
Pro
eedings of the First International Conferen
e on Di�eren
e Equations,San Antonio, Texas, May 1994, eds S. N. Elaydi, J. R. Graef, G. Ladasand A. C. Peterson, Gordon and Brea
h, 1995, 237{253.
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al S
ien
es, University of Texasat Dallas, Ri
hardson, TX 75083Abstra
t We 
onsider a 
lass of linear delay di�eren
e equations withperturbed time lags and present 
onditions whi
h guarantee that theasymptoti
 stability of the trivial solution of the equation at hand ispreserved under these perturbations. As an appli
ation of this pertur-bation result, we give suÆ
ient 
onditions for asymptoti
 stability ofs
alar linear delay di�eren
e equations.1. Introdu
tionIn this paper we study the e�e
ts of perturbations of time delayson the stability of a 
lass of linear delay di�eren
e systems. Our goalis to obtain a \pra
ti
al" 
ondition, i.e., a norm bound on the per-turbations 
orresponding to the parti
ular system under 
onsideration,whi
h guarantees the preservation of asymptoti
 stability under per-1



turbations. It turns out that su
h 
ondition 
an be formulated usingthe in�nite sum of the fundamental solution of the unperturbed system(see Theorem 2.3 below). Sin
e asymptoti
 stability of the unperturbedsystem implies that the 
omponents of its fundamental solution go tozero exponentially at in�nity, it is possible to get \good" numeri
alestimates of the in�nite sum, and 
onsequently obtain norm bounds onthe allowable perturbations.We present our main results in Se
tion 2, and in Se
tion 3 we 
on-sider numeri
al examples. In Se
tion 4, as an appli
ation of our pertur-bation result, we obtain suÆ
ient 
onditions for asymptoti
 stability ofs
alar linear delay di�eren
e equations.To 
on
lude this se
tion we note, that perturbation related issuesfor delay di�erential equations, and in parti
ular, delay perturbations,have been studied by many authors. We refer the interested reader to[3℄, [4℄, [9℄, [10℄, [15℄ and the referen
es therein for related arti
les, andalso for [5℄, whi
h 
ontains the 
ontinuous 
ounterpart of the results ofthis paper.2. Main ResultsFirst we introdu
e some notations used throughout this paper. N ,Z and R denotes the set of nonnegative integers, integers, and realnumbers, respe
tively. For a sequen
e, x(n), the forwarded di�eren
eis denoted by �x(n) � x(n + 1) � x(n). For future 
onvenien
e, wede�ne the ~ operation on ve
tors and on matri
es, whi
h means tak-ing the absolute value of the ve
tor or matrix 
omponentwise, i.e., ifx = (x1; x2; : : : ; xn)T , then by de�nition ~x � (jx1j; jx2j; : : : ; jxnj)T , andsimilarly if A = (aij)n�n, then ~A � (jaijj)n�n. The relation � betweenve
tors means a 
omponentwise 
omparison, i.e., (x1; x2; : : : ; xn)T �(y1; y2; : : : ; yn)T if for all the 
omponents xi � yi.Consider the delay di�eren
e equation�x(n) = mXi=0 Aix(n� ki � �i(n)); n 2 N ; (2.1)with initial 
onditionx(n) = '(n); n = �n0;�n0 + 1; : : : ; 0; (2.2)2



where Ai (i = 0; : : : ; m) denote 
onstant N � N matri
es, 0 = k0 �k1 � : : : � km, ' : [�n0; 0℄ \ Z! RN is a given fun
tion, and we shallassume that the delay perturbations, �i(�) : N ! Z (i = 0; : : : ; m),satisfyn� n0 � n� ki � �i(n) � n for n 2 N (i = 0; : : : ; m): (2.3)Under our assumptions initial value problem (2.1)-(2.2) is a delay dif-feren
e equation and has a unique solution.We 
onsider the 
orresponding unperturbed system with 
onstantdelays, i.e., �y(n) = mXi=0 Aiy(n� ki); n 2 N ; (2.4)and we assume that(H) the trivial (y(n) = 0) solution of (2.4) is asymptoti
ally stable.For a �xed T 2 N the fundamental matrix solution of (2.4), V (n), isde�ned as the solution of the following system�V (n) = mXi=0 AiV (n� ki); n 2 N ; n � T; (2.5)and V (n) = � I; n = T;0; n < T; (2.6)where I; 0 2 Rn�n are the identity and the zero matrix, respe
tively.Remark 2.1 To emphasize the dependen
e of V (�) on T we use thenotation V (n; T ). Note that V (n; T ) = V (n� T ; 0) for t � T be
ause(2.4) is autonomous, hen
e (2.6) yields that1Xn=0 V (n; T ) = 1Xn=0 V (n; 0):We 
an rewrite (2.1) in the form�x(n) = mXi=0 Aix(n� ki) + f(n); n 2 N ; (2.7)3



where f(n) � mXi=0 Ai�x(n� ki � �i(n))� x(n� ki)�: (2.8)In this setting (2.4) 
an be 
onsidered as the homogeneous equation
orresponding to (2.7). The variation-of-
onstants formula (see e.g. in[6℄) gives the following expression for the solution of the initial valueproblem (2.1)-(2.2):x(n) = y(n) + n�1Xi=T V (n� i� 1)f(i); n 2 N ; n � T; (2.9)where T > 0 is an integer number, and y is the solution of (2.4) withinitial fun
tion y(n) = x(n) for T � N � t � T and V (�) = V (�;T ) isthe fundamental solution of (2.4).Remark 2.2 Hypothesis (H) implies that there exist 
onstants 0 � � <1 and K > 0 su
h that jvij(n)j � kV (n)k � K�n for n � 0, (where k � kis the matrix norm indu
ed by the ve
tor norm k(x1; x2; : : : ; xn)k �maxfjx1j; jx2j; : : : ; jxnjg), and therefore every element of the matrixP1n=0 ~V (n) is �nite.The next theorem shows, that if the perturbations of the delays in(2.1) are small enough for large t, then the equation remains asymp-toti
ally stable.Theorem 2.3 Assume (H) and that the matrixM �  1Xn=0 ~V (n)! mXi=0 limn!1j�i(n)j � ~Ai! mXi=0 ~Ai! (2.10)has spe
tral radius less than 1, i.e., �(M) < 1. Then the trivial solutionof (2.1) is asymptoti
ally stable.Proof: Sin
e the proof goes analogously to that in the 
ontinuous 
ase(see in [5℄), here we show only the main steps of the proof.4



(i) First, we 
an show, using (2.8) and (2.1), that for some T > 0and n > T , the fun
tion, f(n), satis�es~f(n) �  mXi=0 j�i(n)j ~Ai! mXi=0 ~Ai! max0�j�n ~x(j); n � T; (2.11)where we use the notationmax0�j�n ~x(j) � �max0�j�n jx1(j)j; max0�j�n jx2(j)j; : : : ; max0�j�n jxN(j)j�T :(ii) De�ne the matrixM0 � 1Xn=0 ~V (n) mXi=0 ~Ai!2: (2.12)(We note, that a

ording to Remark 2.1, matri
es M and M0 are in-dependent of the 
hoi
e of T .) It is easy to see that �(M) < 1 impliesthat there exists Æ > 0 su
h that�(M + ÆM0) < 1: (2.13)With this Æ we 
an 
hoose T su
h that (2.11) holds and furthermore,we have the following relationsj�i(n)j < limj!1j�i(j)j+ Æ; n � T; i = 0; : : : ; m: (2.14)Then (2.11) yields the following estimate~f(n) �  mXi=0 ( limj!1j�i(j)j+ Æ) ~Ai! mXi=0 ~Ai! max0�j�n ~x(j); n > T:(2.15)(iii) Next we prove that the solution of (2.1) is bounded for allinitial fun
tions. Choose T > 0 su
h that (2.15) holds. For su
h T ,formula (2.9) and standard estimates yield the inequality~x(n) � ~y(n) + n�1Xi=T ~V (n� i� 1) ~f(i); n � T: (2.16)5



From this inequality, using the de�nition of M and M0, and estimate(2.15), we 
an derive thatmax0�j�n ~x(j) � max0�j�n ~y(j) + (M + ÆM0) max0�j�n ~x(j): (2.17)Rearranging (2.17) and using that y(n) is bounded by hypothesis (H),we have that there exists a 
onstant ve
tor z � 0 su
h that(I � (M + ÆM0)) max0�j�n ~x(j) � max0�j�n ~y(j) � z; n � T: (2.18)Inequality (2.13) and the fa
t that M + ÆM0 has nonnegative 
ompo-nents imply that I � (M + ÆM0) is a nonsingular M-matrix, thereforean appli
ation of Theorem 6.2.3 in [1℄ yields that I � (M + ÆM0) is amonotone matrix, hen
emax0�j�n ~x(j) � (I � (M + ÆM0))�1z; n � T;i.e., x(n) is bounded for n � 0.(iv) Next we show that x(n) tends to 0 as n!1, i.e., limn!1~x(n) =0. Using that by step (iii) above we have that limn!1~x(n) is �nite, andfrom assumption (H) it follows that limn!1~y(n) = 0, we 
an show that(2.16) implies limn!1~x(n) �M limn!1~x(n);and hen
e (I �M) limn!1~x(n) � 0: (2.19)By assumption �(M) < 1, M has nonnegative 
omponents, and there-fore I�M is a nonsingular M-matrix. Using again Theorem 6.2.3 in [1℄we get that I �M is monotone, hen
e (2.19) yields that limn!1~x(n) � 0.On the other hand limn!1~x(n) � 0, therefore limn!1~x(n) = 0.This 
ompletes the proof of the theorem.The following 
orollary is an easy 
onsequen
e of the theorem.Corollary 2.4 Let M0 de�ned by (2.12). Iflimn!1j�i(n)j < 1�(M0) ; i = 0; : : : ; m;then the trivial solution of (2.1) is asymptoti
ally stable.6



If the fundamental solution V (n) of (2.4) is nonnegative, (i.e., ea
h
omponent vij(n) of V (t) is nonnegative and therefore V (n) = ~V (n)),then it is easy to 
ompute the integral in (2.12). In parti
ular, we havethe following result.Proposition 2.5 If the trivial solution of (2.4) is asymptoti
ally stable,then the fundamental solution of (2.4) satis�es mXi=0 Ai! 1Xn=0 V (n) = �I;where I is the identity matrix.Proof: Let V (t) be the fundamental solution of (2.4) 
orresponding toT = 0. By summing (2.5) for 0 to n > 0 we getV (n+ 1)� V (0) = mXi=0 Ai nXj=0 V (j � ki):A 
hange of variables in the integrals and the assumed initial 
onditionV (n) = 0 for n < 0 yieldV (n + 1)� V (0) = mXi=0 Ai n�riXj=�ri V (j)= mXi=0 Ai n�riXj=0 V (n):Using V (0) = I and the fa
t V (t)! 0 as t!1 we obtain the equality�I =  mXi=0 Ai! 1Xj=0 V (j);whi
h proves the proposition.Remark 2.6 In the 
ase when V (t) is nonnegative, and Pmi=0Ai isnonsingular, Proposition 2.5 implies thatM0 = � mXi=0 Ai!�1 mXi=0 ~Ai!2; (2.20)therefore our stability 
ondition in Corollary 2.4 
an be evaluated usingthe 
oeÆ
ient matri
es related to the di�eren
e equation.7



In the rest of this se
tion we state the s
alar version of our results.Consider the s
alar linear delay di�eren
e equation�x(n) = mXi=0 aix(n� ki � �i(n)); n 2 N ; (2.21)and the 
orresponding 
onstant delay di�eren
e equation�y(n) = mXi=0 aiy(n� ki); n 2 N : (2.22)Let v(n) be the fundamental solution of (2.22), i.e., the solution of(2.22) 
orresponding to initial 
ondition v(0) = 1 and v(n) = 0 forn < 0. Then the s
alar version of Theorem 2.3 
an be stated as follows.Theorem 2.7 Assume that the trivial solution of (2.22) is asymptoti-
ally stable. Then if the perturbations, �i, satisfymXi=0 jaij limn!1j�i(n)j < 1Pmi=0 jaijP1n=0 jv(n)j ; (2.23)then the trivial solution of (2.21) is asymptoti
ally stable.Theorem 2.7 and Proposition 2.5 have the following 
orollary.Corollary 2.8 Assume that the trivial solution of (2.22) is asymptot-i
ally stable, and the fundamental solution of (2.22) is nonnegative.Then 
ondition mXi=0 jaij limn!1j�i(n)j < �Pmi=0 aiPmi=0 jaij :implies that the trivial solution of (2.21) is asymptoti
ally stable.3. Examples and Appli
ationsExample 3.1 Consider the s
alar delay di�eren
e equation�x(n) = �px(n � k � �(n)); n 2 N ; (3.1)8



TABLE 1.k m20 100.0040 99.7660 78.5480 53.59100 34.13120 19.25140 7.71
TABLE 2.k m40 15.3860 15.3880 15.38100 13.74120 8.13140 3.49150 1.51and the 
orresponding unperturbed equation�y(n) = �py(n� k); n 2 N: (3.2)It is known (see e.g. in [7℄), that the trivial solution of (3.2) is asymp-toti
ally stable if and only if0 < p < 2 
os k�2k + 1 : (3.3)It follows from [6℄, that for p > 0 the fundamental solution is nonneg-ative if and only if p < kk(k + 1)k+1 : (3.4)Consider a spe
i�
 
ase, let p = 0:01. Then (3.3) and (3.4) yield that thetrivial solution of (3.2) is asymptoti
ally stable for k = 0; 1; : : : ; 156,and the 
orresponding fundamental solution is nonnegative for k =0; 1; : : : ; 36. By Theorem 2.7 and Corollary 2.8 we have that the trivialsolution of (3.1) is asymptoti
ally stable iflimn!1j�(n)j < m � 8>>>><>>>>: 10:01 ; k � 36;1(0:01)2 1Xn=0 jv(n)j ; k > 36:In Table 1 we present some numeri
al values of the upper bound, m, ofthe perturbations 
orresponding to several delays. We 
an observe, that9
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FIGURE 2.as k in
reases, i.e., when there is more os
illation in the fundamentalsolution, m be
omes smaller.Next we examine the in�nite sum of the elements of the fundamen-tal solution of (3.2) as a fun
tion of k. Let vk(n) be the fundamentalsolution (3.2) 
orresponding to delay k, and de�new(k) � 1Xn=0 jvk(n)j:By Proposition 2.5 we have that w(k) is 
onstant, w(k) = 100 for0 � k � 36, and we have that w(k) =1 for k > 156. Numeri
al study(see on Figure 1) reveals that w(k) is a monotone in
reasing fun
tion ofk. Note, that here and later in all �gures, the dis
rete fun
tion valuesare 
onne
ted to a 
ontinuous graph.Example 3.2 Consider the s
alar delay di�eren
e equation with twodelayed terms�x(n) = �0:001x(n) + 0:01x(n� 100)� 0:015x(n� k � �(n)); (3.5)where, for simpli
ity, only the se
ond delay is perturbed. By Theo-rem 2.7 we have that the trivial solution of the equation is asymptoti-
ally stable, iflimn!1j�(n)j < m � 10:015 � 0:026 �P1n=0 jvk(n)j ;where vk(n) is the fundamental solution of the 
orresponding unper-turbed equation. Table 2 presents numeri
al values of m 
orresponding10
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FIGURE 4.to di�erent k values. On Figure 2 we show the fundamental solutionof the unperturbed equation with k = 150. We graph the numeri-
al solution of (3.5) (with initial 
ondition x(0) = 1, x(n) = 0 forn < 0) using perturbation �(n) = 15000=n + 1 on Figure 3, and with�(n) = 15000=n+ 10 on Figure 4.Example 3.3 Consider the two dimensional ve
tor delay di�eren
eequation�x(n) = A0x(n) + A1x(n� 100) + A2x(n� 140� �(n)); (3.6)whereA0 = � �0:001 0:0020:000 �0:003 � ; A1 = � 0:000 0:0010:000 �0:002 � andA2 = � �0:002 0:0000:002 0:000 �Numeri
al study shows that the fundamental solution of the 
orre-sponding unperturbed equation is nonnegative (see on Figure 5 the
omponents of the fundamental solution). Therefore by Proposition 2.5we have that1Xn=0 ~V (n) = �(A0 + A1 + A2)�1 = � 555:556 333:333222:222 333:333 � ;and hen
eM = � limn!1j�(n)j(A0 + A1 + A2)�1 ~A2( ~A0 + ~A1 + ~A2)= limn!1j�(n)j� 0:0053 0:00530:0033 0:0033 � :11



1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

FIGURE 5. 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

FIGURE 6.It is easy to see that �(M) < 1 if limn!1j�(n)j < 115:385. On Figure 6we plot the numeri
al solution of (3.6) (
orresponding to initial valuesx(0) = 1, x(n) = 0, n < 0) with perturbation �(n) = 20000n + 115.Example 3.4 Finally, 
onsider the ve
tor delay di�eren
e equation�x(n) = A0x(n)+A1x(n�100)+A2x(n�150��(n)); n 2 N ; (3.7)withA0 = � �0:001 0:003�0:005 0:000 � ; A1 = � 0:007 �0:0040:005 �0:008 � andA2 = � �0:01 0:0010:001 0:004 �By approximating P1n=0 V (n) numeri
ally, and applying Theorem 2.3we get that if limn!1j�(n)j < 7:75 then the trivial solution of (3.7) isasymptoti
ally stable. Figure 7 shows the 
omponents of the funda-mental solution of the unperturbed equation, and Figure 8 
ontainsthe 
omponents of the solution of (3.7) (
orresponding to the same ini-tial values) with perturbation �(n) = 200 for n < 1000 and �(n) = 7for n � 1000.
12
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FIGURE 8.4. Stability ResultsIn this se
tion, using the perturbation result of Se
tion 2, we obtainsuÆ
ient stability 
onditions for the s
alar delay di�eren
e equation�x(n) = � mXi=0 aix(n� �i(n)); n 2 N ; (4.1)where the delay terms, �i : N ! Z, are bounded fun
tions. We 
anthink of �i(n) in (4.1) as perturbations of zero delays, i.e., (4.1) 
an be
onsidered as a perturbed equation 
orresponding to the unperturbedequation �y(n) = � mXi=0 ai! y(n); n 2 N: (4.2)We would like to apply Theorem 2.7, and in fa
t, Corollary 2.8 (inorder to use 
ondition whi
h 
an be 
he
ked easily), therefore we needto guarantee that the trivial solution of (4.2) is asymptoti
ally stable,and the fundamental solution, v(n), of (4.2) is nonnegative. It is easyto 
he
k, that the inequality 0 < (Pmi=0 ai) < 1 implies both properties.Therefore by Corollay 2.8 the following result follows immediately.Proposition 4.1 Assume that(i) 0 <Pmi=0 ai < 1, and(ii) mXi=0 jaij limn!1j�i(n)j < Pmi=0 aiPmi=0 jaij :13



Then the trivial solution of (4.1) is asymptoti
ally stable.Note, that in 
ondition (ii) of the previous proposition the righthand side of the inequality is always less or equal to 1, and equal to 1if and only if ea
h ai is positive.In the rest of this se
tion we assume that ai > 0 for i = 0; 1; : : : ; m.In this spe
ial 
ase we shall improve 
ondition (ii). Rewrite (4.1) in theform �x(n) = � mXi=0 aix(n� k � (�i(n)� k)); (4.3)where k is a positive integer, and 
onsider�y(n) = � mXi=0 ai! y(n� k); n 2 N : (4.4)Then, again, (4.3), and hen
e (4.1) 
an be 
onsidered as an equationobtained by perturbing the 
onstant delays of (4.4) by �i(n) � k. Asbefore, if the trivial solution of (4.4) is asymptoti
ally stable, and thefundamental solution of (4.4) is positive, then by applying Corollary 2.8,we 
an obtain a suÆ
ient 
ondition for the asymptoti
 stability of thetrivial solution of (4.1). It is known (see [6℄), that the inequality0 < mXi=0 ai < kk(k + 1)k+1 ;or equivalently, 0 < k mXi=0 ai < kk+1(k + 1)k+1 (4.5)yields both properties. To further simplify 
ondition (4.5), using thatthe sequen
e kk+1=(k + 1)k+1 is monotone in
reasing, and hen
e14 � kk+1(k + 1)k+1 ; k = 1; 2; : : : ;we get that if we 
an sele
t k su
h that0 < k mXi=0 ai � 14 ; (4.6)14



then the trivial solution of (4.4) is asymptoti
ally stable, and the fun-damental solution of (4.4) is nonnegative. (Note, that the equality fork = 1 does not follow from the previous argument, but 
an easily beproved dire
tly.) Therefore, by Corollay 2.8, if in addition to (4.6)mXi=0 ai limn!1j�i(n)� kj < 1 (4.7)holds, then the trivial solution of (4.1) is asymptoti
ally stable.In two spe
ial 
ases, when all delays are \small", or all delays are\large", we 
an obtain expli
it 
onditions.Case 1: Assume that there exists a T 2 N su
h that �i(n) � 14Pmj=0 ajfor n > T and all i = 0; 1; : : : ; m.In this 
ase sele
t k = h1=�4Pmi=0 ai�i. With this 
hoi
e of k, thefollowing elementary estimatesmXi=0 ai limn!1j�i(n)� kj = � 14Pmi=0 ai� mXi=0 ai � mXi=0 ai limn!1�i(n)� 14 � mXi=0 ai limn!1�i(n)< 1show that (4.7) is always satis�ed.Case 2: Assume that there exist 
onstants T 2 N and 0 < � � 1 su
hthat �i(n) � �4Pmj=0 aj for n > T and all i = 0; 1; : : : ; m; and k � �4Pmi=0 aiis an integer. In this 
ase we have thatmXi=0 ai limn!1j�i(n)� kj = mXi=0 ai limn!1�i(n)� �4 :We have proved the following result.Proposition 4.2 Assume that ai > 0 for i = 0; 1; : : : ; m. Then eitherone of the following two 
onditions implies the asymptoti
 stability ofthe trivial solution of (4.1). 15



(i) There exists T > 0 su
h that �i(n) � 14Pmj=0 aj for n > T andi = 0; 1; : : : ; m,(ii) There exists T > 0 and 0 � � � 1 su
h that �i(n) � �4Pmj=0 aj forn > T and all i = 0; 1; : : : ; m, andmXi=0 ai limn!1�i(n) < 1 + �4 :Propositions 4.1 and 4.2 generalize the stability 
ondition of [2℄,where it was shown, that the trivial solution of (4.1) is asymptoti
allystable, provided that the delays are 
onstant, the 
oeÆ
ients of theequation are positive, and Pmi=0 ai�i < 1. Note, that similar type ofstability 
onditions was investigated for delay di�erential equations byseveral authors. We refer to [8℄, [11℄, [12℄, [13℄, [14℄, and [7℄ and thereferen
es therein for results in this topi
 in the 
ontinuous, and dis
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