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hardson, TX 75083, USA1. Introdu
tionStability properties di�erential equations 
an be of great importan
e in appli-
ations. For linear delay equations stability of the trivial (x(t) = 0) solution isdetermined by the lo
ation of the zeros of its 
hara
teristi
 equation. Ne
essary andsuÆ
ient 
onditions for stability in terms of the parameters (
oeÆ
ients, delays) ofthe equation are known only for the simplest equations, even in the 
ase of linear
onstant delay equations. There are numerous suÆ
ient 
onditions for guaranteeingstability for spe
ial equations (see e.g. [6℄). One possible approa
h to �nd suÆ
ien-t stability 
onditions is, analogously to the ODEs 
ase, Liapunov's method. But,unfortunately, there is no general strategy to 
onstru
t a Liapunov fun
tional for agiven equation, and if the equation is 
ompli
ated (nonlinear, with several time- orstate-dependent delays), obtaining a Liapunov fun
tional 
an be very diÆ
ult if notimpossible.For nonlinear autonomous ODEs the linearization method is a very useful one,sin
e we 
an dedu
e stability properties of the solution of the nonlinear equationfrom that of the 
orresponding linear equation, whi
h is signi�
antly easier to 
he
k.Re
ently, Cooke and Huang ([2℄) extended this method for nonlinear delay equationswith state-dependent delays of the form_x(t) = g�xt; Z 0�r0 d�(s)g�x(t + s� �(xt))�� ; (1.1)where � : C ! [0; r1℄, � is a matrix valued fun
tion of bounded variation, r0 > 0,and r is su
h that r � r0 + r1.The nonlinear delay system with state dependent delays_x(t) = f �t; x(t); Z 0�r ds�(s; t; xt) x(t+ s)� ; t � 0; (1.2)was investigated in [7℄. The termZ 0�r ds�(s; t; xt)x(t + s) (1.3)1



des
ribing the delay dependen
e is a Stieltjes-integral of the solution segment x(t+ �)with respe
t to �(�; t; xt), whi
h is a matrix valued fun
tion of bounded variationsdepending on time, t, and the state of the equation, xt. Here r > 0 is �xed andxt : [�r; 0℄! Rn , xt(s) � x(t + s).To give some motivation and/or justi�
ation on the parti
ular form sele
ted byEq. (1.3) for the delay terms, assume for example that the delayed term dependslinearly on the state, i.e., has the form Lxt, where L is a bounded linear operator onC � C([�r; 0℄;Rn). In this 
ase the Riesz Representation Theorem yields Eq. (1.3)with � = �(s). If L = L(t) depends on t, then by the same result we get thatthere exists � = �(s; t) su
h that Eq. (1.3) holds. Therefore it seems like a natu-ral extension of the above 
ases to assume the stru
ture des
ribed by Eq. (1.3) forthe state-dependent 
ase. Moreover, representation Eq. (1.3) in
ludes dis
rete anddistributed 
onstant and time-dependent delays, and the \usual" state-dependent de-lays, x(t � �(t; x(t)) or x(t � �(t; xt)) as well. A ni
e feature of this form is that italso allows delayed terms of the form�(t; xt) = 1Xi=1 Ai(t; xt)x(t� �i(t; xt)) + Z 0��0 G(s; t; xt)x(t + s) ds:In this paper we shall obtain a linearization test similar to that of [2℄ for theautonomous version of Eq. (1.2). Note, that despite the signi�
ant te
hni
al di�er-en
es between our presentation and that of [2℄ due to the di�erent form of the twoequations, the main ideas are of 
ourse the same, sin
e both follow the steps of theproof of the ODEs 
ase (see e.g. [10℄), and the two results are equivalent in the sensethat they both provide the same linear equation for nonlinear equations whi
h 
an berewritten in both forms. Example 4.4 will show an equation, whi
h is not in
ludedin Eq. (1.1), but is 
overed by Eq. (1.2), and of 
ourse, examples 
an be 
onstru
tedfor the opposite dire
tion as well.We note, that the main diÆ
ulty to obtain linearization results for state-dependentdelay equations is that it is diÆ
ult to di�erentiate the delayed term in the presen
e ofstate-dependent delays (see a detailed dis
ussion of di�erentiability of solutions withrespe
t to parameters for state-dependent delay equations in [7℄). We shall de�nea bounded linear operator, F : C ! Rn (see Eq. (3.5) below), as a 
andidate forthe linearized equation about the trivial solution. This is not the \true" linearizationat zero, sin
e the delayed term is not ne
essarily di�erentiable at zero (in the spa
eC), but using assumption (H2) (ii), we 
an get an estimate on the error repla
ingthe right hand side of the equation by Fxt (see Lemma 3.2 below), whi
h turns outto be suÆ
ient to prove that the asymptoti
 stability of the 
orresponding linearizedequation, Eq. (3.8), implies that of the nonlinear equation, Eq. (2.1).Se
tion 3 
ontains the main results, and in Se
tion 4 we illustrate the method onseveral examples with 
onstant, time- and state-dependent delays. In Se
tion 6 wesummarize the well-posedness results of [7℄ for Eq. (1.2).2



2. PreliminariesConsider the nonlinear state-dependent delay system (the autonomous version ofEq. (1.2)) _x(t) = f �x(t); Z 0�r ds�(s; xt) x(t+ s)� ; t � 0 (2.1)with initial 
ondition x(t) = '(t); t 2 [�r; 0℄: (2.2)(See also Chapter 5 in [7℄.) Introdu
e the simplifying notations:�( ) � Z 0�r ds�(s;  ) (s) (2.3)and �( ; �) � Z 0�r ds�(s;  )�(s): (2.4)Then, of 
ourse, �( ) = �( ;  ), and Eq. (2.1) 
an be written as_x(t) = f(x(t);�(xt)); t � 0:We assume the following 
onditions throughout the paper:(H1) (i) f : 
1 � 
2 ! Rn is 
ontinuously di�erentiable, where 
1 and 
2 areopen subsets of Rn ,(ii) 0 2 
1 \ 
2, and f(0; 0) = 0,(H2) �(�;  ) is a matrix valued fun
tion of bounded variation for every  2 
3, where
3 � C open, su
h that(i) sup�����Z 0�r ds�(s;  )�(s)���� :  2 
3; � 2 C; j�jC � 1� <1;(ii) for every � > 0 and M > 0 there exists a 
onstant L2 = L2(�;M) su
hthat for all � 2 W 1;1, t 2 [0; �℄ and  ; � 2 
3, j jC, j � jC �M ,j�( ; �)� �( � ; �)j � L2j�jW 1;1j � � jC;(H3) ' 2 W 1;1, i.e., ' is Lips
hitz-
ontinuous.Here W 1;1 is the Sobolev spa
e of absolutely 
ontinuous fun
tions  : [�r; 0℄! Rnwith essentially bounded derivatives. The norm in this Bana
h-spa
e is de�ned byj jW 1;1 � maxf sups2[�r;0℄ j (s)j; ess sups2[�r;0℄ j _ (s)jg.3



It is easy to see that in order have a well-posed problem, the initial fun
tion 'and the fun
tion � have to satisfy that'(0) 2 
1; ' 2 
3; and Z 0�r ds�(s; ')'(s) 2 
2: (2.5)We re
all the following result from [7℄ 
on
erning the well-posedness of IVP (2.1)-(2.2).Theorem 2.1 Assume that ( �'; �; f) satisfy (H1){(H3) and Eq. (2.5). Then thereexist � > 0 and Æ > 0 su
h that IVP (2.1)-(2.2) 
orresponding to ('; �; f) has uniquesolution on [0; �℄ for all j'� �'jC < Æ.In the remaining part of this se
tion we re
all some results from [6℄ whi
h we shallneed in the sequel. Consider a linear delay equation with 
onstant delays of the form:_x(t) = Lxt; t � 0; (2.6)where L : C ! Rn is a bounded linear operator. It is well-known (e.g. [6℄),that Eq. (2.6) has a unique solution, x(t;'), 
orresponding to any initial fun
tion' 2 C, de�ned on t 2 [�r;1). Moreover (see e.g. [6℄), the family of linear operators,fS(t)gt�0, given by S(t)' � x(�;')t; t � 0de�nes a strongly 
ontinuous semigroup on C.Let de�ne !0 � supnRe� : det(�I � Le��) = 0o;i.e., !0 is the supremum of the real part of the 
hara
teristi
 roots of Eq. (2.6). Weshall need the following lemma:Lemma 2.2 (see e.g. in [6℄) If !0 < 0, then for any !0 < ! < 0 there existsM =M(!) � 1 su
h that kS(t)k �Me!t; t � 0:Consider the perturbed equation_x(t) = Lxt + g(t); t � 0; (2.7)where g 2 L1lo
([0;1);Rn). Then Eq. (2.7) has a unique solution on [0;1) for allinitial fun
tion ' 2 C, and the solution, x(t) satis�es the following abstra
t variationof 
onstant formula: 4



Lemma 2.3 (see e.g. [6℄) The solution, x(t), of Eq. (2.7), 
orresponding to an ini-tial fun
tion ' 2 C has the form:xt = S(t)'+ Z t0 S(t� s)X0g(s) ds;where X0 : [�r; 0℄! Rn�n ; X0(u) � � 0; u < 0;I; u = 0: (2.8)We shall need the following variation of Lemma 2.3.Lemma 2.4 The solution, x(t), of Eq. (2.7) satis�esxt = S(t� r)xr + Z t�r0 S(t� r � s)X0g(s+ r) ds; t � r;where X0 is de�ned by Eq. (2.8).Proof By applying Lemma 2.3, semigroup properties of S(t), and 
hange of variableswe getxt = S(t)'+ Z t0 S(t� s)X0g(s) ds= S(t� r)S(r)'+ S(t� r) Z r0 S(r � s)X0g(s) ds+ Z tr S(t� s)X0g(s) ds= S(t� r)xr + Z t�r0 S(t� r � s)X0g(s+ r) ds;whi
h proves the lemma.3. Main resultsFirst we introdu
e 
onstants whi
h we shall use throughout this se
tion.It follows from the assumption that 
1 and 
2 are open subsets of Rn and 0 2
1 \
2 that there exists a 
onstant Æ1 > 0 su
h that GRn(Æ1) � 
1 \
2. Assumption(H1) implies that there exists a 
onstant L1 = L1(Æ1) su
h thatjf(x; y)� f(�x; �y)j � L1(jx� �xj+ jy � �yj); for x; �x; y; �y 2 GRn(Æ1): (3.1)Assumption (H2) (i) and the linearity of �( ; �) in � yield that there exists a
onstant L3 > 0 su
h that j�( ; �)j � L3j�jC;  2 
3: (3.2)5



Inequality (3.2) and jx(t)j � jxtjC yield thatx(t) 2 GRn(Æ1) and �(xt) 2 GRn(Æ1) for xt 2 GC(Æ2); (3.3)where Æ2 � Æ1minf1; 1=L3g.We shall need the following estimate.Lemma 3.1 Assume (H1){(H3). Let x be the solution of IVP (2.1)-(2.2) 
orre-sponding to initial fun
tion ' satisfying j'jC � Æ2. Assume that � > 0 is su
h thatjxtj � Æ2 for 0 � t � �. Then the solution x satis�es the inequalityjxtj � j'jC exp�L1(1 + L3)t�; t 2 [0; �℄:Proof Let � > 0 satisfy the 
ondition of the lemma, and let t 2 [0; �℄. The integratedform of Eq. (2.1), and relations (3.1), (3.3) and (H1) (ii) yield the following estimates.jx(t)j � j'(0)j+ Z t0 jf(x(u);�(xu))j du� j'jC + L1 Z t0 jx(u)j+ j�(xu)j du� j'jC + L1 Z t0 jx(u)j+ L3jxujC du: (3.4)The assumption j'jC � Æ2 and Eq. (3.4) imply thatmax�r�v�t jx(v)j � j'jC + L1(1 + L3) Z t0 max�r�v�u jx(v)j du; t 2 [0; �℄;whi
h, using Gronwall-Bellman inequality, yields the statement of the lemma.De�ne the linear operatorF : C ! Rn ; F � �f�x (0; 0) (0) + �f�y (0; 0)�(0;  ) (3.5)and the fun
tion G : C ! Rn ; G( ) � f( (0);�( ))� F : (3.6)Note, that F is a bounded operator, sin
e by Eq. (3.2) it follows thatjF j � �



�f�x (0; 0)



+ 



�f�y (0; 0)



L3� j jC :6



By this notation we 
an rewrite Eq. (2.1) as_x(t) = Fxt +G(xt); t � 0; (3.7)and therefore we 
an 
onsider it as a perturbation of the 
onstant delay equation_x(t) = Fxt; t � 0 (3.8)by the fun
tion G.We shall need the following estimate of G.Lemma 3.2 Assume (H1){(H3). There exists a 
onstant N > 0 su
h that for every� > 0 there exists a 
onstant � = �(�) > 0 su
h thatjG( )j � N�� + j jW 1;1�j jC (3.9)for all  2 W 1;1 su
h that j jC � �.Proof The de�nition of F , (H1), and elementary estimates implyjG( )j � ����f� (0);�( )�� �f�x (0; 0) (0)� �f�y (0; 0)�(0;  )����= ����f� (0);�( )�� f(0; 0)� �f�x (0; 0) (0)� �f�y (0; 0)�(0;  )����� sup0���1 



�f�x (� (0); ��( ))� �f�x (0; 0)



 j (0)j+ 



�f�y (0; 0)



 j�( )� �(0;  )j+ sup0���1 



�f�y (� (0); ��( ))� �f�x (0; 0)



 j�( )j : (3.10)By the 
ontinuous di�erentiability of f guaranteed by (H1) (i), for every � > 0 thereexists 0 < �1(�) � Æ1 su
h that if jxj; jyj < �1(�) then



�f�x (x; y)� �f�x (0; 0)



 < � and 



�f�y (x; y)� �f�y (0; 0)



 < �It follows from Eq. (3.2), �1(�) � Æ1 and the de�nition of Æ2 that the 
onstant � =�(�) � �1(�)minf1; 1=L3g satis�es � � Æ2, and if  2 GC(�) then



�f�x (� (0); ��( ))� �f�x (0; 0)



 < � and 



�f�y (� (0); ��( ))� �f�y (0; 0)



 < �(3.11)7



for all 0 � � � 1. It follows from assumption (H2) (ii) with L2 = L2(Æ1), � � Æ2 andEq. (3.3), that for  2 GC(�) \W 1;1j�( )� �(0;  )j = j�( ;  )� �(0;  )j� L2(Æ1)j jW 1;1j jC : (3.12)By 
ombining Eq. (3.10), Eq. (3.11) and Eq. (3.12) we get for  2 GC(�)\W 1;1 thatjG( )j � �j jC + �L3j jC + 



�f�y (0; 0)



L2(Æ1)j jW 1;1j jC� N(� + j jW 1;1)j'jC;where N � maxn1 + L3; 


�f�y (0; 0)


L2(Æ1)o.Let S(t) be the semigroup generated by the linear 
onstant-delay Eq. (3.8), and!0 be the supremum of the real part of the 
hara
teristi
 roots of equation Eq. (3.8).(See Se
tion 2 for the de�nition of S(t) and !0.) We show that the stability propertiesof the trivial solution of the nonlinear state-dependent autonomous equation Eq. (2.1)
an be obtained by that of the linear 
onstant-delay Eq. (3.8).Theorem 3.3 Assume (H1){(H3), and that the semigroup S(t) is asymptoti
allystable, i.e., !0 < 0. Then for every ! > !0 there exist K = K(!) > 0 and Æ = Æ(!) >0 su
h that for all ' 2 GC(Æ) the 
orresponding solution, x(t), of IVP (2.1)-(2.2) isde�ned for t 2 [0;1), and satis�esjx(t)j � Ke!tj'jC ; t � 0:Proof Fix an arbitrary !0 < ! < 0 and �x !� su
h that !0 < !� < !. Then byLemma 2.2, there exists a 
onstant M =M(!�) � 1 su
h thatjS(t)'jC �Me!�tj'jC ; t � 0; ' 2 C: (3.13)Let x(t) be the solution of Eq. (3.7) (or equivalently Eq. (2.1)) 
orresponding to aninitial fun
tion ' 2 C. By Lemma 2.4 we get thatxt = S(t� r)xr + Z t�r0 S(t� r � s)X0G(xs+r) ds; t � r; (3.14)where X0 is de�ned by Eq. (2.8).Let N > 0 be the 
onstant given by Lemma 3.2, de�ne� � ! � !�4MN ;8



and let �(�) be the 
onstant 
orresponding to this � from Lemma 3.2. Finally, de�netwo more 
onstantsÆ3 � min�Æ2; ! � !�4MN ; ! � !�4MNL1(1 + L3)Æ2 ; �(�)� ;and Æ � Æ3 exp��L1(1 + L3)r� 1M e!�r:We 
omment, that 1M e!�r � 1 sin
e M � 1 and !� < 0, and hen
e Æ � Æ3 � Æ2.Let j'jC < Æ. Then by Eq. (3.3) and Æ � Æ2 it follows that '(0) 2 
1 and�(') 2 
2, and therefore Theorem 2.1 implies that there exists a solution if IVP(2.1)-(2.2) x(t) 
orresponding to ' on an interval [0; �℄. Sin
e, by Eq. (3.3) andTheorem 2.1, the solution is 
ontinuable till xt 2 GC(Æ2), and sin
e Lemma 3.1 andthe de�nition of Æ imply the relation jxrjC < Æ3 � Æ2, it follows that there existsr < t1 � � su
h that jxtjC < Æ3 on t 2 [0; t1). Suppose that there exists t2 su
h thatr < t2 � � and the solution satis�esjxtjC < Æ3 for t 2 [0; t2); and jxt2 jC = Æ3: (3.15)For t 2 [r; t2) and j'jC � Æ, estimate Eq. (3.1), Eq. (3.2), Eq. (3.15), Æ3 � Æ2 and thede�nition of Æ3 imply that j _x(t)j = jf(x(t);�(xt))j� L1(jx(t)j+ j�(xt)j)� L1(1 + L3)jxtj� L1(1 + L3)Æ3� ! � !�4MN : (3.16)Then Eq. (3.16) yields that supt�r�s�t j _x(s)j � ! � !�4MN ;and hen
e, by using Eq. (3.15), we also havejxtjW 1;1 � ! � !�4MN ; for t 2 [r; t2); j'jC � Æ: (3.17)Sin
e for t 2 [r; t2), j'jC < Æ3 and 0 � s � t relation Eq. (3.15) yields thatjxs+rjC � Æ3 � �(�), then Lemma 3.2, Eq. (3.13), Eq. (3.14), Eq. (3.17) and therelation jX0zjC = jzj (for z 2 Rn) imply thatjxtjC � kS(t� r)kjxrjC + Z t�r0 kS(t� r � s)kjG(xs+r)j ds9



� Me!�(t�r)jxrjC + Z t�r0 MNe!�(t�r�s)�� + jxs+rjW 1;1�jxs+rjC ds� Me!�(t�r)jxrjC + Z tr MNe!�(t�s)�� + ! � !�4MN �jxsjC ds:Multiplying both sides by e�!�t and 
hanging a variable in the integral we getjxtjCe�!�t � Me�!�rjxrjC + Z tr MNe�!�s�� + ! � !�4MN �jxsjC ds:Applying Gronwall-Bellman inequality for the fun
tion jxtjCe�!�t we getjxtjCe�!�t �Me�!�rjxrjC exp�MN �� + ! � !�4MN � t�; r � t � t2;or equivalently, for r � t � t2jxtjC �Me�!�rjxrjC exp��MN �� + ! � !�4MN � + !�� t�:From the de�nition of � it follows thatjxtjC � Me�!�rjxrjC exp��! � !�2 + !�� t�< Me�!�rjxrjCe!t; r � t � t2: (3.18)Then this estimate, Lemma 3.1 and the de�nition of Æ imply for j'jC < Æ thatjxtjC < Me�!�rj'jCeL1(1+L3)re!t< Æ3; r � t � t2;whi
h 
ontradi
ts to the de�nition of t2. Therefore jxtj < Æ3 for r � t � �, but thisimplies that � = 1, and Eq. (3.18) holds for all t � r, therefore, by Eq. (3.15) andEq. (3.18), the statement of the theorem is proved with K �Me!�rÆ3.Remark 3.4 We note, that if !0 > 0, i.e., the trivial solution of the linear equationis unstable, then so is the trivial solution of the nonlinear equation. Sin
e instabilityresults are of less interest in appli
ations, and the detailed proof is rather lengthy,te
hni
al, and also similar to the state-independent 
ase, we omit it. (See Se
tion 10.1in [6℄ for the state-independent 
ase.)
10



4. Appli
ationsIn this se
tion we show examples, when by the linearization te
hnique of theprevious se
tion, we 
an �nd 
onditions implying asymptoti
 stability of a nonlineardelay equation. The appli
ability of this linearization method depends on whetherwe are able to 
he
k the asymptoti
 stability of the linearized equation, whi
h is adiÆ
ult problem in general, but in the examples we present in this se
tion we 
anrefer to existing 
onditions from the literature.Example 4.1 Consider the s
alar 
onstant delay equation_x(t) = �ax(t� 1)(1 + x(t)); t � 0; (a > 0): (4.1)This equation arises as we transform the delayed logisti
 equation_x(t) = �x(t)(1� x(t� �)=K)by the new variable y(t) = �1+ x(t)=K, and 
hange the time s
ale. (See e.g. [9℄.) Itis known (e.g. [9℄), that the trivial solution of Eq. (4.1) is asymptoti
ally stable fora < �=2, and unstable for a > �=2. We 
an obtain this result by using Theorem 3.3.Equation Eq. (4.1) has the form Eq. (2.1) with r = 1, f(x; y) = �ay(1 + x) and�( ; �) = �(�1). Sin
e �f�x(0; 0) = 0, �f�y (0; 0) = �a, the linearized equation Eq. (3.8)for this equation is _x(t) = �ax(t� 1); t � 0: (4.2)Sin
e the trivial solution of Eq. (4.2) is asymptoti
ally stable for a < �=2, and unsta-ble for a > �=2 (see e.g. [6℄), the same result holds for the trivial solution of Eq. (4.1)by Theorem 3.3 and Remark 3.4.Example 4.2 Consider the s
alar delay equation_x(t) = x(t)�a+ bx(t � �)� 
x2(t� �)�; t � 0;where a > 0 and 
 > 0. This is a delayed Lotka-Volterra type population modelintrodu
ed by Gopalsamy and Ladas (see e.g. in [9℄). The equation has a uniquepositive equilibrium point, �x = (b + pb2 + 4a
)=(2
). By the new variable y(t) =x(t)� �x we 
an transform the equilibrium point to zero, and get the equation_y(t) = �(y(t) + �x)�(2
�x� b)y(t� �) + 
y2(t� �)�; t � 0: (4.3)We 
an rewrite Eq. (4.3) in the form Eq. (2.1) with f(u; v) = �(u+ �x)�(2
�x� b)v +
v2� and �( ; �) = �(��). Sin
e �f�u(0; 0) = 0 and �f�v (0; 0) = ��x(2
�x � b), thelinearized form of Eq. (4.3) is_x(t) = ��x(2
�x� b)x(t� �); t � 0;11



whi
h is asymptoti
ally stable if 0 < �x(2
�x� b)� < �=2, or equivalently,bpb2 + 4a
+ b2 + 4a
2
 � < �2 ;and therefore under this assumption the trivial solution of Eq. (4.3) is asymptoti
allystable as well.Example 4.3 Consider the s
alar delay equation with state-dependent delay_x(t) = x(t)�a� bx(t)� mXi=1 bix(t� �i)� 
x(t� �(xt))�; t � 0;where a > 0; and b > mXi=1 jbij+ j
j: (4.4)This population model with state-dependent delay term was studied in [1℄, where itwas shown that Eq. (4.4) yields that the unique positive equilibrium, �x = a=(b +Pmi=1 bi + 
), of the equation is globally asymptoti
ally stable (for initial fun
tions'(s) > M with someM > 0). We 
an show this result (for lo
al asymptoti
 stability)by using linearization te
hnique. By the new variable y(t) = x(t) � �x we transformthe equilibrium point to the origin, and the 
orresponding equation is_y(t) = �(y(t) + �x)�by(t) + mXi=1 biy(t� �i) + 
y(t� �(yt + �x))�; (4.5)whi
h has the form Eq. (2.1) with f(u; v) = �(u+�x)(bu+v), �( ; �) =Pmi=1 bi�(��i)+
�(��( + �x)). (Here and later, �x in the argument of � denotes a 
onstant fun
-tion with value equal to �x.) We have that �f�u(0; 0) = �b�x, �f�v (0; 0) = ��x, and�(0; �) =Pmi=1 bi�(��i)+ 
�(��(�x)). Therefore the linearized equation of Eq. (4.5) is_x(t) = �b�xx(t)� �x mXi=1 bix(t� �i) + 
x(t� �(�x))! : (4.6)By a result from [6℄ (page 154) it follows that Eq. (4.4) yields the asymptoti
 sta-bility of the trivial solution of Eq. (4.6), for arbitrary delay fun
tion �(�), whi
h, byTheorem 3.3, implies that the trivial solution of Eq. (4.5) is asymptoti
ally stable aswell.Example 4.4 Consider the s
alar 
onstant delay equation_x(t) = 
x(t) 1� mXi=1 aix(t� �i)1 + 
ix(t� �i)! : (4.7)12



This is the so-
alled Mi
haelis-Menton single spe
ies growth equation (see e.g. in [9℄).We assume that
 > 0; ai > 0; 
i > 0; �i > 0; and mXi=1 ai1 + 
i = 1:The last assumption yields that �x = 1 is a positive equilibrium point of Eq. (4.7).It was shown in [9℄ that 
r � 1 implies the global asymptoti
 stability of �x, wherer = maxi=1;:::;m �i.By letting y(t) = x(t)� 1, we get_y(t) = �
(y(t) + 1) mXi=1 aiy(t� �i)(1 + 
i)(1 + 
i + 
iy(t� �i)) : (4.8)We 
an rewrite Eq. (4.8) in the form of Eq. (2.1), by sele
ting f(u; v) = �
(u+ 1)v,and �( ; �) = mXi=1 ai(1 + 
i)(1 + 
i + 
i (��i))�(��i):We have that �f�u(0; 0) = 0 and �f�y (0; 0) = �
, therefore the 
orresponding linearizedequation is _x(t) = �
 mXi=1 ai(1 + 
i)2x(t� �i): (4.9)By a 
ondition from e.g. [5℄ or [8℄, it follows that the trivial solution of Eq. (4.8) isasymptoti
ally stable if 
 mXi=1 ai(1 + 
i)2 �i < 1:It follows from the assumptions Pmi=1 ai1+
i = 1, 
i > 0 and r = maxi=1;:::;m �i that
 mXi=1 ai(1 + 
i)2 �i < 
r mXi=1 ai1 + 
i = 
r;therefore the 
ondition 
r � 1 implies that trivial solution of Eq. (4.9), and hen
ethat of Eq. (4.8) is asymptoti
ally stable.Note, that the delayed term of Eq. (4.8) 
an not be written in the form given bythe Stieltjes-integral in Eq. (1.1), and hen
e this equation is not in
luded in Eq. (1.1)(without multiple delay terms).Example 4.5 In [9℄ the s
alar equation_x(t) = f �Z ���r x(t + s) d�(s)�� g(x(t))has been studied, where r > � > 0, and 13



(i) �(s) is nonde
reasing and �(��)� �(�r) = 1,(ii) f(x) is stri
tly de
reasing, f(0) > 0, limx!1 f(x) = 0,(iii) g(x) is stri
tly in
reasing, g(0) = 0, limx!1 g(x) =1,and a 
ondition was derived for the global asymptoti
 stability of the unique positiveequilibrium.We study the lo
al asymptoti
 stability of the state-dependent version of thisequation, i.e., 
onsider_x(t) = f �Z ���r x(t + s) d�(s; xt)�� g(x(t)); (4.10)where we assume r > � > 0, (ii), (iii) above and modify (i) as(i') for all  2 C, the fun
tion �(�;  ) is nonde
reasing and �(��;  )��(�r;  ) = 1.Under this assumptions, Eq. (4.10) has a unique positive equilibrium point, �x, sin
ethe fun
tionf �Z ���r �x d�(s; �x)�� g(�x) = f��x(�(��; �x)� �(�r; �x))�� g(�x)= f(�x)� g(�x)has a unique positive zero. (Here and later, �x in the se
ond argument of � denotesa 
onstant fun
tion with value �x.) Using y(t) = x(t)� �x and an argument similar tothe one above, we get_y(t) = f �Z ���r y(t+ s) d�(s; yt + �x) + �x�� g�y(t) + �x�: (4.11)We 
an rewrite Eq. (4.11) in the form Eq. (2.1) with F (u; v) = f(v+�x)�g(u+�x), and�( ; �) = R ���r �(s) d�(s;  +�x). We have that �F�u (0; 0) = �g0(�x) and �F�v (0; 0) = f 0(�x).Therefore the linearized version of Eq. (4.11) is_x(t) = �g0(�x)x(t) + f 0(�x) Z ���r x(t + s) d�(s; �x): (4.12)Note that g0(�x) > 0 and f 0(�x) < 0 by the assumptions. Theorem 1.1 of [8℄ yields thatthe trivial solution of Eq. (4.12) is asymptoti
ally stable if�f 0(�x) Z ���r s d�(s; �x) < 32 ;and therefore by our theorem, if this 
ondition is satis�ed, then the trivial solutionof Eq. (4.11) is asymptoti
ally stable as well.14
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onvenien
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(A1) f : [0; T ℄�
1 �
2 ! Rn is 
ontinuous, where 
1 and 
2 are open subsets ofRn ,(A2) �(�; t;  ) is a matrix valued fun
tion of bounded variation for every t 2 [0; T ℄, 2 
3, where 
3 � C open, su
h that(i) sup�����Z 0�r ds�(s; t;  )�(s)���� : t 2 [0; T ℄;  2 
3; � 2 C; j�jC � 1� <1;(ii) for ea
h � 2 C the fun
tion [0; T ℄� 
3 ! Rn , (t;  ) 7! R 0�r ds�(s; t;  )�(s)is 
ontinuous,(A3) ' 2 C,(A4) for every � > 0, M > 0 there exists a 
onstant L1 = L1(�;M) su
h that for allt 2 [0; �℄, x; �x 2 
1, y; �y 2 
2, jxj, j�xj, jyj, j�yj �Mjf(t; x; y)� f(t; �x; �y)j � L1�jx� �xj+ jy � �yj�;(A5) for every � > 0 and M > 0 there exists a 
onstant L2 = L2(�;M) su
h that forall � 2 W 1;1, t 2 [0; �℄ and  ; � 2 
3, j jC, j � jC �Mj�(t;  ; �)� �(t; � ; �)j � L2j�jW 1;1j � � jC ;(A6) ' 2 W 1;1, i.e., ' is Lips
hitz-
ontinuous.Introdu
e the Bana
h spa
e BC([0; T ℄ � 
1 � 
2;Rn) as the spa
e of bounded
ontinuous fun
tions f : [0; T ℄�
1�
2 ! Rn with norm kfk � supfjf(t; x; y)j : t 2[0; T ℄; x 2 
1; y 2 
2g. Introdu
e �C(T;
3) as the Bana
h spa
e of fun
tions � :[0; T ℄�
3 ! NBV([�r; 0℄;Rn) whi
h satisfy (A2) (i) and (ii), where �(�; t;  ) is the im-age fun
tion 
orresponding to t 2 [0; T ℄ and  2 C. The norm in �C(T;
3) is de�nedby k�k � supn���R 0�r ds�(s; t;  )�(s)��� <1 : t 2 [0; T ℄;  2 
3; � 2 C; j�jC � 1o.De�ne two versions of parameter spa
es �0(T;
1;
2;
3) � C � �C(T;
3) �BC�[0; T ℄�
1�
2; Rn� and �1(T;
1;
2;
3) � W 1;1��C(T;
3)�BC�[0; T ℄�
1 � 
2; Rn� with norms k
k�0 � j'jC + k�k + kfk and k
k�1 � j'jW 1;1 + k�k +kfk, respe
tively, and two versions of sets of feasible parameters �0(T;
1;
2;
3) �n('; �; f) 2 �0(T;
1;
2;
3) : '(0) 2 
1; ' 2 
3; and R 0�r ds�(s; 0; ')'(s) 2 
2o,and �1(T;
1;
2;
3) � �0(T;
1;
2;
3) \ �1(T;
1;
2;
3), respe
tively.We have the following results on the lo
al existen
e of solutions of IVP (6.1)-(6.2).Theorem 6.1 Assume (A1){(A3). Given �
 � ( �'; ��; �f) 2 �0(T;
1;
2;
3) thenthere exist positive 
onstants � = �(�
) and Æ = Æ(�
) su
h that if 
 � ('; �; f) 2�0(T;
1;
2;
3) and k
 � �
k�0 < Æ then 
 2 �0(T;
1;
2;
3), and IVP (6.1)-(6.2)
orresponding to 
 has a solution, x(t; 
), on [�r; �℄.16



The next theorem shows that (A1){(A6) guarantee the existen
e of unique solutionof IVP (6.1)-(6.2).Theorem 6.2 Let 
 2 �0(T;
1;
2;
3) and assume that (A1){(A6) are satis�ed.Then there exists � > 0 su
h that IVP (6.1)-(6.2) has a unique solution on [0; �℄.The following examples show that if we violate assumptions (A4), (A5) and (A6),then we may also loose uniqueness of the solution.Example 6.3 Consider the s
alar IVP_x(t) = 4px(t� �(t)); t � 0; (6.3)x(t) = 0; �1 � t � 0; (6.4)where �(t) � minft=2; 1g. It is easy to see that IVP (6.3)-(6.4) has two solutions on[0; 2℄: x1(t) = 0 and x2(t) = t2.Example 6.4 Consider the s
alar IVP with state-dependent delay_x(t) = x�t� �(x(t))�; t � 0; (6.5)x(t) = �2t; �2 � t � 0; (6.6)where �(x) � 2minnpjxj; 1o. It is easy to 
he
k that this IVP has two solutions:x1(t) = 0, t � 0 and x2(t) = t2 for t 2 [0; 1℄. We 
an rewrite IVP (6.5)-(6.6) in theform _x(t) = Z 0�2 ds�(s; xt)x(t+ s); t � 0; (6.7)x(t) = �2t; �2 � t � 0; (6.8)by de�ning �(s;  ) � �[��( (0));0℄(s); s 2 [�2; 0℄:We have that if j (0)j � 1 then�( ; �) = Z 0�r ds�(s;  )�(s) = �(��( (0))) = � ��2pj (0)j� ;whi
h does not satisfy (A5). (It is enough to 
onsider �(s) = s, and 
onstant fun
tionsfor  .)Example 6.5 Consider the s
alar IVP with state-dependent delay_x(t) = x�t� �(x(t))�; t � 0x(t) = 8<: 1; �2 � t � �11� 2p1 + t; �1 � t � �3443t + 1; �34 � t � 0;17



where �(x) = minfjxj; 2g. The initial fun
tion is not Lips
hitz-
ontinuous (hen
e(A6) is not satis�ed), therefore the uniqueness is not guaranteed by Theorem 6.2.In fa
t, the IVP has two solutions: t + 1 is solution for t 2 [0; 1℄ and the analyti
expression on [0; 0:5℄ for the other solution is t+ 1� t2.It is easy to see that the solution of IVP (6.1)-(6.2) is a W 1;1 fun
tion assuming(A1){(A6). The next theorem shows that in the norm of �1, the solution of IVP(6.1)-(6.2) is Lips
hitz-
ontinuous with respe
t to the parameters.Theorem 6.6 Assume that �
 = ( �'; ��; �f) 2 �1(T;
1;
2;
3) satis�es (A1){(A6).Then there exist 
onstants � > 0, Æ > 0 and L3 = L3(�; �
; Æ), su
h that IVP (6.1)-(6.2) has a unique solution on [0; �℄ for all 
 2 G�1(T;
1;
2;
3)(�
; Æ), andjx(�; 
)t � x(�; �
)tjW 1;1 � L3k
 � �
k�1; t 2 [0; �℄:For the proofs and more details we refer the interested reader to [7℄.
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