lz(t; 0+ h) —a(t; )| + AL 2 (5 0+ h)) — A, 2(-0)0)]
< Lalhlwreo 4 (J|pf] + Lo(ov, My)My) Lz |R|y,00 (4.32)
< p

for
p

(1+ ||ull + Lo, My) M) L3’

and hence for such h and ¢ € [0, a] we have that 2(¢; o+ h) € Uy and A(t,2(-;0+ h)t) € Us.
Estimate (4.32) yields that

|h|W1,oo <

lz(t; o+ h) —a(t; )|+ AL, z(; 0+ h)e) — A(L, 2(590))| — 0, as |hlyi,00 — 0,

therefore (4.31) yields (4.27).
Next we concentrate on proving (4.28). The linearity of A(¢,4,£) in £, and Lemmas 4.4
and 4.7 imply that

(L Ed) = AL ) — AL F) - Z—j(t, B D)
= NG = NGB - P BN~ 6) - (4G, - D)
= NG = NGB D) = Mt 6= ) = S (46— D)
= /\(tvlbvlb_&)_ /\(tvlz ¢_ ¢)
+ M0 8) = M5 5) = 5 (156 = D), (4.33)

Since by (A5) it follows that for ¢ € [0,a] and ¥, € G100 (M)

|A(t7¢7¢ - QZ) - A(tvlzvlb - QEN < L?(a7M1)|¢ - QZ|W17‘X’|¢ - QE|07
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we have that _ _ _
AL = ) = At 66— )]
|¥ — P[00

uniformly on ¢ € [0, ], ¥ € Gyp1.00(My). Define the function

— 0, ash— 1, (4.34)

B8 2 M6 D) = Mt D) = S (05,90 = D) (4.35)

for t € [0,a], ¥,1b € Wh* N Q3. To prove (4.28), in view of (4.33) and (4.34), we need to
insure that
W3t 25 ) (5 0+ h))]
[2(50+ h)e = a (5 @)l

—0, ash—0, uniformly on ¢ € [0, a]. (4.36)

In case (1) of this theorem (i.e., if the delay is state-independent), (4.36) is automatically
satisfied, therefore we can assume in the remaining part of the proof case (2) of the assumptions,
i.e., that the delay is state-dependent, and we restrict the initial functions to ® N M.

By Lemma 2.16 we get that

5
t .

W (L, 3 ) < sup

|t — |1 o<r<l

or . - -

%(tv ¢ + V(¢ - ¢)7 QL) - _(tv 1&7 QL) (437)

LW R

Unfortunately, for a compact set V in W1°° there is no U satisfying (4.30), hence the
argument that was used to prove (4.27) does not work in this case. But our final goal is to
prove (4.23), therefore instead of (4.36), in fact, it is enough to show that for h* € W such
that h¥ — 0 as k — oo it follows that

W3t 2( )i a( 0+ WP
|z(-5 0+ hF)e — 2 (- @)l waee

— 0, ask — oo, uniformly in ¢ € 1. (4.38)

Fix a sequence h* € W such that |h*|y1,. < 6 and B¥ — 0 as k — oo.
Define the set

V= {x(-;cp)t + V(x(-;cp—l— h*), — x(-;cp)t) ctel, vel0,1], and k € N}. (4.39)

We show that V is compact subset of W1, Clearly, V. C W1, Pick an arbitrary sequence,
{¢7}, from V. Then for each ¢’ there correspond ¢/ € I, v/ € [0,1] and k7 € N, such that

W= a0+ (2l 0+ B ) — (5 0)u)-

We need to show, that it has a convergent subsequence with limit in V. Clearly, we can and
therefore do assume, in order to keep the notations simple, that #/ — ¢ € I and 17 — v € [0,1]
as j — oo. The following two cases can happen: either &/ has a subsequence converging to
oo, or k7 has a constant subsequence. Therefore, again, we can and do assume that h* — h,
where either & = 0 or h = h* for some k € N. We claim that

W =P = a9+ P(atip+ b —a(ie)),  asj— oc.
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Note first, that ¢» € V. Consider

[ = Yl < Je(50)p = 2(5@)dwre + [ = plle(5 o+ h)e — 2(5)dw
+ VI (JaC 0+ B ) = 2 0)w = (0 + R + 2(5 9w )

< else)e — 2 )dwrse + V7 = vlla(s o+ h)r — 2(+50)dwe
+ 20+ B )y — 250+ )y lwe
+ a0+ h)y —a(50+ h)iwiee + |2(59)0 — 2(55 @)dw

< 22(50)y — 25 @)dwre + 1 = Dllz(5 0+ ) — 2(5 @)idwes
+ Ls|h™ = hlyriee + |2(504 h)y — 2(5 0+ h)ilwos

— 0, as j — oo,

where we used |17 < 1, (4.18), Lemma 3.21 and our assumptions. This completes the proof
of compactness of V.

Since %(t, ¥, €)is continuous, and hence uniformly continuous on the compact set I xV x V|

relations (4.18) and (4.37) imply (4.38).
We have completed the proof of the theorem. [

Since [1]y1p < (27)YP]8| 1.0, the theorem implies immediately:

Corollary 4.12 Assuming the conditions of Theorem 4.8, the function
(@ C WLOO) N WL]?’ 0 — $(.799)t7

or

(@nM)ycwh=) =W oa(, o),

is differentiable for allt € [0,a], 1 < p < oo for case (1) or (2) of the theorem, respectively.

Remark 4.13 Note, that if in Example 4.3 there are no point delays, i.e., Ax(t) = 0 for all
k=1,...,m, then it follows from Remark 4.6 and the proofs of Theorems 4.8 and 4.11, that
the corresponding solution, x(+; )y, is differentiable wrt ¢ in W1 for all ¢ € ®, i.e., the
assumption ¢ € M is not needed.

4.1.2 Preliminaries

In this subsection we formulate a weaker version of Theorem 2.23, and introduce some new
spaces which will be essential to obtain our results in the next section.

Theorem 4.14 Let Z be a normed space, (Y,|-|) is a quasi-Banach space wrt the norm || -||.
Let W be a closed, convex subset of Y with non-empty interior, and V' be an open subset of Z,
and assume that 5 : W xV — W satisfies:
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(i) S is a uniform | -| and || - || contraction, i.e., there exists 0 < 8 < 1 such that
|S(y,z)—5(gj,z)|§0|y—@7|, fOT@/,?/GW, ZGV?

and

15(y,2) = S(g, 2)| < Olly —gll,  fory,yeW, z€V.

(i) For each p > 0 there exists R > 0 such that
$ (@ pp(R) W) X (G2(p) N V) € (Gergpp(B) O W),

(iii) For all y € W the function S(y,-) : (V C Z) — Y is continuous.

Then for each z € V, there exists a unique fized point g(z) of S(-,z) in W, which depends
continuously on z. Moreover, if in addition

(iv) S : (W xV Cc(WnY)x Z) — Y s continuously differentiable on W x V (i.e.,
on the domain of S the relative topology generated by W is used when we talk about
differentiability, but by a derivative %(y,z) we mean a bounded linear operator from

Y —=Y),

then the map g : (V C Z) — Y is continuously differentiable.

Proof The proof is essentially the same as that of Theorem 2.23 (see in [33]), and therefore
only the main steps are presented here, and we point out the difference in the respective
arguments due to the fact that here differentiability is required in a weaker sense (in the
relative topology on Y N W).

For a fixed z € V, assumption (ii) implies that there exists an R > 0 such that

S(52) = (Gryn(R)OW) = (Gyypp(R) N W),

and since G(Y,IHI)(R) is a complete subset of Y, the existence of a unique fixed point of S(-, z),
g(z), follows. A standard argument (using (i) and (iii)) shows that g(-) : V — Y is continuous.

Assumption (i) yields that ‘— Y, %) < 6 and H%(y < 6 for all

)2
) ‘£(<Y7||~||>,<Y,||~||>) )
(y,2) € W x V, and therefore (by using a series of Lemmas in [33]), (I — 8_5(3/7 Z)) € L(Y)

exists and continuous in (y, z). Define

L(YVY)

M) = (1-F000) S0

We shall show that ¢'(z) = M(z). Let v = y(h) = g(2+ h) — g(z). Then it is easy to see that

where
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By Lemmas 2.16 and 2.17, we have the following estimate for |A|

a9 a9
Al < sup |=—(g9(z)+vy,z+rvh)— —(g(2),2
AL e [0 b o) = el
9 a9
+ Oiuygl a(g(z)—l—l/’y,z—l—l/h)— g(g(z),z)ﬁ |h| 7.

)

We first comment that g(z) € W, and ¢g(2) + v = ¢g(2 + h) € W, and since W is convex,
g(z)+ vy € Wforall 0 <v < 1. On the domain of S we use the relative topology defined
by W, in which W itself is an open set, and hence Lemmas 2.16 and 2.17 are applicable for
this case. Then the assumed continuity of the partial derivatives on W x V' yields the estimate
Al < e(|y| 4+ |h|z), for ¢ > 0 and for sufficiently small v and h. The remaining part of the
proof is identical that of Theorem 2.23. In particular, it is possible to obtain an estimate of
the form

9= + 1) — 9(2) — M(2)p] < LED

which proves the statement. The details are omitted. [

|h|Z7

We define the space
Yt = {y eWh> : y()=0on[-r 0]},

with corresponding norms

o 1/p
lylyr = (/ l9(s)|P ds) , for 1 <p< oo,
0

and

|[ylyee = esssuply(s)|,  for p = o0,
s€[0,a]

respectively. Note, that Y2 is the same set for all p, but it is equipped with different norms.
Clearly, YE is a normed linear space, and Y2 is a Banach-space, (since it is a closed subspace

of Wleo).

The following lemma contains some basic properties of these norms.

Lemma 4.15 Let y € Y2, 1 < p < o0, and q is the conjugate to p, i.e., 1/p+ 1/qg= 1. Then
the following estimates hold:

(i) ly()] < a'ylys, fort €[-r,a], 1< p< oo,
(i) 1y()] < alylys, fort € [-r,al,
(iii) |ydo < a'l?lylys, forte(0,a],1<p< o,
(iv) |gle < alylye, fort € [0,al,

(v) lylyr < aMPlylys,  for 1 <p< oo,

(vi) lylye < |ylyor < (o + 1)1/p|y|yg, i.e., | - |yz is equivalent to the norm |- |y, on YE,
Jor 1 < p < o0,
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(vii) |ylyz < lylyae < max{a, 1}|ylye, te., |- |yx is equivalent to the norm |- |1 on
Yo

Proof By the absolute continuity of y € Y2 and y(0) = 0 it follows that

¢
y(t):/ j(s)ds,  tel0,al.
0
and therefore the inequality
(o) < [ late)lds

implies (ii), and together with Holder’s inequality, implies (i). Clearly, (i) implies (iii), and
(ii) yields (iv). (v) follows directly from the definition of the norms, and (vi) and (vii) easily
follow from (i) and (ii). ]

For 1 < p < o0, Y is not a Banach-space, but it is a quasi-Banach space wrt the | - |Wé,oo
norm. (See Chapter 2 for the definition of quasi-Banach spaces.) Hale and Ladeira applied the
extension of the Uniform Contraction Theorem (Theorem 2.23) for this space (with p = 1) in
[33] to obtain their results.

Lemma 4.16 Let 1 < p < o0, 0 < a < oo. Then the space Y?, is a quasi-Banach space wrt
the | - |ys -norm.

Proof The lemma follows from the next result, using y = 0 and that the |- |y and |- [}1,
norms are equivalent by Lemma 4.15 (vii). ]

Lemma 4.17 Let y € W1, 6 >0, 1 < p < oo. Then the set GWLOO@; ) NY? is a closed,
complete and convex subset of YP .

Proof Obviously, ?WLOO (y; ) N YP is convex. Let y* ¢ GWLOO (y; 6) N YE be a Cauchy-
sequence in the |- |yr-norm. By Lemma 4.15 (vi) the |- |yz and |- |1, norms are equivalent,

therefore {*} is a Cauchy-sequence in WP as well. Since W7 is a Banach-space, there exists
a function y € WP such that |y* — Ylyrr — 0 as k — oo, and therefore ly* — ylyr — 0 as
k — oo. Lemma 4.15 (i) yields that

y () -y ()] < a1yt —ylye,
— 0, as k,l — oo,

so {y*(#)} is a Cauchy-sequence for all ¢ € [0,a], and hence {y*(#)} is pointwise convergent

to y(t). We need to show that y € GWLOO(@; 8). Since |y* — Ylyree <0, it follows that

ly* — 7o < 6, and therefore by the pointwise convergence of y* to y we get that |y — g|c < 6.
Suppose that y ¢ GWLOO@; 6), ie., [y — yly1,00 > 6. Then the previous comment implies

that esssup|g(u) — y(u)| > é + ¢ for some ¢ > 0, and therefore the set A = {u : |j(u) —

0<u<a
y(u)| > & + ¢} has positive measure. Since esssup|g*(u) — g(u)| < 6 for all k£ € N, and hence
0<u<a
meas({u : |§*(u) — y(u)| > 8}) = 0, we have that the set

B=[0,a]\ fj {w 15" w) = i) > 6} = {u [ (w) = jlu)| <6, ke N}
k=1
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has measure a. We show that AN B has positive measure. Suppose that meas(A N B) = 0.
Then we have that

meas(A) meas(A\ B) + meas(AN B)
meas(A\ B)
meas([0,a]\ B)

= 0,

IN

which is a contradiction, hence meas(A N B) > 0. Then elementary estimates imply that

ly =y lyr > (A/ 19(u) — §"( )|pdu)
1/p
(A/ (|3?(U) — y(u)| = y(u) - @)k(U)I)pdu)

> meas(AﬂB)) e
> 0,

v

which is a contradiction. Therefore y € awl,oo (y; 6), i.e gW1 «(g; 6) N YE is complete, and
hence also closed in Y2. (]

Next we introduce a new norm on W1, Let x € W1, Then let
o(s) = z(s), —-r <s<0, (4.40)
and

(4.41)

Then we have that # = y+ @, and y € Y2, o € Wh i.e., we can decompose W1 as a direct
sum of Y2 and W'°°. Define the projection operators according to (4.40) and (4.41) by

Pr, @ Whe — whe, (Prya)(s) = a(s), s€[-r0], (4.42)
and
Pr, : WL Y2 (Pr,e)(u)= { g(u) ) (;QSUZZO (4.43)
Define a “product norm” on W1 by
2l = IPry alyy, + [Pr el . (4.44)

and denote the corresponding normed linear space by
Xt = (W, | Ixn )

Part (i) and (ii) of the following lemma shows that this “product” norm is stronger than
the | - [;1.,-norm, and weaker than the | - [jy1.0-norm on Wl The estimates (iii) and (iv)
will be used later.
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Lemma 4.18 Let 1 < p < co. There exist constants ¢y > 0, ¢3 > 0, ¢3 > 0 and ¢4 > 0 such
that for all x € W

(i) [xyar < erlzlxe,

(i) |x]xz < ealafye,

(11i) |z]c, < eslelxe.

(iv) |y < eallxz -
Proof Let 2 = y + ¢ be the direct sum decomposition of z defined by (4.40) and (4.41).
Using the inequality (a + b)? < 2P71(a? 4 b7) and Lemma 4.15 (i) we get

s = [ Il P s+ [ Iy + P + P du

—r

< 2leliy + 27 [l dut 02 oo+ [ du
< (2 a4 20) |l + 2P g Gy + (Y[R

< max{Qp_la +2r, 207 P 4 1}(|3/|§{g + |99|€V17°°)

< max{Qp_la + 2r,2P 1P 1}2|$ 7;{5,

which proves the first statement of the lemma with ¢; = max{(2Pa + 47)'/7, (2Pa? + 2)1/P}.
To show the second inequality, consider the elementary estimates

a 1/p
by = ([P de) el

a1 Lo + |l oo
('? + 1)

A IA

|W§;°°7

therefore ¢y = (/P + 1) in (ii).
Consider (iii). Then by Lemma 4.15 (i) and (2.10) we get

lzlc. < ylea +18lc.
< aylye + ol
< max{a'/?, 1}]2|xz,

therefore (iii) is satisfied with ¢3 = max{a'/?,1}.
To prove (iv), consider

iy = ([ b0+ opa)”

-7

([t )"+ ([ e an)”

<
< lylye + 77l
< max{r'/?, 1}|z|xz . (4.45)

Therefore (iv) holds with ¢4 = max{r'/?,1}.
This completes the proof of the lemma. [
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4.1.3 General case, differentiability in WW'?

In this subsection we study the general case of differentiability of solutions of IVP (4.1)-(4.2),
i.e., when (4.1) is state-dependent, and there is no restriction on the initial functions, they are
arbitrary Wh*-functions.

By Lemma 3.7, IVP (4.1)-(4.2) is equivalent to the integral equation

{ 0, te[-r,0]

y(t)= /Ot f(u, y(u) + @(u), Au, y, + cf%)) du,  t€[0,T],

(4.46)

where we have used the transformation y(¢) = x(t) — &(1).

It follows from the proof of Theorem 3.8 that the solution of IVP (4.1)-(4.2) is the fixed
point of the operator

0, te[-r0]
S(y’@)(t):{ (s )+ @), Ay +60) du 2 € 0.7 (447)

In the proof of Theorem 3.8, S was considered as an operator
SR ((?ca(ﬂ) X Go(p; 8) C Cy % C) —C,

(with appropriate a > 0, 3 > 0 and § > 0), where

0

Gol(g; 6) C {ap €C : ¢(0)eQy, and dsp(5,0,0)p(s) € 92}-

—r

(See (3.9) and (3.25).) It follows from Theorem 3.19 that the solution of IVP (4.1)-(4.2) is
unique if ¢ € W1 and Lemma 3.21 implies that the solution is in fact a W21°° function.
Therefore in this section we shall consider S as an operator

$  (Gyr (B) x Guroo (35 6) C YR x W) — Y2, (4.48)

where @ € ® (see (4.3)) is fixed, and the constants &, @, 3 > 0 are specified by the following
lemma.

Note, that in the proof of the next lemma, and in some later occasions in the manuscript,
we shall need to restrict a function originally defined on an interval [—r, a*], e.g., y € W;;OO, to
a smaller interval, [—7, a], @ < a*. Then, of course, the restriction of the function y to [—r, a]
belongs to Wé’oo, and to keep the notations simple, we shall simply write y € W;’OO or |y yy1.00

instead of introducing a new notation for the restriction of y to [—r, a].

Lemma 4.19 Let 1 < p < oo, ¢ € ® and R > 0. Then there exist 6 > 0, @ > 0 and 3 > 0
such that Gy, (@; 6) C ®, and the operator S defined by (4.47) satisfies

(i) S+ Gyr (B) X G (@3 &) — Gy (),
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(i1) S is a uniform contraction on avg (8) NG 1.0 (R) both in |- lyr and |- [y= norms, i.e.,
there exists 0 < 0 < 1 such that for all ¢ € Gy, (@; 0), ¥,y € EYZ (3) N Gy (R)

|S(y799) - S(@j, @)h{go < 0|y - 37|Y207

and
15(y. 0) = Sy @)lyr < 0ly — ylye.

Proof (i) Let a >0, 5> 0 and ¢ > 0 be the constants from the proof of Theorem 3.8, i.e.,
such that Go(@; 6) C ®o, (and hence Gy, (@5 §) C @ as well), and if ¢ € G (@3 6), y € Go(3)
then S(y, ) is well-defined. Let

a*Emin{a,ﬁ} and 3= (a)7)f].

We shall show that S(y,¢) is well-defined for ¢ € Gyr1.00(5; §) and y € Gyr_(B). Let y €
Gyr_(B) and suppose that there exists ¢ € [0,a] such that |y()] > 3. Then by Lemma 4.15 (i)
and (v), the following inequalities hold:

B <y < (") ylys, < (@)Y < a7 )] < 5,

which is a contradiction, therefore y € Ge,, (8), and hence S(y, ¢) is well-defined on Gyr_ (3) x
Gy, (@5 6), and therefore so is on gyp( 3) X G0 (3 6) for all 0 < a < a*. Finally, the
inequality

15(y, @)lyr, < ()Pl =5

completes the proof of (i). )
(ii) We shall select 0 < @ < a* such that (ii) is satisfied. Let y,7 € gyp (B) N gW1 = ().

Then for ¢ € Gy1,00 (@5 6) it follows that |y: + Gelwco < |yt + @10 < R4+ |‘P|W1 o F6
for t € [0, ], and therefore by (2.5) we have that [A(t,y: + &¢)| < ||plle(R + |@lwre + 6).
Let M = max{1, ||p||}( R+ |@|wi~ + 8), L1 = L1(a*, M) be the constant from (A4), Ly =
Lo(a™, M) be the constant from (A5). Then (A4), Lemma 3.12 and Lemma 4.15 (ii) and (iv)
yield that for 0 < a < a*

15(y, 0) = 57, )lye

= esssup|f(u, y(u) + G(u), Ay g+ u) = flu, 5u) + Plu), Aw, g + )|
< Lyess sup(|y(u) — y(u)| + | A, Yo + Gu) — A(w, Ju + @u)|)
o<u<a
< Lialy = ylys +L1(HMH+L2M)OEUB Y0 — Yulc
< Lia(l+ [lull + Lo M)y = ylye.

Similarly, in Y£ we have that
15y, ) = 5(3,#)lye

= /Oa fluyy(u) + @(u), Au, yu + Gu)) = flu, g(u) + @(u), Aw, yu + ¢“))‘p ds
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Q |

_ ~ P
< / ()] + [ g+ B0) = A+ 30)]) ds
< *1/‘1 — ) d
< (a)/71y = glyg, + (el + 2220) swp Jyu = gule)” ds
< Ll(a)p(l el + LMLy = gl

Therefore, select 0 < @ < o™ such that a < 1/(Li(1 4 [|p|| + L2 M)), then (ii) is satisfied. []

Remark 4.20 Note, that a depends only on o, 3, ||f|l, 1], R and p, but does not depend
on the initial function. The constant 6 is the same as in the proof of Theorem 3.8, it does not
depend on R and p.

Lemma 4.19 provides the framework for applying Theorem 4.14 to discuss differentiability
of the fixed point of 5(-,¢), i.e., solutions of IVP (4.1)-(4.2) wrt the initial function. This
theorem assumes that S has continuous partial derivatives on its domain, for which as one can
see, it is necessary to have some kind of continuous differentiability of A(¢,) wrt . It turns
out, that we need to have the differentiability of the following composition operator.

Fix 1 < p < oo and let K be an open subset of W1, Define the following composition
operator corresponding to A(-,-).

By : (KCX2) = L([0,aiR"),  Ba(2)(1) = A(t,z),  t€[0.al. (4.49)

We replace assumption (A8a) of Section 4.1.1 by the following hypothesis:

(A8b) the operator By defined by (4.49) is continuously differentiable on K.

Remark 4.21 For < a < a we introduce K5 as the set of restriction of the functions z € K
to [—r,a], and consider the composition operator

Bra ¢ (Ks ©XE) — L7([0,aliR"™),  Bas(a)(t)=A(t,ay),  t€[0,a]

Then, clearly, assumption (A8b) implies that By 5 is continuously differentiable on its domain.
Later, to keep the notation simple, we freely use By and K instead of Bp 5 and K5, respectively,
so if a function x is defined on [—r, @], and we write x € K, then we mean that v € K;.

Note, that in Section 4.1.4 we shall present conditions implying (A8b) for the composition
map corresponding to Examples 1.3 and 1.4.

The following lemma shows that assumption (A8b) yields the existence of continuous partial
derivatives of S(y, ) if we restrict y to a certain subset of its domain, and the derivative is
taken in the restricted space (in relative topology).
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Lemma 4.22 Let ¢ € ®, 1 < p < 00 be fived, and R > 0 given, and assume (A1)-(A7) and
(A8b). Let 6, a, [ be the constants from Lemma 4.19, i.e., such that the operator S defined

by (4.47) satisfies o o
St Gyr (B) X Gy (@5 6) — Gyz (B),

and it is a uniform contraction on Gyr (ﬁ) N GW},OO(R). Assume that there exvists W C Y&
such that )

(i) W C (Gyr (B) NGy (R)),
(ii) fory € W and ¢ € Gy, (@; 6) it follows that y+ ¢ € K.
Then the operator
Sy, ) - (W X Gyieo (93 6) C(WNYE) X Wl’“) — Y&

has continuous partial derivatives wrt y and ¢ on its domain, and fory € W, ¢ € Gy, (@; 6),
h € YL we have that

(o) 0

0, te[-r0],
) (gt 0 A 20 ) o)
+ g—; (u, y(u) + P(u), Aw, y, + ﬁf%)) (%(y + cfo)h) (w)du, te€][0,al,

and for y € W, ¢ € Gy, (@5 8), h € WH* it follows that

(g—j@, o) (1)
0, te[-r0],

) [ (v 0 A+ 20)HO) (151
0B =

(w0 + S0 A+ 60)) (G20 + 90w du. 1€ [0.a)

Note that we consider differentiability of S(y, ) when y is restricted to W, i.e., we use a
relative topology on YZ defined by W, and %(y, ©)h is defined for all h € YE.

Proof Let y € W, ¢ € Gyi,(9; §), and h € YE. We show, that the operator % defined by
(4.50) is, in fact, the partial derivative of S wrt y. Clearly, % is a linear operator. We need
to show, that it is bounded.

Since y € Y2, it follows that y € W2 as well, and hence if we define M5 = Ms(y, ) =
Uy + elwae then

|3/t + ¢t|W1,oo S Mg, fort € [0,6&], (452)
and thus by (2.5) it follows that

Al g+ @0l < lllMs, 1€ o.al (4.53)



Therefore if we define the compact set

A=[0,a] x Grr(M3) x Ggn(||p|| M3)

Z_;(tv z, y)H} :

and the constant

0
L t,0.9)

, 8up

My = max{ sup
(t,z,y)EA

(t,z,y)EA

then My < oo by (A7), and it satisfies

Hg_i (9 + 20 Al g+ 1)) H <My,  telo,al,

and

H%(t’y(t) + @1, Aty + 21)) H <My, telo.al

Lemma 4.15 (i), and relation 1/p+ 1/¢ = 1 imply that

(/Oa Ih(u)]? du)l/p (/Oa(a)p/qlhlf;g du)l/p

< alhlys.

IN
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(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

Estimates (4.56), (4.57), (4.58), the definition of %, assumption (A8b), and triangle inequality

yield

(y,@)h

dy vz

< (7[5 (watwr+ A g+ 20) bt

A

& 1/p
M, (/ |h(u)|pdu) + M,
0

0B\
Oz

of P 1/p

0B

0B\
Oz

IN

(y+ @)h

Lr([0,a];R™)

IN

Maalh|yr + My (y+ )

|h|ng
L(XE,LP([0,a];R™))

which shows the boundedness of %(y, ®).
Next we show that it is the derivative of S(y,¢) wrt y. Consider

d5
‘S(y +h,0) = 5y, 0) - a—y(y, ©)h

- (b

Y4

I (s y(u) + @(w) + h(w), Alu, g + b+ 30))

8_§ (u y(u) 4+ @(u), Au, gy + cfou)) (W(y + @)h) (u)

P 1/p
du)

(4.59)

() 0 A 8)) = 92 () 0, A+ 8 )

_ Z_; (e y(w) + @(w), A,y + 20)) (86%(@/ ! @h) "

P 1/p
du) .

(4.60)
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Introduce

B
Mtszse) = M) - Atz - (G2 ) - ) (1) (4.61)
X
for t € [0,a], z,z € X5, T € K. Then it follows from (A8b) that
1 & 1/p
_ (/ |w4(t,x;x)|pdt) 0, as|a—Zlyy — 0. (4.62)
|z — Z|xz \Jo «

By our assumption, y+ @ € K, hence the definition of w! (defined by (4.7)), w?, relation (4.60)
yields that

‘5(y+ h,o) = S(y,¢) - 6)—S(y,cp)h

([ oo st

Y2

IN

IN

([
s

By using (4.57), estimate (4.63) implies that

pd 1/p
9y u) . (4.63)

1 a5
b Y + hv ) Y, - 5 \Y h
lyr ( ?) = 5y,0) = 5 () v

< /“ wh () + @), A, yu + Gu)iy(w) + h(w) + G(u). Al o+ ha + @) "

~ \Jo |Alye
& 4 ~. h ~\ |P l/p
0 |h|Y§

We show first that |w!(-, ;- JI/Ihlye in (4.64) converges to zero pointwise as [hlyr — 0. By

(4.8), it is enough to show that for all u € [0, &] it follows that y(u)+h(u)+@(u) — ;(u)—l—cﬁ(u)
and A(u,yy + hy + @u) — A(u,yu + @u) as |h|Y§ — 0. The first relation follows from the
inequality |[h(u)] < dl/q|h|yg (guaranteed by Lemma 4.15 (i)). Let Ry = R+ |¢|yr1,00 + 6. For
the second relation, by using Lemma 3.12 with Ly = Lo(a, M3 4+ (a)'/7), assumption (i) of
the theorem and Lemma 4.15 (i), we get for |2[y» <1 that

|A(u73/u + hy + Q‘Bu) - A(u,yu + @u)| < (HNH + L2|yu + ¢u|le°°)|hu|C
< (lull+ LaRy)a | hlye

!

0, as |hlyr — 0.

Next we show that |w!(-,+;-,+)|/|h|y» is bounded on [0,a]. As in the proof of (4.22), it follows
from the Mean Value Theorem and the definition of M4 and the previous estimates for |h|y» <1
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that

! (u, y(u) + @(u), Au, yu + Pu); y(u) + h(u) + G(u), Aw, g + ho + P0))|
2Ma([h(w)| + |ACt Yo + ho + Bu) — A, Yo + Pu)l)

<
< 2Maa (L4 [pl| + LeRa)|hlye -

Therefore the Lebesgue Dominant Theorem yields that the first term in (4.64) goes to zero as
|hly» — 0. So does the second term by (4.62), therefore we have proved (4.50).

Next we show that %(y,cp) is continuous. Let ¢ € Gy1,0(@; §) and y € W, and select
sequences ©* € Gy, (@; 8) and y* € W such that |¢* — @lye — 0 and |y* — ylyr — 0 as
k — oo. Let h € YZ. By (4.29) and Lemma 4.4 (ii) we have that

z—j(y’“, " )h — g—j(y, ©)h v
_ ( /0 ) g—i(u,yk(U) @R (). A, g+ o5) ()
+ Z—; (u, ¥ (u) + ﬁ,;k(u), Au, gl + 9;1]3)) (%(yk + ék)h) ()
— %(u, y(u) + &(w), Alu, yu + @u)) h(u)
P 1/p
_ Z_; (s () + @), Al s + ) (86%(@/ + ¢)h) () d“)
< (/Oa %(u,yk(u)-l- (), Au, yl + )
P 1/p
_ g_i(u, y(u) + 3(u), Au, yo + géu)) A (w)[” dU)
n (/Oa Z—; (u, yF(u) + Q;k(u),A(u, v + L';ﬁ))
P P 1/p
_ g_;(u, y(u) + @(u), Alu, y, + ﬁf%)) (3;11\ (y+ @)h)(U) du)
+ (/Oa z—;(u, yk(u) + Q;k(u),A(u, 3/5 + S‘;ﬁ)) Hp
: Kaa%(@/’“ +h)h — 3@%(@, + @)h)(u) ! dU)l/p-
Therefore, using the definition of My, (4.58), we get

05 . .. S
“8y(y y P )_ ay(va)

(Y5, YZ)

)+ S A+ 60) = T a0+ 60 A+ 50|

< a sup
o<u<a

8 ~ ~
(0 + () A+ )

_ Z_;(u, y(u) + @), Au, y, + %)) H H %(y + &)

+ sup
o<u<a

L(XE, L ([0,6)R™))



66

8BA k -~ 8BA ~
—I—MH—y +oF)— ——=(y+ ¢ . 4.65
4 8$ ( ) a$ ( ) ,C(X27LP([O7&];IR")) ( )
Lemma 4.15 (i) and (2.10) imply that
WA () () = ylw) = @] < () = ylu)] + |k () = @(u)
< @y = ylyr + 16" - el
— 0, as k — oo, (4.66)

and since y* € W, and ¢* € Gy (@; 6), by the definition of Mz, assumption (ii) of the
theorem if follows for u € [0, @] that

ly+ @le + |ykle + lele + 9" - ¢lo
Ms + R+ Ms + 6,

lyE — g+ 0 —pule <
<

and therefore Lemma 4.15 (iii) and Lemma 3.12 with Ly = Ly(a,2M3+ R + ¢) imply that

Ayt + 08) = Ay + @)l < (il + Lalge + @ulwro Iyl = wale + 185 = 2ule)

<l + B2 M) (@) 77)9F = ylys + 1" — ol
0, as k — oo. (4.67)

!

Then (4.66), (4.67) and (4.31) (by an argument similar to the proof of (4.27)) yield that the
first and second terms in the right hand side of (4.65) go to zero as k — oo. So does the
9B,

third term, since by (A8b), =72 is continuous on K (in the || - || zx? 17 (o,a}mm)-norm). This

completes the proof of continuity of %.

The proof of (4.51) is similar. Clearly, % is linear, and similarly to (4.59), we can get

as
Do

0B, .

(y,@)h‘ - My(@) P Rl + My %(yﬂo

|h|le°°7
L(XE,LP([0,a];R™))

which implies the boundedness of %(y, ®).
Let h € W1°° then using the definitions of w! and w*, estimates (4.57) and (4.51), we get

1 a9
h) — _ 22 h
T S(y,p+h) = S(y,¢) 6hp(y,c}o) v
_ - - - ~ - ~ 1

< /“ w!(u, y(u) + @(u), Au, you + Zu); y(u) + @(u) + h(u), Au, yu + Gu + b)) pdu &

— \Jo |Alyr.eo
al 4 ~. A L 1/p

LM / WHuwy+eyteoth)r (4.68)

0 |Alyr.eo

Lemma 3.12 yields that for |hly1,0 < 6*

|iL(t)| + Aty + @ + ibt) — Aty + @) < |hle + (el + L2(a, Ms + 6%)Ms)|h|c
— 0, as |hly1e — 0, (4.69)
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therefore [w!(-, 5+, )| /| A1, converges to zero pointwise as |h|y1,.0 — 0, and since it is clearly
bounded, the Lebesgue Dominant Convergent Theorem implies that the first term in the right
hand side of (4.68) goes to zero as ||y, — 0. Since

|hlxe = hlw.es (4.70)
(4.70) and (4.62) yield that
a4 ~ R NTYARY: a4 . RNV
(5 ity + sy +e+hlar) ™ (5wl y + &y + ¢+ hlrdt)
JaeR - |lxe
— 0, as k|0 — 0, (4.71)
therefore % defined by (4.51) is really the partial derivative of S wrt ¢.

Finally, we show that % is continuous. Let ¢ € Gy1,(p; ) and y € W, and select
sequences ©* € Gy, (@; 8) and y* € W such that |¢* — @lye — 0 and |y* — ylyr — 0 as
k — oo. Similarly to (4.65) we can show that

05 . .. S

LWL YE)
g_-; (1" (u) + (), A,y + 95)) — g—i (s yw) + Glw), Ay + 24) H

< a'lr sup
o<u<a

of k N kg ok
+ 28 gy (0 + P A+ o)
of . . 0B .
_ a_y(u,y(u) + @(u), A(u, yu + @u)) HH—39€ (y+ @) O (0 R)
8BA k -~ 8BA ~
+ M +oF) =y + :
1|, W T = 5 =y + ) [

which implies the continuity of g—s, since it is essentially the same as (4.65).
This completes the proof of the lemma. [

Theorem 4.23 Assume that @, p and f satisfy (A1)-(A7), (A8b). Then there exist a >
0, 6 > 0 such that IVP ({.1)-(4.2) has unique solution, z(t;¢), on [0,a] corresponding to
any initial function ¢ € Gy (@; 6). Assume that z(-;¢) € K, then x(t;p) is continuously
differentiable wrt o, as a function

(Gwio(@:6) CWE) = X5, o als).

Proof The existence of @ > 0 and §' > 0, such that the solution of IVP (4.1)-(4.2) exists
and is unique on [0, a] for ¢ € Gy, (; 61) follows from Theorems 3.8 and 3.14.
Since z(+; @) € K, and K is open in W1 there exists é% > 0 such that

[ (w(-;cﬁ); 62) C K. (4.72)



68

We shall use the notation § = Pry 2(+; @), i.e., 2(+; @) = § + ¢. By (4.72) we have that
it yeTyie (37; 62/2), © € Gy (c,a; §2/2) then y+@eKk, (4.73)

since |ly+ @ —y — 95|W1,oo < 62
Let R = max{|x(-;§o)|w1,oo + 62/2, HfH} Then by Lemma 4.19 there exist 6% > 0, @ > 0
and 3 > 0 such that a < , and the operator 5 defined by (4.47) satisfies
$ : Gyr(B) % Gwree (75 6%) — Ty (B),

and 5 is uniform contraction on GYZ (3) N GWLOO (R). Let 6 = min{é!,6%/2,6°}, and consider
S as an operator: o

S T WX Gy (@ 8) — gyg (B),
where

W =Gy (B) NGy (@7; 52/2)-

Then W C (Gyz (5) N Gy100(R)), and by Lemma 4.17, W is convex and closed in Y. Tt is
easy to see that [5(y,¢)|y= < ||f]| for all y and %, and hence

$((Gyz (R)NW) X Gyyee (35 6)) € (Gy= (R) W),
and the operator
§ o (W x G (@ 6) C OV YE) x W) — Y2

is continuously differentiable by assumption (A8b), (4.73), and Lemma 4.22. Therefore an
application of Theorem 4.14 yields that the fixed point of S(-, ¢), (i.e., the solution of (4.50)),
called y(+; ), is continuously differentiable as a map

(Gwrool@: ) CWE) = Y8 o y(59).

Now we show that the function, z(¢;¢) = y(t;¢) + &(1), i.e., the solution of IVP (4.1)-(4.2)
with initial function ¢, is continuously differentiable as a map

(gwl,oo(@; ) C Wl’oo) — X o= a( ),

with derivative

Ox dy 5 1
—(t;0)h = == (t; )b+ h h e WH™>.
899( ;0) 6hp( s o)h+h, €
To prove the claim, it is enough to consider the obvious relation
oz dy
y B — 2(- o) — — Bl = |y(- Y — (- 0) — —2(: o)k
r(o+h) —z(5p) 899( ” ‘y(wﬂr )= y(9) 899( v

Suppose that @ < a. Then we need to show that z(-;¢) is continuously differentiable wrt
@ in X? as well. Consider the equation

2t) = ft+a,z(0), A(t+ a, z)), te0,a—al, (4.74)
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with initial condition
) =a(t+aye), te[-r0] (4.75)

Then, clearly, 2(t) = z(t + a; ¢) is the unique solution of IVP (4.74)-(4.75) on [0,a — @]. On
the other hand, Lemma 4.19 and Remark 4.20 imply that if we define o = min{a, a — a} then
the operator S corresponding to (4.74)-(4.75) satisfies

§ ¢ Gyr (B) % G (2@ + 5.9): 8%) — Gy, (5)

with some 6* > 0. But then the first part of this theorem yields that z is continuously
differentiable wrt its initial function on [0,a*]. Therefore, since for A € W Lemma 3.20
implies that

2(5 0+ h) = a(5 @) < Lslhlwre,

it follows that z(-;¢) is continuously differentiable wrt ¢ on [0,& + a*]. By repeating this
argument finitely many times, we obtain that z(-; ¢) is actually continuously differentiable in

X2, [

Since by Lemma 4.18 (i) the | - [xz-norm is stronger than the |- |1 p-norm, the theorem
has the following corollary.

Corollary 4.24 Assume the conditions of Theorem 4.23. Then x(t; ¢) is continuously differ-
entiable wrt ¢, as a function

(QW1,OO(L,5; 0) C Wl’oo) — W;’p, v z( ).

4.1.4 Differentiability of the composition map B,

In this section we study differentiability the composition map B defined by (4.40), and show
conditions in our examples implying assumption (A8b), i.e., the differentiability of By on a set

K.

We introduce the composition map B) corresponding to A:
By o (KxWho Xt xX2) — 17([0,0],RY),  Ba(e,2)(1) = Aty 21, 2),  (4.76)
where 1 < p < o0, 0 < a < T finite.

By Lemma 2.17, to obtain (A8b), we need to show, that By(z,z) has continuous partial
derivatives wrt  and z on K x W1 for some K C W1,

In [10], Brokate and Colonius studied linearization of the equation
i(t) = f(ta(t = r(t,2(1),  1€[0,al.
In particular, they investigated differentiability of the composition operator

A (X cwhe) — LP([0, iR, (A2)(1) = ot = 7(1,2(1))),



where it was assumed that 7(¢,2) is twice continuously differentiable satisfying 0 < 7(¢,z) <r
for all ¢ € [0,a] and z € R, and

X = {w € Whoe : there exists ¢ > 0 s.t. %(t — T(t,x(t))) >¢c ae. te [0,0z]}.

It was shown in [10], that under these assumptions, A is continuously (Frechét-)differentiable
on its domain with derivative

(A'z)h)(t) = h(t — 7(t,2(1))) + @(t — 7(t, x(t)))g—;(t, z(t))h(t). (4.77)

The key idea of obtaining the result in [10] is the choice of the domain, X. With minor
modifications, the argument of [10] is applicable to obtain differentiability of By (IC C

(W, Ixe )) — LP([0,a];R") in our examples as well. (The main difference between our

case and that of [10] is that we need differentiability of By in the |-[xr-norm.) We can proceed
as follows.

Examples 1.1 and 1.2 are state-independent equations (and also can be considered as special
cases of Example 1.4), and therefore omitted here.

Example 4.25 First we study Example 1.3, i.e., the equation
i(t) = f(to(),2(t—1(t,2.))),  1€[0,T). (4.78)

Fix ¢ € W1 and o > 0 such that (4.78) have a unique solution on [0, ] corresponding to

all initial function ¢ € Gy1, (@; 6) for some 6 > 0. Consider the function A corresponding to
(4.78):
ALy, ) = E(=7(t,9)). (4.79)

(See also Examples 1.3, 3.3 and 3.10.) We assume that 7 satisfies the following assumptions:

(i) 7(t,%) is locally Lipschitz-continuous in 1, i.e., for every M > 0 there exists a constant
L; = L (o, M) such that

|T(t7¢) - T(tvlzﬂ < LT|¢ - QE|07 for valz € EC(M)7 le [0,&],
(ii) 7(t, ) : ([0, al x Q3 C [0,a] X C) — R is continuously differentiable wrt ¢ and o,

(iii) %(t,¢) and g—;(t,zb) are locally Lipschitz-continuous in v, i.e., for every M > 0 there
exists L* = L*(a, M) such that for all ¢ € [0,a], 1,1 € Go(M) N Q3 it follows that

or or - N -
S0 = S| < L300 - dle

and

or or, - N -
H@(tw)— )| <o dle

£(CR)
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For each ¢ > 0 define the set

i(t _ T(t7gct)) >¢ ae. t€ [O,Q]}- (4.80)

X. = {x € whee 7

We shall need the following lemma (see also Lemma 3.1 in [10]).

Lemma 4.26 Assume that T satisfies (i) and (ii), and let ¢ € LY, v € X, for some ¢ > 0.
Then

o 1
lg(t = 7(t,2¢)) [P dt < =|g|7,.
0 g7

Moreover, if zF € X., |2F
k — oo, then

— 2|y100 <6 for k € N with some ¢ > 0, and |zk — z|xr — 0 as
84

lim

k—oo Jo

g(t = 7(t,2f)) = g(t = r(t,2))| dt =0,

Proof Elementary manipulations give

[t —rtepar = [Clott=rtzp (R0t gt

d
it = 7(t21))
< T
< = glu u

€ J—7(0,30)

1

S g|g|][)/27

which proves the first part of the lemma.

For the second part, first assume that g(t) = x[,)(t) for some [a,b] C [~r,a]. Then it is
easy to see (see also the proof of Lemma 3.1 in [10]) that

4
meas{t Xt = 7(t25) # Xt = 7(La))} < = sup [t —r(t,2f) = (1= 7(t,20))],
€ 0<t<a

therefore by assumption (i) with L, = L;(«e, |z|c, + 6), and Lemma 4.18 (iii) we get that

[

P 4
g(t — T(t,xf)) —g(t - T(t,$t))‘ dt < —L; sup |xf — z¢le
€ o<i<a

4
< _L703|$k_$|Xp7
8 (o3

— 0, as k — oo,

which proves the statement for this case. Clearly, we can extend this result for the case when
¢ is a step function. Let s be a step function on [—7, a]. Then by the first part of the lemma

we have that N
|

[

P 1
glt = 7(t.e) = s(t = r(t,x))| dt < lg - sl},.

and .
glt = r(t,of)) = st = 7(t,2p))| dt < Zlg -

p
L%
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therefore the triangle inequality yields that

U

P 1/p
gﬁ—ﬂhﬁ»—gﬁ—ﬂhm»‘ﬁ)

2 (e}
< —|9—5|Lg‘|‘</
€ 0

and the statement follows from that it is true for step functions, and that the step functions
are dense in LP. [

sﬁ—d@ﬁﬂ—sﬁ—damnfﬁfm,

Lemma 4.27 Let 2° € X0 for some €* > 0. Assume that 7 satisfies (i)-(iii). Then there
exists 6 > 0 and ¢ > 0 such that ?WLOO (2% 6) C X..

Vis a.e. differentiable, the assumption z° € X0 is equivalent to

or or

Proof Since z

I E(tvwg) - %(t,$?)$g > 507 for a.e. t € [0,&],
and hence it is equivalent to
or or 0
<1- .e. .
8t(t ) + 8¢(t yaa? <1 —&° for a.e. t € [0, q]
Consider
J J
8_;(t7$t) + é(t,$t)$t
or, o . OT o . 0T ot , o
= 9t (tth) 8¢(t xt)xt + ot (tvxt) - ot (tvxt)
97 ) .
b (Grttn0 - Go(t.ad) ab + 5t i - o)
T or or or :
< _ il 0 0 el 0 0
< 1= [t = G|+ |gie) — greab] et
H t $t |$t—$?|c
L(CR)

Fix 0 < & <& and Let L* = L (e, |2°%| ¢, + 1). Then for |z — 2°|¢, < 1 we have that

or

T —(t,2) + 8¢(t , Ty )Ty

IN

1= 04 Loy - aflo(1 + o) + (H D+ Li) &1 — a%lc
L(CR)

+ L) |2 — 2% 100
3¢ L(CR) ) Wa

Therefore, there exists 6 > 0 such that for |z — $0|W1,oo < 4 it follows that

IN

(t xt)

1—50—|—( (1—|—|$t|(;)—|— max

or

ot g+

8¢(t ca)is <1 —¢% 4 ¢, for a.e. t €0, 0],
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e,z € X, withe =¢% — 2. (]

Define
K =Gy (xo; 5), (4.81)

where 2°, § > 0 satisfy the previous lemma, i.e., z° € X_o for some ¢ > 0, and § > 0 is such
that gW1 ~ (2%; §) C X, for some ¢ > 0. We use this notation throughout the discussion of
Example 4.25.

Next we show that Bj(z,z) has continuous partial derivatives wrt = and z for z € K,
z e Whee.

Lemma 4.28 Assume that 7 satisfies (i)-(ii1), and let K defined by (4.81). Then the com-
position operator By(z,z) defined by (4.76) has continuous partial derivatives wrt & and z for
x e K, z € XL, Moreover,

mif (z,2)h = Ba(z, h), he X, (4.82)
and
(85?(9072)’@)@) = —(t - T(tawt))%(t cadhe,  heXE, te]0,al. (4.83)

Proof Since the map z — B)(z, z) is linear, it is obvious, that it is differentiable, and (4.82)
is satisfied provided that 8B*( z) is bounded. Let h € X, 2 € K and z € X2. Then since
r € X., Lemma 4.26 and Lemma 4.18 (i) imply that

o 1/p
O (a2 = ([Tt = sty
0z L7 ([0,];R") 0
1
< mWU’
S 51/p| |X ?

which shows the boundedness of %(ac z).

Next we show the continuity of the derivative. First we comment that
pendent of z. Let 2,z € K, 2,7 € X, and consider

aB*(x z) is inde-

p

0B

( OB  _
82’ x, X

0z L?([0,0];R")
|B/\($7h) B/\($ h)|LP [0,;R™)

/Oa \h(t — 7(t,20)) — h(t — (1, %)) [P dt
/ocy /01 h(t = 7(t, ) + u(r(t,ze) — 7(1, xt))) du (7.(157 %) - r(t, wt))
/Oa /()l‘h(t = (1,7 + u(r(t @) = 7(t.20) | dulr(t@0) = (1,7

z)h — Z)h

p

dt

p

dt.

IN




74

The definition of K implies that |z — 210 < 6 and |2 — 2%j10 < 6, hence z,z €

EO(|$O|W1,OO + 6). Let L; = L(a, |$0|W1,oo + &), then by (i), Hélder’s inequality and Fu-
bini’s theorem it follows that

0B, OB\ _ _
il 22

I /0 i
)z - al?, /Oa /Ol\h(t () + u(r(t2) — (t2))[ duds
e — 3, /01 /Oa‘h(t —r(tw) +ulr(ta) —r(te)) [ didu. (484)

p

z,z)h —

L ([0,a];R™)

Ol‘h(t — 7,80 + ulr(t, 2) - 7(t,2))) | dufe, - azt\c

p

dt

IN

IN

IN

Since z,z € X., we have for u € [0, 1] that

%((t C ot 3) + () — (L, xt))) - d—(u(t r(t,z) + (1 — u)(t — (1, xt)))
— udi(t (t 9015)) +(1- u)%(t — 7(t, xt))
> ue 4 (1—ue

(
[
—~
-
0
(@)
~—

therefore (4.84), Lemma 4.18 (iii), (iv) and Lemma 4.26 imply that

B B p 1 .
9B (o oy = Iz o < Lrrje -z |hT,
0z 0z L?([0,a];R™) £ « a
1
< ng C4|$ f|§gg|h|§gga
i.e.,
0B 0B L,
H Ma,2) - 2z, < T8 Flxe, (4.86)
0z Lxe e (0,0 RY) P "
hence 3@& is continuous on its domain.

Now we shall show that the function defined by (4.83) is, in fact, the partial derivative of
B, wrt z. The boundedness of %(w, z) follows from Lemma 4.18 (iii) and from the estimates

OBy (/a ) P )1/p
x,2)h = 2t —71(t,x t,x dt
g = ([ et g o
< |zl sU t,x hlc.all?
= P e, éw( Neom e
<z sU t,x cs|h|xr a'/P.
S 0<t£)oz 3¢( 2 L(C,R) alflxe
Elementary manipulations yield that
B p
Bx(z 4+ h,z) — By(2,2) — 0 A(av,z)h
t LP([0,0;R™)
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p

2t —7(t,a+ he)) — 2(t — (8, 24)) + 2(t — 7(4, wt))g—T(t, x)hy| dt

- /0 i
= /Oa /01 2(1& —7(t,2) + u(r(t, @) — 7(t, xe + ht))) du(r(t,x0) — T(t, 24 + hy))

(t x)hy

+ 2(t — (¢, xt)) ’ dt

oY
= /OO‘ /0 (2”(15 — T(t, $t) + U(T(t, $t) — T(t, Ty + ht))) — 2”(15 — 7'(1f7 xt))) du
(Tt xe) = T(t,we + hy))

p

bt - 7(t20) (T(t,xt) (et ho) + %(t xt)ht) dt.
Then by the triangle and Hélder’s inequalities it follows that
By(z 4+ h,z)— By(z,2) — 0B, (z,2)h
v L7 (0,01R")
o 1
< (/ / ((t = 7120 + ulr(toe) = 7t + b)) = 2t = 7(t.20))) du
0 0
P 1/p
(Tt ay) — T(t ae + hy)) dt)
1 or P 1/p
+ (/ (- 7(t,20) <T(t, r0) = (b4 h) + oo xt)ht) dt)
0 (0
a 1
< (/ [ (= rttw + atrtt e = w4 he) = 2= (0,20 du
0 0

P 1/p
dt)

T(t,ay) — T(t, 2+ hy) +

T(t,ay) — 7(t, 2 + hy)

* (/01 aw

First consider the first term of the right hand side of (4.87). Since z + h € K, we have that
|z + h|c < |2°|c + 6. Let L, = L.(e,|2° ¢, + ¢). Then assumption (i), Fubini’s theorem, and
Lemma 4.18 (iii) imply that

(

p

P 1/p
dt) . (4.87)

2t —7(t,2y))

(t x)hy

[ R e R R ) I (O ) R
p dt)l/p

1 2(15 —7(tae) +u(r(t, 2y) — 7(L, 20 + ht))) — At —7(t, xt))\pdu dt)l/p

T(t,ay) — (8, 20 + hy)

IN

Lelhle
0

L7|h|ca< 01 ) z’r(t —7(tae) +u(r(t, 2y) — 7(L, 20 + ht))) — At - (1, xt))‘pdt du)l/p

IN

i 2(15 —7(tae) +u(r(t, @) — 7(4, @ + ht))) — At —7(t, xt))\pdt du)l/z.?
(4.88)

1
L703|h|xg<
0
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Lemma 4.26 yields that

r

as [h|xz — 0, since

(1= 1t w) +u(r(tw) = Tt 20+ ) — 21— 7(1, xt))‘p dt — 0,

‘t —7(t, )+ u(r(t, ) — T(t, 2 + he)) — (t - 7(t, xt)) ‘ = u‘r(t, xy) — T(t,a + ht)‘
— 0, as|hlxzg =0,
by the continuity of 7 and Lemma 4.18 (iii), and because, similarly to (4.85), we can show that
d
(1=t o) + u(r () = 7(t o+ b)) > e
dt
Since z € W1°° we get that the function
- /
0
is bounded on [0, 1], therefore the Lebesgue Dominant Convergence Theorem yields that
1 ro
Iy
Consider the second term of the right hand side of (4.87). By applying Lemma 2.16, assumption
(iii) with Lz = Li(e,|2% ¢, + 8), Lemma 4.18 (iii) and (iv), Lemma 4.26, and that = € X., we

2t =tz 4 u(r(tz) = rltae+ he)) = 20— 7(ta0)| di

H(t=r(t a0 +ul(r(ta) =7t aethe) )= 2(t=7(t2)| dtdu — 0, as hlx; — 0. (4.89)

get
1 p or p N\ l/P
(/ st = rlta)| [r(t) = b+ b+ 50k dt)
0
1/p
! P ar or P
< (t—71(t,z sup ||=—(t,2¢ + vhy) — —(, he |2 dt
(/ (1= ra)|| sup | Fttse b = gota] el )
1 P 1/p
< Iz (/ z’(t—r(t,xt))‘ by det)
0
1 p NP
< sk, ([ [ - st @)
0
1 * 2 .
< 81WLT|h|OOK|Z|Lg
1 b
< 81WLTC:2)>C4|h|2xg|Z|Xg- (4.90)
Combining (4.87), (4.88), (4.89) and (4.90), we get that
0B P
By(z+ h,z)— By(z,z) — x,2)h
|hlxz, ( ) (7.2) = 55 (=:2) L ([0,0]:R™)

1 ro
S LTCS (/ /
0 JO

2(15 —7(t,zy) + ul(r(t, ) — 7(t, 2 + ht)))

. P 1/p 1 9
= it =rte)| dedn) 4 Lt el

— 0, as|hlxz =0,
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which proves (4.83).

Next we show that 222

is continuous on K x XE.

e
0B, OB\ _ _
x,2)h — z,z)h
A T L7([0,0]R")
e, 0 . 9 1/p
= (V/O Z(t — T(t, $t))£(t, xt)ht — 2(t — T(t, ft))ﬁ(u jt)ht‘p dt)

IN

</0a At = 7(t,xy)) — 2(t — 7(t, xt))‘p‘g_;(t7 wt)ht‘p dt)l/p

([

Assumption (iii) with L* = L3(a,]2% 1,0 4 6), Lemma 4.26 and Lemma 4.18 (iii) and (iv)
yield

1/
W—dmmﬁggmmm—%ﬁwmﬁw)p. (4.91)

0B, OB\, _ _
x,2)h — z,Z)h
ax( ) Ox (&2) L2 ([0,0)R™)
o . || OT P 1p
< ([ = rteny = st = st [ 55wl g ile d)

. P P 1/p
St =t a)| fae = @) hel? dt)

(]
0

or N o . P 1/p
(O%%Xa %(t,xt)Hﬁ(aR) + LTz(s) 1B, (/0 [2(t = 7(t.20)) = 21 = 7(t.20) dt)

+ Lile = @lo,hle.a /P2 e

1 87’ _ * . . * _ l/p
Y (0121%)(cy %( ’xt)HE(C,IR) + LTQ(S) |hlc, |2 — Z|L£ + L7z — Z|c, |h|o, o |Z|Wé,m
1 or

+ Li?(ﬁ) 6364|h|xg|2’ — 5|Xg

el/p (o?%xa %( 7jt)H/L(C,IR)

+ Licgeale — @|xp | blxn /7|2l .00,

which implies the continuity of %. [

This concludes the discussion of Example 4.25.

Example 4.29 Consider a special case of Example 4.25, when 7(¢,%¢) (t € [0,a], ¥ € C)
is defined through a function, 7(¢,2), by 7(¢,%) = 7(¢,%(0)). (See also Example 4.2.) It is
easy to check, that the assumptions (i)—(iii) of Example 4.2 on 7 together with the continuous
differentiability of 7(¢,2) wrt ¢ on [0, a] x Q* imply conditions (i)—(iii) of Example 4.25. (Here
we use that the function G : C — R", G(¥) = 9¥(0) is continuously differentiable with
derivative G'(¢)h = 1(0).)

Example 4.30 Let
0

At E) = 3 AuDE =it + [ Glst, 0)E(s) ds,
k=1

—70
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as in Examples 1.4, 3.4 and 3.11. Assume that for k£ = 1,2,...,m each 7 satisfies condition
(i)-(iii) of Example 4.25, then it is easy to see that if there exists € W1 such that

d
a(t—rk(t,xt))25>0, E=1,2,...,m,

for some € > 0, then the composite operator B), corresponding to

ML) = 3 ADE(=ralt, )
k=1

is differentiable for some K. Define

0

Ml 0.6 = [ Gls b)) ds,

—70

This is not a composite function of £ and 1, therefore it is easy to discuss differentiability of
the corresponding composition map, B),, e.g., if we assume that

(iv) G(s,t,7) - ([—7‘, 0] X [0,a] x Q5 C [-r,0] x [0,a] x C) — R™™™ has continuous partial
derivative wrt v,

then B),(z,z) (defined by (4.76)) is continuously differentiable wrt z and z. Since B\, =
By, + B,,, we can get continuous differentiability of By wrt 2 and z.

4.2 Differentiability wrt a parameter in the delay

In this section we study differentiability of solutions of IVP

i(t;e) = f(t, z(u;e), A(t,z(+ o)y c)), te[0,T], (4.92)
x(tye) = (i), te-r0] (4.93)

wrt the parameter ¢ of the delayed term. Here we use the notation

0

A, = [ dast,,0)005), (4.94)
where ¢ € R™, ie., u : [=7,0] X [0,T] x Q3 x Q4 — NBV, and 4 is an open subset of R”.

In this section the initial function, @ and f are considered to be fixed, and hence the solution
depends only on the parameter ¢ of u. We shall use z(¢;¢) and z(-;¢); to denote the value of
the solution and the solution segment function at ¢, respectively, corresponding to parameter
c.

Define the function o

At = [ daptsti,oE(s) (4.95)

In this section we modify assumptions (A2), (A5) (since p depends on the variable ¢ as

well) as follows:
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(A2’) the function p : ([—7‘, 0] X [0,7] X Q3 x Qg C[-7,0]x[0,7T]x C x Rm) — NBV is such
that the function

0
0.7 % Qs x Q=R (L) [ dap(st, i, 0)(s)

—r

is continuous and bounded on its domain for all £ € Go(1), (where pu(-,t,,¢) denotes
the image function corresponding to ¢, and ¢),

(A5") for every a > 0, My, My > 0 there exists a constant Ly = Lo(a, My, My) such that for
all E e Whee 1 €[0,a],v,v € Go(My) N Q3 and ¢, ¢ € Grm(Mz) N Qy

|/\(t7¢7€70) - /\(tvlzvaéﬂ < L2|£|W17‘X’ (|¢ - ch + |C - E||Rm)7

For a given ¢ € {4 define the function

Hc(87t7 /l/b) = l’L(‘S?t?/l/b?C)'
Assume that ¢, ¢, and p are such that

0
e(0) ey, ¢€Q3 and dspi(s,0,0,¢)p(s)ds € Qg, (4.96)

(see (3.9)). By (A2’) and (A5’) the function p° satisfies (A2) and (A5), thus assumption (4.96)
together with Theorems 3.8 and 3.19 imply that IVP (3.1)-(3.2) corresponding to (¢, i, f)
has a unique solution, and consequently, IVP (4.92)-(4.93) with the fixed parameter value, ¢,
has a unique solution on an interval [0, a]. By assumption (A2’) and the facts that €, and 4
are open, it follows that the unique solution exists in a neighborhood of ¢ as well.

Define the norm of a function u satisfying (A2’) by

|2l = sup {‘/_0 dspi(s, 1,1, ¢)€(s)

The following lemma is an easy consequence of the definition of || -|| and (A5’). (See the proof
of Lemma 3.12.)

C0.T) b€ ce 0 E€Te(l). (19T

Lemma 4.31 Assume (A2°) and (A5°). Then
At 15, 0) = A, 6,0)] < (Jlull + La(er, M, Ma)[lyee ) (110 = e+ e = el ),

where t € [0,a], 1,9 € Go(My) N Q3, p € W and ¢,¢ € Gpm(Ma) N Qy.

The following theorem can be proved the same way we proved Theorem 3.25, using Lemma
4.31. The proof is omitted.

Theorem 4.32 Assume that ¢, p, f and ¢ satisfy (A1), (A2°), (A3), (A4), (A5°), (A6) and
(4.96), and let 1 < p < co. Then there exist constants a >0, 6 > 0 and Ls = Ls(p, o, ¢,¢,0),
such that IVP (4.92)-(4.93) has a unique solution on [0, «] for all ¢ € Q4 with |c — é|gm < 6,
and

|z(-5¢)t — 2(-5€)elwre < Lale —clgm, t€[0,al.
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4.2.1 Special case, differentiability in W

In this subsection case we shall obtain differentiability of solutions wrt ¢ in a special case
(similarly to Section 4.1.1). In particular, we assume that the initial function guarantees that
the solution is a C'! function, i.e., ¢ satisfies that

e ' and 99(0_) = f(Ov 997A(079970))‘
We make the following assumption (see (A8a) of Section 4.1.1 for comparison):

(A8a’) (i) For every a > 0, My, My > 0 there exists a constant Ly = La(a, My, M3) such
that for all £ € Whe .1 € [0,a], ¥, € Go(My) N Q3, and ¢, ¢ € Ggm(Ma) N Qy,

|A(t7¢7£70) - A(fv &7576” < L2|£|W17‘X’ (|t - ﬂ + |¢ - ch + |C - E|Rm)7

(i) For all ¢ € [0,T], v € Wb N Qs, £ € C! and ¢ € Q4 the function A(¢,,&,¢) is

continuously differentiable wrt % and ¢ on its domain,

(iii) For all ¢ € Q3 we have that A(0,1,¢) is independent of ¢ € Q4.

We comment, that even in the state-independent case, ¢ appears naturally inside the ar-
gument of £ in A(?,1, &, ¢) (see Example 4.35 below), therefore differentiability of A wrt ¢ can
not be obtained for arbitrary £ € W1 functions.

The next lemma shows that (A2’) and (A8a’) (i) yield that A(¢,v,&,¢) is continuously
differentiable wrt £ on its domain.

Lemma 4.33 Assume (A2°) and (A8a’) (i). Then the function A(t,v,&,¢) is continuously
differentiable wrt £, and for t € [0,T], » € Wh* N Q3, £ € WH* and ¢ € Qq4, and

2

85 (t7¢7£7 C)h = A(t7/l/b7}l/7 C)? h 6 W17OO7

Proof The differentiability of A(¢,1,&,¢) wrt £ with the above derivative follows from the
linearity of A in £. The continuity of the derivative is the consequence of assumption (A8a’)
(i) using the inequality

oA oN _ - _ _
ge b sE = 8—£<t,¢,5,c>h\ < Lolhlyee (1t = 2] + 19 = $lo + |e — elgm )
for t,fE [0,&], vaQL € GWLOO (Ml)v Cvé € GRm(MZ)v L2 = L?(alevMZ)' D

Assumption (A8a’) (i), and (ii), Lemma 4.33, Lemma 2.17 and the Chain Rule imply
immediately:

Lemma 4.34 Assume (A2°), (A5°) and (A8a’) (i), (ii). Then the function A(t,v,c¢) is con-
tinuously differentiable wrt ¢ fort € [0,T], ¥ € W N Qs, ¢ € Q4 C R™.



81

Example 4.35 We illustrate conditions (A2’), (A5’), and (A8a’) on the delay function of
Example 1.3. Consider the equation

i(t) = f(to(),2(t = 1,2, 0))),  1E[0,7], (4.98)

where we assume that the point delay function, 7(¢,,¢), depends on a parameter ¢ € €4 as
well. As in Example 1.3, we can see that by defining the function u(s,t, ¥, ¢) = X[_r (1,00 (8
Equation (4.98) transforms into the form of (4.92). The function A corresponding to p has the
form

A(t,¢,£,€) = 5(_T(t7¢76))' (499)
(See also Examples 1.3, 3.3 and 3.10.) Assume that 7 satisfies
(i) 7(-, ) - ([O,T] X Q3 x Qy C[0,T]x C X Rm) — R is continuous,

(ii) 7(t,1,¢)is locally Lipschitz-continuous in ¢ and ¢, i.e., for every a > 0, My > 0, M3 > 0
there exists a constant L, = L.(a, My, My) such that for ¢,1 € [0,a], ¢, ¢ € Go(M;)N Q3
and ¢, ¢ € Grm(Ma) N Qy

(16, 0) = 7,0 < L (|t = 1]+ [0 = Blwres + e = elgm),
(iii) 7(¢,,¢) ([O,T] X (WheonQs) x Q4 C [0,T] x Whe x Rm) — R is continuously
differentiable wrt ¢ and c,
(iv) 2% is bounded on [0,7] x (W'* N Q3) x Qy, and

(v) 7(0,%,¢) is independent of ¢, (e.g., 7 has the form 7(¢,1,¢) = ¢t + 7(1) for some 7
C —RY).

Then it is easy to see that these conditions imply (A2’), (A5’) and (A8a’).

Now we are at the position to state our results concerning the differentiability of the solution
wrt a parameter in the delay.

For ¢ € Q4, h € R™ define the function z(-; k) as the solution of the linear IVP

2t;h) = %(t,x(t;c),A(t,w(-;c)t,c))z(t;h)
of . . OA (.. .
+ 8—y(t,x(t, 0), At 25 0)irc)) <%(t,x(-, )i, €)2(+5 )y
N Z—ﬁ(tvw('%c)tv C)h), 1eo,T], (4.100)
2(t;h) = 0, te[-r0]. (4.101)

We comment, that assuming (A1)-(A8a’), the solution, z(-; k), of this IVP exists, and depends
linearly on h.

The next theorem shows that (the modified) assumptions (A1l)-(A8a’) imply that the
function (94 C Rm) — R"™, ¢ z(t;c) is differentiable for all ¢ € [0,77].
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Theorem 4.36 Let ¢, ¢, p and f be fived satisfying (A1), (A2°), (A3), (A4), (A5’), (A6),
(A7), (A8a’) and (4.96), and assume that o € C', $(0—) = (0,0, A(0,¢,c)). Then

(1) the solution x(t;c) of IVP (4.92)-(4.93) is differentiable wrt ¢ for allt € [0,a] and ¢ € Qq4,
z(t;e+ h) —z(t; o)

(ii) ] converges uniformly to g—f(t; ¢)ontel0,al,
Rm
(1ii) the derivative is g—f(t; c)h = z(t; h), where z(t; h) is the solution of the linear IVP (4.100)-
(4.101).
Proof The proof is analogous to that of Theorem 4.8, and therefore it is omitted. (]

Corollary 4.37 Assuming the conditions of Theorem 4.36, the function
Qy—C, c—a(-,c)

is differentiable for all t € [0, ).

Next we state the result for differentiability of the map (94 C Rm) — Whe e a(-e)
without the proof, which is analogous to that of Theorem 4.11.

Theorem 4.38 Assume that the conditions of Theorem 4.36 are satisfied. Then the function
Qq — Wh ¢ x(-5¢); is differentiable for all t € [0, a].

4.2.2 General case, differentiability in W7

In this section we study the general case of differentiability of solutions of IVP (4.92)-(4.93),
without the strong assumption (A8a’) of the previous section. We shall use the same method
that was used in Section 4.1.3. We transform (4.92)-(4.93) by the new variable y(t) = z(t)—(t)

nto 0, R
= t
y(t)—{ / f(u, y(u) + ¢(u), Alu, yu + c,éu,c)) du, 1€[0,T], (4.102)
0
and introduce the operator
" te[-r0]
= t
S(y,e)(t) = { /0 f(u, y(u) + @(u), Au,y, + 951“6)) du, 1€ 0,T]. (4.103)

As in Section 4.1.3, we consider S(y, ¢) as a map

for some @ > 0, 3 > 0 and ¢ > 0.

It is easy to see, by repeating the proof of Lemma 4.19, that the following result holds.
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Lemma 4.39 Let 1 < p < oo, ¢ € Q4 and R > 0. Then there exist & > 0, a >0 and 3 > 0
such that Ggm(¢; §) C 4, and the operator S defined by (4.103) satisfies

(i) S+ Gyr (B) x Grr (& 6) — Gyr (B),

(ii) S is a uniform contraction on avg (B) N awé,m(R) both in | - |yr and |- |y norms, i.e.,
there exists 0 < § < 1 such that for all ¢ € Ggm(¢; 6), y,y € GYZ (B) N Gy (R)

|S(y,C) - S(@j, C)|Ygo < 0|y - 37|Y207
and
15(y. ) = S, c)lyr < Oly—ylyr.

Next we define the composite operator By in this section. Fix 1 < p < oo and let K be an
open subset of W1°°. Then define
By (/c X Qq C XE % Rm) — LP([0,a);RY),  Ba(z,o)(t)= A(t,zp,¢),  te€[0,al.

(4.104)
We assume that:

(A8b’) the operator By defined by (4.104) is continuously differentiable on & x €4 wrt 2 and
c.

The following lemma shows that assumption (A8b) yields the existence of continuous partial
derivatives of S(y, ) if we restrict y to a certain subset of its domain, and the derivative is
taken in the restricted space (in relative topology).

Lemma 4.40 Let ¢ € Q4, 1 < p < o0 be fived, and R > 0 given, and assume (A1)-(A7) and
(A8b°). Let 6, a, 3 be the constants from Lemma 4.39, i.e., such that the operator S defined
by (4.103) satisfies

S ayg (3) x Grm(c; 8) — Eyg (8),

and it is a uniform contraction on GY? (ﬁ) N GR’" (R). Assume that there exists W C YZ such
that

(i) W C (Gyz () N Grm(R)),
(ii) fory € W it follows that y + ¢ € K.
Then the operator
Sy, c) : (W X Grm (¢ 6) C (WNYL) X Rm) — Y2

has continuous partial derivatives wrt y and ¢ on its domain, and for y € W, ¢ € Ggm(c; 6),
h € Y% we have that

(o)

07 te [_Tv 0]7

_ (s y() + @), Al g+ s ) () (4.105)

+ M (uv y(u) + @(u), Aw, yu + Pus C)) (8%(3/ + &, C)h)(u) du, t€10,al,
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and for y € W, ¢ € Ggm(c; §), h € R™ it follows that

(S0.em)

0, te[-r0],
::{MAg%(%yw)+¢w%Awﬂw+¢mcn(%%¥y+¢mw)wwm.temww
(4.106)

Proof Relation (4.105) is a restatement of (4.50) using p© in the equation. The continuity
of %(y, ¢) for a fixed ¢ also follows from Lemma 4.22, but the continuity wrt y and ¢ needs to
be proved. The proof goes similarly to that in Lemma 4.22, using the assumed continuity of

%(w, ¢), and (A5’), and it is omitted.

To show the second part of the lemma, first note, that the operator %(y,c) defined by
(4.106) is clearly linear. Fix y € W, ¢ € Q4. Then for this fixed ¢ consider p°, and with it
we can define the constant My (which then depends on ¢), repeating (4.52)(4.55). Then M,
satisfies the estimates (4.56) and (4.57) (with using p¢), and hence it is easy to obtain that

0B

< My e

(y+ ¢, ¢)

a5
|5 w0

R YD) LR L7 (0,61R"))

which gives the boundedness of 23(y, c).
To show that it is the derivative of S(y,¢) wrt ¢, let h € R™, and consider

5(0c+0) = S(.0) = S (w0

Jdc
N (/oa S, y(u) + @(w), A, yu + Gur e+ b)) = flu,y(u) + @(w), A, yu + Gu, )

_ Z_; (U, y(u) + ¢(u), A, yu + Pus C)) (83%(@/ e C)h) .

Y2

P 1/p
du) . (4.107)

Define the function

Wt z,e;h) = At zg, e+ h) — A(t, 24, ¢) — (8£A (z, c)h) (1)

fort €1[0,a],z € K, c € Q4 and h € R™. Then (A8b’) implies that

1
|2 g

& 1/p
(/ |w5(t,x,c;h)|pdt) 0, as |hlgm — 0. (4.108)
0
Using this notation and the function w! defined by (4.7), (4.107) and the definition of My yield

St ) = 5000~ S

-

Y2

&

1/p
My (0) + E(0), At 1+ B 9(0)+ ) A+ P 1) du)

(L

dy

1/p
~ - - P
(190 + 300 Mg+ 05000,y + 50
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< ([ et 00+ 0 M+ B i)+ 20 Ak e+ i) )

A

which by (4.108), and by that the first integral divided by |h|gm goes to zero, as |h|gm — 0
proves that %(y, ¢) is, in fact, the partial derivative of S wrt ¢. (Here to prove the first fact,
we use (4.8), and that by (A5), |A(u, yu + Pu.c+h) — A(w, Yy + Pu, ¢)| — 0 as |h|gm — 0, and
the Lebesgue Dominant Convergence Theorem.)

Finally, we show the continuity of %(y, c). Let y* € Y2 and ¢* € Q4 such that |y* —y|vg -

» 1/p
ws(uvy—l_ ¢7C7h)‘ du) P

0 and |¢F — ¢|gm — 0 as k — oc. Let h € R™, and consider

05 . . 08
de ( ) € )h - %(yvc)h

<(f

P
Ya
P

2 (004 600 M+ 6009) = L () + G0 A0+ 6000)

P 1/p
du)

() + ¢(u), A, gl + Zur b))

K%iy+w,hym

( Ba

‘(8_ L

p

P 1/p
du)
H . H 0B

< sup
o<u<a

of
_a_y(

(w0 + 0. A+ 0. ch)

|2 |jm
C(R™ L ([0,6}:R™))

u, y(u) + G(u), Aw, Yu + Pu, ©) ——(y+&,¢)

0B 0B .
e (v* + ¢, ") - e —— W+ &,¢)

+ My

2R,
C(R™, L7 ([0,6];R"™))

which yields the continuity of %, using the assumed continuity of %, and the continuity of

5L and A, and that |y*(u) + @(u) — (y(u) + $(u))| = 0 and [yf + G, — (yu + Gu)lc — 0 as
k — oo, which follows from the proof of Lemma 4.22. (]

Using Lemmas 4.39 and 4.40, the proof of the following theorem is essentially the same as
that of Theorem 4.23, and therefore it is omitted.

Theorem 4.41 Assume that @, p, f and ¢ satisfy (A1)-(A7) and (A8b’°). Then there exist
a > 0 and & > 0 such that IVP (4.1)-(4.2) has a unique solution, z(t;c), on [0,a] corre-
sponding to any parameter ¢ € Ggm(¢; 8). Assume that z(-;¢) € K, then x(-;¢) is continuously
differentiable wrt ¢, as a function

Grr(c; 0) = X5, c—=a(s0).
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To conclude this section, we present conditions applying (A8b’) in two special examples.

Example 4.42 Consider again Example 1.1, i.e.,

#(t) = Agu(t) + Y Apa(t — 1), (4.109)
k=1
where Ay, € R**". Here we can think of the delays, ¢ = (71, 72, .. .,Tm)T, as a vector parameter.
Define
Oy = {(Cl,...,cm)T ER™ :0<e¢;<r, 1= 1,2,...,m}.
Let ¢ = (¢1,...,¢,)". As we have seen in Example 1.1, by defining

1(5,¢) = Y ApX[ep0)(5);
k=1

we can rewrite (4.109) in the form

&(t) = Agz(t) + ’ dgp(s, c)ay.

-7

It is easy to see that the function A corresponding to p depends only on £ and ¢, and has the
form

MNE )= 3 Apk(—er). (4.110)
k=1

Then, clearly, |A(&,¢)| < Y27 ||Ax|| is satisfied for £ € Ge(1) and ¢ € Qy, therefore (A27)
is satisfied. The equivalence of norms on a finite dimensional space implies that there exist
constants Py, P, > 0 (depending on the norm | - |gm) such that

Prlelgm <> lex| < Pylelgm (4.111)
k=1

forall ¢ = (c1,...,cn)T ER™. Let £ € Wh ¢ = (c1,..,cm) 6= (E1y. .. Em)T € Q4. Then
it follows from (4.110) using the Mean Value Theorem and (4.111) that

MED-MED] < S0 AllE(—ex) — E(—er)]
k=1

m
< e
< |£|1,ook:H11i)meAkaZ::l|Ck |
< €l1,00 P2 max || Ag|||e — €|gm.
k=1,....,m

This shows that (A5’) is satisfied, moreover, the constant Ly = Py maxg—1, ., ||Ax|| is global
in ¢. The composition operator corresponding to (4.110) has the form:

By @ XE x Q4 — LP([0,a];R"), Ba(z,c)(t) = Z Apa(t — cr), te[0,al.
k=1
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Then we show that (A8b’) is satisfied with K = W2 and for € X?, and h € X% we have
that

(?A(%C)h)(t) = i Aph(t —cg), te(0,al, (4.112)
& k=1

and for b = (hy, ha, ..., hy)T € R™ it follows that

<8BA

e (waC)h)(t) = - i Api(t = cp)he, t€[0,al. (4.113)

k=1

To prove (4.112), first note, that the formula follows trivially from the linearity of Ba(x,¢) in
x, we need to show that this is a bounded operator, and then that %(w, ¢) is continuous in

2 and ¢. The boundedness follows from

0B\
Oz

(z,c)h

< Chlhlxe > 1Al
LF([0,a];R™) k=1

which is easy to obtain, using Lemma 4.18 (i) with constant C;. For the continuity first note

that %(w,c) is independent of z. Let |¢! — ¢c|gm — 0 as i — oo, ¢ = (ci,...,c.)T, and
consider
0B : 0B
A(w,cl)h — A(ac,c)h
Ox Ox LP([0,0];R™)

< éuzxku ( /0“|h<t—c;;>—h<t—ck>|pdt)1/p

- é”A’“” (/

m
< SO NAMl Lzl - el
k=1

L o\
/ h(t — cp + ulcx —¢p.)) du dt) ¢}, — ¢k
0

Then Lemma 4.18 (iv) with constant Cy and (4.111) imply that

m

9B RN

x,c)h x,c)h < max ||Ag||Cqlh|xp b — cp
e e s e AR D e e
< max || A]|CaPalhlxg ¢’ - clrm,

. .. 5B
which proves the continuity of <72.

Next we show (4.113). The boundedness of % follows from

0B\
Jde

(z,c)h

IN

| Akl |y [Pkl
L7 ([0.0]:R") ;; a

IN

pnax | Ag[lll o Palhlge.



88

To show that this is the derivative, consider

‘BA(w, ¢+ h)— Ba(z,c) — 0B (z,c)h
de LP ([0,0]:R")
ol m p l/p
= (/ Z Ay, (x(t —cp — hk) — x(t — Ck) + i(t — Ck)hk) dt)
0 k=1

1/p
t—Ck—hk)—w(t—Ck)—l—w(t—Ck hk‘ dt) ,

IN

> f

which implies (4.113), since for a.e. ¢t € [0, a]
W‘x(t —cp— hg)—a(t —cp)+a(t— ck)hk‘ — 0, as |h|gm — 0,
Rm
and therefore the Lebesgue Dominant Convergence Theorem implies the statement. To show
continuity of %(w, c),let [z'—x|xr — 0 and |¢'—c|gm — 0, then by applying similar estimates
that we used above we get

aBA i i . aBA
e (z', ¢ )h e (z,c)h

LP([0,0]R™)

m
< S NARN(1E — @log + oLz lek — exl ) sl
k=1
< max A (C4|w2 — ol + 3]y max e — Ckl) AR,

which proves the continuity of %(w, c).

Example 4.43 Consider the delay function of Example 4.35:

A(tv ¢7 57 C) = 5(_T(t7 ¢7 C))
Assume that 7 satisfies condition (i) and (ii) of Example 4.35. Then (A2’) and (A5’) are
satisfied. The composite function B of this example is
BA(xv C)(t) = $(t - T(tv Lt C))
If we assume that
(iii) 7(t,4,c) : ([0,&] X Q3 x Qy C[0,a] x C X Rm) — R is continuously differentiable wrt
t, ¢ and c,
iv) 2Z(t, 4, ¢), t, v, ¢) and Z(t, 1, ¢) are locally Lipschitz-continuous in  and ¢, i.e., for
9t aw BE

every My > 0, My > 0 there exists L7 = L¥(a, My, M) such that for all ¢ € [0, ],
W, € Gc(Ml) N Q3 and ¢, € Gpm(My) N Qy it follows that

0 0 - -
Selt e = So(t )| < L (6 = dlo + e = elmn)
or or N 7 .
|5t ve- 5t 50| o S B (10 = o tle dlar).
and 9
. ]
5o eer - Gredal < B0 = dlo +le - clae).
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and assuming that

d

dt
for some @ € W1 ¢ € Q4 and € > 0, then by repeating the proofs of Example 4.25 we can
show that (A8b’) is satisfied in a neighborhood of (,¢). The details are omitted.

(t — T(t,xt,c)) > ¢, a.e. t € [0,a],

4.3 Differentiability wrt a parameter in the equation

In this section we study differentiability of solutions of IVP

i(tid) = f(t, x(u;d),A(t,x(-;d)t),d), te0,T] (4.114)
x(t;d) = (b)), te[-r,0] (4.115)

wrt the parameter d of the equation. We assume that d € R™, i.e., f : [0,T] x Q2 X Qg X Q5 —
R™, where {25 is an open subset of R™. In this section the initial function, f and p are fixed,
and only the parameter d of the equation varies, and therefore, to emphasize the dependence
of the solution on d, we use the notations z(¢;d) and z(-;d); for the value of the solution and
for the solution segment function at ¢, respectively, corresponding to parameter d.

In this section we replace assumptions (Al), (A4) and (A7) by the following ones, respec-
tively.

(A1) the function f : [0,7] x Q1 X Q2 X 25 — R™ is bounded and continuous on its domain,

(A4’) for each d the function f(¢,,y,d) is locally Lipschitz-continuous in its second and third
variables, i.e., for every d € €25, & > 0, M > 0 there exists a constant L, = Li(d,a, M)
such that for all t € [0,a], 2,7 € Grn(M)N Qy and y,y € Gre(M) N Qy

(g, d) = [t 2,5, d) < Lo =2l + 1y = 9]).

(A7) (i) The function f(t,2z,y,d) : [0,7] X Q1 x Q3 X 25 — R™ is continuously differentiable
wrt z, y and d, and

(ii) %(t,w,y,d) is bounded on [0,7] x Q1 x Q5 X Q5.

By (A1), the following definition is meaningful.
I1f] = sup{|f(t,x,y,d)| c1e[0,T), 2€Q, ye Qs and de 95}. (4.116)
For given d € 25 define the function

fd(t7 x? y) = f(t7 x? y? d)'

Then by (A1’) and (A4’) the function f? satisfies (A1) and (A4), and then by applying Theo-
rems 3.8 and 3.19, we get that IVP (3.1)-(3.2) corresponding to the function f? has a unique
solution, and consequently, IVP (4.114)-(4.115) has a unique solution on an interval [0, «] for
the fixed parameter value d.
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By assumption (A7’), the constant

N = sup {H%(taw,y,d)

Dt e [O,T],xeﬁl,yeQQ,dem} (4.117)

Rnxm

is well-defined and satisfies
1/ = S < Nld — dlgm,  for d.d € Q5. (4.118)
therefore Theorems 3.20 and 3.25 imply the following result.

Theorem 4.44 Assume (A1°), (A2), (A3), (A4°), (A5)—(A6) and (A7), and let 1 < p < oo.
For a given d € Qs there exist constants a > 0, § > 0 and Ls = Lg(p,q,(f,é), such that IVP
(4.114)-(4.115) has a unique solution on [0,a] for all d € Q5 with |d — d|gm < ¢, and

|z(-3d)s — $(';3)t|ww < Lsld — J||Rm7 t €0, al.

We comment, that condition (A7) (ii) is assumed only for simplicity of the discussion. (The-
orem 4.44 could be proved without this assumption.) Note also that, of course, (A7’) implies

(A4).

4.3.1 Special case, differentiability in W'

In this subsection we study the special case corresponding to that in Section 4.1.1, i.e., we shall
assume that either the equation is state-independent, (i.e., u(s,t,1), or equivalently, A(¢,,£)
is independent of 1) or in the state-dependent case the initial function ¢ € C' such that
P(0—) = f(0,9(0),A(0,¢),d), and we assume that f(0,z,y,d)is independent of d for z € £,
y € Q. As in Section 4.1.1, we shall use assumption (A8a) on the delay function to obtain
our results.

For d € Q5, h € R™ let z(+; h) be the solution of the linear IVP

Htih) = %(t,x(t;d),A(t,x(-;d)t),d)z(t;h)

+ g—‘;(t,x(t;d),A(t,x(-;d)ﬂ,d)?—i(t,x(-;d)t)z(-;h)t

+ %(t,x(t;d),A(t,x(-;d)t),d)h, tef0,T], (4.119)
z(t;h) = 0, te-r0]. (4.120)

We comment, that the solution, z(-; h) of this IVP exists, and depends linearly on h.

Next we state the results corresponding to Theorems 4.8 and 4.11. The proofs are omitted,
since they are analogous to those in Section 4.1.1.

Theorem 4.45 Let ¢, d, p and f be fized satisfying (A1°), (A2), (A3), (A4’), (A5), (A6),
(A7) and (A8a), and assume that either

(1) the equation is state-independent, i.e., A(t,1,&) is independent of 1,
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or
(2) in the state-dependent case
(a) f(0,2,y,d) is independent of d for x € Qq, y € Qq, and
(b) € Ct and $(0-) = f(0,£(0),A(0, ¢),d).
Then

(i) the solution, x(t;d), of IVP (4.114)-(4.115) is differentiable wrt d for all t € [0,a] and
dc 95,

a(d ) — (i d) . N
(ii) e converges uniformly to $5(t;d) on t € [0, o,

(iii) the derivative is 32(t; d)h = z(t; h), where z(t; h) is the solution of the linear IVP ({.119)-
(4.120).

Corollary 4.46 Assuming the conditions of Theorem 4.45, the function
(95 c Rm) — O, d— (-, d)
is differentiable for all t € [0, ).

Theorem 4.47 Assume that the conditions of Theorem 4.45 are satisfied. Then the function
(95 C Rm) — Wt dw x(;d); is differentiable for all t € [0, a].

4.3.2 General case, differentiability in W7

In this subsection we show that assumptions (A1)~(A7’) and (A8b) imply that the solution
is differentiable wrt d in the state-space WP, As in Sections 4.1.3 and 4.2.2, we transform
(4.114)-(4.115) into

0, te[-r0]
¥ = { /Ot f(u, y(u) + @(u), Alu, yy + @u)s d) du, t€1[0,17], (4.121)
and introduce the operator
0, te-r0]
Sy, d)(t) = { /Ot f(u, y(u) + @(u), Alu, yy + @u)s d) du, t€10,77], (4.122)

where we consider 5 as

S+ Gyr(B) x Grm(d; 8) — Y

where @ > 0, 3 > 0 and ¢ > 0 is specified by the next lemma.
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Lemma 4.48 Let 1 < p < o0, d e Qs and R > 0. Then there exist 6 > 0, @ > 0 and § > 0
such that Ggm (d; §) C Qs, and the operator S defined by (4.122) satisfies

() S+ Gyr(B) x G (d; §) — Gy (),
(ii) S is a uniform contraction on GYZ (B) N awé,m(R) both in | - |yr and |- |y norms, i.e.,
there exists 0 < 0 < 1 such that for all d € Ggm (d; ¢), y, ¥ € GYZ (8) N Gy (R)
|S(y7 d) - S(@j, d)|Y;O < 0|y - 37|Y207

and

15(y, d) = 5(g, d)|yz < 0ly — glyz.
The proof is an obvious modification that of Lemma 4.19.

The next lemma guarantees continuous differentiability of S(y,d) wrt y and d.

Lemma 4.49 Let d € Q5, 1 < p < 00 be fized, and R > 0 given, and assume (A1°), (A2),
(A3), (A}°), (A5), (A6), (AT’) and (A8b). Let &, a, B be the constants from Lemma 4.48,
i.e., such that the operator S defined by (4.122) satisfies

S Gyr (9) x G (d; 6) — Gyr (1),

and it is a uniform contraction on GY? (ﬁ) N GR’" (R). Assume that there exists W C YZ such
that

(i) W C (Gyz (8) N Grm(R)),
(ii) fory € W it follows that y + ¢ € K.

Then the operator
S(y,d) - (W X Grm (d; &) C (WNYL) x Rm) — YL

has continuous partial derivatives wrt y and d on its domain, and for y € W, d € Ggm (d; ¢),
h € YL we have that

(Powan)

0, 1€ [—7‘, 0],
) [ S (vt + o, A gt g, d) i) (1.123)

+ a_(“’ y(w) + @), A, g + $0), ) (5%@ + @)h)(u) du, ¢ 0,a],

and for y € W, d € Ggm (d; 6), h € R™ it follows that

a5 O,t te[-r0],
(%(y,d)h) (1) = { i %(u,y(u)—l—@(u),/&(u,yu—l—cfou),d)hdu. t €[0,al.

(4.124)
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Proof Relation (4.123) follows from (4.50) by applying Lemma 4.22 for f?, only the conti-

nuity of %(y,d) wrt y and d requires a proof, which is omitted, since it follows like that in
Lemma 4.22.

Let h e R™, y € W, d € Q5. Assumption (A7") (ii), and (4.117) yield that

(y,d)h

< Na'/?|h|gm,
Y2

&

ad
which proves the boundedness of %(y, d). Consider

a5

S(yvd‘I'h)_S(yvd)_ %

(y,d)h

| |gm \%4

_ |h|1Rm (/Oa‘f(u, y(u) + F(u), At yu + o), d + 1)

— flu, y(u) + S(u), Alu, yu + @u), d)

df ) ) P 1/p

- %(u,y(u) + @(u)vA(uvyu‘l’ Q‘Qu)vd)h du) ’
from which (4.124) follows, using differentiability of f wrt d, and the Lebesgue Dominant
Convergence Theorem. It is easy to see the continuity of %(y, d). [

The following theorem is based on Lemmas 4.48 and 4.49 and Theorem 4.14. The proof is
omitted, since it is the same as that of Theorem 4.23.

Theorem 4.50 Assume that o, p, f and ¢ satisfy (A1°), (A2), (A3), (A4’), (A5), (A6), (AT’)
and (A8b). Then there exist a > 0, 6 > 0 such that IVP (4.114)-(4.115) has unique solution,
z(t;d), on [0, a] corresponding to any parameter d € Ggm (d; §). Assume that z(+;d) € K, then
x(t;d) is continuously differentiable wrt d, as a function

Grr(d; 6) — X5, d v a(-1d).



Chapter 5
STABILITY BY LINEARIZATION

Stability properties of solutions of a modeling differential equation are of great importance
in applications. For linear delay equations the stability of the trivial («(¢) = 0) solution is
characterized by the location of the zeros of its characteristic equation. Necessary and sufficient
conditions for stability in terms of the parameters (coefficients, delays) of the equation are
known only for the simplest equations, even in the case of linear constant delay equations.
There are numerous sufficient conditions for guaranteeing stability for special equations (see
e.g. [31]). One possible approach to find sufficient stability conditions is, analogously to the
ODEs case, by Liapunov’s method. But, unfortunately, there is no general strategy to construct
a Liapunov functional for a given equation, and if the equation is complicated (nonlinear, with
several time- or state-dependent delays), obtaining a Liapunov functional can be very difficult
if not impossible.

For nonlinear autonomous ODEs the linearization method is a very useful one, since we
can deduce stability properties of the solution of the nonlinear equation from that of the
corresponding linear equation, which is significantly easier to check. Recently, Cooke and
Huang ([13]) introduced this method for nonlinear delay equations with state-dependent delays
of the form (3.64). Since this technique is a very powerful tool to discuss local stability
properties of a nonlinear delay equation, in this chapter we shall obtain a similar linearization
test for the autonomous version of our equation, (3.1). Note, that despite the significant
technical differences between our presentation and that of [13] due to the different form of the
two equations, the main ideas are of course the same, since both follow the steps of the proof
of the ODEs case (see e.g. [39]), and the two results are equivalent in the sence that they both
provide the same linear equation for nonlinear equations which can be rewritten in both forms.
Example 5.8 will show an equation, which is not included in (3.64), but is covered by (3.1),
and of course, examples can be constructed for the opposite direction as well.

We note, that the main difficulty to obtain linearization results for state-dependent de-
lay equations is that it is difficult to differentiate the delayed term in the presence of state-
dependent delays (see in Chapter 4). We shall define a bounded linear operator, ¥ : ' — R"
(see (5.6) below), as a candidate for the linearized equation about the trivial solution. This
is not the “true” linearization at zero, since the delayed term is not necessarily differentiable
at zero (in the space '), but using assumption (A5), we can get an estimate on the error
replacing the right hand side of the equation by Fa; (see Lemma 5.2 below), which turns out
to be sufficient to prove that the asymptotic stability of the corresponding linearized equation,
(5.9), implies that of the nonlinear equation, (5.1).

Section 5.1 contains the main results, and in Section 5.2 we illustrate the method on several
examples with constant, time- and state-dependent delays.

94
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5.1 Main results

Consider the autonomous version of (3.1)

In this section we use the notations

0
N6 = [ dls,b)els) befs e

-7

and

A(Qb) = A(¢7¢)7 ¢ € 937

i.e., we use the notations of the previous chapters but omitting ¢ from the arguments. We
assume hypotheses (A1)—~(AT7) (with the understanding that ¢ is missing from the arguments
of f and p), and we also assume that

(H) 0e Ql N QQ, and f(0,0) = 0,

i.e., * = 0 is an equilibrium point of equation (5.1). Note, that by Theorems 3.8 and 3.14,
IVP (5.1)~(5.2) has a unique solution on [—r, a] for some a > 0.

First we introduce constants which we shall use throughout this section.

It follows from the assumption that €4 and €, are open subsets of R® and 0 € Q1 N Q5
that there exists a constant 6; > 0 such that Ggr(61) C Q1 N Qa. Assumption (A4) (or (A7))
implies that there exists a constant Ly = L1(é1) such that

[f(z,y) = f(@, 9| < La(lv — 2|+ |y —gl),  for z,2,5,7 € Gro(é1). (5.3)
Inequality (2.5) and |z(?)] < |2¢|¢ yield that
x(t) € Ggn(é1) and A(xy) € Ggr(61)  for a4 € Geo(62), (5.4)
where 8 = 6y min{1, 1/||x||}-

We shall need the following estimate.

Lemma 5.1 Assume (A1)-(A7) and (H). Let x be the solution of (5.1)-(5.2) corresponding to
initial function ¢ satisfying |p|c < b2. Assume that a > 0 is such that |x¢| < 63 for 0 <t < a.
Then the solution x satisfies the inequality

o] < leleexp(La(L 4+ [lulit),  t€[0,al.
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Proof Let o > 0 satisfy the condition of the lemma, and let ¢ € [0, a]. The integrated form
of (5.1), and relations (5.3), (5.4) and (H) yield the following estimates.

w0 < 1pt0)]+ [ 15w Al du
< el I [ lel+ 1G] du
< lele I [ el + alllale du. (55)

Lemma 2.14, the assumption |¢|c < 82 and (5.5) imply that

13
max [o(0)] < [gle + La(L+ ) [ max fo(o)ldu, 1€ (0,0,

—r<v<t

which, using Gronwall-Bellman inequality, yields the statement of the lemma. [

Define the linear operator

Fio—r. Fe= 00w+ 5000 (56)
and the function
G C—R,  G(Y) = [((0), M) = Fi. (5.7)

Note, that F is a bounded operator, since by (2.5) it follows that

#ol < (|00 + |00 lel) 191e.
By this notation we can rewrite (5.1) as
(t) = Fay 4 G(ay), t>0, (5.8)
and therefore we can consider it as a perturbation of the constant delay equation
&(t) = Fay, t>0 (5.9)
by the function G.

We shall need the following estimate of G.

Lemma 5.2 Assume (A1)-(A7) and (H). There exists a constant N > 0 such that for every
n > 0 there exists a constant 8 = 6(n) > 0 such that

(GO < N (n+ [$lwro ) 6l (5.10)

for all v» € W1>° such that |¢|c < 6.
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Proof The definition of F, (A7), (H), Lemmas 2.16 and 2.17 imply

Gl < |1(00).400) = 220,060 Z0.0030.0)
= |r(e0.400) - £0.0) - Zo.0w0) - E0.00.0)
< swp [ Lovoneaw) - ZLo.0)| o)+ H—(o,mH A() = A0, )
+ s [Sovonmac) - Fooiaw (5.11)

By the continuous differentiability of f guaranteed by (A7), for every n > 0 there exists
0 < 61(n) < 8 such that if |z, |y| < 61(n) then

P B e T B

It follows from (2.5), #1(n) < & and the definition of é; that the constant § = 8(n) =
61(n) min{1,1/||p||} satisfies § < &, and if ¢ € Go(#) then

[t weonramn-SLoo| <o ad |Fosoaw)-Foo|<n e

for all 0 < v < 1. It follows from assumption (A5) with Ly = La(61), 8 < 63 and (5.4), that
for 1 € Go(0) N Whee

[A() = A0, %)

[A(e, ¢0) = A0, )]
La(81)[¢[wr |l (5.13)

By combining (5.11), (5.12) and (5.13) we get for ¢ € G (8) N W1 that

IN

|G ()]

IN

o0
nlle + nllalllvlo + Ha—gm,mHL2<61>|¢|Wm|¢|o
N+ [Y|we)|elo,

52(0,0)|| La(81) B

Let S(t) be the semigroup generated by the linear constant-delay equation (5.9), and wq
be the supremum of the real part of the characteristic roots of equation (5.9). (See Section 2.3
for the definition of S(t) and wy.) We show that the stability properties of the trivial solution
of the nonlinear state-dependent autonomous equation (5.1) can be obtained by that of the
linear constant-delay equation (5.9).

IN

where N = max

Theorem 5.3 Assume (A1)-(A7) and (H), and that the semigroup S(t) is asymptotically
stable, i.e., wg < 0. Then for every w > wq there exist K = K(w) > 0 and 6 = 6(w) > 0
such that for all ¢ € G¢(6) the corresponding solution, x(t), of IVP (5.1)-(5.2) is defined for
t €10,00), and satisfies

lz(1)] < Ke*|¢lc, t>0.
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Proof Fix an arbitrary wg < w < 0 and fix w* such that wy < w* < w. Then by Lemma 2.18,
there exists a constant M = M(w*) > 1 such that

1S(Hele < Me* ele, t>0, ped. (5.14)

Let z(t) be the solution of (5.8) (or equivalently (5.1)) corresponding to an initial function
@ € (. By Lemma 2.20 we get that

t—r
zy =90t —r)x, + / S(t—r—5)XoG(2s4y,)ds, t>r, (5.15)
0

where X is defined by (2.14).
Let N > 0 be the constant given by Lemma 5.2, define

w—w*

A4MN "~

n=

and let 6(n) be the constant corresponding to this 7 from Lemma 5.2. Finally, define two more

constants y y
) w—w
6Emin{6, , , 0 },
5 2 N AN L+ s O

and

1+
6= b3 exp(—L1(1 + H,uH)r) M@‘” "

We comment, that ﬁe‘”“ < 1since M > 1 and w* < 0, and hence § < 63 < d5.

Let |¢|c < 6. Then by (5.4) and 6 < &, it follows that ¢(0) € € and A(p) € Q, and
therefore Theorem 3.8 implies that there exists a solution if IVP (5.1)-(5.2) () corresponding
to ¢ on an interval [0,a]. Since, by (5.4) and Theorem 3.8, the solution is continuable till
z; € Go(62), and since Lemma 5.1 and the definition of § imply the relation |z,|c < 63 < 62,
it follows that there exists r < t; < a such that |z¢|c < 63 on ¢ € [0,¢1). Suppose that there
exists t9 such that r < t5 < « and the solution satisfies

ENERE for t € [0,t2), and |ay,|c = 6s. (5.16)

For t € [r,t3) and |¢|c < 6, estimate (5.3), (2.5), (5.16), 63 < 8 and the definition of 65 imply
that

|&(1)] | F(a(t), Aze))|

< La(la()]+ [A(z)])
< Ly(1+ [l
< La(L+ lplDés
< vz (5.17)
AMN
Then (5.17) yields that .
sup_[#(s)] < “p
{—r<s<t 4MN
and hence, by using (5.16), we also have
e < 2= forte[nty), oo <6 (5.18)

4MN "’
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Since for t € [r,t2), |¢|lc < 63 and 0 < s < ¢ relation (5.16) yields that |zs4,.|c < 85 < 8(n),
then Lemma 5.2, (5.14), (5.15), (5.18) and the relation | Xoz|c = |z| (for 2 € R™) imply that

IN

t—r
£t HS(t—T)HIwrchr/o 15(t =1 = $)||G(2s4r)| ds

t—r

< Mew*(t_T)|$T|C + MN@W*(t_T_S) (77+ |$5+7’|W17°O)|$5+7’|O ds
0

w—w*
)|x5|(; ds.

13
w*(t—r) w*(t—s)
< Me |z, o +/T MNe (77+ T

By multiplying both sides by e™“"* and changing variable in the integral we get

w*
)|x5|(; ds.

|| ce™@ ™ < Me™ ‘”T|xT|C—|—/ MNe_‘”S(n—I— TN

By applying Gronwall-Bellman inequality for the function |2¢|ce™ Y we get

w*
W M T, MN ¢ <1<t
roe" < Me ooy (MN (4255 )1). r<i<n,

or equivalently, for r <t <ty

lzele < Me_‘”*T|xT|C exp ((MN (n—l— 4M; ) + w*) t).

From the definition of 5 it follows that

lze|le < Me_‘”*T|xT|ceXp ((w—Qw —I—w*) t)
< Me_W*T|xT|(;e‘”t, r <t <ts. (5.19)
Then this estimate, Lemma 5.1 and the definition of é imply for |¢|c < ¢ that

|$t|0 < Me™ w* 7’|S0| 6 1—|—||u||)7° wt
< 637 r<t< t27

which contradicts to the definition of t3. Therefore |z;| < 83 for r < t < «, but this implies
that a = oo, and (5.19) holds for all ¢ > r, therefore, by (5.16) and (5.19), the statement of
the theorem is proved with K = Me“""§5. [

Remark 5.4 We note, that if wg > 0, i.e., the trivial solution of the linear equation is unstable,
then so is the trivial solution of the nonlinear equation. Since unstability results are of less
interest in applications, and the detailed proof is rather lengthy, technical, and also similar
to the state-independent case, we omit it. (See Section 10.1 in [31] for the state-independent
case.)
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5.2 Applications

In this section we show examples, when by the linearization technique of the previous section,
we can find conditions implying asymptotic stability of a nonlinear delay equation. The appli-
cability of this linearization method depends on whether we are able to check the asymptotic
stability of the linearized equation, which is a difficult problem in general, but in the examples
we present in this section we can refer to existing conditions from the literature.

Example 5.5 Consider the scalar constant delay equation
(t) = —az(t — 1)(1 + 2(1)), t>0, (a>0). (5.20)
This equation arises as we transform the delayed logistic equation

#(t)=ra(t)(1—a(t—T1)/K)

by the new variable y(t) = —1+4z(¢)/ K, and change the time scale. (See e.g. [38].) It is known
(e.g. [38]), that the trivial solution of (5.20) is asymptotically stable for a < 7 /2, and unstable
for a > w/2. We can obtain this result by using Theorem 5.3. Equation (5.20) has the form
(5.1) with r = 1, f(2,y) = —ay(1+2) and A(¢,£) = £(—1). Since %(0,0) =0, 22(0,0) = —a,

" By
the linearized equation (5.9) for this equation is
i(t) = —ax(t —1), t>0. (5.21)

Since the trivial solution of (5.21) is asymptotically stable for @ < 7/2, and unstable for
a > m/2 (see e.g. [31]), the same result holds for the trivial solution of (5.20) by Theorem 5.3
and Remark 5.4.

Example 5.6 Consider the scalar delay equation
i(t)=a()(a+ba(t—r)—ca(t—7)), 120,

where ¢ > 0 and ¢ > 0. This is a delayed Lotka-Volterra type population model introduced
by Gopalsamy and Ladas (see e.g. in [38]). The equation has a unique positive equilibrium
point, z = (b + Vb2 + 4ac)/(2¢). By the new variable y(¢) = z(t) — & we can transform the

equilibrium point to zero, and get the equation
g(t) = —(y(0) + ) ((2c2 = byt — )+ eyt = 7)), £>0. (5.22)

We can rewrite (5.22) in the form (5.1) with f(u,v) = —(u + i)((Qci —b)v + cvz) and
A, &) = &(—T7). Since %(0,0) = 0 and %(0,0) = —Z(2¢z — b), the linearized form of
(5.22) is

#(t) = —7(2cx — b)a(t — 7), t>0,

which is asymptotically stable if 0 < #(2¢z — b)T < 7/2, or equivalently,

bV/b2 + dac + b2 —|—4ac7_ . T

2c 2’
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and therefore under this assumption the trivial solution of (5.22) is asymptotically stable as
well.

Example 5.7 Consider the scalar delay equation with state-dependent delay
i(t) = w(t)(a = ba(t) = 3 bia(t — ) — cx(t = 7(1))), 120,
=1

where .
a>0, and b> Z |6 + |¢]. (5.23)
=1
This population model with state-dependent delay term was studied in [12], where it was
shown that (5.23) yields that the unique positive equilibrium, z = a/(b+ >°/ b; + ¢), of the
equation is globally asymptotically stable (for initial functions ¢(s) > M with some M > 0).
We can show this result (for local asymptotic stability) by using linearization technique. By
the new variable y(¢) = z(t) — # we transform the equilibrium point to the origin, and the
corresponding equation is

m

91 = —(y(1) + 2) (by(D) + D bay(t — 72) + eyt — 7y + 7)), (5.24)

=1

which has the form (5.1) with f(u,v) = —(u+2)(bu+v), A(¥, &) = 372, b&(—7;) + c&(—7( +
z)). (Here and later, # in the argument of 7 denotes a constant function with value equal to
z.) We have that 2£(0,0) = —bz, 2£(0,0) = —z, and A(0,¢) = S0, bl(—7) + c&(—7(2)).
Therefore the linearized equation of (5.24) is

(t) = —bra(t)— (i bix(t — 1)+ ca(t — T(ac))) . (5.25)

=1

By a result from [31] (page 154) it follows that (5.23) yields the asymptotic stability of the
trivial solution of (5.25), for arbitrary delay function 7(-), which, by Theorem 5.3, implies that
the trivial solution of (5.24) is asymptotically stable as well.

Example 5.8 Consider the scalar constant delay equation

i(1) = ya(0) (1 -y M) . (5.26)

1+ qa(t—7)

This is the so-called Michaelis-Menton single species growth equation (see e.g. in [38]). We
agsume that

¥>0,04;>0,¢,>0,7>0, and Y % _
=1

- 1+ ¢
The last assumption yields that £ = 1 is a positive equilibrium point of (5.26). It was shown
in [38] that yr < 1 implies the global asymptotic stability of z, where r = max;—y ., 7.

By letting y(t) = «(t) — 1, we get

iD= =)+ 1) syt = 7i) (5.27)

— (L+e)(1+ e+ eyt —m))

K3
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We can rewrite (5.27) in the form of (5.1), by selecting f(u,v) = —y(u+ 1)v, and

a;

NURIE ; (14 ¢e) (14 ¢ + civ(—71))

K3

£(—Ti).

Note, that this delayed term is not covered by Example 1.4, but it is clear, that we can replace
Ag(t) of Example 1.4 by functions Ag(¢,1), and assuming that each Ag(t,4) is continuous
on [0,7] x Qs, and locally Lipschitz-continuous in %, we can extend the example for this
case as well, i.e., we can rewrite the corresponding delay term in the form (1.2), and the
corresponding A satisfies (A2) and (A5). It is clear that the function A defined above has this
properties, therefore (5.27) has the form (5.1) with this f and A. We have that %(0,0) =0

and %(0, 0) = —~, therefore the corresponding linearized equation is
m a;
(t) = —v Z ———x(l - 7). (5.28)
=1 (1 —I_ Ci)

By a condition from e.g. [28] or [37], it follows that the trivial solution of (5.27) is asymptoti-
cally stable if

m a;
’yZ 5T < 1.
=1 (1 —I_ CZ)
It follows from the assumptions > /%, lill—ic =1, ¢; >0 and r = max;= ., 7; that
i < = )
7; (I +e)? W; Tre |

therefore the condition yr < 1 implies that trivial solution of (5.28), and hence that of (5.27)
is asymptotically stable.

Note, that the delayed term of (5.27) can not be written in the form given by the Stieltjes-
integral in (3.64), and hence this equation is not included in (3.64) (without multiple delay
terms).

Example 5.9 In [38] the scalar equation
w0 =1 ([ att 5 duts)) - galt)
has been studied, where r > ¢ > 0, and
(i) u(s) is nondecreasing and u(—o) — p(—r) =1,
(ii) f(z) is strictly decreasing, f(0) > 0, lim,_., f(z) =0,
(iii) g(z)is strictly increasing, ¢(0) = 0, lim,_., g(z) = oo,

and a condition was derived for the global asymptotic stability of the unique positive equilib-
rium.
We study the local asymptotic stability of the state-dependent version of this equation, i.e.,
consider B
w0 = £ ([ e+ s duts,a) ) - gtato), (5.29)

where we assume 7 > o > 0, (ii), (iii) above and modify (i) as
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(i) for all ¥ € C, the function pu(-, ) is nondecreasing and p(—o,v) — p(—r,v) = 1.

Under this assumptions, (5.29) has a unique positive equilibrium point, Z, since the function

([ Trautsn)) - g0 = f(su=o) - u(=r.2) - gt
= f(@)-g(2)
has a unique positive zero. (Here and later,  in the second argument of y denotes a constant

function with value z.) Using y(t) = #(¢) — Z and an argument similar to the one above, we
get

i =1 (vt ) duts,z +2) = g (s + 7). (5.30)

-7

We can rewrite (5.30) in the form (5.1) with F(u,v) = f(v +Z) — g(u + ), and A(2,§) =
J=7E(s)du(s,¥). We have that 2£(0,0) = —g'(2) and 2£(0,0) = f'(z). Therefore the
linearized version of (5.30) is

(1) = —g/(@)o(t) + £(@) [ alt+s)dus, o). (5.31)

Note that ¢’(z) > 0 and f'(Z) < 0 by the assumptions. Theorem 1.1 of [37] yields that the
trivial solution of (5.31) is asymptotically stable if

b

[\SRRUY]

@) [ sduts) <

-7

and therefore by our theorem, if this condition is satisfied, then the trivial solution of (5.30) is
asymptotically stable as well.



Chapter 6
APPROXIMATION OF SOLUTIONS IN C

Numerical methods for solving delay equations have been investigated by many authors
(without completeness, we refer to [3], [15], [22], [34], [42], [46]).

In this chapter we define a sequence of delay equations with piecewise constant arguments
which approximate equation (3.1), and obtain a discrete recurrence relation for the approximate
solution, which can be evaluated numerically easily. We comment that this method is identical
to Euler’s method, and hence it is a one step method guaranteeing only first order convergence.
It was introduced for point state-dependent equations in [21] (see also [46]), but with the aid
of the approximating equations we can obtain a nice new proof (different from those in [21] or
[46]) for the convergence of the approximate solutions.

The usage of equations with piecewise constant arguments for approximating delay equa-
tions was originally introduced in [26] for linear delay equations with constant delays, and it
has been generalized for nonlinear delay equations with point state-dependent delay terms in
[27]. Note, that the methods of [27] and that of this chapter are not exactly the same for the
point delay case, but we can use the same technique to prove the convergence results.

We present the convergence results in Section 6.1, and show numerical experiments in
Section 6.2. In Chapter 7 we shall apply the method defined in this chapter for parameter
identification.

By using these approximating piecewise constant equations and following the steps of the
Cauchy-Peano existence theorem for ODEs (see e.g. in [11]), it is possible to obtain an al-
ternative proof for the existence and uniqueness of solutions of (3.1) (see this method for the
point state-dependent case in [27]).

6.1 Theoretical convergence

Throughout this section we shall use the notation [t], = [t/h]h, where [-] is the greatest integer
function. For later reference we mention some elementary properties of this function:

t—h<[]n < L (6.1
}Lli%[t]h = 1.

Let h be a positive number. We associate the following FDE with piecewise constant
right-hand side to (3.1).

0

(0 = 1 (w10, |

-7

do(s, [r (g ) w0 +9) . 10T (64)

104
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The subscript h of y;(t) emphasizes that yj(t) is the solution of (6.4) corresponding to the
discretization parameter i. The notation (yy, )y, denotes the solution segment of the function
yn(+) at time [t]p, ie., (yn)pg, © [=7,0] = R™, (yn)gg, (s) = ya([t]n + s). The associated initial
condition to (6.4) is
yn(t) = p(t),  t€[-r,0]. (6.5)
By a solution of the initial value problem (6.4)-(6.5) we mean a function y, : [-r,T] — R",
which is defined on [—r,0] by (6.5) and satisfies the following properties on [0, 7]:

(i) the function ¥y is continuous on [0, 7],

(ii) the derivative g () exists at each point ¢ € [0,00) with the possible exception of the
points ih (¢ = 0,1,2,...) where finite one-sided derivatives exist,

(iii) the function yj, satisfies (6.4) on each interval [ih, (¢4 1)h)N[0,T] for i =0,1,2,...

Note, that by using the notation A(t, ), we can rewrite (6.4) as

() = £ ([ vl A (m)g)) s 1€ 10,71,
Lemma 6.1 Let vy € 1[(T, 84,22, Q3).
(i) Let yn(t) be a continuous function on [0,T] such that (yn), € Q3 fort € [0,a] (a <T).

Then the function t — A([t]h, (yh)[t]h) is defined and piecewise-constant on [0, a].

(i1) (6.4) is equivalent to the integral equation

(1) = {cp(t), te[-r0], (6.6)
=000+ Sy AT yalude) Alulhs (g, ) s ¢ € 10,7, |

(iii) For an arbitrary fized h > 0 there exists a constant 0 < a < T such that IVP (6.4)-(6.5)
has unique solution on [—r,al, which is piecewise linear on [0, a].

Proof Part (i) is obvious, part (ii) follows from (i). Using part (i) and the method of steps on
intervals [th, (i + 1)h) we get existence and uniqueness of solution of IVP (6.4)-(6.5) for fixed
h > 0 while y,([u]n) € Qy, the third argument of f in (6.4) remains in Q3, and (yp )}, € 23-[]

The following lemma shows that the solutions corresponding to £ > 0 on a compact time
interval form a uniformly bounded, equicontinuous family of functions.

Lemma 6.2 Assume (A1)-(A6) and let v € TI(T, Qy,Q2,83).

(1) For an arbitrary finite o < T there exists a constant K1 = K1(a,v) > 0 such that for every

h>0
lyn(D] < K1, t€[-r,a] (6.7)
(ii) For an arbitrary finite a < T there exists a constant Ky = Ky(a,v) > 0 such that for
every h > 0
|yh(t) - yh(t)| S I(2|t - t|7 tvt € [_Tv Oé], (68)
and

|(@/h)t — (yh)ﬂc < ](2|t — ﬂ, t,f € [0, Oé]. (69)
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(iii) There exists a < T such that IVP (6.4)-(6.5) has a unique solution on [0,a] for an
arbitrary h > 0.

Proof It is easy to see that Ky = |¢|c + || f||e satisfies (6.7).
To find K, let t,t € [—r,0]. Then by (A6) and Lemma 2.3 we have that

|yr (1) = yr(D)] = |@(1) = o) < lelwroelt 1.

For t,t > 0 it follows from (6.4) that

lyn(t) = yn (D] < A2 — 1.

For —r <t <0<t < a, using the previous two estimates, we get

|[ya(t) = yn(1)] [y (1) = yn(0)] + |yn(0) — yn(?)]
|elwcolt] + (| 112
max{|@lpreo, [LFI}HE— 7.

Therefore K3 = max{|p|y1,, || f]|} satisfies (6.8), and thus (6.9) as well.

Inequality (6.8) yields for arbitrary A > 0 that |yn(t) — ¢(0)] < Kot, which, using that
©(0) € Q4 and 4 is open, implies that there exists oy < T such that y(t) € 4 for t € [0, o]
and for all A > 0.

Similarly to that in the proof of Lemma 3.13, we can show that for all u € [0, 4] it follows
that (yp)u € W, and |(yn)ul1,00 < M1 = max{|| f||,|¢|wr., K1}. By (6.2), (6.7), (6.8), (6.9)

with Ky = Ky(a1,7), and Lemma 3.12 with the constant Ly = La(a, M7) we have that

IAN A A

[A([w]n, (yr)pag,) — A0, (yr)o)
< [A([u)ns (9r)pg,) — AQudns (9r)o)| + [A([ulrs (90 )o) — A0, (yn)o)]
< (el + Lalaq, My)lelwre)(Yn)ng, — (Yol + [A([uln, ©) — A0, )]
< (el + La(en, My)|@lwres ) Ko|[u]n] + 1A ([uln, ¢) — A0, ¢)]|
< (el + Lo, My)|elwree ) Kou + [A([u]r, ) — A0, ¢,

therefore, using (6.1), Lemma 2.8 and that Q5 is open, there exists ag < ay such that the third
argument of f in (6.4) remains in 3 for ¢ € [0, a3] and for all & > 0. Finally, it follows from
(6.9) that

[(yn)e — ¢lo < Kat, t €[0,as],

therefore there exists o < a such that (yz): € Q3 for t € [0, a] and for all A~ > 0. With this «
by repeating the proof of Lemma 6.1 part (iii) we can finish the proof of this Lemma. (]

The next theorem shows that the solutions of IVP (6.4)-(6.5) uniformly approximate the
solution of IVP (3.1)-(3.2) on compact time intervals as h — 07.

Theorem 6.3 Assume (A1)-(A6) and let v € 1I(T,Q4,89,Q3). Then the solutions of 1VP
(6.4)-(6.5) uniformly approximate the solution of IVP (3.1)-(3.2) on compact time intervals
as h — 0T, i.e.,

dim, - max [#(t) = yn(1)] =0, (6.10)

where a <1 is a finite positive number satisfying Lemma 6.2 (iii). Moreover, assume that
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(i) f is locally Lipschitz-continuous in all of its arguments, i.e., for every a > 0, M >0
there exists a constant Ly = Ly(a, M) such that for all t,t € [0,0], 2,7 € Grn(M) N Qy,
y,7 € Grr(M) N Qy it follows that

f(tw,y) = F 29 < Da(lt =1+ |2 = 2] + |y — 31),
(ii) for every a > 0, M > 0 there exists a constant Ly = Ly(a, M) such that for all £ €
WheonQs, t,1 €[0,a], ¥,v € Go(My) N Qs it follows that
At 9, €)= ML, €)] < Lolélwros (1= T+ | = ¢lc),
then the convergence is linear in h, i.e., there exists a constant Ms(a,y) > 0 such that
|z(t) — yn(t)| < Msh, te0,a], h>0. (6.11)
Proof Let a > 0 be a finite constant satisfying Lemma (6.2) part (iii), and define
M = max{||g|], 1} - max{|w|wé,oo,1(1(a,’y)},

where Kj(a,7) is the constant from Lemma 6.2 (i). Then the definition of M, inequalities
(6.7) and (2.5) imply that zy, (yp); and A(t,2,), A(t, (yp):) remain in Go(M) for t € [0, a].
Let Ly = Ly(a, M) be the constant given by (A4). Then equation (6.6), assumption (A4) and
standard estimates yield the following inequalities

2(t) — yn(t)| < /Ot F(ww(w), ACu, ) = f([ulns 2(u), Au,2,) ) | du
[, A ) = £ ({00 wn (), ATl (g )|
< /Ot f(u,x(u),A(u,xu)) - f([u]h,x(u),A(u,wu)) du
[ 1 (et = w0+ M) = A (), ) o (612)
Inequalities (6.8) with K9 = Ko(a,v) and (6.2) imply
|2(u) = yn(ful)]l < fo(u) = yu(w)] + [ya(u) = ya([uln)]
< a(u) — yr(w)| + Kofu — [u]s|
< a(u) — yu(u)| + K2h, (6.13)
and therefore
|20 — (Un)pug,lo < |2 — (yn)ulo + Koh. (6.14)

Using (6.13), (6.14), Lemma 3.12 with Ly = La(a, M), we can estimate the last term in the
right hand side of (6.12) as follows:

<A ) = Alfudns )|+ [Adns 20) = Al (sn)g,)
<A ) = Afudn )|+ (all + Lalaalwr)ew = (90, lo
< A ) = AUz + (ll + LM = ()l + (el + LM Kb (6.15)
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By combining (6.12), (6.13) and (6.15) we get

()= (0] £ () + [ a0+ LM+ ) goax [o(9) = () dus (6.16)

max
0<s<u

where

du

gn(t) = /Ot

¢
—I—/O |A(u, zy) — A([u]p, 20| du+ La(1 + LoaM + ||p||) K 2ht.

f (u, z(u), Alu, xu)) - f ([u]h, z(u), Alu, xu))

The function gp(t) is monotone increasing in ¢, therefore Lemma 2.14 and (6.16) imply for
t € [0, a] that

mas, () = () < gn) + [ La(1+ oM+ () gma () = () dus (617)

max
0<s<t 0<s<u

which, by Gronwall-Bellman inequality, implies that

max () = yu(s)] < gule) exp(Li(1+ LM +[lullt), 1€ (0,0, (6.18)

To finish the proof of (6.10), it is enough to show that gp(a) — 0 as h — 0F. Relation (6.3)
and the continuity of f yield that for all w > 0

f([u]h,w(u),A(u,xu)) — f(u,x(u),A(u,xu)), as h — 0T,

and by Lemma 2.8 and (6.3) we have for all u > 0 that A([u]p,xy) — A(u,zy), as h — 0%,
therefore by the Lebesgue Dominated Convergence Theorem we get

J
Similarly, foa‘A(u,wu) - A([u]h,xu)‘ du — 0 as h — 07, hence gp(a) — 0 as h — 0F.
By assumption (i), (ii) and (6.2) we have

du — 0, as h — 0%,

f (u, z(u), Alu, xu)) - f ([u]h, z(u), Alu, xu))

IN

/ (Fy + LM |u = [u]n| du+ L1 (1 + LM + ||ul]) Kbt
0

(El'+Mz2ﬂdr+'L1(1'+‘L2A4r+'HHH)}(Q)ha. (6.19)

|gn(e)|

IN

Relations (6.18) and (6.19) yield that
Ms = (Ly + LaM + Ly(1+ LaM + |l K2)acexp (Li(1+ LaM + ] )er)
satisfies (6.11). ]

Next we address the issue of computing the solutions of (6.4). Fix N € N, and let h = r/N.
By integrating (6.4) from kh to (k + 1)h for some k € N and using that the right hand side of
(6.4) is constant on [kh, (k + 1)h), we get

y((k + 1)) = y(kh) + hf(kh, (yn)kn, AkR, (yn)kn)), (6.20)
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By introducing the notation a(k) = y,(hk) we can reformulate (6.20) as
a(k—l_ 1) = a(k)—I_hf(khv(yh)kth(khv(yh)kh))7 k= 071727"'7 (621)

which is a recursive formula for a(k), i.e., for ys(kh), & € N. The question is reduced to
computing A(kh, (yn)ks) in (6.21). In the case when the delayed term contains only point

delays, i.e., A(t,¢) = 3710y A(1)(—7i(t,4(0))), we get

m

A(kh, (yn)kn) = ZAi(kh)yh(kh — 1i(kh,a(k))),

=1

which is easy to evaluate, using the linearity of y(¢) on the intervals [jh, (j+4 1)h]. The general
case is similar, we get

A(kh, (yp)kn) = /0 dsp(s, kb, (yn)kn)yn(kh + s)

-7

N-1 L (j+1-N)h
/( dsp(s, kKl (yn)wn)yn(kh + s)

j—N)h

7=0
N-1 (+1-N)h .
- / dspa(s, kb, (yn)en) (a(’f +j-N)
7=0 (7=N)h
k+7+1—-N)—alk+7j—-N
LA+t })L alk +J )(5—(]'—N)h)),

which shows how to compute A(kh, (yn)kn) for a given u, assuming that it is easy to compute
the integral of a constant and the function s with respect to p(-, kh, (yn)kn).

6.2 Numerical examples

In this section we present numerical examples for the approximating scheme described in
Section 6.1.

Example 6.4 Consider the nonlinear scalar initial value problem
i(t) = —a?(t=r(a(t)) +sin 2t + sin'(t = sin?1), >0, (6.22)
x(t) = sin’t, tc[-2,0], (6.23)

where 7(z) = min{|z|, 2}. Clearly, equation (6.22) can be written in the form (3.1) by choosing
r =2, f(t,z,y) = —y? + sin 2t + sin*(¢t — sin?t), and p(s,t,¥) = X[=+((0)),0)(8)- It is easy
to verify that assumptions (A1)-(A6) are satisfied, and x(¢) = sin®¢ is the unique solution of
(6.22)-(6.23). The approximating initial value problem is

N
-
—~~
o~
~—

i ([t]h — 7(yn([t]n) ) +sin(2[t]) + sin([t], — sin?([t]n)), >0,
yu(t) = sin’(1), t €[-2,0].
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Table 6.1

h ! z(1) yn()  [x(t) — ya ()]
1072 20.0 0.833469 0.828241 5.228e-03
40.0 0.555194 0.565731 1.054e-02
60.0 0.092910 0.088392 4.518e-03
80.0 0.987815 0.985422 2.393e-03
1073 20.0 0.833469 0.832948 5.212e-04
40.0 0.555194 0.556241 1.047e-03
60.0 0.092910 0.092457 4.526e-04
80.0 0.987815 0.987578 2.362e-04
1073 20.0 0.833469 0.833417 5.210e-05
40.0 0.555194 0.555298 1.046e-04
60.0 0.092910 0.092864 4.526e-05
80.0 0.987815 0.987791 2.359e-05

The corresponding numerical runnings are printed out in Table 6.1. This experiment shows
that, in agreement with the theoretical expectations, the approximating sequence converges
linearly to the true solution of the initial value problem.

Example 6.5 Consider the scalar distributed delay equation with constant delays

3
—~
o~
~—

0

47r/ sin(2ms)z(t 4 s) ds, t>0, (6.24)
-1

x(t) = cos(27t), -1<t<0. (6.25)

Note that (6.24) has the form (3.1) with f(¢,z,y) = 47y and dsp(s,t,7) = sin(27s)ds. It
is easy to check that z(¢) = cos(27t) the analytical solution of IVP (6.24)-(6.25). Table 6.2
contains the corresponding approximate solutions and the error of the approximation.

Example 6.6 Our next example is a scalar equation

i(t) = —/_Ol(t—l—s—l—Q)x(t—l—s)ds—l—l—ﬁ, i >0, (6.26)
o(1) = ﬁ _1<t<o. (6.27)

With f(t,z,y) = 1 — 1/(t + 2)? — y and du(s,t,¢) = (¢t + s + 2)ds, (6.26) has the form
(3.1), and clearly, the conditions (A1)-(A6) are satisfied. The solution of IVP (6.26)-(6.27)
is 2(t) = 1/(t + 2), and the numerical results are presented in Table 6.3. The numerical
approximation exhibits a first order convergence.

Example 6.7 Finally, consider
0 1
(t) = / 2*(t+ s)ds — 3 + mcos(mt), t>0, (6.28)
-1
x(t) = sin(wt), -1<t<0. (6.29)

We can rewrite (6.28) in the form of (3.1), by choosing f(t,z,y) = —1/2 + 7 cos(nt) + y, and
dsp(s,t,1) = (s)ds. The solution of IVP (6.28)-(6.29) is x(¢) = sin(7wt). The approximate



Table 6.2
h t x(t) yn() () — yn(t)]
1072 0.50 -1.000000 -1.017396 1.740e-02
1.00 1.000000 1.028012 2.801e-02
1.50 -1.000000 -1.037858 3.786e-02
2.00 1.000000 1.047843 4.784e-02
2.50 -1.000000 -1.056361 5.636e-02
3.00 1.000000 1.065118 6.512e-02
10=3  0.50 -1.000000 -1.001863 1.863e-03
1.00  1.000000 1.003022 3.022e-03
1.50 -1.000000 -1.004231 4.231e-03
2.00 1.000000 1.005431 5.431e-03
2.50 -1.000000 -1.006619 6.619e-03
3.00 1.000000  1.007810 7.810e-03
10-% 0.50 -1.000000 -1.000188 1.876e-04
1.00  1.000000 1.000304 3.043e-04
1.50 -1.000000 -1.000427 4.274e-04
2.00 1.000000  1.000549 5.492e-04
2.50 -1.000000 -1.000671 6.710e-04
3.00 1.000000  1.000793 7.929e-04
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solutions of this I[VP for different values of i are presented in Table 6.4, and they show linear
convergence to the true solution.

Table 6.4
h t x(t) yn() =) — (D)
10-2 1.5 -1.000000 -0.970243 2.976e-02
3.0 0.000000 0.020626 2.063e-02
4.5 1.000000  1.000778 7.780e-04
6.0 0.000000 -0.015040 1.504e-02
7.5 -1.000000 -0.999821 1.791e-04
10=3 1.5 -1.000000 -0.997056 2.944e-03
3.0 0.000000 0.001982 1.982e-03
4.5 1.000000  1.000070 6.982e-05
6.0 0.000000 -0.001513 1.513e-03
7.5 -1.000000 -0.999982 1.779e-05
10-% 1.5 -1.000000 -0.999706 2.941e-04
3.0  0.000000 0.000197 1.974e-04
4.5 1.000000  1.000007 6.920e-06
6.0 0.000000 -0.000151 1.514e-04
7.5 -1.000000 -0.999998 1.784e-06




Table 6.3
F T e w0 a)]

10-2 2.0 0.250000 0.250163 1.625e-04
4.0 0.166667 0.166823 1.563e-04

6.0 0.125000 0.125195 1.954e-04

8.0 0.100000 0.099868 1.317e-04

10.0 0.083333 0.081792 1.542e-03

10-3 2.0 0.250000 0.250016 1.564e-05
4.0 0.166667 0.166681 1.467e-05

6.0 0.125000 0.125017 1.703e-05

8.0 0.100000 0.099984 1.552e-05

10.0 0.083333 0.083207 1.263e-04

10-4 2.0 0.250000 0.250002 1.558e-06
4.0 0.166667 0.166668 1.458e-06

6.0 0.125000 0.125002 1.680e-06

8.0 0.100000 0.099998 1.570e-06

10.0 0.083333 0.083321 1.237e-05
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Chapter 7
IDENTIFICATION OF PARAMETERS

In this chapter we study the parameter identification (estimation) problem for IVP (3.1)-
(3.2). We assume that some parameters () of the equation are unknown, but we have mea-
surements (Xo, X1,...,X;) at discrete time values (%g,%1,...,%;) for the solution of the IVP.
The goal is to find the parameter value, which minimizes the least squares fit-to-data criterion

[
J(v) = la(tiy) — Xil?, yerT,
=0

i.e., which is the best-fit parameter for the measurements. (Denote this problem by P). Prob-
lem P has been studied by many authors, for different classes of differential equations (see e.g.
[4] and the references therein), including delay equations as well ([5], [41]).

All the above cited papers use the same idea to find the solution of the optimization problem
P:

1) First take finite dimensional approximations of the parameters, vV, (i.e., ¥V € 'V C T,
dim TV < 00, vV — v as N — 0).

2) Take approximate initial value problems (for M = 1,2, ...,) corresponding to parameters
from 'V, (N = 1,2,...), with solutions y™(-;4"), such that y™(¢,vV) — z(¢,v) as N, M —
oo, uniformly on compact time intervals.

3) Define the least square minimization problems (PNM) for each N, M = 1,2,..., i.e.,
find vV € T'V | which minimizes the least squares fit-to-data criterion

{
My =T N) - X7 4N e,
=0

JN,M(

4) Assuming that the actual parameters belong to a compact subset of I', argue, that the
sequence of solutions, vV (N, M =1,2,...), of the finite dimensional minimization problems
PNM has a convergent subsequence with limit 5 € I'.

5) Show that 7 is the solution of the minimization problem P.

Note, that step 4) and 5) can be argued without using the particular approximation method
of the initial value problem, using only compactness arguments and step 2) (see e.g. in [41]).

In Section 7.1 we show that the approximation scheme defined in Chapter 6 has the property
required in step 2), and in Section 7.2 we present numerical examples for estimating parameters
of IVP (3.1)-(3.2) by applying our approximation scheme and the method described above. We
note that the proof of step 2), by using the approximating technique of Chapter 6, is elementary,
and it is an easy modification of the proof of Theorem 6.3. On the other hand, in [41], the
same proof, using first order spline scheme, requires long and technical argument, especially
for the point state-dependent case.

We assume throughout this chapter, that only a part of the delay function A and the
function f, represented by vector parameters ¢ and d, respectively, and the initial function are
unknown in the equation.

113



114

7.1 Main results
Consider the delay equation

(1) = f(t,x(t),A(t,xt, c),d), t e 0,7, (7.1)

where ¢ € Q4, d € Q5, Q4 and 5 are open subsets of R™, and the corresponding initial
condition

z(t) = ¢(t),  te[-r0] (7.2)
In this section we use the notations of Sections 4.2 and 4.3, i.e., A, A, ||p|| and ||f|| are
defined by (4.94), (4.95), (4.97) and (4.116), respectively. We assume that f and p are given
in the equation, but the parts of f and A represented by d and ¢, and the initial function are
unknown, i.e., considered as parameters.
Define the parameter space in this section by

I, = Whe x R™ x R™,

and the set of feasible parameters by

0
HgE{(@,C,d)EWl’OOXQ4><Q5 : (0) € O, 99693,/

-7

ds:u(sv 07 ¥ C)S‘Q(S) € QQ}

(See also (3.46).)

We assume that f, ¢ and p satisfy (A1), (A2’), (A3), (A4’), (A5’) and (A6). These
conditions imply by Theorems 3.8, 4.32 and 4.44 that IVP (7.1)-(7.2) has unique solution on
an interval [0, a] for parameters from a neighborhood of (¢, ¢, d).

Theorem 7.1 Assume that f, p and (@,¢,d) € 1y satisfy (A1°), (A2°), (A3), (A4’), (A5’)
and (A6). Then there exist constants a > 0, § > 0 and Ly = Ls(a,®,¢,d,8), such that
IVP (7.1)-(7.2) has unique solution on [0,a] for all ¢ € W, ¢ € Q4 and d € Q5 with
[ = @lwres +]c—clgm + [d — dlgm < 6, and

|$(';99vcvd)t - $(-;@7 c, d)t|le°° < L (|99 - ¢|le°° + |C - E||Rm + |d - J||Rm)7 te [0,&].

Let h be a positive constant, and assume that for each k& € N given a finite dimensional
subspace ®* of W1, such that for each ¢ € W', the projection of ¢ onto ®*, denoted by
©F, satisfies that |* — ¢|py1.0 — 0, as k — co. Let ¢*,d* € R™. Then define the following
delay equation with piecewise constant arguments

yh,k(t) = f([t]ha yh,k([t]h)v A([t]hv (yh,k)[t]hv Ck)v dk)? te [07 T]v (7'3)

with initial condition

ynr(t) = oM (1), te-r0]. (7.4)
Here, to emphasize that the solution corresponds to a given h > 0 and (c,ok, *, dk), we denote the
solution and the solution segment function of IVP (7.3)-(7.4) by ynx(t) and (yp k)¢, respectively.
Lemma 6.1 implies, that for each fixed h > 0 and (¢*, ¥, d*) € I, IVP (7.1)-(7.2) has unique
solution on some interval [0, a].

We shall need the following lemma.
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Lemma 7.2 Assume that f and p satisfy (A1°), (A2°), (A4’) and (A5’), and (¢, c,d) € 1I,.
Fix sequences @* € ®%, & € Q4 and d* € Q5 such that | " — |y e +|c* —c|gm +|d* —d|gm < 6,
where § > 0 is such that Gr,((¢,c,d); §) C 1ly. Then we have that:

(1) For an arbitrary finite a < T there exists a constant K1 = Kq(a,8,¢,¢,d) > 0 such that
for every h > 0 and k € N it follows that

lyni(t)] < Ky, € [-r,q]. (7.5)

(ii) For an arbitrary finite a < T there exists a constant Ko = Kq(a, 6, ¢, ¢,d) > 0 such that
for every h > 0 and k € N it follows that

[y (t) — yni(D)] < Kot — 1], t,t € [-ral, (7.6)

and
|(Yhk)e = (Ui )il < Kolt — 1], t,t € [0,al. (7.7)

(iii) There exists a < T and § > 0 such that IVP (7.3)-(7.4) has a unique solution on [0, o]
for every h > 0 and k such that |¢* — ¢|y1,e + |c* — ¢|gm + |dF — d|gm < 6.

Proof The proof follows the steps of that of Lemma 6.2. It is easy to see that Ky =
lelc + 6 + || f]|a satisfies (7.5).
To find Ko, let ¢, € [-7,0]. Then by (A6) and Lemma 2.3 we have that

k() — yne(D] = [5(1) — " (1)
" e [t — 1]
(el +8)[t =1

For t,t > 0 it follows from (7.3) that |ynx(t) — yn k()] < [|f[||t — t|]. Then, clearly, K, =
max{|¢|wi + 6, || f||} satisfies (7.6), and thus (7.7) as well.

Inequality (7.6) yields for arbitrary h > 0 that |y 1(¢) — ¢(0)| < Kt, which, by using that
©(0) € © and £ is open, implies that there exists oy < T such that y;, x(t) € 4 for ¢ € [0, o4]
and for all ~ > 0 and £ € N.

Since yp x is a piecewise linear function, it follows that (ysx), € Wh* for all u € [0, o],
and it is easy to see that [(ys k)ul1,00 < M1 = max{||f]|, |¢|lwi.~+6, K1}. By (6.2), (7.5), (7.6),

(7.7), and Lemma 4.31 with the constant Ly = La(a, My, |c|gm + §) we have that

Ay (Y ) g €F) = A0, (yai)os )
< |A([u]h7 (yh k)[ In2 € k) - A([ ]hv ¥ C)| + |A([u]h7 ) C) - A(Ov ) C)|
+ [A(0, 0, ¢) = A0, (ynk)o, )]

ANVAN

< (lull + Lalelwr) (1m0, = #le + le = Flgm)

+ [A([ulns 2, €)= A0, >|+(Huu+L2|so|Wm>(|so—sok|c+|c—c’f|Rm)
< (il + LM (1), — (wnidole + 1% = elo + e = Flgm)

+ [A(ulns . c) - A( >|+<uuu+LzM1>(|so—sok|c+|c—ck|Rm)

< (lull + L) (Kofu h+2lc—ck|Rm + 2l = @Flwre ) + IA([uln 0, ¢) = A0, 9, 0)],
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therefore, using (6.1), Lemma 2.8 and the facts that Q, and €5 are open, there exist 0 < ay <
ay and § > 0 such that the third and fourth arguments of f in (7.3) remain in Q3 and Qs,
respectively, for t € [0, ag], h > 0 and for k such that |@* — |10 +|cF —c|gm + |dF —d|gm < 6.
It follows from (7.7) that

|(@/h,k)t - 99|C S I(Qtv te [0,&2],

therefore there exist a < ay such that (ypx): € Q3 for t € [0, o] and for all » > 0. Finally, it is
easy to show, by using the method of steps, that for & such that |o* — @l + | — c|gm +
|d* — d|gm < &, and for all b > 0, IVP (7.3)-(7.4) has unique solution on [0, a]. ]

The following theorem guarantees step 2) of the identification method described in the
introduction of this chapter, using the approximation method of Chapter 6.

Theorem 7.3 Assume that f, p and ¢ satisfy (A1°), (A2°), (A3), (A4’), (A5°) and (A6). Let
(p,c,d) € Ty, and fir sequences @* € ®F, & € Qq, and d* € Qs such that |* — ¢y — 0,
|c¥ — ¢|gm — 0, and |d* — d|gm — 0 as k — oo, and let a > 0 be the constant from Lemma 7.2
(7i1). Then the solution, yp 1, of IVP (7.3)-(7.4) converges uniformly on [0, a] to the solution,
x, of IVP (7.1)-(7.2) as h — 07 and k — oo, i.e.,
Zlﬂ qnax (1) — ynx(t)] = 0.

Proof We follow the steps of the proof of Theorem 6.3.

Let & be the constant from Lemma 7.2 (iii), and we assume throughout the proof that k is
large enough that |¢* — @100 + |¢* — ¢|gm + [d¥ — d|gm < ¢. Let K1 = Ki(,6,¢,¢,d) and
Ky = Ky(a,é,p,c,d) be the constants from Lemma 7.2 (i) and (ii), respectively. Define

M = max{||g|], 1} ‘ma;X{|$|Wé,oo,I(1}7

Then the definition of M, inequalities (6.7) and (2.5) imply that z;, (ynx): and A(t, 2¢),
A(t, (ynx):) remain in Go(M) for t € [0,a]. Let Ly = Li(a, M) be the constant given by
(A4’). Then equation (6.6), assumption (A4’) and standard estimates yield the following
inequalities

|z(t) — ynx(t)]

< e =N+ | £ (s w(w) A, 2, 0),d) = F([uln, 2(), Au, 24, ¢), d) | du
+ Ot Pl (), Ay s €).d) = £ ([ule g wQdn) Al (900, ). d*) | du
< - ¢fle —I-/ ‘f(u,x(u),A(u,xu,c),d) - f([u]h,x(u),A(u,xu,c) d) du (7.8)

Similarly to (6.13) and (6.14), inequalities (7.6) and (6.2) imply that

|2(w) = ynp([uln)] < Je(u) = grp(u) + Ko, we[=ra], (7.9)
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and
|20 = (Y )l lo < 12w — (Ynp)ulo + Kah, u € [0, al. (7.10)

Using (7.9), (7.10), Lemma 4.31 with Ly = Ly(a, M, |c|gm + &), we can estimate the last term
in the right hand side of (7.8) as follows.

A ) = Allulas (v )1, )

< |A(u7 ) C) A([u]hv Ty, € | + ‘A ulp, T, € ) - A([u]hv (yh,k)[u] 7Ck)‘
< 1A ©) = Alludns s )]+ (el + Laluliro) (2 = (e + e — e
< A(ws 2 €) = M[ulp, s ] + (el + L2 M) 2w = (yn,k)ule

+ (Il + L2M) (Koh + e = cFlgm). (7.11)
By combining (7.8), (7.9) and (7.11) we get
t
o(0) = D] < 91+ [ T2+ LM+ ) s fo() — wialo)l dus (7.12)
where

du

o) = [

t
[ A s €)= Allulhs o o du L1+ LM + ||l Kzt
0

f (u, z(u), A(u, zy, ), d) - f ([u]h, z(u), A(u, zy, ), d)

+ La (LM + [[ul))le = Flpm + |d — d¥gn )t + | — & (7.13)
Then (7.12), Lemma 2.14 and the Gronwall-Bellman inequality imply that

mas [o(s) —~ viu(9)] < gl exp(Lr(1+ LM + ). tel0al  (T14)
As in the proof of Theorem 6.3, by using the Lebesgue Dominated Convergence Theorem for
the first two integrals in (7.13), and the assumptions that O — ¥, ¢ — ¢, and d¥ — d as
k — oo, we get that gpx(a) — 0 as h — 07 and k — oo, which finishes the proof of the
theorem. (]

7.2 Numerical examples

In this section we present applications of the identification method described in the introduction
and in Section 7.1. Consider an identification problem corresponding to IVP (7.1)-(7.2), then
we define the approximating IVPs by (7.3)-(7.4). Define the corresponding finite dimensional
minimization problems, and find the solutions of them. Choose small enough h and large
enough k, and use the solution of the minimization problem corresponding to this h and & as
an approximation of the solution of the original identification problem.

We note, that in each example we used the built in numerical minimization routine of Math-
ematica (which does not require the knowledge of the derivative of the minimizing function)
for solving the finite dimensional minimization problems, i.e., for computing the minimum of
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Table 7.1

O~k
o

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
X; | 1.1300 | 1.5003 | 1.9921 | 2.6451 | 3.5121 | 4.6632 | 6.1917 | 8.2212 | 10.915

Table 7.2

h T Jn(T) steps
0.050 0.968794 0.0174081 21
0.010 0.988730 0.0174045 21
0.005 0.991233 0.0174043 21
0.001 0.993233 0.0174042 21

the least square cost functions, and we also used Mathematica for evaluating the cost function
for each required value of the parameter, i.e., for computing the solution of IVP (7.3)-(7.4).

Example 7.4 Consider the scalar delay equation
() = a(t—1), t €10,4], (7.15)
where we assume that 7 € [0.2, 3.0], with initial condition
x(t) =1, t €[-3,0]. (7.16)
The solution of this IVP corresponding to 7 = 1.0 is

(1] _Z'i
x(t;l)zz(t F )

=0

We used this formula to generate the “measured data” corresponding to the following time
values presented in Table 7.1.

Since the parameter is one dimensional, there is no need for discretizing the parameter
space. Let h > 0 and define the approximating IVP

yh(t) = yh([t]h - 7—)7 te [074]7 (717)
where we assume that 7 € [0.2, 3.0], with initial condition
x(t) =1, te[-3,0]. (7.18)

Consider the minimization problem: minimize

Ju(T) = Z(@/h(ti; ) — X;)?, T € [0.2,3.0],

=1

where y(¢;7) is the solution of (7.17)-(7.18). We present the numerical solution of these
minimization problems in Table 7.2 for different h values. We print out the computed 7, which
minimizes the cost function J;(7), the value of the cost function at 7, and the number of steps
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Table 7.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
X; | 0.000000 | 0.229849 | 0.708073 | 0.994996 | 0.826822 | 0.358169 | 0.0199149

O~k
o

Table 7.4

h a b Jn(a,b) steps
0.0560 -1.02202 2.02076 0.00093899 92
0.010 -1.00427 2.00415 0.00003634 95
0.005 -1.00213 2.00208 0.00000905 93
0.001 -1.00042 2.00042 0.00000036 94

done by the numerical minimization routine to reach the minimum value (in each case the
starting two value (required by the routine) for 7 are 2.5 and 1.5).

Example 7.5 Consider the scalar delay equation with state-dependent delay
#(t) = ax?(t — |x(1)]) + sin(bt) + sin?(t — sin?(¢)), ¢ €[0,3], (7.19)
with initial condition
a(t) = sin*(t), <0, (7.20)

where a and b are unknown parameters, but we assume that a,b € [—5,5]. It is easy to see
that the solution of IVP (7.19)-(7.20) corresponding to parameter values @ = —1.0 and b = 2.0
is #(t; —1,2) = sin?(¢). We used this function to generate data shown in Table 7.3.

The approximating equation corresponding to (7.19) is

(1) = agd([1n — lyn([)]) + sin(bft]) + sin® ([0 — sin*([1])), 1 €10,3].

The minimizing function is

7
Jh(avb) = Z(yh(tﬁavb)_Xi)zv a,b, € [_575]'

=1

Table 7.4 contains the numerical runnings corresponding to this equation. We used the starting
values 2.5 and 1.5 for both @ and b in the numerical optimization routine of Mathematica in
each cases.

Example 7.6 Consider the scalar equation

() =2 (t . L) L 1e0,2), (7.21)

with initial condition
z(t) = (1),  t€[-2,0]. (7.22)
It is easy to check that the solution of IVP (7.21)-(7.22) with initial function

2(t+2), —2<t< 0.5,
wll) = { i)( ) ~0.5<1<0 (7.23)
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Table 7.5

O~k
o

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
X; | 1.00000 | 1.02311 | 1.10469 | 1.26755 | 1.5379 | 1.7879 | 2.0379 | 2.2879

Table 7.6
h Ell Elz El3 Jh(fll, Elz, Elg) steps
0.050 -0.296021 0.880291 1.01774 0.002681 145
0.010 -0.350648 0.863814 1.01823 0.002874 150
0.005 -0.357622 0.861696 1.01828 0.002897 148
0.001 -0.363224 0.859983 1.01832 0.002915 140
is ,
2(1) = 1—|—§t—|—%—%log(t—|—1), tco,1],
1—%log2+14, te[l,2].
We generate measurements by using this function (see Table 7.5).
Consider the corresponding approximate equation
in(t) = ([t] P ) te[0,2]

First we approximate the unknown initial function on [—2,0] by linear spline functions with
three node points at -2, -1 and 0, with corresponding values a1, as and as at the node points.
(It is known that sufficiently smooth functions can be approximated by linear spline functions
in the W1 norm, see e.g. [44].) We assume that the parameter values satisfy a; € [—4,4],
v = 1,2,3. Then the parameter space is three dimensional. The corresponding minimizing
function is of three variables:

8

Jr(ay, ag,a3) = Z(@/h(tz’; ai,az, as) — X;)?, ai, az, as, € [—4,4].
=1

We present the numerical solution of this problem in Table 7.6 for several h values.

Next we consider linear spline approximation of the initial function with node points at -2,
-1.5, -1, -0.5 and at 0, and with the corresponding values a; (i = 1,2,...,5) at these points.
Then the parameter space is five dimensional, and the minimizing function is

8

Ji(ay,...,a5) = Z(@/h(ti;ah coas) — X5)?, a; € [-4,4], 1=1,2,...,5.
=1

The following numerical results are shown in Table 7.7. In Figure 7.1 we plotted the true
initial function, defined by (7.23) (solid line), and the computed approximate initial functions
with three and five node points (dotted linear splines) corresponding to A = 0.001.



Table 7.7
h Ell Elz El3 El4 El5 Jh(fll, ey El5) steps
0.050 0.0565933 0.165824 0.782140 1.07451 0.997993 0.00051494 317
0.010 0.0536655 0.147732 0.739048 1.08165 0.997858 0.00047607 337
0.005 0.0540436 0.145239 0.733611 1.08239 0.997840 0.00047021 322
0.001 0.0534458 0.143636 0.729410 1.08284 0.997831 0.00046543 314

Figure 7.1
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Chapter 8
WELL-POSEDNESS IN L?

In many applications (e.g. in control theory) we can not assume the continuity of the
function f in equation (3.1), therefore it is important to extend well-posedness results for the
case when the functions f(-,z,y) and 7(-,%) are LP functions only. In this case it turns out,
that the natural state-space for solutions is a product space of the form R™ x LP (see e.g. [8],
[9] or [35] for L? theory of delay equations).

In [34] Ito and Kappel studied the well-posedness and approximation of semilinear Cauchy
problems, in particular, the delay system

i(t) = (1 (1), ot = 7(t,2,)) (8.1)

in the state-space R™ x L?. They proved an abstract well-posedness result, and used it to prove
well-posedness of (8.1). We state their results in Section 8.1, and in Section 8.2 we show how
it can be applied to our problem, to the state-dependent delay system

i) = f (t,x(t),/o ds,u(s,t,xt)x(t—l—s)), t € 0,7, (8.2)

-7

with initial condition

o(t) = o(t),  te[-r0] (8.3)

8.1 An abstract well-posedness result of Ito and Kappel
In this section we state the abstract well-posedness result of [34].

FixT'>0and 1 < p < . Let W C V C H and U be Banach spaces such that
the embedding V' C H is dense and continuous, the embedding W C V is just continuous.
Consider the equation in the space V':

(1) = S(t)p + /Ot S(t— $)BF(s,2(s))ds, 0<t<T, geW. (8.4)

A function z : [0,7] — V is called a solution of (8.4) if # is continuous and satisfies (8.4)
on [0,77].
We have the following assumptions:

(B1) {S(t) : t > 0}is a Cy-semigroup on H, which leaves the spaces V and W invariant. More-
over, 5(t)|v, t > 0is a Co-semigroup on V and we define My = maxo<i<r ||5(¢)||c(v)- We
also assume that there exists a constant My > 0 such that [|S(¢)||zm) < My, 0 <t < T,
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(B2) B € L(U, H) and there exist nonnegative constants My and Mz such that

¢
(1) /0 S(t - S)Bf(S) ds| < M2|f|LP([O,T],U)7 0<t<T, f € Lp([O,T], U)7
v
and
¢

@nhésu—@BﬂQdﬂygﬂguuﬂmﬂﬂ% 0<t<T, fel=(0,T),0)
(B3) F'is a mapping [0,7] X V — U. For any M > 0 there exists a constant X' = K(M) >0

such that

() [F(t.¢) = F(t,9)|lo < KL+ [¢lw)ld —dly  ae. on 0 <t <T forall g€V

<
with ¢ € W and ¢, % € Gy (M),
and

(i) |F(t,¥)|p < K(1+|]y) ae. on0<t<T forall » € Gy(M). Moreover, for any
1 € V the mapping t — F(t,) is strongly measurable on [0,77],

(B4) For any M > 0 there exists a constant K = K (M) > 0 such that

|F(t7¢) - F(£7¢)|U < ]((1 + |¢|W)|t - ﬂ for a.e. t,fE [OvT]v all ¢ € GV(M) nw.

We note, that the inequality

[F(t,4) = F(L9)|o < K1+ [9lw) (=t + ¢ = ¥lv), (8.5)
forae. 0<t,t<T, veW, eV, ,9cGy(M)implies (B3) (i) and (B4).

The infinitesimal generator of S(-) (considered as a Cp-semigroup over [ ) and its domain
are denoted by Ay and domAg, respectively.
Under the above assumptions the following theorems hold:

Theorem 8.1 (see Theorem 2.2 in [34]) Assume that (B1)-(B3) are satisfied and let R >
0 be given. Then there exists o = a(R) > 0 such that equation (8.4) for any ¢ € W satisfying
lelw < R has a unique solution z(-; ¢) = S¢ € C([0,a], V)N L>([0,a], W). Moreover, S is a
Lipschitzean mapping on {¢ € W : |¢|lw < R} into C([0,a], V') and also into L*([0, a], W).

Theorem 8.2 (see Theorem 2.4 in [34]) Assume that (B1)-(B4) are satisfied and the space
U is reflexive. Furthermore let ¢ € W N domAy such that Agy + BF(0,¢) € V.. Then the
unique solution of (8.4) is in C1([0,a], V)N C([0, a], domAy) for any closed subinterval [0, o]
of the mazimal interval of existence for z(-), and

i(t) = Aga(t) + BF(t,2(1)), 0<t<a

n H.
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8.2 Well-posedness

Next we list the assumptions on the parameters of IVP (8.2)-(8.3) which guarantee the well-
posedness of IVP (8.2)-(8.3).

(C1) The function f:[0,7] x €1 x Q2 — R™ satisfies:

(i) For any M > 0 there exists a constant Ly = Ly(M) > 0 such that
[f(ta,y) = 2P < Da(lt =1+ |2 = 2] + |y - 31),

fora.e. 0 < 1,0 <T,and all 2,7 € Grr(M) N Qy and y, 7§ € Grr(M) N Qy,
(ii) there exists a constant N > 0 such that

|f(¢,0,0)| < N, ae. 0<t<T,
and
(iii) the function ¢ — f(¢,z,y) is measurable on [0,7] for any z € @4, y € Q5.

(C2) The function pu(-,t,%) : [—=r,0] — R™™ ™ is defined, and is of bounded-variation for all
t €10,T] and ¢ € Q3 and it satisfies:

(i) |lpl] = esssup{|A(t,9,8)] : ae. t €[0,T], all ¢ € Q3, £ € Go(1)} < o,

(ii) for every finite @ > 0 with a < T, and M > 0 there exists a constant L, =
Lo(a, M) > 0 such that for a.e. ¢, € [0,a], and for all £ € Whe n Qs and
¥, € Go(M) N Q3 it follows that

AL, €) = AT 0, )] < Lolélywre ([t =11 + [ = ¥e),
and
(iii) for all 9, & € Q3 the function ¢ — A(t, 1, &) is measurable on [0, 7.

(C3) The initial function ¢ € Wh> n C.

Next we show that under natural conditions the functions f and p defined in Examples
1.1-1.4 satisfy assumptions (C1) and (C2), respectively.

Example 8.3 Consider Example 1.1, where
,u(s, t, ¢) = Z AkX[—Tk,O](S)
k=1

and

f(t,f,@/) = on‘l'y

Then, clearly, f satisfies (C1), and p is of bounded variation, and satisfies (C2) (i). We have
that A(¢,9,£) = Y7L, Ag€(—71) is independent of ¢ and ¢, therefore (C2) (ii) and (iii) are

satisfied as well.
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Example 8.4 Consider the functions

,u(s, t ¢) = Z Ak(t)X[—Tk(t),O](S) + ﬂ(sv t)v
k=1

where
s € [—r, —70),

o,
s 1) :{ 2 Glut)du, s € (—70,0],
and
f(t,z,y) = Ao(t)z + v,

as defined in Example 1.2. The assumptions
(i) Ap(+) € Whee([0,T], R™*"), k=0,1,...,m,
(i) m%(-) € Whe([0,T], R), E=1,2,...,m,

(iii) the function [—79,0] X [0,T] — R™*" : (s,t) — G(s,t) is measurable,

(iv) [|G(s,t) — G(s,1)|| < g(s)|t — t|, for s € [~70,0], ¢, € [0,7], where g € L*([~70,0];R),
(v) G5, ) < gols), for s € [~10,0], ¢ € [0, ], where go & L' ([~70, 0]; )

imply conditions (C1) and (C2). This example is included in Example 8.6, therefore the proof
is omitted here.

Example 8.5 Consider
,u(s, t, ¢) = X[—T(t,w),O](S)I
as defined in Example 1.3 with the corresponding function
/\(tv ¢7 5) = 5(_T(t7 Qb))
Then it is easy to see that (C2) (i) is satisfied. Assume that
(i) the function 7(-,7) is measurable for all ¢ € Qs3,

(ii) 7 is locally Lipschitz-continuous in 1, i.e., for all M > 0 there exists a constant L, =
L(M) such that [7(,9) = 7(t,9)| < L:([t — | + [¢) — ¢|c), for a.e. 0 < ¢,# < T and all
¢7¢ € gC(M) mQS-

Then it follows from (ii) and Lemma 2.3 for £ € W1 and ¢, € Go(M) N Q3 that
A, €) = At 9. 6 [€(=7(1,00)) = &(=7(t, )]

[Elwres |78, 00) = 7(2, )]

Elwroo L (Jt =11+ [0 = dle),  forae. t,1€0,T],

IN A

so condition (C2) (ii) holds. Assumption (i) implies condition (C2) (iii).

Example 8.6 Let

m

,u(s, t, ¢) = Z Ak(t)X[—Tk(t,w),O](S) + ﬂ(sv t, ¢)7

k=1
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with

) 0, s € [—7‘, —T ]7
a(s,t,) = { fjm G(u,t,v)du, s € (—7'070](1

and f(t,z,y) = Ao(t)x + y, as in Example 1.4.
We shall show that the assumptions

(i) Ag(-) € Whoo([0,T], R™"),  k=0,1,...,m,

(ii) the functions 7x(-, %) : [0,7] — R are measurable for all » € Q3, k=1,2,..

‘7m7

(iii) 7% is locally Lipschitz-continuous in ¢, for all & = 1,2,..., i.e., for all M > 0 there exists
a constant L, = L,(M) such that |7x(t,v) — 7 (t,¥)| < L (|t —t|+ [ = ¥e), for a.e.
0<t,t<Tandall ¥, €Ge(M)NQs, k=1,2,..

° 7

(iv) the function [—79,0] X [0,T] — R™ "™ : (s,t) — G(s,1,%) is measurable for all ¥ € Qa,

() G (s, t.) = Gls, 2 D) < gls)(|t = ] + 16 = Blc), for s € [~ro, 00, 4,7 € [0,T], and
¥, 1) € Q3, where g € LY([-70,0];R),

(vi) [|G(s,t,9)|| < go(s), for all ¢ € [0,T], ¥ € Q3, where go € L'([~70,0]; R)

imply conditions (C1) and (C2).
Let 2,2 € Grn(M) N Qy and y,7 € Grr(M) N Q. Then the triangle inequality and the
definition of the norm | - [|y1,00 (o 77, gnxny Yield the following inequalities

[f(t 2, y) = [T, 2,9)]

< [ Ao(t) = Aoz + [ Ao(Dlllz — 2[ + |y — 9|
< [JAo(t) = Ao(OIM + [[Ao(D)[|e — 2] + [y — 5
<

| Aollyr.00 (o, 77, mrxmy M1 = 1] + (| Aollyr.0o o, 17, Rrxmy |2 — &+ [y — 3.
Therefore condition (C1) (i) holds. Condition (C1) (ii) is satisfied with N = 0. The assumed
measurability of Ay implies (C1) (iii).
We have seen in Example 1.2 that if Ay(-) are bounded functions on [0, T] and ||G(s,t, )| <

go(s) for s € [—19,0], ¢t € [0,T], 1 € Q3, where go(s) is integrable on [—7g, 0], then pu satisfies
(C2) (i). The corresponding A is

0

=3 At + [ Gls b, 0)E(s) ds
k=1

therefore for £ € W1 simple estimates yield
AL, 2, 5)— N(RINI]
<§mmuw (1) - |+ka eDEC=mr(T )]

+ "G(57t7¢)_ G(s. 1, ¥)[|€(s)] ds

—70
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< ZHAk M€ lw.eo | T (t, 80) — (T |+ZHAk — A€l
+ "G(87t7¢)_ G(s, 1, 9)||ds[é|e
o
< (Z Akl [0y, Rxm) L7 (|t —t+ - ch) +> Akl o, 77, Ry [ = 1]
k=1 k=1

0 _ _ _
- |g(8)|d8(|t—t|+|¢—¢|O))|€|W1m7 for a.e. ,7€[0,T].

—70

This inequality shows that (C2) (ii) is satisfied. By elementary properties of measurable
functions and by Tonelli’s theorem we get that assumptions (i), (i) and (iv) yield condition
(C2) (iii). This completes the discussion of Example 8.6.

Next we define the spaces H, V, W and U used in the abstract formulation in Section 8.1. As
n [34], let

H = R*"xILP,
Vo= {(e(0),¢) s ¥ € C},
w {(£(0),4) : b e Wh=nC}

and U = R™, with the norms

(D) = 0P+ ¢l
[(0(0),)lv = [¥le,
(0(0), D)lw = [&]wie.

Then, clearly, W C V C H is satisfied with dense embeddings. Simple estimates show for
(1(0),v) € V that

(0. ) = (O + |57
< (% + )
= (L+n)"lele
= (L+n)"71((0),9)lv,
and for (¥(0),%) € W we have that
(0, ¥)lv = |¥le

< sup [0() = HO)] + [¢(0)

< 7 -gsrs;ligllb(t)l + |4(0)]

< (r+ Ddlwre

(r+ D)[(4(0), ¥)w,

therefore both embeddings in W C V C H are continuous as well.
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Define B : U — H by
Bu = (u,0), (8.6)

and F' : [0,T]xV — U by
F(t,v) = £(1,(0), A1), (8.7)

Lemma 8.7 Assume (C1) and (C2). Then the function F' defined by (8.7) satisfies assump-
tions (B3) and (B4).

Proof Let M > 0 and (¢(0),1%),(¥(0),%) € Gv(M). The definition of ||x|| implies that
A9 < lullléle,  for ae. £ €[0,7],

Define My = M max{1,||p||}. Then the second and third argument of f in (8.7) remains in
Grr (M) N Qy and in Ggn(My) N Q, for ae. t € [0,T], respectively, therefore by the Lipschitz-
continuity of f with Lipschitz-constant L1 = Li(Mj) we get for a.e. ¢,¢ € [0,T] that
[F(t,9) = F(t,9)lo

= | 7(t 000, A 0)) = F (7, 000), AL ) |

< Lt =1+ [9(0) = B(0)] + |A(L ) — AL, D))

< 0 (0= T4 1000) = FOI N ) = ME 8,0 4 ACE ) = AT 6, )

< Iy <|t — 1]+ [ — ¥lo + La( M)y (|t — 1+ v - ch) +{ullle - ¢|O)

< Lymax{L+ [[ull, La(M Y1+ [lgn) (1t = 2] + |8 = dle),

therefore K1 = Ly max{l + ||u||, L2(M )} satisfies the constant K in (8.5), and consequently
we have proved (B3) (i) and (B4). To show (B3) (ii), consider

[F(t, ¥)lo [F(t,¢) = F(1,0)|o + [F(t.0)]v
](1|¢|C + |f(t7070)|
Kq|¢¥le + N

< max{Ky, N}1+ [¥|c),

<
<

hence K = max{K1, N} is good in both part of (B3) and in (B4).
Finally, we have to show that the function

te F(t0) = F(10(0),A(1 )

is measurable for all fixed ¢ € Q3. First we show that assumption (C2) (iii) implies that the
function t — f(t,2,¢(t)) is measurable for all simple function ¢ : [0,7] — Q3, z € Q4. Let
B; (¢ = 1,2,...,k) be disjoint measurable subsets of [0,7] such that Ule B; = [0,T], and
g(t) = Sk yiXB,(t) where y; € Q3. It is easy to see that

k

flta,g(t) = x(O)f(tz, ),

=1
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therefore assumption (C1) (iii) yields that the function ¢ — f(¢,2,g(t)) is measurable. By
(C2) (iii) the function ¢t — A(t,%) is measurable for all » € Q3. Approximate it by simple
functions A;(¢, ), i.e., lim;o Ai(t,70) = A(t,¢) for all ¢ € [0,77], ¢ € Q3. We have shown that

the functions ¢ — f(t, P(0), Ay(t, zb)) are measurable functions, and using assumption (C1) (i)
we can see that

£ (10000 At ) = £(£:20(0), At )| < [Ailt, ) = Ak, )], forae. t€[0,T],
hence
Jim £ (16(0), At 9)) = £(1,9(0), A, 0),
for a. e. t € [0,7], ¥ € Q3, and therefore we get that F'(-,4) is measurable. ]

Define the Cp-semigroup on H by

S(t)(nv ¢) = (777915)7 (88)
where ¢ : [—7,00) — R" is defined by

_ ) ¢(s), —r <s<0,
g(s) = { 0. 0<s.

(Le., S(-) is the solution semigroup of the Cauchy-problem &(¢) = 0, 2(0) = n, z(s) = ¢(s),
—r < s < 0.) Lemma 3.2 in [34] yields that S(-) is a Coy-semigroup defined on H, and
assumptions (B1) and (B2) are satisfied. Let A be the infinitesimal generator of S(-). It is
known (see e.g. [9]) that

domAp = {((0).%) « v € W'},
Ap(¥(0),4) = (0,9).

We conclude, that with this particular choice of the spaces U, H,V and W, the semigroup
S(t), the function F, and the assumed conditions (C1)—~(C3), IVP (8.2)-(8.3) can be written in
abstract form as (8.4), and Theorems 8.1 and 8.2 give the following local existence, uniqueness
and continuous dependence on initial data result for IVP (8.2)-(8.3).

Theorem 8.8 Assume that conditions (C1)-(C3) hold. Then for an arbitrary R > 0 there
exists a = a(R) > 0 such that for all o € WH**NC with |¢|y1,0 < R it follows that IVP (8.2)-
(8.3) has a unique solution x(-;¢) on the interval [0, a]. Moreover, there exists L = L(R) >0
such that

max{ sup [o(t; ) = 2(t; @), sup |#(t; @) — i (t; )|} < Llg — @l
0<t<a 0<t<a

fOT w, P € when C} |99|W17°°7 |¢|W17‘X’ < R.

We close this chapter by noting that Ito and Kappel presented an abstract approximation
framework for the integral equation (8.4), and constructed a particular approximation scheme
using first order spline functions, and showed that the scheme satisfies the requirements of the
abstract framework, and therefore it provides an approximation method for equation (8.1).
Since (8.2) can be written in abstract form as (8.4), the spline scheme defined in [34] can be
applied for (8.2) as well.
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