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Abstract We consider a class of linear delay difference equations with
perturbed time lags and present conditions which guarantee that the
asymptotic stability of the trivial solution of the equation at hand is
preserved under these perturbations. As an application of this pertur-
bation result, we give sufficient conditions for asymptotic stability of
scalar linear delay difference equations.

1. Introduction

In this paper we study the effects of perturbations of time delays
on the stability of a class of linear delay difference systems. Our goal
is to obtain a “practical” condition, i.e., a norm bound on the per-
turbations corresponding to the particular system under consideration,
which guarantees the preservation of asymptotic stability under per-



turbations. It turns out that such condition can be formulated using
the infinite sum of the fundamental solution of the unperturbed system
(see Theorem 2.3 below). Since asymptotic stability of the unperturbed
system implies that the components of its fundamental solution go to
zero exponentially at infinity, it is possible to get “good” numerical
estimates of the infinite sum, and consequently obtain norm bounds on
the allowable perturbations.

We present our main results in Section 2, and in Section 3 we con-
sider numerical examples. In Section 4, as an application of our pertur-
bation result, we obtain sufficient conditions for asymptotic stability of
scalar linear delay difference equations.

To conclude this section we note, that perturbation related issues
for delay differential equations, and in particular, delay perturbations,
have been studied by many authors. We refer the interested reader to
3], [4], [9], [10], [15] and the references therein for related articles, and
also for [5], which contains the continuous counterpart of the results of
this paper.

2. Main Results

First we introduce some notations used throughout this paper. N,
Z and R denotes the set of nonnegative integers, integers, and real
numbers, respectively. For a sequence, z(n), the forwarded difference
is denoted by Az(n) = x(n + 1) — x(n). For future convenience, we
define the ~ operation on vectors and on matrices, which means tak-
ing the absolute value of the vector or matrix componentwise, i.e., if

x = (1,23,...,2,)", then by definition Z = (|z1|, |22/, ..., |za|)", and
similarly if A = (@ij)nxn, then A = (|a;;|)nxn. The relation < between
vectors means a componentwise comparison, i.e., (z1,Zs,...,2,)T <

(Y1, Y2, - .., yn)T if for all the components z; < ;.

Consider the delay difference equation
Az(n) = Aw(n—ki—mi(n)), neN, (2.1)
i=0

with initial condition

z(n) =¢(n),  n=-ng,—ng+1,...,0, (2.2)



where A; (i = 0,...,m) denote constant N x N matrices, 0 = ky <
ki < ... <km @:[-n9,00NZ — RY is a given function, and we shall
assume that the delay perturbations, n;,(-) : N — Z (i = 0,...,m),
satisfy

n—ng<n-—=k —mnin)<n for neN (i=0,...,m). (2.3)

Under our assumptions initial value problem (2.1)-(2.2) is a delay dif-
ference equation and has a unique solution.

We consider the corresponding unperturbed system with constant
delays, i.e.,

Ay(n) = ZAiy(n — k), neN, (2.4)

and we assume that
(H) the trivial (y(n) = 0) solution of (2.4) is asymptotically stable.

For a fixed T € N the fundamental matrix solution of (2.4), V(n), is
defined as the solution of the following system

AV(n)=> AV(n—k), neN, n>T, (2.5)
i=0
and ; -
3 n = Y
vio={ o T 26

where 1,0 € R”*" are the identity and the zero matrix, respectively.

Remark 2.1 To emphasize the dependence of V() on T we use the
notation V(n; T). Note that V(n; T) =V (n —T; 0) for t > T because
(2.4) is autonomous, hence (2.6) yields that

ZV(n; T) = ZV(n; 0).

We can rewrite (2.1) in the form

m

Az(n) = Agx(n—k)+f(n), neN (2.7)

1=0



where

fln) =4, (:L‘(n— ki — mi(n)) — x(n — k)) (2.8)

In this setting (2.4) can be considered as the homogeneous equation
corresponding to (2.7). The variation-of-constants formula (see e.g. in
[6]) gives the following expression for the solution of the initial value
problem (2.1)-(2.2):

z(n) =y(n) + iV(n —1i—1)f(i), neN, n>T, (2.9)

=T

where T' > 0 is an integer number, and y is the solution of (2.4) with
initial function y(n) = z(n) for T — N <t < T and V(-) = V(;T) is
the fundamental solution of (2.4).

Remark 2.2 Hypothesis (H) implies that there exist constants 0 < X <
1 and K > 0 such that |v;;(n)| < ||[V(n)|| < KA" forn >0, (where || ||
is the matriz norm induced by the vector norm |[(xy,za,...,2,)| =
max{|zi], 22|, ..., |za|}), and therefore every element of the matriz

S>>, Vi(n) is finite.

The next theorem shows, that if the perturbations of the delays in
(2.1) are small enough for large ¢, then the equation remains asymp-
totically stable.

Theorem 2.3 Assume (H) and that the matriz

M = <Z f/(n)) (Zn@m(n)AJ (Z&) (2.10)

has spectral radius less than 1, i.e., p(M) < 1. Then the trivial solution
of (2.1) is asymptotically stable.

Proof: Since the proof goes analogously to that in the continuous case
(see in [5]), here we show only the main steps of the proof.



(i) First, we can show, using (2.8) and (2.1), that for some 7" > 0
and n > T, the function, f(n), satisfies

< (Zlm( ) (ZA>Orgja<>;fv( ),  n>T, (2.11)

where we use the notation

T
o () = (qax [#1(5), qoax [22()], - wax law()])

(ii) Define the matrix

M, = if/(n) (Zm: Ai> . (2.12)

(We note, that according to Remark 2.1, matrices M and M, are in-
dependent of the choice of T'.) It is easy to see that p(M) < 1 implies
that there exists 6 > 0 such that

p(M + 6 My) < 1. (2.13)

With this § we can choose T such that (2.11) holds and furthermore,
we have the following relations

In;(n)| < Tim |n;(5)] + 6, n>T, i=0,...,m. (2.14)
j—o0

Then (2.11) yields the following estimate

f(n) < lim .

f(n) < (Z;(jlggolm( )| +6)A ) (ZA ) max i(j), n>T
(2.15)

(iii) Next we prove that the solution of (2.1) is bounded for all

initial functions. Choose T' > 0 such that (2.15) holds. For such T,
formula (2.9) and standard estimates yield the inequality

—_

n—

i) <gm+Y Vin—i-1)f6), n=T (2.16)

Mi
3



From this inequality, using the definition of M and M;, and estimate
(2.15), we can derive that

Org]a%x(]) < Jnax §(j 4(j) + (M + 6 M) Orgjaélx(]) (2.17)

Rearranging (2.17) and using that y(n) is bounded by hypothesis (H),
we have that there exists a constant vector z > 0 such that

(I — (M + 6My)) max z(j) < Zax 7(j) < 2, n>T. (2.18)

Inequality (2.13) and the fact that M + §M, has nonnegative compo-
nents imply that I — (M + §M,) is a nonsingular M-matrix, therefore
an application of Theorem 6.2.3 in [1] yields that I — (M + §M,) is a
monotone matrix, hence

max 7(j) < (I — (M + 6My)) 'z, n>T,
0<j<n

i.e., z(n) is bounded for n > 0.

(iv) Next we show that z(n) tends to 0 as n — oo, i.e., lim #(n) =
n—oo

0. Using that by step (iii) above we have that lim Z(n) is finite, and
n—o0
from assumption (H) it follows that lim g(n) = 0, we can show that
n—oo
(2.16) implies

and hence o
(I — M) limz(n) <0. (2.19)

n—o0
By assumption p(M) < 1, M has nonnegative components, and there-
fore I — M is a nonsingular M-matrix. Using again Theorem 6.2.3 in 1]
we get that I — M is monotone, hence (2.19) yields that lim Z(n) < 0.
n—oo

On the other hand hrn x( ) > 0, therefore lim #(n) = 0.

n—o0

This completes the proof of the theorem.

The following corollary is an easy consequence of the theorem.

Corollary 2.4 Let My defined by (2.12). If
1
p(Mo)’

then the trivial solution of (2.1) is asymptotically stable.

lim |n;(n)] < i=0,...,m,
n—oo
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If the fundamental solution V' (n) of (2.4) is nonnegative, (i.e., each
component v;;(n) of V(t) is nonnegative and therefore V(n) = V(n)),
then it is easy to compute the integral in (2.12). In particular, we have
the following result.

Proposition 2.5 If the trivial solution of (2.4) is asymptotically stable,
then the fundamental solution of (2.4) satisfies

(Z Ai) > Vn)=-I,

where I s the identity matriz.

Proof: Let V (¢) be the fundamental solution of (2.4) corresponding to
T = 0. By summing (2.5) for 0 to n > 0 we get

Vin+1)—V(0) = ZAi ZV(]‘ — k).

A change of variables in the integrals and the assumed initial condition
V(n) =0 for n < 0 yield

Vin+1)—V(0) = ZAi Z V(j)

Using V(0) = I and the fact V() — 0 as t — oo we obtain the equality

- (L) T
i=0 §=0
which proves the proposition.

Remark 2.6 In the case when V(t) is nonnegative, and » .-, A; is
nonsingular, Proposition 2.5 implies that

My = — (i Ai> 7 (Zm: Ai) : (2.20)

therefore our stability condition in Corollary 2.4 can be evaluated using
the coefficient matrices related to the difference equation.

7



In the rest of this section we state the scalar version of our results.
Consider the scalar linear delay difference equation

Ax(n) = ax(n—k —ni(n)), neN, (2.21)
i=0
and the corresponding constant delay difference equation

m

Ay(n) = Z ay(n — k;), n e N. (2.22)

1=0

Let v(n) be the fundamental solution of (2.22), i.e., the solution of
(2.22) corresponding to initial condition v(0) = 1 and v(n) = 0 for
n < 0. Then the scalar version of Theorem 2.3 can be stated as follows.

Theorem 2.7 Assume that the trivial solution of (2.22) is asymptoti-
cally stable. Then if the perturbations, n;, satisfy

Zm]azmlm(nﬂ < m . %~ ; (2.23)
-0 % Y imo (@il Yopg [v(n)]

then the trivial solution of (2.21) is asymptotically stable.

Theorem 2.7 and Proposition 2.5 have the following corollary.

Corollary 2.8 Assume that the trivial solution of (2.22) is asymptot-
ically stable, and the fundamental solution of (2.22) is nonnegative.
Then condition

> o i )] < <2
a;| lim |n;(n —=0
pr R D imo @il

implies that the trivial solution of (2.21) is asymptotically stable.

3. Examples and Applications

Example 3.1 Consider the scalar delay difference equation

Azx(n) = —pz(n — k —n(n)), n €N, (3.1)

8



TABLE 1. TABLE 2.

k m k m
20 100.00 40 15.38
40  99.76 60 15.38
60  78.54 80 15.38
80  53.59 100 13.74

100  34.13 120 8.13
120 19.25 140  3.49
140 7.71 150 1.51

and the corresponding unperturbed equation
Ay(n) = —py(n — k), n € N. (3.2)

It is known (see e.g. in [7]), that the trivial solution of (3.2) is asymp-
totically stable if and only if

0<p<2cos

s

: 3.3
2k +1 (33)
It follows from [6], that for p > 0 the fundamental solution is nonneg-
ative if and only if

kk

(k+1)k+17
Consider a specific case, let p = 0.01. Then (3.3) and (3.4) yield that the
trivial solution of (3.2) is asymptotically stable for £ = 0,1,...,156,
and the corresponding fundamental solution is nonnegative for k£ =
0,1,...,36. By Theorem 2.7 and Corollary 2.8 we have that the trivial
solution of (3.1) is asymptotically stable if

p< (3.4)

1
— k <36
0.01° 1 -
lim [n(n)| <m = — . k> 36.
n—o0
(0.01)2 ) [u(n)|

n=0

In Table 1 we present some numerical values of the upper bound, m, of
the perturbations corresponding to several delays. We can observe, that

9
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FIGURE 1. FIGURE 2.

as k increases, i.e., when there is more oscillation in the fundamental
solution, m becomes smaller.

Next we examine the infinite sum of the elements of the fundamen-
tal solution of (3.2) as a function of k. Let vg(n) be the fundamental
solution (3.2) corresponding to delay k, and define

w(k) = 3 uc(n).

By Proposition 2.5 we have that w(k) is constant, w(k) = 100 for
0 < k < 36, and we have that w(k) = oo for k > 156. Numerical study
(see on Figure 1) reveals that w(k) is a monotone increasing function of
k. Note, that here and later in all figures, the discrete function values
are connected to a continuous graph.

Example 3.2 Consider the scalar delay difference equation with two
delayed terms

Azx(n) = —0.001z(n) + 0.01z(n — 100) — 0.015z(n — k — n(n)), (3.5)

where, for simplicity, only the second delay is perturbed. By Theo-
rem 2.7 we have that the trivial solution of the equation is asymptoti-
cally stable, if

. 1
Ti <m=
Jim [(n)] < m 0.015-0.026 - 3., |vg(n)]’

where wvg(n) is the fundamental solution of the corresponding unper-
turbed equation. Table 2 presents numerical values of m corresponding

10
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to different k£ values. On Figure 2 we show the fundamental solution
of the unperturbed equation with £ = 150. We graph the numeri-
cal solution of (3.5) (with initial condition z(0) = 1, xz(n) = 0 for
n < 0) using perturbation 7n(n) = 15000/n + 1 on Figure 3, and with
n(n) = 15000/n + 10 on Figure 4.

Example 3.3 Consider the two dimensional vector delay difference
equation

Ax(n) = Agx(n) + Ajx(n — 100) + Ayz(n — 140 — n(n)), (3.6)

where
—0.001  0.002 0.000  0.001
A = < 0.000 —0.003)’ Al_(o.ooo —0.002) and
A — ( —0-002 0.000
2 0.002 0.000

Numerical study shows that the fundamental solution of the corre-
sponding unperturbed equation is nonnegative (see on Figure 5 the
components of the fundamental solution). Therefore by Proposition 2.5
we have that

STV () = —(Ag+ Ay + 4) " = < 555.556 333.333 )
n=0

222.222 333.333

and hence
M = —11_)—m|77(n)|(A0+A1+A2)71f~12(/10+f~11+f~12)
_ Im ‘ (n)\ 0.0053 0.0053
= 0.0033 0.0033 )
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It is easy to see that p(M) < 1 if lim |p(n)| < 115.385. On Figure 6
n—oo

we plot the numerical solution of (3.6) (corresponding to initial values
z(0) =1, z(n) = 0, n < 0) with perturbation n(n) = 2220 4 115.

Example 3.4 Finally, consider the vector delay difference equation
Ax(n) = Agx(n)+A1x(n—100)+Asz(n—150—n(n)), neN, (3.7)
with

4 —0.001 0.003 A, — ( 0:007 —0.004 d
o = —0.005 0.000 )’ 70 0.005 —0.008 a

1 —0.01 0.001
2= 0.001 0.004

By approximating Y, V(n) numerically, and applying Theorem 2.3
we get that if lg—m in(n)| < 7.75 then the trivial solution of (3.7) is
asymptotically 7r;tauolo)le. Figure 7 shows the components of the funda-
mental solution of the unperturbed equation, and Figure 8 contains
the components of the solution of (3.7) (corresponding to the same ini-
tial values) with perturbation n(n) = 200 for n < 1000 and n(n) = 7
for n > 1000.
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4. Stability Results

In this section, using the perturbation result of Section 2, we obtain
sufficient stability conditions for the scalar delay difference equation

m

Azx(n) = — Zaix(n —oi(n)), n €N, (4.1)

1=0

where the delay terms, o; : N — Z, are bounded functions. We can
think of 0;(n) in (4.1) as perturbations of zero delays, i.e., (4.1) can be
considered as a perturbed equation corresponding to the unperturbed

equation
Ay(n) = — (Z ai> y(n), neN (4.2)
i=0
We would like to apply Theorem 2.7, and in fact, Corollary 2.8 (in
order to use condition which can be checked easily), therefore we need
to guarantee that the trivial solution of (4.2) is asymptotically stable,
and the fundamental solution, v(n), of (4.2) is nonnegative. It is easy
to check, that the inequality 0 < (3°.", a;) < 1 implies both properties.
Therefore by Corollay 2.8 the following result follows immediately.

Proposition 4.1 Assume that

(i) 0 <Y " a; <1, and

Z?lo a;
Z;io ]

13
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Then the trivial solution of (4.1) is asymptotically stable.

Note, that in condition (ii) of the previous proposition the right
hand side of the inequality is always less or equal to 1, and equal to 1
if and only if each a; is positive.

In the rest of this section we assume that a; > 0 fori =0,1,..., m.
In this special case we shall improve condition (ii). Rewrite (4.1) in the

form
m

Az(n) = — Z az(n —k — (o;(n) — k), (4.3)

where k£ is a positive integer, and consider

Ay(n) = — (Z ai> y(n—k), n e N (4.4)

=0

Then, again, (4.3), and hence (4.1) can be considered as an equation
obtained by perturbing the constant delays of (4.4) by o;(n) — k. As
before, if the trivial solution of (4.4) is asymptotically stable, and the
fundamental solution of (4.4) is positive, then by applying Corollary 2.8,
we can obtain a sufficient condition for the asymptotic stability of the
trivial solution of (4.1). It is known (see [6]), that the inequality

1=0

or equivalently,
+1

m kk
U<kZai<m (45)
1=0

yields both properties. To further simplify condition (4.5), using that
the sequence k%1 /(k + 1)¥*! is monotone increasing, and hence

kk+1

D
T

1
— k=1,2,...
4 3 <y )

we get that if we can select k£ such that

i 1
0<kZai§Z, (4.6)



then the trivial solution of (4.4) is asymptotically stable, and the fun-
damental solution of (4.4) is nonnegative. (Note, that the equality for
k = 1 does not follow from the previous argument, but can easily be
proved directly.) Therefore, by Corollay 2.8, if in addition to (4.6)

m

Zaim\ai(n) -kl <1 (4.7)
n—oo

1=0

holds, then the trivial solution of (4.1) is asymptotically stable.
In two special cases, when all delays are “small”, or all delays are
“large”, we can obtain explicit conditions.

Case 1: Assume that there exists a T' € N such that 0;(n) < ﬁ
j=0 "7
forn>Tand all2=0,1,...,m ’

In this case select k = [1/(4 Py ai”. With this choice of £, the
following elementary estimates

éain@axn)—m - 4z]i ialnlggoaz

VAN
| SN |—|

|

i ng
£
8
S
=

<
show that (4.7) is always satisfied.

Case 2: Assume that there exist constants T e Nand 0 < a <1 such
thatcri()_4Z forn>Tandalli=0,1,...,m,and k =
j=0 aj

- 421 0 @i
is an integer. In this case we have that
m
E a; lim |o;(n) — k| E a; | hrn az
— n—00
1=

We have proved the following result.

Proposition 4.2 Assume that a; > 0 fori=0,1,...,m. Then either
one of the following two conditions implies the asymptotic stability of
the trivial solution of (4.1).

15



(i) There exists T > 0 such that o;(n) < for n > T and

1=0,1,....m,

1
4 Z;n:O aj

(i) There ezists T > 0 and 0 < a < 1 such that 0;(n) = s—r for
=0 4j
n>Tand allt=0,1,...,m, and

m

— «
;aigl_)rgoai(n) <1+ 1
1=

Propositions 4.1 and 4.2 generalize the stability condition of [2],
where it was shown, that the trivial solution of (4.1) is asymptotically
stable, provided that the delays are constant, the coefficients of the
equation are positive, and Y. a;0; < 1. Note, that similar type of
stability conditions was investigated for delay differential equations by
several authors. We refer to [8], [11], [12], [13], [14], and [7] and the
references therein for results in this topic in the continuous, and discrete
case as well.

REFERENCES

[1] A. Berman and R. J. Plemmons, “Nonnegative Matrices in the Mathe-
matical Sciences”, Academic Press, New York, 1979.

[2] K. L. Cooke and 1. Gy6ri, Numerical approzimation of the solutions
of delay differential equations on an infinite interval using piecewise
constant arguments, IMA Preprint Series #633, 1990.

[3] E. Cheres, Z. J. Palmor, and S. Gutman, Qualitative measures of robust-
ness for systems including delayed perturbations, IEEE Trans. Automat.
Contr. 34 (1989), 1203-1204.

[4] R. D. Driver, “Ordinary and Delay Differential Equations”, Springer-
Verlag, New York, 1977.

[5] 1. Gy6ri, F. Hartung and J. Turi, Preservation of stability in delay
equations under delay perturbations, Preprint.

[6] 1. Gy6ri and G. Ladas, “Oscillation Theory of Delay Differential Equa-
tions”, Clarendon Press, Oxford, 1991.

[7] V. L. Kocic and G. Ladas, “Global Behavior of Nonlinear Difference
Equations of Higher Order with Applications”, Kluwer Academic Pub-
lishers, 1993.

16



[8] T. Krisztin, On stability properties for one-dimensional functional dif-
ferential equations, Funkcional Ekvacioj 34 (1991), 241-256.

[9] A. Stokes, Stability of functional differential equations with perturbed
lags, J. Math. Anal. and Appl. 47 (1974), 604-619.

[10] Y. Z. Tsypkin and M. Fu, Robust stability of time-delay system with an
uncertain time-delay constant, Int. J. Control 57 (1993), 865-879.

[11] T. Yoneyama and J. Sugie, On the stability region of scalar delay-
differential equation, J. Math. Anal. Appl. 134 (1988), 408-425.

[12] T. Yoneyama and J. Sugie, On the stability region of differential equa-
tion with two delays, Funkcialaj Ekvacioj 31 (1988), 233-240.

[13] T. Yoneyama, The 3/2 stability theorem for one-dimensional delay-
differential equations with unbounded delay, J. Math. Anal. Appl. 165
(1992), 133-143.

[14] J. A. Yorke, Asymptotic stability for one dimensional differential-delay
equations, J. Differential Equations 7 (1988), 189-202.

[15] D-N. Zhang, M. Saeki, and K. Ando, Stability margin calculation of
systems with structured time-delay uncertainties, IEEE Trans. Automat.
Contr. 37 (1992), 865-868.

17



