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Abstract

In this paper we study differentiability of solutions with respect to parameters in state-dependent
delay equations. In particular, we give sufficient conditions for differentiability of solutions in the
WP norm (1 < p < 00). In establishing our main results we make use of a version of the Uniform
Contraction Principle for quasi-Banach spaces.

1 Introduction

In this paper we study differentiability of solutions of the state-dependent delay system

(t) = f(t,x(t),m(t - T(t,wt,a)),ﬂ), te0,T], (1.1)

with initial condition
x(t) = <p(t), te [_Ta 0] (12)

with respect to (wrt) parameters of the equation. Here § € © and o € X represent parameters in the
equation (f) and in the delay function, 7, where @ and ¥ are normed linear spaces with norms | - |g
and | - |y, respectively. In this paper we restrict our attention to differentiability of solutions wrt the
parameters ¢, § and . The notation z; denotes the solution segment function, i.e., z; : [-r,0] = R",
x¢(s) = x(t + s). (See Section 4 below for the detailed assumptions on the initial value problem (IVP)
(1.1)-(1.2).)

Differentiability results wrt parameters, beside the obvious theoretical importance, have a natural
application in the problem of identification of unknown parameters of the equation (such as the initial
function, some coefficients in the equation, or for a constant delay equation, the delay itself). In this
direction it is important to know if the solution is differentiable wrt the parameters in some sense, since
many identification methods require the use of optimization techniques, in which the knowledge of the
derivative of the solution wrt the parameter is essential.



Clearly, to be able to prove differentiability of the solution, we need to have some kind of smoothness
of the delay term, x(t — 7(¢, x¢,0)), of the equation wrt z; and 0. More precisely, we need to discuss the
differentiability of the function A(t,1,0) = ¥(—7(t,1,0)) wrt 1 and o, where 1 represents a function
[-7,0] — R™. The main question here is the selection of the space (i.e., the norm) for ¢ (i.e., the
state-space of solutions) in which A(t,v,0) is differentiable wrt . Since A(t,¢,0) = A(¢,v,0,9),
where \(t,4,0,¢) = £&(—7(¢,4,0)), we need to assume differentiability of A(¢,,0,£) wrt ), o and ¢
in some sense. The latter is relatively easy, since A(t,v, 0, &) is linear in &, therefore it is differentiable
wrt € (in any norm) with derivative g—’g\(t, Y,0,&)h = A(t,4,0,h). Tt is easy to see that in order to have
continuous differentiability of A\ wrt £, we need to consider, e.g., the space W (see Section 2 for
definition), since the inequality

At 8,0, 8) = A(t 6,7, 1)| < Lolblwr (J6 = $lo + o = als),

(provided by Lemma 4.1 below), guarantees the continuous differentiability of A(¢,, 0, &) wrt £ for £ €
W12, This suggests the use of W1 for the state-space of solutions. It looks as a natural choice, since
the solutions of IVP (1.1)-(1.2) are W!* functions (see, e.g., [5] or [7]). The difficulty with W is that
for ¢, £ € W12 the function \(¢,, o, £) is a composition of € and 1, and therefore we need to guarantee
differentiability, or preferably, continuous differentiability of the composition of W !> functions, which
is, in general, impossible. But in the case when the two functions are C' functions, differentiability
follows immediately from the Chain Rule, assuming that 7(¢,, o) is continuously differentiable wrt 1)
and o. We refer to [5], where, under restrictive conditions, differentiability of solutions wrt parameters
was obtained in the !> norm.

Since in W1*° the assumption for differentiability is too strong, we will explore different spaces for
the more general case, i.e., when the solution, (and the initial function) is a W !> function only.

Hale and Ladeira [4] investigated differentiability of solutions of the constant delay equation

2(t) = f(x(t), =(t - 7))

wrt the delay, 7. They have shown, using an extension of the Uniform Contraction Principle to quasi-
Banach spaces (see Theorem 3.1 below, and see Section 3 below for the definition of quasi-Banach
spaces), that the map

[0,r] = Wh([-r,a]; R™)

is differentiable. This result suggests that W? (more precisely, the set W1 equipped with the norm
| - [y ) could possibly be used as the state-space for solutions. It might be a reasonable choice, since
(see e.g. [5]), the map (p,0,0) — x(-;¢,6,0) is Lipschitz-continuous in both the |- |1, and |- |wir
norms, but the map t — z(;,6,0); is continuous only in the | - |1, norm, not in the | - |y 1, norm.
This indicates that the set W1* equipped with the |- |y1.» norm (which is not a Banach-space, it is
only a quasi-Banach space) could be considered as a “natural” state-space for state-dependent delay
equations. The method used in [4] is the following: transform the IVP into an equivalent integral
equation, introduce the new variable y(t) = z(t) — ¢(¢), and then reformulate the problem as to find
the fixed point of an operator, and obtain differentiability of the fixed point wrt parameters. We
will follow the same procedure. The transformed integral equation in our case will be (4.1), and the
operator S(y, ¢, 0, 0) will be defined by (4.3). If we use the ||y 1.» norm for y, then we need continuous
differentiability of S(y,,6,0) wrt y, ¢, 6 and o in the WP norm. It turns out that instead of the
pointwise differentiability of A(t,1,0) wrt ¢ and o it is enough to have the differentiability of the
composite function ¢ +— A(t, 24, 0) wrt £ and o in “an LP-type of norm”, where x € W1 ([—r, a]; R™).
Brokate and Colonius [1] studied linearization of the equation

i(t) = f (Lot - r(to®),  te(oal,

In particular, they investigated differentiability of the composition operator

T x(T)

A ()‘( c W;M) S LP([0,a; R™),  A(2)(t) = a(t — 7(t, z(t)))



where W1 = W1 ([—r a];R"). Tt was assumed that 7(t,v) is twice continuously differentiable
satisfying —r <t — 7(t,v) < a for all t € [0,a] and v € R", and

d
X = {x € Wl . there exists ¢ > 0 s.t. E(t - T(t,:c(t))) >¢c ae te€ [O,a]}.

It was shown in [1], that under these assumptions, A is continuously (Frechét-)differentiable on its
domain with derivative

or

(A'(x)h)(t) = h(t — 7(t,z(t))) + @(t — 7(¢, a:(t)))a—x(t, z(t))h(t). (1.3)

The key assumption of obtaining the results in [1], and which was suggested in [7] as well, is the
choice of the domain, X.

To obtain continuous differentiability of the operator S(y,¢,6,0) in WP we need continuous dif-
ferentiability of the composition map (z,0) — A(-,z.,0) wrt  and o, but using the | - \W;,p norm on
the space of z. It turns out that the right choice for our purposes is “in between the |- |W;,oo norm and
the | - \W;,p norm”. We will introduce a “product norm” in Section 3. Let x € W !+ (since all solutions
are W21 functions, this should be the space of the solutions), and decompose = as z = y + @, (where
o(t) = z(t) for t € [-r,0], and ¢ is the extension of ¢ to [—r,a] by @(t) = ¢(0)), and define the norm

of = by y
o 4
2lyp = ( / y<u>|Pdu) +lelwroe,
0

and consider the normed linear space X!, = (W}:°°, |- |x»). The norm |- |x» is weaker than the |- |y1.
norm, but stronger than the |- |1, norm (see Lemma 3.8 below). But it is still “strong enough” that
the methods of [1], with minor modifications, provide differentiability of the composition map

By (A1 x Ay C XP x z) — L7([0,a]; R"), Ba(z,0)(t) = A(t, 21, 0).

(See Section 5 below.) On the other hand, |- |x» is “weak enough” that using the differentiability of
the operator By above, we can obtain obtain differentiability of the operator S(y,¢,8,0) : (B X
By x B3 x By C X2 x Wh® x @ x ) = XP wrt y, ¢, 6 and o (see Lemma 6.1 below), and be able
to use a variation of the Uniform Contraction Principle (see Theorem 3.5 below) to get differentiability
of the fixed point (the solution of the IVP) wrt the parameters ¢, 6 and o in the |- |x» norm (see
Theorem 6.2 below). Since this product norm is stronger than the | - |W;,p norm, the result implies the
differentiability of solutions in the latter norm as well (see Corollary 6.3 below).
We close this section by noting that differentiability of solutions of delay equations of the form

(1) = f(t, 1)

wrt parameters has been studied, e.g., in [3], where it was shown differentiability of solutions wrt initial
function and f, using C' as the state-space of the solution, and the Uniform Contraction Principle.
Differentiability of solutions of state-dependent delay equations wrt parameters (to the best knowledge
of the authors) has not been studied in the literature yet.

2 Notations, preliminaries

Throughout this paper a norm on R" and the corresponding matrix norm on R™*™ are denoted by | - |
and || - ||, respectively. (The constant n is fixed throughout this paper.)

The notation f : (A C X) — Y will be used to denote that the function maps the subset A of the

normed linear space X to Y. This notation emphasizes that the topology on A is defined by the norm
of X.



We denote the open ball around a point zo with radius R in a normed linear space (X, |- |x) by
Gx (w05 R),i.e., Gx(z0; R) = {z € X : [z—z0|x < R}, and the corresponding closed ball by G x (zo; R).
If the ball is centered at the origin, we use simply Gx (R) and G x (R), respectively.

Whr(la,b]; R"), (1 < p < oc) denote spaces of absolutely continuous functions ¢ : [a,b] — R" of
finite norm

b 1/17
W wr([a,p); R7) = (/ P(s)” + [b(s)]” dS) , 1<p<oo,

and

[ lwroe ([a,b]; R7) = max{ sup |1(s)], ess supi/)(-f)l} ,  p=0%,
a<s<b a<s<b

respectively.

The constant r > 0 is fixed throughout this paper. We will mainly work with functions defined
on [—r,0] or [-r,a]. To keep the notation simple, the function spaces C([—r,0]; R™), L?([-r, 0]; R™),
WLP([-r,0]; R") and the corresponding norms will be denoted by C, LP, WP and | - |¢, | - |1, and
| - |1, respectively. Similarly, the spaces C([-7,a]; R"), LP([—-r,a]; R"), WYP([-r,a]; R") and the
corresponding norms will be denoted by Cy, L2, W)* and |- |c,, |- gz and |- 1, respectively. We
will use Lg , and | - |2z to denote the space LP([0, a]; R") and the norm on it.

Finally, we recall a result for later reference concerning differentiability of functions. Note that in
this paper all the derivatives we use are Frechét-derivatives.

Lemma 2.1 (see, e.g., [8]) Suppose that X andY are normed linear spaces, and U is an open subset
of X, and F : U =Y is differentiable. Let x,y € U and y + v(z —y) € U for v € [0,1]. Then

|F(y) = Fz) = F'(2)(y — 2)ly <z —ylx JSup I1F'(y + v(z —y) = F'(@)llcx.v)-

3 The Uniform Contraction Principle in quasi-Banach spaces

Let Y be a linear space, and let |- | and || - || denote norms defined on Y. We say that (Y,|-]|) is a
quasi-Banach space with respect to the norm || - ||, if for all R > 0, (g(y,H.H)(R)J : |) is a complete
metric space, i.e., all the closed balls of Y at the origin corresponding to the || - || norm are complete
sets in the | - | norm. We consider Y with the topology defined by the norm |- |, i.e., by open, closed
sets in Y we mean open, closed sets of Y in the norm | - |. Introduce £(Y), the quasi-Banach space of
linear operators S : Y — Y which are bounded in both |- | and || - || norms. (See [4].)

The following generalization of the Uniform Contraction Principle holds for quasi-Banach spaces:

Theorem 3.1 (see [4]) Let Z be a normed space, and assume that (Y,| - |) is a quasi-Banach space

with respect to the norm ||-||. Let U CY be open, and V C Z be open, and assume that S : UxV — U
satisfies
(i) S is a uniform |-| and || - || contraction, i.e., there exists 0 < ¢ < 1 such that
1S(y,2) = S(g,2)| < cly—gl,  fory,yeU, z€V,
and .
1S(y, 2) = S(.2)l| <clly=yll,  fory,yelU, z€V.



(i) For each p > 0 there exists R > 0 such that

S((g(YaH'H)(R) NU) x (Gz(p) N V)) C (g(y’”.”)(R) nU).

(iii) S € C*(U x V;Y) for some k > 1.

Then for each z € V, there exists a unique fized point g(z) of S(-,2) in U, and the map g is in C*(V; Y).

The following notion of the (Frechét-)derivative wrt to a set in a linear space which is equipped
with two norms (e.g., a quasi-Banach space) will be crucial for our future purposes. Let X; be a linear
space, and assume that |- |x, and || - || are two norms on X, and let X, be a normed linear space. We
consider the normed linear space X; as the space (X1, | |x,), i.e., with the topology generated by the
| - |x, norm, and denote the normed linear space of bounded linear operators from X; to X, with the
norm ||Al|z(x,,x,) = sup{|Az|x, : |z|x, <1} by L(X;, X2). We define differentiability of a map over
a set which is not open in the | - |x, norm, but open in the || - || norm.

Definition 3.2 Let U be an || - ||-open subset of X1, and F : (U C X1) — X,. We say that F is
differentiable with respect to the set U, if for every x € U there exists A € L(X1, X3), such that

lim |F(z+ h) — F(x) — Ah|x,

s Il x,

= 0. (3.1)

The map A is uniquely determined, called the derivative of F at z, and denoted by F'(z). If, moreover,
the map F' : (U C Xl) — L(Xy, X3) is continuous, then we say that F is continuously differentiable
wrt U.

In (3.1) the limit is computed for h such that = + h € U, or equivalently, for h such that h € U — z =
{u— 2 : uw € U}. The uniqueness of A in (3.1) follows from the assumption that U is || - ||-open, and
therefore there exists § > 0 such that h € U — z for ||h|| < 8. Let # € U be fixed, and suppose there
exist A, A € £(X1,X,) both satisfying (3.1). Tt is easy to see that (3.1) yields that for every & > 0
there exists § > 0 such that

|(A— A)h|x, <elh|x,, for |h|x, <3, helU—uz. (3.2)

Let h* € X be such that [h*|x, < é and h* ¢ U —z. Then there exists v € (0, 1) such that [[vh*|| < 8,
therefore vh* € U — . Hence (3.2) yields [(A— A)vh|x, < e|vh|x,, and therefore |(A— A)h|x, < elh|x,
for all |h|x, < d. Since € was arbitrary, we get A = A.

Let X; be a linear space equipped with two norms, |- |x, and || - ||, as before, and let X5 and X3 be
normed linear spaces.

Definition 3.3 Let U be an || - ||-open subset of X1, and V' be an open subset of Xo, F : (U xV C
Xy x Xg) — X3. We say that F(u,v) is continuously differentiable wrt to u and wrt the set U, if for
every v € V the function F(-,v) : (U C X1) — X3 is differentiable wrt the set U (in the sense of
Definition 3.2), and the derivative, % : (U xV CX;x X2) — L(X1,X3), is continuous.

We will use the following result in the sequel.



Lemma 3.4 Let X be a normed linear space with norm | -|x,, and let || - || be an other norm defined
on Xi. Let X5 and X3 be normed linear spaces. Let U be an || - ||-open subset of X1, and V be an open

subset of Xo. Let F : (U xV C Xy x Xg) — X3, be continuously differentiable wrt u and wrt the set
U, and continuously differentiable wrt v on its domain. Let (4,0) € U XV be fized. Then the function

_ _ . OF, . OF, _ _
OJ(U,U,U,U) = F(U,’U) - F(u,v) - %(ulv)(u - u) - %(U,U)(’U - U)
satisfies
(@, 3, v) |, =0, as lu—alx, =0, ue U, and |v —v|x, = 0.

|U - ﬂ‘Xl + ‘U - Q_}|X2

Proof The definition of w and elementary manipulations give

oF OF oF
0.7 < |F —Flu.?) — —(u.0)(v — ¥ = (a7 -
sl € (Pl = o) = o=+ (Frwo-Grmo) w-o]
F
+ |F(u,v) — F(u,v) — a—(a,qj)(u —u)
Ju X
Applying Lemma 2.1 to the function F(u,-) : Gx,(7; §) = X3 (for some § > 0), we get
oF oF
|w(1],’lj;u,’l))‘)(3 < "U_’D|X2 sup _(’U@’D—FV(U_’D)) - —(u,’[j)
o<w<1 || OV ov £(X2,X3)
oF oF
+ | Lo - Lo -
H Ov v L£(X2,X3) ’
F
+ [P - r@o) - Saou-o)
Ou Xs
which, using the continuity of %—5 and %—IZ on U x V, proves the lemma. ]

Since Theorem 3.1 is not applicable to the class of equations considered here, we state the following
result (a weaker version of Theorem 3.1), and introduce some new spaces essential for our future
purposes.

Theorem 3.5 Let Z be a normed space, and (Y,|-|) be a quasi-Banach space wrt the norm || - ||. Let
U be an || - ||-open subset of Y, W be a (| -|-)closed subset of U, and V' be an open subset of Z, and
assume that S : U x V =Y satisfies the following conditions:

(i) SW xV)CW,

(i) S is a uniform |- | and || - || contraction on W x V, i.e., there exists 0 < ¢ < 1 such that
‘S(yaz)_s(glz)‘gdy_?ﬂ, fm“y,ﬂEW, ZGV,
and
1S(y,2) =S, 2 <celly=gll,  fory.geW, zeV.

(iii) For each p > 0 there exists R > 0 such that

5((30/,“-“)(3) NW) % (Gz(p) N V)) C Gy (R NW).

(iv) For ally € W the function S(y,-) : (V C Z) — Y is continuous.



Then for each z € V, there exists a unique fized point g(z) of S(+,2) in W, which depends continuously
on z. Moreover, if in addition

(v) S is continuously differentiable wrt y and z on U x V in the following sense:

(a) for each z € V', the function S(-,z) : (U c (Y,]- \)) — Y is differentiable wrt U in the sense
of Definition 3.2,

(b) for each y € U, the function S(y,-) : (V c Z) — Y is differentiable, and

(c) the partial derivatives 8—y : (U xV c (Y,|-]) x Z) - L(Y,Y) and 22 . (U xV C

B
(Y,|-]) x Z) — L(Z,Y) are continuous functions,

then the map g : (V C Z) — Y is continuously differentiable.

Proof The proof is essentially the same as that of Theorem 3.1 (see [4]), and therefore only the main
steps are presented here, and we point out the difference in the respective arguments due to the fact
that here differentiability is required in a weaker sense.

For a fixed z € V', assumption (iii) implies that there exists an R > 0 such that

S(-,Z) : (g(y,”.”)(R) N W) — (E(Y’H'H)(R) N W),

and since g(y,H.H)(R) is a complete subset of Y, the existence of a unique fixed point of S(-, z), g(z),
follows from (ii). A standard argument (using (ii) and (iv)) shows that g(-) : V — Y is continuous.

< cand H@(y,z)Hﬁ( < cfor all (y,2) €

Assumption (ii) yields that H%(y,z)“ .

LYY Y-, (V1)
-1

W x V, and therefore (by using a series of Lemmas in [4]), ( - %(y,z)) € L(Y) exists and is

continuous in (y, z). Define

e = (1- L) P

We will show that ¢'(z) = M (z). Let v = y(h) = g(z + h) — g(2). Then it is easy to see that

= ——(9(2),2)7 + —Z(g(Z), z)h + A,

where

aS aS
— 5 9(2):2)7 = 5= (9(2), 2)h.
Since g(z) € W, g(z) +v=g(z +h) € W, and W C U, Lemma 3.4 implies that |A| < e(|y|+ |h|z), for
some € > 0 and for sufficiently small v and h. The remaining part of the proof is identical to that of
Theorem 3.1. In particular, it is possible to obtain an estimate of the form

e(1+k)
1-c

A=S(g(z) +7,2+h) — S(g(2),2)

l9(z+h) —g(2) = M(2)h| <

|hlz,
which proves the statement. The details are omitted. ]
Let o > 0. We define the space

YP = {y e Whe . y(t) =0 on [-r, 0]},

«



with corresponding norms

@ 1/p
ylys = (/ |y<s>pds) . forl<p<os,
0

and

[y[vee = esssuply(s)], for p = oo,
s€[0,a]

respectively. Note, that Y2 is the same set for all p, but it is equipped with different norms. Clearly,
Y? is a normed linear space, and Y5 is a Banach-space.
The following lemma lists some basic properties of these norms.

Lemma 3.6 Let y € Y2, 1 < p < 0o, and q be the conjugate to p, i.e., 1/p+ 1/q = 1. Then the
following estimates hold:

(i) ly@)] <aylys,  fort€[-ral, 1<p< oo,

(ii) ly(®)] < alylye,  fort€[-ra],

(iii) |yslo < a'/?ylyz,  fort€[0,a], 1 <p< oo,
(iv) |lylc < alylys,  fort€[0,0],
(v) lylyr, <a'/Plylys,  for1<p< oo,
(i) lylyz < lylyrr < (af + 1)1/p\y|Yz;, i.e., |+ |yz is equivalent to the norm |- |10 on Yg, for
1<p<oo,
(vii) |ylyz < |yl < max{a, 1}ylys, ie., |- |yx is equivalent to the norm | - |y1. on Yo7,

(viii) ylzz < alylyr,  for1<p<oc.

For 1 < p < 0o, Y? is not a Banach-space, but, as the next lemma shows, it is a quasi-Banach space
wrt the | - |y norm. We comment that Hale and Ladeira [4] applied the extension of the Uniform
Contraction Theorem (Theorem 3.1) in this space (with p = 1) to show differentiability of solutions
wrt the delay in constant delay equations. This space was also used in [6] to establish continuous
dependence of solutions on parameters in a class of neutral differential equations.

Lemma 3.7 Letjj € W1 §>0,1<p<oco. Then the set EYZ" (7; 0) is a closed and complete subset
of Y?.

Proof Let y* € Gy=(y; 0) be a Cauchy-sequence in the | - |yz norm. By Lemma 3.6 (vi) the | - |y»
and | - |y1.» norms are equivalent, therefore {y*} is a Cauchy-sequence in W1? as well. Since W1 P is
a Banach-space, there exists a function y € WP such that |y* — Ylywi» — 0 as k — oo, and therefore
ly¥ —y|y» — 0 as k — co. Lemma 3.6 (i) yields that [y*(t) —y'(t)| < a/|y* —y!|y» — 0, as k,1 — oo,
so {y¥(¢)} is a Cauchy-sequence in R™ for all ¢ € [0,a], and hence {y*(¢)} is pointwise convergent to
y()-

Suppose that y & Gy=(y; 8), i.e., esssup|y(u) — y(u)| > 6 + & for some ¢ > 0. Then the set
0<u<a

A={u : |y(u) — y(u)] > § + ¢} has positive measure. Since ess sup|ylk (u) — y(u)| < 6 for all k € N,
0<u<a

and hence meas({u : \y.’“(u) —4(u)| > &}) = 0, we have that the set

B= 0o\ UJ{u ¢ 1w - gl > 8} = {u + Iy —itw)] <6, ke N)
k=1



has measure a. Then elementary estimates imply for all k& that
1/p
. . . * p 1/1)
=l > | [ (0 = 3]~ 1o — ) du | > (meastan ) >0,
nB

which is a contradiction. Therefore y € ?Y;o (7: 6), i.e., Gy (7; 9) is complete, and hence also closed in
Y& []

Next we introduce a new norm on W1°°. We define the projection operators
Pr, : Wl — Wwhe, (Pryz)(s) = x(s), se€[-r0], (3.3)

and

0, —r<u<o,
x(u) — z(0), 0<u<a.
Conversely, if ¢ € W1 and y € Y2, then the function = y + ¢ is in W2*°, where ¢ denotes the
extension of ¢ to [—r, a] defined by

Pr, : Wh>® - Y2, (Pry x)(u) = { (3.4)

s = | o), t€[-r0]
e() z{ o0, telal (3.5)

We define a “product norm” on the set W1 for 1 < p < co by
|zlxz = [Pry zlyz + [Pry zlwr, (3.6)

(Wae, 1l )
Part (i) and (ii) of the following lemma shows that this “product” norm is stronger than the |- | 1.»

and denote the corresponding normed linear space by X?

norm, and weaker than the | - ;1. norm on W2, Estimate (iii) will be used later.

Lemma 3.8 Let 1 < p < occ. There exist positive constants c1, ca and c3 such that for all x € W1
(i) |zlyrr < erlafxe,

(ii) 2z < alelyg,

(iii) |z|c, < cslz|xe.

Proof Let y=Pr,z and ¢ =Pr,z,ie., z =y + ¢ be the direct sum decomposition of z. Using the
inequality (a + b)? < 2P"!(a®? + b?) and Lemma 3.6 (i) we get

0 a
ils = [ eGP+ ds+ [y +pOP + i) du
« —r 0

(o] (e

< 2l + 27 [yl dut a2 o + [ lita)P du
0 0

< @ a2l . + 27 P T YL, + Jylh,

< (2”*1a+2r+2p*1a”+1)|az|§p,

which proves the first statement of the lemma with ¢; = (2" 'a 4 2r 4+ 2P 1a? 4+ 1)'/P.
To show the second inequality, consider the elementary estimates

a 1/p
ol = ([ P ) "+ phre <t Pliles + ol < (@7 4 Dlalyye
0

therefore c; = (a/? 4+ 1) in (ii).
Consider (iii). Then by Lemma 3.6 (i) we get |z]c, < |ylc. + |@lc. < @ ylyr + [plwre <

max{a!/?, 1}|z|xr , therefore (iii) is satisfied with c; = max{a!/?,1}. This completes the proof of the
lemma. ]



4 A Class of State-Dependent Delay Equations

In this section we consider a set of technical conditions, guaranteeing well-posedness and differentia-
bility of solutions wrt parameters, for the state-dependent delay differential equation (1.1) with initial
condition (1.2). In particular, we make the following assumptions:

Let Oy CR", Qs C R", Q3 C ©, Q4 C C, and Q5 C X be open subsets of the respective spaces.
T > 0 is finite or T' = oo, in which case [0, T] denotes the interval [0, c0).
(A1) (1) f :[0,T]x 2 x Qs x Q3 = R™ is continuous,

(ii) f(t,v,w,H) is locally Lipschitz-continuous in v, w and 6 in the following sense: for every
a >0, M; CQy, My C Qs, M3 C Q3, where M; and M, are compact subsets of R” and M;
is a closed, bounded subset of ©, there exists a constant Ly = Lq(a, My, My, M3) such that

\f(t,v,w,H) _.f(t7ﬁzu_)=0_)| SLI(‘U_Q_}|+ ‘U)—’U_)|+‘9—0_|@),

for t € [0,a], v,0 € My, w, € My, and 8,0 € M3,
(iii) f(t,v,w,0) : ([O, TIx 0 xQ2xQ3 CRxR" xR" x @) — R" is continuously differentiable
wrt v, w and 6,
(A2) (i) 7:1]0,T] x Q4 x Q5 — [0,00) is continuous, and
t—1(t,,0) > —r, for t € [0,T], ¢ € Q4, and o € Qs,

(ii) 7(t,4,0) is locally Lipschitz-continuous in 1) and ¢ in the following sense: for every a > 0,
My C Q4 and My C Q5, where M, is a compact subset of C, and Mj5 is a closed, bounded
subset of X, there exists a constant Lo = Lo(a, My, M5) such that

7(t,16.0) = 7(t,5,0)| < La (¢ = bl + o - als)

for t € [0,a], ¥,v € My, and 0,6 € M3,
(iii) 7(¢,,0) : ([O,T] x Qg x Q5 C [0,a] x C x E) — R is continuously differentiable wrt ¢, ¢

and o,

(iv) %(t,zﬁ,a), g—;(t,zp,a) and %(t,zﬁ,a) are locally Lipschitz-continuous in ¢ and o, i.e., for

a

every a > 0, My C Q4 and M5 C Q5, where M, is a compact subset of C, and Mj5 is a closed,
bounded subset of ¥, there exists L3 = L3(a, My, M5) such that

0 0 - _
a_;(tawao)_a_;(t:d):&) S LS(‘¢_¢‘0+|0’_5"Z):

or or _ _ -
H%(tad}ag) - %(tuipua) LOR) S L3(‘¢_¢‘C+|U_U‘Z):
and 5 5
T T, _ -
H%(taipua) - a_O'(t,’(p’U) CER) S L3(|'¢J - '(/J|C + ‘0’ — U|E)

hold for all t € [0,a], 1, € My, and 0,5 € Ms,
(A3) p € Whee,

Assumptions (A1) (iii), (A2) (ii) and (iv) are equivalent to the usual local Lipschitz-continuity
properties if ® and X are finite dimensional spaces. On the other hand, they can also be satisfied in
special cases when © and ¥ are infinite dimensional. For example, let @ = C([0,T];R*), Q3 = O,
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and f(t,v,w,0) = g(t,v,w,0(t)), where g : [0,7] X Q1 x Q3 X RF — R™. Then if g is continuous,
and continuously differentiable wrt its last three arguments, then (A1) is satisfied. Similarly, let, e.g.,
Y = C([0,T];RF), Q5 = £, and 7(t,,0) = 7(t,¢(0),0(t)). Then if 7 : [0,T] x R™ x R¥ — [0,7] is

Y

twice continuously differentiable wrt its arguments, then (A2) is satisfied.

For future notational convenience we introduce the functions
Alt,¢,0) =(=7(t,¢,0)) and  A(t,4,0,8) = &(=7(t,4),0))
for t € [0,T], ¥,& € C and o € ¥. With this notation we can rewrite (1.1) shortly as
z(t) = f(t,2(t), A(t, 2, 0),0).

The definitions of A and A, assumption (A2) (ii), and the Mean Value Theorem imply immediately the
following inequalities, which we will need later.

Lemma 4.1 Assume (A2) (i), and let 0 < a < T, My C Q4 be a compact subset of C, and M5 C Q5
be a closed, bounded subset of X. Let Ly = Lo(a, My, My) be the corresponding constant from (A2) (ii).
Then the inequalities

At 1,0,8) = A(t:1,5,8)| < Lalélr= (¢ = dle + o - alz),

and

AL ,0) = A6, 0)] < 6 = dlo + Lol (16 = dlo + o - ols)
hold for t € [0,a], v € W1 4p 1) € My, and 0,6 € Ms.

Assumptions (A1)-(A3) yield that for any x € C([—r,T]; R") the map ¢ — A(¢,z, 0) is continuous,
and hence so is the map t — f (t, z(t), A(t, ¢, 0) 0) . Therefore, using the new variable y(t) = z(t)— (%),

IVP (1.1)-(1.2) can be transformed to an equivalent integral equation
0, t €[-r0]

y(t)= /Ot f(u, y(u) + @(u), A(u,y, + géu,a),a) du,  te[0,T).

(4.1)

In this section we study well-posedness of (4.1) corresponding to parameters ¢, 6 and o satisfying the
domain conditions

p(0) € M, @(—7(0,p,0)) €Qy, 0€Q3, @€y, ando € Q5. (4.2)

We assume for the rest of this paper that ¢* € W1, §* € © and o* € ¥ are fixed parameter values
satisfying (4.2).
Our goal is to define an operator S by

0, te[-r0]

Sy, ¢.0,0)() = /0f(u,y(u)+<,5(u),A(U,yu+¢u=0)a9)du= t€[0,al,

(4.3)

and, using Theorem 3.5, obtain existence of a unique fixed point of S, i.e., of a unique solution of (4.1).
The next lemma gives the precise definition of the domain, where S can be defined, and where the
conditions of Theorem 3.5 are satisfied.

Lemma 4.2 Assume (A1) (i),(ii), (A2) (i),(ii) and (A3). Let 1 < p < oo and assume that ©*, 6* and

o* satisfy (4.2). Then there exist positive constants 61, da, 03, «, and sets My, My, Mz, My, Ms, U
and W, such that
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(1) My C Qy, My C Qy are compact subsets of R", Mz C Q3 is a closed, bounded subset of ©,
My C Q4 is a compact subset of C, and Ms C Q5 is a closed, bounded subset of %,

(2) U is an open subset of Yo, W is a closed subset of Y2, and W C U,
(8) foru€[0,a],y €U, p € Gwi.=(¢*; d1), 0 € Go(8*; 62), and o € Gx(o*; d3)
y(u) + @(u) € M1, A(u,yYu + @u,0) € Ma, 60 € Ms, yu+ Py € My, ando € M5 (4.4)
hold, and

(4) the operator
S (u X Gyt (9% 01) X Go (6%; 82) X Gx(0%: 83) C Y2 x Wh™ x @ x z) S YR, (4.5)
defined by (4.3) satisfies

(i) S(W x Gwr. (975 1) x Go (6% 85) x Gs(0™: 83)) C W,
(ii) S is a uniform contraction on WV both in |- |y and |- |y» norms, i.e., there exists 0 < c < 1
such that for all y, 5 € W, ¢ € Gy (p*; 01), 6 € Go(0%; §2), 0 € Gy (0*; d3)
|S(?J=<Pa03‘7) - S(ﬂ:‘paaao’)‘Y? S C‘y - g‘Yf:
and
‘5(97%910) - S(gv‘pueuaﬂYﬁ < C‘y - g‘Y’;a
(iii) for all y € W the function S(y,-,-,") @ Gwi.=(p*; 01) X Ga(8*; d2) X Gn(o*; §3) = YE is

continuous.

Proof Since p*, #* and o* satisfy (4.2), and Q; (i = 1,...,5) are open sets, there exist positive

constants R; (i = 1,...,5) such that M; = Ggn (¢*(0); R1) C Q1, My = Grn (¢*(—=7(0,¢%,0%)); R1) C
QQ, M3 = gq(é*, R3) C Qg, MLI( = gc(go*; R4) C Q4, and M5 = gz((]*; R5) C Q5.

Let 0 < T < T be a fixed finite number, and Ly = L, (T, M;, Ms, M3) be the constants from (A1)
(ii). Assumptions (A1) (i) and (ii), the compactness of M; and M, and the boundedness of Mj yield

sup{|f(u,v,w,0)| : w€[0,T],v € My, w € My, § € M3}
< sup{|f(u,v,w,0%)] : w€[0,T],v € My, w € My} + Ly sup{|f — 6*|e : 6 € M3}

< oo,

therefore the constant 8 = sup{|f(u,v,w,8)| : u € [0,T], v € My, w € My, € M3} is finite. Let

——_— . - Ry Ry Ry - . [R1 Ry
, = 'y — — 07— d 0 = —, — .
B>p, a mln{ '35 38 3o T 1)}, an 1 mln{2 3}

Let u € [0,a], y € Gv=(B) and ¢ € Gw1. (¢*; 61). Then Lemma 3.6 (ii) yields

ly(u) + ¢(u) — 9" (0)] < [y(u)] + |(0) — ¢"(0)] < dlylyz= + ¢ — @lwr= < @B+ 01 < Ry,

ie., y(u) + ¢(u) € M;. Similarly, using Lemma 3.6 (i) and the Mean Value Theorem we get

‘yu + Pu — 90*‘0 < ‘yu|0 + “ﬁu - Sg*u‘c + ‘(i*u - 90*|C
< alylye + e — ¢ le + uleTlwie
< af+ 61+ alet|wre (4.6)
< Ry,
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ie, yu + Pu € My C Q4. Define My = {yu + ¢u : u € [0,a], y € Gv=(B), ¢ € Guwr=(¢*; 01)}.
Then M, C M; C Q4, and Arsela-Ascoli’s lemma implies that M, is a compact subset of C. Let
Ly = Lo(a@, My, M5) be the constant from (A2) (ii), and define

(= Ry . Ry
0 = o1, , 02 = R3, d d63= , Rs ¢ .
' mm{ b 5Ly (|t wr. +1)} 2 =M and mm{5L2(|¢*|W1,m ) 5}

Select a such that

agmin{_ e e

a, , . aLi(24 Ly(B + |¢*|wre +61)) < 1,
5BLs(|¢*|wiee + 1) 5L2(<p*%1/1’m+1)} 1( 2(B + " [ 1))

and
le* lwi|T(u, 0%, 0%) = 7(0,0%,0%)| < R2/5 for u € [0, a].

Define the sets U = Gy (3) and W = Gy (). Then W C U, U is an open subset of Y5, and it follows
from Lemma 3.7 that W is a closed subset of Y2, so part (2) of the lemma holds.

Let w € [0,a], y € U, ¢ € Gwi.=(p*; 1), 0 € Gxn(c*;d3). Then Lemma 4.1, A(0,p*,0*) =
*(—71(0,0*,0%)), yu + Pu € My, and an estimate similar to (4.6) yield

|A(u, yu + Gu, o) — A0, %, 07)]

A, yu + Gu,0) = Au, ", 0%)[ + [A(u, ¢, 07) = A0, 9", 0%)]

Lolg*lwre ([yu + u — ¢*lc + o — 0%[x) + " (=7(u, ¢", 7)) = " (=7(0,¢", 07))|
Lole*|wr (lyu + @u — ¢*[c + |0 — 0%|s) + " |wre |T(u, 07, 0%) = 7(0, 0", 07|
La|o™|lwi. (@f 4+ 61 + o™ |lwiee +83) + [@" [wiee |T(u, ¢, 0%) — 7(0, 0", 07)|

Ry,

VAN VAN VAR VAN VAN

ie, A(u,yu+ Pu,0) € My. Clearly, 6 € Mj; for 8 € Go(0*; d2), and o € M; for 0 € Gy (0*; d3), therefore
part (1) and (3) of the lemma is proved.

(1)-(3) imply that the operator S defined by (4.5) and (4.3) is well-defined on its domain. Let
y €W, p € G (¢*; 61), 8 € Go(6%; 83), and 0 € Gs(0*; 63). Then the definition of 3 yields that

S(y,p,0,0)ly> < B,ie S(y,¢.0,0) €W, which shows (4) (i). Lemma 4.1 and Lemma 3.6 (ii) and
(iv) yield

|S(y/ <Pa9a U) - S(g/ <Pa9a O')‘Yzo

= es<s Sgp f(u,y(u) + @(u), A(U: Yu + Pu, U): 9) - f(u,gj(u) + @(u), A(U: Yu + Pu, U): 9)
0<u<La
< Lyesssup(Jy(u) = 5(00] + Ay + $1.0) = Al G+ 31.)])
0<u<a
< Ll%s<s sgp(\y(U) — §(W)| + |Yu = Fulc + La|fu + Gulree|yu — zju\c)
< Lia2+ La(Jylye + lelwr=))ly — ylyz
< Lia2+ La(B + ¢ [wre +61))[y — ylyee.

Similarly, using Lemma 3.6 (i) and (iii), we have that

|S(y 90’0’ U) - S(:lj, 90707 U)‘gg

a
B /0'
“ . = _ p
0

LYa?(2 + Ly (B + ¢*lwee + 61))" |y — Tl -

£ () + B), Aoty + G0, 0),0) — f(u,g(w) + G(u). A, Gu + $us0),6)| du

IN

AN
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Therefore (4) (ii) is satisfied with ¢ = a(L1(2 + La(B + |¢* w1 +61)) < 1.
Statement (4) (iii) follows easily from the continuity of f and A, and the Lebesgue’s Dominated
Convergence Theorem. ]

Lemma 4.2 and Theorem 3.5 yield the well-posedness of IVP (1.1)-(1.2). For comparison, we refer
to [2] as a standard reference for well-posedness of differential equations with state-dependent delays.

Theorem 4.3 Assume (A1) (i),(ii), (A2) (i),(ii) and (A3). Let 1 < p < oo, and assume that p*,
0*, and o* satisfy (4.2). Then there exist a > 0 and a neighborhood of the parameters, where IVP
(1.1)-(1.2) has a unique solution, x(p,0,0)(-), on [0,a], which depends continuously on the parameters
@, 0 and o in the | - |y» norm, or equivalently, in the | - \W;,p norm.

We comment that, under our assumptions, its is easy to show that the solution, z(p, 8, o), depends
continuously on ¢, # and ¢ in the W1:° norm, in fact, the map (¢, 6,0) = z(y,8,0) is locally Lipschitz-
continuous as a map WH™® x @ x ¥ — W1 (See, e.g., [5].)

5 Differentiability of the composition operator

Clearly, in order to apply Lemma 4.2 and Theorem 3.5 to obtain differentiability of solutions wrt
parameters, i.e., to obtain differentiability of the operator S(y, ¢, 8, 0) wrt its arguments, it is necessary
to have some kind of continuous differentiability of A(¢,1,0) wrt ¢ and o. It turns out that we need
differentiability of the following composition operator. Fix 1 < p < 00, 0 < a < T finite, 4, 65 > 0,
and let x* € W1 and o* € Q5 such that z; € Q4 for t € [0,a]. We define the composition operator
By corresponding to the delayed term A by

By : (gwal,w(m*; 84) X G (0 65) C XP x z) I8, Ba(z,0)(t) =At,2,0), t€[0,a]. (5.1)
Similarly, we define the composition map B) corresponding to A:

0,

t €0, al. (5.2)

By : (gwi,m(x*; 54) X Gs(0%; 65) x Wh™ € XP x 5 x Xg) Ny
B/\($70'7Z)(t) = A(t7xt7o': Zt)

Our goal in this section is to give conditions guaranteeing that

(P) * € Wk o* € Q5,84 > 0 and &5 > 0 are such that the composition operator By is continuously
differentiable wrt = wrt the set Gy,1..(2*; d4) (in the sense of Definition 3.3), and wrt ¢ on

QW;,OC(:U*; 04) X Gs(0*; d5).

Assuming that B)(z, 0, z) has continuous partial derivatives wrt = and wrt the set Gy 1.0 (2*; 04),
and wrt o and z, relation By (x,0) = Bx(x,0,z) yields that

8BA _ BB,\ aBA
W(CU:U) _W(wvgaw)_*—W(vaaw)v (5.3)
and OB OB
A 0By
W(x=a) e (‘raaax)' (54)

Therefore, to obtain (P), it is enough to show that Bj(z,o,2) has continuous partial derivatives wrt
z and wrt the set Gy (z*; 64), and wrt o and z on Gy (2% 64) X Gs(0*; 85) x Wi for some

x* € Whoe o* € Q5, 84 > 0 and 5 > 0.

Since By(z,0,2)(t) = 2(t — 7(t, 24, 0)), first we study the smoothness of the map ¢ — 7(t, 24, 7).
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Lemma 5.1 Assume (A2) (i)-(iii), and let z € W1 and o0 € Qs be such that z; € Q4 for t € [0, .
Then the function t — 7(t,z¢,0) is Lipschitz-continuous, and therefore a.e. differentiable on [0, a].

Proof Let My = {x; : t € [0,a]}, and M5 = {o}. Then M, is a compact subset of C, and My C Q4.
Let Ly = La(a, My, M5) be the constant from (A2) (ii), and ¢, € [0, a]. Since the set M, is compact,
the inequalities

IN

|7(t,x¢,0) — 7(t, x4, 0)| + |7, 2, 0) — 7(F, 27, 0)]
0 _
(SUP{B_I(u’w’U) cu€f0,a], e M4} +L2|x|W;,oo> [t — ¢,

prove the lemma. ]

|T(ta T, U) - T(E T, U)|

IN

Fore > 0,0 € Q5 and 0 < a < T we define the set

X(e,0,a) = {x eWh>™ .z, € Q4 fort €[0,a], the map t = t — 7(t,z¢,0) is differentiable
d
for a.e. t € [0,a], and %(t — T(t,a:t,a)) >eforae. te [O,a]}. (5.5)

Lemma 5.2 Assume (A2) (i)-(iv), and let * € X (e*,0*,a) for some €* > 0 and c* € Q5. Then
there exist positive constants 04, 05 and € such that QW;,oo(a:*; 04) C X(e,0,a) for all o € Gs(o*; d5),

and 32(0*; 55) C Q5.

Proof Tt is enough to show that there exist §, > 0 and §5 > 0 such that

{zt 1 t€[0,a], @ € Gy (2" 04)} C Qu, Gx(o™; 05) C Os, (5.6)
and there exist € > 0 and § > 0 such that

T(t+ h,x42n,0) — 7(t, 2¢,0)
h

<l-g, for 0<|h[ <4 z€ QW;,oc(CU*; 04),
o €Gs(c"; d5), and ae. t€]0,q] (5.7)

In fact, if (5.6) holds, then the map ¢t — 7(t,z¢,0) is defined for ¢ € [0, @], hence Lemma 5.1 yields that
it is a.e. differentiable, and therefore, by (5.7), %T(t, zt,0) < 1—ceforae. te€|0aq]ie, xz € X(e0,a)
for all z € Gy (275 64) and o € Gx(0™; J5).

The set Mj = {z} : t € [0,a]} C Q4 is a compact subset of C, Q4 is open in C, therefore there
exists 65 > 0 such that Ge, (MJ; 0f) C (4, and hence {z; : t € [0,a], = € Gy (2*; 67)} C Q4. The
existence of % satisfying Gs(0*; 8%) C Q5 is obvious since Q5 is open.

The continuity of 2= and 2= yield that the function (¢,1)) — 7(t,1),0) is differentiable, i.e., the

ot BT
function
- - or - - or - - -
W(t,¢,0;t,¢) = T(t7¢=a) - T(ta¢,0) - E(tawao)(t - a - %(tﬂ/%a)(i/) - w)
satisfies (@ _ |
w t’w) o”t)w 7 n
— — — 0, ast—t, |Yv—1¢|c—0. 5.8
T 9= dlo (58)
We have
* * * * 87— * * aT * * * * * * *
T(t+h,zf ,,0")—71(t,z},0%) = E(t,azt,a )h—}—%(t,wt,a Y @iy, —z)+w(t, zf, 0 t+h, xf,,). (5.9)
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Relations (5.8) and |z}, , — zf|c — 0 as h — 0 imply that

w(t,zf, 0%t +hay,,) wtzy, ot +hwy,) _ | + | — @l
h bl + |2y, — 2fle h
w(t,xf, 0"t + h,x;
< i - *“h)(l + [z e ) (5.10)
‘h| + |xt+h — Ty ‘O B
— 0, as h — 0. (5.11)

Since z* € X (¢*,0%,a), i.e., L7(t,z},0%) < 1—¢* for a.e. t € [0,q], it follows from (5.9) and (5.11)
that there exist €** > 0 and ¢* > 0 such that

87— * * 87— * * w)thrh_w)tk * 5k *

— —_— —— <1- , .e. . .

Ot(t’mt’g)+6¢(t’mt’a) - <1-¢g*, 0<|h| <8, ae te]0,a] (5.12)
Consider

T(t+ h,x41p,0) — 7(t, 24, 0)

or or
= 5 —(t,z¢,0)h + aw(t T, 0)(XTppn — Te) Fw(t, 2,05t + h,eqp)
8 * * a * * * *
= E(tumtag )h_'_%(tthua )(thrh_wt)
or or . x or or . s
+ <at(t Ty, 0) — 8t(t’xt’0)> <8¢(t Ty, 0) — aw(t,:@,o)) (Ttgn — x4)
8
+ 55t 0)@ren =i = (o = 30)) + wlt, 7,73t + B (5.13)

Let My = {z; : t €[0,0], © € Gy1.=(2%; 0})}, and M; = Gx:(0*; 82). Then, by Arsela-Ascoli’s lemma,
the set My is compact in C. Let Ly = Lg(a, My, Ms) and Lz = Lz(«, My, M5) be the constants from
(A2) (ii) and (iii), respectively. Let z € Gy~ (z"; &), and o € Gx(0*; §2). Then assumption (A2)
(ii) and (iii), the Mean Value Theorem, Lemma 3.6 (iv) and (vii), the compactness of My, (5.12) and
(5.13) imply for 0 < |h| < §*:

T(t+ h,x4an,0) — 7(t, 2, 0)

h
or or or or (@sen — |0
< l-et g -5 (t : t ¢t o* [Zt+h — TtjC
< £ +‘6t(:$t;0') at(,:ﬂt, )| + Haw( T4,0) — sz(’xt’o) . g
+ ﬁ(t,ﬂ?;,o’*) |xt+h _$t+h (xt _$t)‘ |w(t Tt 0 t+h mt+h)|
oy L(C,R) |h 7]
S 1-e” +L3(‘mt —ailo+lo - U*\Z) + Ls (|33t —zflc +]o — U*\Z)\:HLE"
+ —T(t,ﬂfz,a*) |j3_m*|L3°+ ‘w( y T, 03 + ,Zl?H_h)‘
O L(C\R) |h
<

1—e" + L (a|a: — 2|1 + o — U*\z) + L (a\m — 2|1 + o — U*\z)(\w*|W;,oo +0y)

N SUP{“S—;(Ua¢aU*) |w(t,wt,a;t+h,mt+h)\.

1]

: UE[O,Q], e M,y ‘x_‘r*|W1'°°+
L(C,R) “

(5.14)

Since, similarly to (5.11), |w(t, ¢, 01t + h,z¢4n)|/|h] — 0 as b — 0 for all z € Gy (z; 6]), and

o € Gx(0*; §%), (5.14) yields the existence of € > 0,0 > 0,0 < 04 < 6* and 0 < 05 < 62 satlsfylng (5.7).
This concludes the proof of the lemma. []

We recall the following result from [1].
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Lemma 5.3 Let g€ L2, ¢ >0, andu € A= {v e WH>([0,a]; [-r,a]) : 0(s) > ¢ for a.e. s € [0,a]}.
Then

@ 1
| lotue)rds < .
0 € «
Moreover, if u* € A is such that |uF — ulc(0,01,R) = 0 as k = oo, then

g(u*(s)) = g(u(s))| ds = 0.

lim
k— oo 0

k

Note that the second part of the lemma was stated in [1] with the assumption that 4" — w in the

W1 norm, but in the proof it was used only that u* — u in the C-norm.

Let z* € W} be such that z* € X (e*,0*,a) for some * > 0, 0* € Q5 and a > 0, and 6, and 6
be the constants corresponding to * and o* from Lemma 5.2. The next lemma shows that z*, o*, d4
and d5 satisfy property (P).

Lemma 5.4 Assume (A2), and let x* € X(e*,0*,a) for some e* > 0, c* € Qs and a > 0. Let 64
and 05 be the constants corresponding to x* and o* from Lemma 5.2. Then the composition operator

By(x,0,2) defined by (5.2) has continuous partial derivatives wrt x and wrt the set Gy1. (x*; d4), and

wrt 0 and z for © € Gy~ (x*; 64), 0 € Gu(0*; 05) and z € XE. Moreover, 859; (x,0,2)z = B.(z,0,2),

8552 (z,0,2) = By(z,0,2) and 8;;* (z,0,2) = B,(z,0,2), where
B.(z,0,2)h = Bx(z,0,h), heXr, (5.15)
(Be(z,0,2)h)(t) = —2(t — T(t,a:t,a))g—;(t,wt,a)ht, heXP  ae te]0,ql, (5.16)
and 5
(By(z,0,2)h)(t) = —2(t — T(t,xt,a))é(t,xt,a)h, heX, ae tel0al (5.17)

Proof We will use the notations My = {z; : ¢t € [0,a], € Gy~ (2"; d4)} and M5 = Gx(o*; 05)
throughout this proof. Arsela-Ascoli’s lemma implies that My is a compact subset of C, and Lemma, 5.2
yields that My C Q4 and My C Q5. Let Ly = Lo(a, My, Ms5) and L3 = Ls(a, My, Ms) be the constants
from (A2) (ii) and (iii), respectively.

First we show that the linear operator B.(z,0,2) : X5 — Lg , defined by (5.15) is bounded. Let
h € X8, 2 € Gy (25 04), 0 € Gz(0%; d5), and z € X}, Since, by Lemma 5.2, z € X(¢,0,q)

Lemma 5.3 and Lemma 3.8 (i) imply

Y

@ 1/p 1 C1
ol = ([ = ranoppar) < il < bl

which shows the boundedness of B, (z,0,2). Since the map z — Bj)(z, 0, z) is linear, it is obvious that
the bounded linear operator B.(z, 0, z) defined by (5.15) is the partial derivative of By(z,0,2) wrt 2.
Next we show the continuity of afi* (z,0,2) wrt z, o and z. First we comment that 86%* (z,0,2)

is independent of z. Let z,Z € QW;,OO(:E*; d4), 0,0 € G(0*; 05), 2,Z € X2, and h € XE. Since h is

absolutely continuous, the definition of 88'2* yields
0By 0By P
—= h— —=(z,0,2)h = |B h) — Bx(z,5,h) [,
o (z,0,2) o (z,0,2) . |Bx(z,0,h) A\(Z, 0, )Lo,a

/Oa Wt — 7(t, 20, 0)) — h(t — 7(t, 70, 0))|P dt

a t—7(t,z¢,0) .
/ / h(s)ds
0 t

—7(t,%+,5)
17
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Using the substitution s(u) =t — 7(t, %, ) + w(7(t, T, 0) — 7(t, 24, 0)), we get
p

0B, o
W(I,O’,Z)h — W(l’,U,Z)h

[
< |

Using that x;,Z; € My for t € [0,a], 2,7 € G1.(2*; d4), the fact that 0,6 € M5, and the function

P
LO,a

p

dt

/0 h(t —7(t,Z¢,0) + u(r(t, Z¢,0) — 7(t, ¢, 0’))) (T(t,a?t, a) — 71(t, x, U))du

p

dt.

A\

/01 ‘h(t — 7t @, 0) + u(r(t, 24, 0) — 7(t, 7, 0'))) ‘ du

p
T(t: Ty, U) - T(t’ T, 6-)‘

(u,t) — h(t—r(t, Ty, 0) +u(r(t, Ty, 0) — (¢, 24, a))) is integrable on [0, 1] x [0, a], assumption (A2) (ii),
Holder’s inequality and Fubini’s theorem we obtain

OB oBy, . |”
W(m,U,Z)h—W(ZE,U,Z)h -
a 1
< L§(|:c—i’|ca+|o—6\z)p/ / (¢ = (0,21,8) + u(r(t,71,8) — (1,20, 0)) )| du s
0 0

(1= 7(t,30,5) + ulr(t, 51,5) = 7(t,21,0))) ‘pdt du. (5.18)

» _ _ p 1 «
18 (|2 = #le. + o — 5ls)
0 J0

Since z € X (e,0,a) and Z € X (e,7,a), it follows for u € [0, 1] and a.e. ¢ € [0, & that

%(t—r(t, e, 6)u(T(t, @, 0)—T(t, 72, a))) - u% (t—r(t, e, a)) +(1—u)%(t—r(t, %, a)) > ¢, (5.19)

therefore (5.18), Lemma 3.8 (i), (iii) and Lemma 5.3 imply that

aB/\ 8B,\ o L B _ .
2, @0 2)h = —5=(7,0,2)h L < El—fp (\x — |, + o - U|E)Ih\Lg
0,
Lycy _ _
< el/p (C3‘$—$|Xg +‘U_U|E)|h‘Xﬂ7
ie.,
0B B L
H o (@,0,2) - 68; (,5,% I < —gf/";j (03\x — Flyr + o — a\z). (5.20)
a0, a

Hence Bfi* is continuous (in fact it is Lipschitz-continuous) on its domain.

Now we show that the linear operator B (z,0,2) : X§, — Lg , defined by (5.16) is the partial
derivative of By wrt . The boundedness of B,(z,0,z) follows from Lemma 3.8 (iii) and from the

estimates
o 87‘ P 1/p
|Bx(z,0,2)h|» = </ 2t —1(t,x,0)) 7 (t, x4, 0) e dt>
0. 0 o

< |z|ypree sup ﬁ(t,:ct,cr) al/”|h\ca

> 0<t<a ||OY L(CR)
0

<zl sup —T(t,azt,a) al/Peg|h|sr .

° 0<i<a || 09 L(C/R) :
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Let © € G100 (¢*; 04) and h € XE such that x + h € Gy1. (2*; 64). Elementary manipulations yield
that

|B,\($ + h:‘LZ) - B,\(:T,O’,Z) - Bm(‘raoaz)hVié”a

o p
= / 2(t —7(t,xy + hy,0)) — 2(t — 7(t, 24, 0)) + 2(t — 7(¢t, 34, a))g—;(t,wt, o)hy| dt
0
[e] t—T(t,$t+ht,0')
- / / (2(s) - 2t — 7(t.2.0))) ds
0 t—7(t,z¢,0)
. or b
+ 2t —1(t,my,0)) | T(t, 2, 0) — T(t, ¢ + hy,0) + %(t,xt,a)ht dt

1 2t =1t 2, 0) +u(r(t,m,0) — T(t, e + by, o)) ) — 2(t — 7(t, 34, 0))
|G ) )

’ (T(t: Tt, U) - T(taxt + ht: U)) du

r

p

+ 2(t — 7(t, 3¢, 0)) (T(t,:ﬂt,a) —7(t,x + he, o) + ﬁ(t,:nt,a)ht> dt.

o

Then by the triangle and Holder’s inequalities it follows that
‘B)‘(‘T + h’a g, 2) - B,\($, a, Z) - Bz(‘ra g, Z)h|Lg

< (I

» 1/p
. T(t,xt,o))‘ du dt)
o or 4 1/p
+ (/ T(t,l’t,O')—T(t,xt+ht70)+@(t,xt,a)ht dt) . (521)
0

Consider the first term of the right hand side of (5.21). Since x + h € Gy 1. (z*; d4), we have that
xt, o + hy € My for t € [0,a]. Then (A2) (ii), Fubini’s theorem, and Lemma 3.8 (iii) imply that

VA

p 1
(ta1,0) — 7lt,z0+ ho)| [ |2(t = rm0,0) +ulr(t 10 = 7t + D)
0

At —T(t,xt,a))‘p

1
p
T(taxtua) _T(tuxt_'_htaa-)‘ / ‘é(t_T(tawt:U)+u(T(t:$t:U) _T(tumt_'_htaa-)))
0

» 1/p
. T(t,xt,a))‘ du dt>

IN

a pl p 1/p
L2\h|ca(/0 /0 ‘z(t 1ty w4, 0) + u(r(t, 24, 0) — 7(F, 22 +ht,o))) e —T(t,xt,o))‘ dudt)

1 ro
L2C3|h\xg(//

0Jo
Lemma 5.3 yields that

-

as |h|x» — 0, since, using Lemma 3.8 (iii)

IN

1/p
z"(t —7(t,x¢,0) +u(r(t,ze,0) — 7(t, ¢ + he, a))) —2(t — 7(t, ¢, U))‘pdt du) :

(5.22)

5(t = 7t 20,0) + ulr(ty 20, 0) = (b0 + ey 0))) = 2t = (8,7, cr))‘p dt — 0,

Y

[t = 7t 0, 0) + ulr (a0, 0) = Tt + heyo) = (E = 7(tan, )| = (e, 0) = Tt + By o)
uLQ‘ht|C
ULQCg‘h|X1;

0, as |hlxz — 0,

L IA A
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and because, similarly to (5.19), we can show that

d

E(t —7(t,z¢,0) +u(r(t,ze,0) — 7(t, 2 + ht,a))) >e for a.e. t € [0, a].
Since z € W1, we get that the function

: z'(t —7(t,z¢,0) +u(r(t,zg,0) — 7(t, x4 + ht,a))) —2(t - T(t,CUt;U))‘pdt

is bounded on [0, 1], therefore the Lebesgue’s Dominated Convergence Theorem yields that

p
—Ttxt, )+u(7'(t,:0t,a)—T(t,xt+ht,a))> —z(t—T(t,xt,U))‘ dtdu — 0, as |hlxz — 0.

(5.23)
Consider the second term of the right hand side of (5.21). Applying Lemma 2.1, (A2) (iv), Lemma 3.8
(i) and (iii), Lemma 5.3, and that z € X (e,0,a), we get
P 1/p
)

A

Z(t - T(t,CUt,O')) ! T(tthag) - T(t:mt + ht,U’) + %(tthag)ht

@ P or or P e
< 2t —T1(t,zy, 0 sup ||=—(t,zs + vhy,0) — —(t, 4,0 he|P dt
< ([ B raon] s [55en o) - gt
! » 1/p
. 2p
< Lo ([ fete - rtom, 00| a2 i)
0
@ p 1/p
< Lol (/ i~ rlt,20,0) dt)
0
L
< 1/3p| \c ETA
Lscic2
31/1p3‘h|xp|z|x”- (5.24)

Combining (5.21), (5.22), (5.23) and (5.24), we get that

1
—— |Bx(z + h,0,z) — B)(z,0,2) — By(z,0, z)h\Lg

|hlxz,
» 1/p
< LQCg( T(t, 2, 0) + u(r(t, 2z, 0) — 7(t, 24 + ht,a))) —2(t— T(t,a:t,a))‘ dt du)
L3cic3
N 3\h|xp\2\xp
- 0, as |h|xz — 0,
which proves that 85* (z,0,2) = By(z,0,2).
Next we show that 222 is continuous on Gyy10= (273 04) X Gz (0™; 65) x X{. Consider
B B
6—*(93, 2)h — 6—)‘(5: &,%)h
x Ox L
o or ) or p \MP
= (= 7(twe,0)) g (b ae, 0Vhe = 30 = 7(t0,0)) 5 (b o0, 0|t
([0 = rito) G oo = 50 = rit. 1,0 5 0| 1)

& . Pl OT p o \'/P
< (/ 3t =7t 21,0)) = 3t = 7(t20,0))| | 5= (60, o) dt)
0 O
e or, . p \'P
+ </0 (t - T t mt, ‘ ‘a¢ t Q?t,U)ht — %(t,azt,a)ht‘ dt) . (525)
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Assumption (A2) (iv), Lemma 5.3, and Lemma 3.8 (i) and (iii) yield

0B, 0B\,

‘ax( )h—a—x(m 7,z)h y
< it — rit st - r(tzon| | 2 ! h”dtl/p
> (/(; Z( _T( ,ZEt,U))—Z( _T( ,{I?t,O')) %( =mt=U)H£(C7R)‘ t‘c )

) » » 1/p
st = 7(650,0)| (o = Tile + o = als) hil? dt>

+L3</0“

or
(0<f‘<a 55 (0700 + La2004 + 65>) e,

((F
+ (/Oa 2t —7(t,xe,0)) — 2(t — 7(t, T4, 6))‘1) dt) 1/p>

+ Ly (lo = ale. + |o = als) o'/ e, |2l .~

or (t.z )H
0<t<a o i L(C,R)

. <€1%|2 — 3+ </0a Bt —1(t,x4,0)) — 5(t—7(taft=5))pdt>l/p>

+ Ly (lo = #le. + o = als)) 0’/ e, |2y~

max || 27 (¢, 2 )H
0<t<all O i L(C\R)

.<1/p|2’ ZX?;‘F(/(;

+ Ly (cg\x — |y + o — 6|g>a1/”03|h\xz; E

i rtt i)~ ao)a)

+ L32(64 + 65)> |hlc.,

+ L32(54 + 55)) Cg|h‘xg

Bt = 7(t,21,0)) — 5t = 7(t.70.9))| dt) Up)

which, together with the continuity of BT , the relation

|T(t,z¢,0) — 7(t,%¢,0)] < La(cs|lz — Zlge + |0 —dlx)

- 0, as |t — Zlxr — 0, and 0 = 7,

and Lemma 5.3, implies the continuity of 83* .
6B,\

The proof of (z,0,2) = B, (x,0,2) is analogous to that of BB* (z,0,2) = By(x,0,z), and therefore

it is omitted here []

6 Differentiability of solutions wrt parameters

The following lemma shows that property (P) of the previous section yields the existence of continuous
partial derivatives of S(y,p,0,0) wrt y, ¢, 6 and o if we restrict y to a certain subset of its domain,
and the derivative wrt y is taken in the sense of Definition 3.3.

Lemma 6.1 Assume (A1)-(A3), and let 1 < p < oco. Assume that ©*, 0* and o* satisfy (4.2). Let a,
01, 02, 03 be the constants, and let My, My, M3, My, Ms, U and W be the sets from Lemma 4.2. Let
z* € W1 be such that Pr,z* = ¢*, 2* € X (e,0*, ) for some e > 0, and y* € U, where y* = Pryx
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Then there exist constants 0 < §; < 61, 0 < dy < 2, and 0 < 63 < d3, and an open subset, U*, of Y,
such that U* C U, and the operator

S(y,¢,0,0) - (u* X Gy (071 81) % Go (07 52) x Ox: (0% 83) C Y2 x W x © x 2) S YP

defined by (4.3) has continuous partial derivatives wrt y and wrt the set U*, and wrt ¢, 6 and o
on its domain. Moreover, let y € U*, ¢ € Gy, (cp*; 61), 0 € g@(e*; 52), and o € Qz(a*; 63).
Then 53 (y,9.0,0) = Sy(y,¢.0.0), 52 (y.0,0,0) = Sp(y.9.0.0), 53(y,9.0,0) = Ss(y.,6,0) and

80—( 790:9 U) S (y:g07070-)7 where

(Sy (y7 P 9: U)h) (t)

0 te[-r0],
= /0 a—f( w) + (), A, g + P, ), 0) h() o
a—f( y(u) + @(u), A(u,yu+¢u,a),a) (%(w@,o)h)(u)du, t e [0,al,
heY?;
(Se(y,.0,0)h) (1)
0 t e [-r0],
= /Ot %(u y(u) + @(u), Au, yu +§5u,0),9)h(0) 62)
+ g—i(u y(u) + 3(w), A, gy + G0, 0),0) (8£A (y+ &, )iz) (u)du,  t€ 0,0,
h e whee;
0, € [-r,0],
(So(y, 0, 6,0)h) (t) = { Otg_g(u’y(u)+¢(u)’A(u,yu+¢u,0)’a)hdu, ref.a, (@3

h € 0Oy

(So(y,,0,0)h) (t)

0, -
) {/0 5 (i) + 600, A+ ). 8) (G2 + o ), e el O

h € X, where %, % and denote the partial derivatives of f(t,v,w,0) wrt v, w and 8, respectively.

Proof Let &, and 05 be the constants corresponding to 2* and ¢* from Lemma 5.4. Define §; =
min{d;,d4/2}, 62 = J» and 3 = min{d3,d5}, and let & > 0 be such that dg < 6,/(2max{a,1}) and
Gy= (y*; 8) C U. Let U* = Gy= (y*; dg). Then, clearly, U* C U, and U* is an open subset of Y.
First note that the definitions of U* and 61, and Lemma 3.6 (vii) yield for y € U* and ¢ €
gwm (#*; 01) that [y+@—2*[pree < [y=y*|pre+He—p*lwre <max{a, 1}y—y*lye +le—¢*[wre <
4, 1.€.,
Y+ @€ Gy (2" da) fory eU* and ¢ € Gy ("5 01). (6.5)

Br(y + ¢,0) and 282 (y + ¢, 0) are well-defined for all y € U*, ¢ € Gy (¢*; 61), and
o € Gs (o™ 63) Also comment that the selections of &1, ds, d3 and 2/* implies that (4.4) holds for all u €
[0,a], y € U*, ¢ € Gy, (cp*; 51), NS g@(e*; 52), and o € Qz(a*; 53). Let Ly = Ly (a, My, Ms, M3),

22



Ly = Lo(a, My, Ms5) and L3 = Ls(a, M4, M5) be the constants from (A1) (ii), (A2) (ii) and (iii),
respectively. Assumption (A1) (ii) and (iii) imply that

of

H—(t,v,w,@)H < Ly, Hg(t,v,w,ﬁ)H < Ly, and Ha—f(t,v,w,a) < L (6.6)

ov Oow 06 L(OR)

fort € [0,a], v € My, w € My, and 0 € Mj.

Let y e U*, p € Gy, ((p*; 51), 0 € Ge (0*; 52), o€ gz(cr*; 53). We show that the linear operator
Sy(y,¢,0,0) : Y, — YP defined by (6.1) is the partial derivative of S(y,,0,0) wrt y. Let h € Y?.
The definition of Sy (y, ¢,0,0), (4.4) and (6.6), Lemma 3.6 (viii), and the relation |h|xz = |h|yz yield

|Sy(y, cpaaa O')h‘Y;;
af

(5
(L

Li|h|pz + Ly

IN

(U,y(u) + @(u), A, Yo + Pu,0), G)h(u) p du) 1/p

5 (i) + 60, A+ ). 8) (G0 + ) ) 0

OBx
ox

P 1/p
du)

IN

(y+ @,0)h

p
Lg

IN

|hlyz, (6.7)

OB 3
Lialhlye + Ly a—A(Z/ +@¢,0)
z L(XE,LE )

which shows the boundedness of Sy (y, ¢, 8,0).
Next we show that Sy(y,,8,0) is the derivative of S(y, ¢, 0,0) wrt y and wrt the set &/* in the
sense of Definition 3.3. Let h € Y2 be such that y + h € U*, and consider

‘S(y + ha P, 9: J) - S(ya P, 95 J) - Sy(ya ®, 9: a)h|Yg

-

1 (s () + @) + h(w), A,y + by + $u.0),6)

— () 0 A+ 8r0),0) = 92 () + G0) A, 1 + B 0),0) o)
P 1/p
= oL () + 90 Al + 20.00.0) (G2 + o) ) T
Introduce the function
w'(u,v,w,0;v,w,0) = f(u,v,w,0) — f(u,v,w,0) — %(u,@,u’),g)(v — )
0 _ o _
- a—i(u,@,w,e)( - )—a—g(u,@,w,a)(a—e), (6.9)

for u € [0,T], v,9 € O, w,w € Qa, and 0,0 € Q3. The continuity of % % and % yield that

Y, v, w, 0; 6 ~
|w_ (A _,v,w, )|_ -0, asv—0, w—w and 60— 4. (6.10)
lv—0| 4+ |lw—o|+ 10 —0le

Assumption (A1) (ii) and (6.6) imply

(6.11)

3

W (u, B, @, 8; v, 1w, 0)| < 2L1(|v — B 4w — |+ 0 — é\@)

for u € [0,a], v, € My, w, € M, 6,0 € Ms.

Y
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Similarly, by property (P) (guaranteed by Lemma 5.4) and Lemma 3.4, the function

S 0.8,352.0) = M 0) = A 7,0) — (2@ @ - ) )0 - (FR@)0 - ) )
xr g
] (6.12)
which is defined for u € [0,a], z,7 € Gy1.= (z*; d4), 0,5 € G (0%; &3), satisfies

(fy w?(u,z,6;m, cr)\pdu)l/p

lx —Z|xz + |0 -0l

— 0, as |t —Zlxx =0, z€Gy1=(2";ds), and o —5. (6.13)

The definitions of w! and w?, and the relations (6.5) and (6.8) yield that

|S(y + h: @707 U) - S(y: @707 U) - Sy(y: @707 U)h‘Yg

< ([
(0

Using (4.4) and (6.6), estimate (6.14) implies that

1/p
000 + B0, A+ ) B530) )+ 50) Al + D+ 50,),6)

af

S (s () + P(0), At g+ B0 0),0) (0,9 + B, 03y + h + §,0)

P 1/p
du) . (6.14)

|S(y + h: cp,0, U) - S(y, <Pa9a 0) - Sy(y/ <Pa9a O')h‘Y;;

|hye
[0} 1 ~ ~ ~ - p 1/p
< / w' (u,y(u) + @(u), Au, yu + Pu, ), 85 y(u) + h(u) + G(u), Alu, yu + hu + Pu, 0),6) du
- 0 |hye
o 2 ~ . ~ p 1/p
+ I (/ d (“’y+¢i};”y+h+‘p’”) du) . (6.15)
0 Y&

We show first that |w!(-)|/|h|yz in (6.15) converges to zero pointwise as |hlyz — 0. It follows from the
inequality |h(u)| < a!/9|h|y» (guaranteed by Lemma 3.6 (i) that y(u) + h(u) + @(u) — y(u) + G(u) as
\h|ly» — 0. Lemma 4.1 with Ly = Ly(a, My, Ms), Lemma 3.6 (i), and (6.5) imply for y,y +h € U* that

‘A(uayu‘l'hu'i'@uao') _A(uayu+‘;5uaa)| < ‘hu‘O+L2‘yu+¢.u|L°°‘hu‘O
< (Ut Lo e +00)0 bl
- 0, as |hly» — 0.

Therefore, relation (6.10), with an argument similar to (5.10), gives that [w*(-)|/|h|y> in (6.15) converges
to zero pointwise as |h|yz — 0. Next we show that |w'(:)|/|h|yz in (6.15) is bounded on [0,a]. The
previous estimate and (6.11) yield for y,y + h € U* that

W' (u, () + @), A, yu + Gu, 0),0;y(w) + h(w) + G(w), A, Yu + hu + P, 0),0)]
2L1(|h(u)‘ + ‘A(uayu + hy + (,5“,0) - A(Uayu + Qbuao')‘)

<
< 20,012+ Lo(|a e+ 84))|hlys.

Therefore the Lebesgue’s Dominated Theorem yields that the first term in (6.15) goes to zero as |h|y» —
0. So does the second term by (6.13), therefore we have proved that %(y, @, 0,0) =S, (y,,0,0).

Next we show that %(y,cp,ﬁ,a) is continuous on its domain. Select sequences y* € U*, ¢* €

G ((p*; 51), ok ¢ g@(e*; 52), and of € Gx (U*; 53) such that |y* — Yylyr — 0, lo* — plwie — 0,
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6% — 0 and 0% — o0 as k — co. Let h € Y2. Elementary manipulations give

oS

0S
3 :ek h— — 5 ,9,0’ h
6y( @ ") oy U #:0:0) "
[e% a - -
< ([ st @+ Ak + a0t o8)
0 U
_of

%(u,y(u) + @(u), Alu, yu +¢7u,0),9)
+ (/Oa g—i(u,yk(u) + @k(u),A(u,yﬁ + (‘PNk)u:Uk)aek)

~ O () + 6, A + B0, )

Pl7oBy, , -

(S + t.ahn )

ow
(/ a_f u) + ¢(u), A(u,yu+¢u,0),9) '
Syt gt - 200y +¢,a>h)<u>pdu)l/p

Therefore, using (4.4), (6.6) and Lemma 3.6 (viii), we get

o8 o8
_(yk’(pk,ak’o.k) - _(ya(p707a)
H dy Ay £(VE,¥2)
< asup |yt (), A,y + (), 0*),64) = 2L p(u), A pu,0),0
< D |5,y (u) + @F(u), Alu, yy + (©F)u, 0"), 5 == (u, y(u) + @(u), Alu, yu + Pu, 0),
0<u<a v v
+ sup or (u.yk(u) + ok (u), A(u,yk + (cpN’“)u.ak).Hk)
0<u<a Ow ' ' “ ' '
af - & -k
- a_(uay(u)+<p(u)=A(uayu+<pu ‘|'<P , 0 )
w L(XE,LE )
OB - OB
+ Li|| S22 + ok, ot) = Ty + ¢,0) . (6.16)
ox ox Lxn,Lz )
Lemma 3.6 (i) implies that
y* () + oF () —y(u) — pu)] < JyF(u) — y(w)] + ok (u) - G(u)]
< Myt —ylyr + @b — glwre
— 0, as k — oo. (6.17)

Since y* € U*, and ¢* € Gy (¢*; 81), relation (6.5), Lemma 3.6 (iii), and Lemma 4.1 with L, =
LQ(O[, M4, M5) yleld that

|A(U: yqu + (SONk)ua Uk) - A(uayu + Pu, U)‘
< JyE —yule + 9" = ¢lo + Lalju + Gulre (Iyﬁ —yulc +¢* —ole + 0" - Ulz)

< (1 Lofla® o +00) (@9l — gy + [&* — elwr~ + [0* — o)
- 0, as k — oo. (6.18)

Since 8% — 6, the set M3 = {#* : k € N} U {#} is a compact subset of ©, and hence the functions 2%
and % are uniformly continuous on the compact set [0, o] X M; x My x Mj. Consequently, (6.17) and
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(6.18) yield that the first and second terms in the right hand side of (6.16) go to zero as k — oc. So
does the third term, since by (P), 22 is continuous on Gyy1.« (¢*; 64) x Gz (0%; 03) (in the || ||z 22 )

' Oz
norm). This completes the proof of the continuity of %.

The proof of %(y, ¢, 0,0) = S,(y,9,0,0) is similar. Clearly, the operator S, (y, ¢, 0, 0) defined by
(6.2) is linear, and similarly to (6.7), we can get

0B

Sp (0,0, 0)hlyy < Lia' 7 hlwr + Lo || =2 (5 + 6,0)

|l
L(XZ%,L§ )

which implies the boundedness of S, (y, ¢, 0, o).
Let h € W1, then using the definitions of w!' and w?, and the relations (4.4), (6.6) and (6.2), we

get
o P 1/p
< </ du>
0
o P 1/p
+ L ( / du) . (6.19)
0

Lemma 4.1 with Ly = Lo(a, My, M5) and (6.5) yield that for small h such that ¢ + h € Gy, (cp*; 51)

1
Tl 1S(y, ¢+ h,0,0) = S(y,9,0,0) — Sy (y, 0, 0,0)hly»

! (1, y (1) + $(0), Aty g + Bus 0), 05y () + B(u) + h(w), A, yu + Gu + i 0),0)
Bl

w(u,y + @, 03y + @+ h,o)
i

[h(] + A ye + @o + heso) = Alt,ye + 61,0)] < (24 La(Ja*|ya= +64)) hle
— 0, as |hlwie — 0, (6.20)
therefore |w!(+)|/|h|w1.- in (6.19) converges to zero pointwise as |h|y1.- — 0, and since it is bounded
by 2L1(2 + La(|z*|yy1. + 64)), the Lebesgue’s Dominated Convergence Theorem implies that the first

term in the right hand side of (6.19) goes to zero as |h|y1, — 0. Since |iL\Xg = |h|w1., (6.13) yields
that

o, o B L 1/p
(fo |w (t,y+<p,0;y+<p+h,0)|pdt)

Tl

— 0, as |hlwie — 0,

therefore S, (y, ¢, 6, 0) defined by (6.2) is really the partial derivative of S(y, p,8,0) wrt ¢.
We show that %(y,cp,&,w) is continuous on its domain. Let y* € U*, ¢* € Gy~ ((p*; 51), 6% €

Go (0% 62), and oF € Gs;(0*; J5) be sequences such that |[y¥ —ylyr — 0, [o* — |1 = 0, 6% — 6 and
o* — o as k — oo. Similarly to (6.16) we can show that

H&p(y ", 0%, ) &p(y,so,@,ff)

LW YE)
< a7 sup | 2oyt u) + k(). Al + (1), %), 0)
0<u<a v
of . 5
- G0y 4 00 A+ 510),6) |
of k & kL (JEY. ok gk
+sup |2 (gt () + 0k 0). Al + (1)), 6F)
- 8f - aBA k Nk
= 2L (v + 000, A+ 0.0,0) | G2+ .
a0, a
aBA k "k k _ 6-BA ~
+ Li|| = (" + ¢k 0%) = =y +¢,0) cere )

ag o
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which implies the continuity of %, since it is essentially the same as (6.16).
Next we prove %(y,cp,ﬁ,a) = Sy(y, ¢, 0,0). The estimate |Sg(y,<p,9,a)h|Yg < Lia'/?|h|e implies
the boundedness of the operator Sy(y,¢,0,0) : © — Y defined by (6.3). Let h € ©. One can obtain

1
o 1S(y, 0,0 + h,0) = S(y,¢,0,0) — Se(y, »,0,0)h|y»
1/
< /“ w! (u, y(w) + @), AW, yu + Gu,0), 05y(u) + $(u), A, yu + $u, 0),0 + ) |7 !
- 0 |hle
- 0, as |hle — 0,

using Lebesgue’s Dominated Convergence Theorem and (6.10). To prove continuity of %, consider

oS oS
H%(ykawkaekaok) - %(ya(;@e:a)

L(0,YE)
o . .
< ' sup |2 (gt ) + ) Alu gl + (54)u. o), 6)
0<u<a 06
of L N
- % (U, y(u) + @(u): A(“a Yu + Pus U): 9)
L(©.R")
- 0, as k — oo,
using a uniform continuity argument, as before.
It can be proved similarly that %(y, p,0,0) =S, (y,p,0,0), the details are omitted. (]

Theorem 6.2 Assume (A1)-(A3). Let 1 < p < oo, and assume that ©*, 0* and o* satisfy (4.2).
Then there exist a« > 0, 67, 05, 65 > 0 such that IVP (1.1)-(1.2) has a unique solution, z(p,0,0)(:),
on [0,a] corresponding to ¢ € Gyi.=(©*; 07), 0 € Go(0*; 03) and 0 € Gs(o*; 63). Moreover, if x* =
z(p*,0%,0*%) € X(e,0%,a) for some € > 0, then the function

(gwl,m(<p*; 87) % Go (65 035) x Gs(0*; 85) C WH™® x O x Z) — XP, (p,0,0) = x(p,0,0)
is continuously differentiable wrt @, 8 and o on its domain.

Proof Let the constants d1, do, d3, o, ¢, and the sets U, W, My, My, M3, My and M; be defined by
Lemma 4.2. Let Ly = Ly(a, My, My, M3) and Ly = La(a, My, M5) be the constants from (A1) (ii) and
(A2) (ii), respectively.

Theorem 4.3 implies that IVP (1.1)-(1.2) has a unique solution on [0,a] for ¢ € Gy« (¢*; 01),
0 € Go(0*; 02) and 0 € Gy (0*; d3). Assume that z* = z(p*,0*,0%) € X(e,0%,a) for some € > 0. Let
y* = Pryz*. Lemma 4.2 yields that y* is the unique fixed point of the operator

S(':‘p*a0*7a*) W W

defined by (4.3). In particular, we get that y* € W C U. Let the constants &;, 0o, 63 and the set U*
be defined by Lemma 6.1 corresponding to x*. Recall that &/* was defined in the proof of Lemma 6.1
as U* = Gy= (y*; d) for some Jg > 0. Define W* = W N Gy= (y*; 6;) for some 0 < &7 < J6. Then
W* C W, W* C U*, and W* is a closed subset of Y. by Lemma 3.7. Since W* C W, Lemma 4.2
yields that S(-,¢,6,0) restricted to WW* is a uniform contraction both in | - |y= and |- |y» norms,
and the operator S(y,-,-,-) : Gwi = ((p*; 51) x Go (0*; 52) X gg(o*; 53) — Y2 is continuous for all

y € W*. Define §f = min{51,56(1 —¢)/(3L1(2 + L2|x*|W;,m)}, 8 = min{SQ,(Sﬁ(l - c)/(3L1)} and
95 = min{gg, d6(1 —¢)/(BL1 Lo(|z* |1 + 1))} Consider the operator S defined by (4.3) as

S(y,p,0,0) : (U* X G, (9% 07) x Go(8%; 63) x Gs(0%; 63) C Y2 x Wh™ x © x E) — YE.
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Then Lemma 6.1 yields that S(y, ¢, 6,0) is continuously differentiable wrt y and wrt the set *, and
wrt ¢, § and 0. Next we show that S(-,,0,0) : W* — W* for all p, § and o of its domain. Let
y € W ¢ € Gwie(p*; 07), 0 € Go(0*; 03) and o € Gx(o*; §3). Since W* C W, it follows from
Lemma 4.2 that S(y, ¢, 0,0) € W, hence we have to show only that S(y, ¢, 6,0) € EYZC (y*; o). Using
that y* = S(y*,¢*,0%,0*), Lemma 4.2 (ii), assumptions (A1) (ii) and (A2) (ii), Lemma 4.1, and the
definitions of d7, 65 and 6%, we get the estimates

|S(y=¢7070-) _y*‘Yzc
= ‘S(?Ja%eaa) - S(?J*a%eaaﬂvf + |S(y*,§0,0,0') - S(y*=<P*=9*=U*)|Y3°
< ey —yllve

+ s sup (1, () + $0), A, + Bus ), 0) = Fu,™(0) + 5 () Ay + (5,07 6)
<u<la
< ely—y'lx +L1es<ss3p( w)l 4+ A (1, + G0 0) = A,y + ()0 + 10 = 67]o)
0<u<a
< ey —y*lex + Liesssup(|¢(n) — 5 ()] + |Bu — (4*)ulo
0<u<a
+ Lol [y (180 = ($*)ulo + 1o = 0*I5) + 16 = 6%]o)
< ey =yl + L1 (2lp = @ lwrs + Lofa* [y (lp = @l + o =0 [) + 10 = %o
< g + Ly (2 + LQ‘x*|W;oo)§I + Lﬂ;; + LlLQ‘x*|W;,oo§;
< d.

Therefore S satisfies the conditions of Theorem 3.5, and hence the unique fixed point, y(p,0,0), of
S(,¢,0,0) is continuously differentiable wrt ¢ € Gy (07; 67), 6 € Go(0"; 03) and o € Gx(0™; 63).
The function y(p,0,0) is the unique solution of (4.1), and therefore z(p,0,0) = y(p,0,0) + @ is the
unique solution of IVP (1.1)-(1.2), and it has continuous partial derivatives

Oz Jy 7 1
aw(so,ﬁ,o)h &p(@,a,a)h +h,  heW> ™, (6.21)
and 0] Jy 0] 0]
r - gz -9
86 ((p 9 U) 86 (@,0 O') a‘nd 80' (@,0,0’) 80' (@7070)- (622)

To prove (6.21), it is enough to consider the obvious relation

ZE(Q0+h,0,U) _ZL'(QO,G,O') - Z_Z((p’a’g)h

Jy
= ‘y(@ + haaag) - y(@:eaa) - O_(Q,G,U)h
X2 14 Y2

[

Since by Lemma 3.8 (i) the | - |x» norm is stronger than the |- |1, norm, the theorem has the
following corollary.

Corollary 6.3 Assume the conditions of Theorem 6.2. Then x(p,0,0) is continuously differentiable
wrt o, 8 and o as a function

(gwl,m(cp*; 87) x Go(687; 03) x Gs(o*; 85) C WH™® x O x Z) — Wle, (p,0,0) — x(p,0,0).
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