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Abstract

In this paper we consider a class of nonlinear neutral differential equations with
state-dependent delays in both the neutral and the retarded terms. We study well-
posedness and continuous dependence issues and differentiability of the parameter map
with respect to the initial function and other possibly infinite dimensional parameters
in a pointwise sense and also in the C-norm.
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1 Introduction

In this paper we consider state-dependent neutral functional differential equations (SD-
NFDESs) of the form

%(w) = gtz = p(t i, 0) N ) = f(fana(t —7(t2,6),0) e 0,T], (1)

with initial condition

z(t) =p(t),  te[-r0] (1.2)
Here 0 € ©, £ € Z, A € A and y € X represent parameters in the functions f, 7, ¢
and p, where ©, =, A and X are normed linear spaces with norms | - |g, | - |z, | - |» and
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| - |x, respectively. The segment function z; is defined by x;(s) = z(t + s), s € [—1,0]. See
Section 3 below for the detailed assumptions on the initial value problem (IVP) (1.1)-(1.2).
By a solution of the IVP (1.1)-(1.2) we mean a continuous function defined on an interval
[—r, al, such that (i) t — x(t) — g(t, z¢, x(t — p(t, x4, X)), A) is differentiable for ¢ € [0, o, (at
the ends of the interval one sided derivatives exist); (ii) x satisfies (1.1) for ¢t € [0, a], and
(iii) = satisfies the initial condition (1.2).

The study of state-dependent delay differential equations (SD-DDEs), i.e., the case when
g = 01in (1.1) is an active research area (see [22] and its references). Much less work is
devoted to SD-NFDEs, see, e.g., [1]-]6], [9], [10], [12], [18], [21], [24], [26], [36]-[38] and their
references. Most of the above papers deal with SD-NFDEs of the form

2 (t) = h(t, (), 2(t — 7(t,2(t)), 2 (t — n(t, x(t)))). (1.3)

This equation is called in [29], [36], [37] as “explicit” SD-NFDE contrary to the “implicit”
SD-NFDE (1.1). Well-posedness of such “explicit” SD-NFDEs was investigated in [11], [25].
Equation (1.1) can be considered as a natural “generalization” of NFDEs of the form

d
EG(t,xt) = f(t,x), (1.4)

but (1.4) may also contain (1.1) depending on appropriate conditions on G and f, see
assumptions on f in [22] for SD-DDEs, and [36] and [37] for similar conditions on “explicit“
SD-NFDEs. Existence, uniqueness, stability and numerical approximation of special classes
of (1.1) was studied in [3], [18], [20], [29]. Similar classes of abstract implicit SD-NFDEs
were investigated in [5], [7], [30], [33].

Differentiability of solutions with respect to (wrt) parameters is an important qualitative
question, but it also has natural application in the problem of identification of parameters
[17]. But even for simple constant delay equations this problem leads to technical difficulties
if the parameter is the delay [14], [28]. A similar difficulty arises in SD-DDEs. In the
case when the initial function ¢ is continuously differentiable and satisfies the compatibility
condition $(0—) = f(0,¢, o(—7(0,p,&)),0), the corresponding solution z(t,p,&, ) of the
IVP (1.1)-(1.2) with g = 0 is differentiable wrt ¢, £, 6 for a fixed ¢ [16]. Related is the work
of Walther [34], [35], where the well-posedness of autonomous SD-DDEs is obtained using
the space of continuously differentiable functions and restricting the parameters to those
which generate continuously differentiable solutions. Walther also obtained differentiability
of the solution with respect to the initial function in this space. Differentiability of solutions
of SD-DDEs wrt parameters assuming the monotonicity of the time lag function along the
solution instead of the above compatibility condition was investigated in [23], where the
differentiability wrt the parameters was obtained in the W'P-norm. Recently, this result
was improved in [19], where differentiability wrt parameters was proved for SD-DDEs for
fixed ¢, and also using the C-norm.

In a recent paper [37] Walter studied continuous semiflows generated by “explicit” SD-
NFDEs in the space of continuously differentiable functions, and differentiability and conti-
nuity of derivatives with respect to initial data. Differentiability wrt parameters of “implicit “



SD-NFDEs was proved in [18] for the case when the delay p in (1.1) is only time-dependent,
and there are no parameters in the neutral term. The proof was based on the assumption
that the parameters satisfy a compatibility condition similarly to the SD-DDE case above
[16], [34], [35]. In this paper we extend this result for (1.1), where state-dependent delay and
parameters are included in the neutral term, as well. In Theorem 3.2 below we discuss the
well-posedness of the IVP (1.1)-(1.2), and in Theorem 4.4 and Corollary 4.5 below we show
the differentiability of solutions of the IVP (1.1)-(1.2) wrt the parameters (¢, &, 0, )\, x) in a
pointwise sense and also using the C-norm.

The organization of the paper is the following. In Section 2 we introduce some notations,
and formulate some basic results will be used in the rest of the paper. In Section 3 we list our
assumptions, and discuss well-posedness of the IVP (1.1)-(1.2), and then in Section 4, using
and improving the method of [18], we study differentiability of solutions wrt parameters.

Note that for simplicity we present our results for the single state-dependent delay case,
but all our results can be easily extended to the case when both g and f contain multiple
state-dependent delays.

2 Notations and preliminaries

Throughout this paper a fixed norm on R™ and the corresponding matrix norm on R"*" are
both denoted by |- |. In a normed linear space (X, |- |x) the open ball around a point zg
with radius R is denoted by Bx(x¢; R), i.e., Bx(zo; R) :={x € X : |z —zo|x < R}, and the
corresponding closed ball by Bx (zo; R).

The space of continuous functions from [—r, 0] to R™ is denoted by C, where the norm
is the usual supremum norm [¢|¢c = max{|¢(()|: ¢ € [-r,0]}. The L>*-norm of an es-
sentially bounded Lebesgue measurable function ¢ : [—r,0] — R™ is defined by |[¢|p~ =
esssupq{|¥(¢)] : ¢ € [-r,0]}. The space of absolutely continuous functions from [—r, 0] to
R™ with essentially bounded derivatives is denoted by W', The corresponding norm on
W is |¢)] 10 := max{|¥|c, [¢)|1~}. We note that ¢» € W, if and only if 1) is Lipschitz
continuous. The space of bounded linear operators between normed linear spaces X and Y
is denoted by £(X,Y), and the norm on it is | - [z(x,v).

The derivative of a single variable function v(t) wrt ¢ is denoted by ©. Note that all
derivatives we use in this paper are Fréchet derivatives. Suppose the function F'(z1,...,z,,)
takes values in R™. The partial derivatives of F' wrt its first, second, etc. arguments are
denoted by D1 F, DyF'; etc. In the case when the argument x; of F is real, then we simply
write D1 F(z1, ..., x,,) instead of the more precise notation D1 F(z1,...,xy)1, i.e., here D1 F
denotes the vector in R™ instead of the linear operator £(IR,R™). In the case when, let say,
9 € R™, then we identify the linear operator DoF(xy,...,x,) € L(R",R™) by an n X n
matrix.

The next lemma formalizes a method used frequently in functional inequalities (see, e.g.,
in [13]) and which will be used in the sequel, as well.



Lemma 2.1 ([18]) Suppose h : [0,a] x [0,00)> — [0,00) is monotone increasing in all
variables, i.e., if 0 < t; < s; fori = 1,2,3,4, then h(ty,ts,t3,ts) < h(s1,S2,53,84); 0 :
0, ] — [0,7] is such that a < n(t) fort € [0,a] for some a > 0; u: [—r,a] — [0,00) is such
that
u(t) < h(t,u(t),ut —n(t), lwlc),  te€l0,al,
and
|uolc < (0, u(0), u(=1(0)), [uolc)-
Then
U(t) < h(tvv(t)7v(t - a)vv(t))7 te [0,0é],

where v(t) := sup{u(s): s € [—r,t]}.
Finally, we recall the following two results which will be used later.

Lemma 2.2 ([13]) Leta > 0, b > 0, 1 > 0, 75 > 0, r = max{ry,r2}, and v: [0,a] —
[0,00) be continuous and non-decreasing. Let w: [—r,a] — [0,00) be continuous and satisfy
the inequality

u(t) < o(t) +bu(t — ) + a/tu(s — 1) ds, t €10, ql.

Then u(t) < d(t)e® fort € [0, a], where c is the unique positive solution of cbe " +ae™ "2 =
c, and
v(t)

d(t) := max {m, max e u(s)} : t €10, qal.
Lemma 2.3 Suppose 1 € W1, Then

W (b) — b(a)| < [¢]~|b— al

for every [a,b] C [—r,0].

3 Well-posedness and continuous dependence on pa-
rameters

Consider the SD-NFDE
d
2 (20) = gtz wlt = plt, 20000 ) = (L alt = 7(t,2,9),0) e [0,7], (3.1)

and the initial condition
x(t) = o(t),  tel[-r0l (3.2)



Next we list our assumptions on the SD-NFDE (3.1) we will use throughout this paper.
Let ©, =, A and X be normed linear spaces with norms |-|e, ||z, || and |- |x, respectively,
and let Q; C C, QO CR", Q3 C O, Qy C =, Q5 CR™, Qg C A and Q7 C X be open subsets
of the respective spaces. Let 0 < ry < r be fixed constants, and T" > 0 be finite or T' = oo,
in which case [0, 7] denotes the interval [0, 00). We assume:

(A1) (i) f: RxCxR*"x O D[0,T] x 2y x Qs x Q3 — R™ is continuous;

(i) f(t,%,u,@) is locally Lipschitz continuous in ¢, u and € in the following sense:
for every finite « € (0,71, for every closed subset M; C € of C' which is also a
bounded subset of W1 compact subset My C €y of R™, and closed and bounded
subset M3 C Q3 of O there exists a constant L; = Lyi(a, My, My, M3) such that

£t 0,0,0) = £(8,96,,0)| < Ly (¢ = lo + |u— 1] +10 = o ),
for t € [0,a], ¥,v € My, u,u € My and 6,0 € Ms;
(iii) f is differentiable wrt its second, third and fourth variables, and the functions

Rx CxR"xO D [0,T] x Q1 x QU x Qg — L(C,R™), (£, 4, u,0) — Daof(t, v, u,8),
RxCxR"x0OD [O,T] X g X g X QgﬁRnxn, (t,Qﬁ,U,,Q) HDgf(t,@Z),U,@)

and
RxCxR"xO D[0,T]xQ; xQyxQ3 — LO,R™), (t,9,u,0) — Dyf(t,,u,0),
are continuous;
(A2) (i) : RxCxZD[0,7T] x Q1 x Q4 — R is continuous, and
0<7(t, &) <, for t € [0,T], ¥ € Qp and £ € Qg;

(i) 7(t,,€) is locally Lipschitz continuous in ¢ and ¢ in the following sense: for
every finite o € (0,7, closed subset M; C €; of C' which is also a bounded
subset of W1* and closed and bounded subset M, C €4 of = there exists a
constant Ly = Lo(a, My, M) such that

Ir(t,%,€) = (¢, %, < La(lv = Plo + I — &l=)
for t € [0,a], ¥,% € M, and &,& € My;
(iii) 7 is differentiable wrt its second and third variables, and the maps
RxCxZED[0,T] x % xQ — LC,R), (t,9,&) — Dar(t,,§)
and
RxCxZ=D[0,T] xQ xQ — L(E,R), (t,0,§) — Ds7(t,,§)

are continuous;



(A3) (1) 9: RxCxR*xADI0,T] x 2y x Q5 x Qg — R" is continuous;

(ii) g is locally Lipschitz continuous in the following sense: for every a € (0,71,
closed subset M; C ©; of C which is also a bounded subset of W1 compact
subset M5 C €5 of R™ and closed and bounded subset Mg C €26 of A there exists
L3 = Lg(Oé, Ml, M5, MG) such that

lg(t, v, u, ) — g(t, 0, a, \))|
< Ly(le=T+ max [9(¢) = B(Q)] + fu—al + A = A,

Ce[—r,—10]

for t,t € [0,al], ¥, € My, u,u € Ms, A\, \ € Mg;

(iii) g is differentiable wrt its second, third and fourth arguments, and the maps
RxCxR"xADI[0,T] x4 xQ5x Qs — LIC,R™), (t,9,u,\) — Dag(t,,u, \),
RxCXR"xAD[0,T] x Q1 x Q5 xQg— R (t,9,u,\) — Dszg(t,,u, \)

and
RxCXxR"xAD[0,T]xQ xQ5x Qs — LIAR"), (t,9,u,\) — Dyg(t, 1, u, \)

are continuous;

(iv) Dag, Dsg and D,g are locally Lipschitz continuous wrt its first three variables
in the following sense: for every a € (0,71, closed subset M; C € of C' which
is also a bounded subset of W compact subset Ms C 5 of R™ and closed
and bounded subset Mg C g of A there exist Ly = Ly(a, My, M5, Mg) and
L5 = L5(Oé, Ml, M5, MG) such that

|D2.g(t7 ¢7 u, /\)h - DQQ(& 257 ﬂ? /\)h|
< La(jt =11+ max [0(Q) = H(Q)] +|u—al) max [h(¢)

Ce[—r,—10] CE€[—r,—10]
+Lomax{[1(0) — b ¢,C € [=r.—ral, 1= &I < Lol —11},
|D39(t, ¢7 u, /\) - D3g(£7 77;7 ﬂ, /\)|
< La(jt—tl+ max Q) —9(O)]+ u—al).

|D4g(t7 2/}7 u, /\) - D4g(£7 1/77 a? /\)|E(A,R”)

< La(jt—tl+ max Q) = 9(O)]+ u—al).

Y

for t,t € [0,al], ¥, € My, u,u € Ms, \ € Mg, h € C;
(Ad) (i) p: RxC x X D[0,T] x  x Q7 — R is continuous, and

0<ro<p(t,,x) <r, te0,T], ve, xer



(ii) pislocally Lipschitz continuous in the following sense: for every a € (0,77, closed
subset M; C §; of C which is also a bounded subset of W*  and bounded and
closed subset M; C Q7 of X there exists Lg = Lg(a, M7, M) such that

Ip(t.9,%) = p(E 0. 0| < L ([t =+ _max  |0(C) = (O] + [x = Xx)

C€[=r,=ro]
for t,t € [0,a], ¥, € My, and x, \ € My;
(iii) p is differentiable wrt its second and third arguments, and the maps
RxCxXDI0,T] xQ x Q7 — L(C,R), (¢, x)+— Dap(t, 1, x)
and

RxCxXDI[0,T] x5 xQy — LX,R), (t,¢,x)— Dsp(t, v, x)

are continuous;

(iv) Dyp and Dsp are locally Lipschitz continuous wrt its first and second variables
in the following sense: for every a € (0,77, closed subset M; C €y of C' which
is also a bounded subset of W1 and bounded and closed subset M; C Q; of X
there exist Ly = Ly(a, My, M7) and Lg = Lg(«, My, M7) such that

|D2p(tv ¢» X)h - DQP(& 227 X)h|
< Lol =0 guas WO —FO]) e 1(0)
+Lymax{[h(C) = h(Q)l: . & [r =], ¢ = < Ll — 1),

and

Dot X) — Daplf. 6. Vlecxry < Le(jt = Fl 4+ max [(Q) —0(¢)])

C€[—r,—ro]

for t,£ € [0,a], ¥,v € My, x € M7, h € C.

It is easy to see that (A3) (i) and (A4) (ii) yield that g(¢,%,u, A) and p(t,, x) depend
only on the restriction of ¢ to the interval [—r, —7], since if ¥(¢) = ¥(¢) for ¢ € [—r, 7],
then g(t, 1, u, \) = g(t,v¥,u, \) and p(t,v, x) = p(t,, x). It also follows from (A3) (ii), (iii)
and (A4) (ii), (iii) that

| Dag(t, v, u, \)h| < [Dag(t, ¥, u, A)|cicrr) [ max |h(C)]

[—7,—70]

and
IDapt, 0] < 1Daplt, ey max [A(C)

[—r,—10]

hold for t € [0,T], ¥ € U, u € Q5, A € Qg, x € Q7 and h € C.

7



It follows from the assumptions on M; in (A1) (ii), (A2) (ii), (A3) (ii), (iv) and (A4)
(ii), (iv) that it has no interior in C'. Note that assumptions (A1) and (A2) are practically
identical to those used in [23] for SD-DDEs, i.e., for the case when g = 0. (See also [§]
or [23] for well-posedness of SD-DDEs.) The key assumptions in this paper are that p is
bounded below by 79 > 0 (see (A4) (i)), and g¢(t,v,u,\) and p(t,7, x) depend only on
the restriction of ¢ to the interval [—r, —rg]. Similar assumption is used for SD-NFDEs in
[18], see condition (gl) in [36], [37], and for PDEs with state-dependent delays in [32]. The
particular form of the Lipschitz continuity assumed in (A3) (ii), (iv) and (A4) (ii), (iv) is
motivated by the specific form (3.3) and (3.4) of the functions g and p, respectively (see
Lemma 3.1 below). We comment that the Arzela-Ascoli theorem yields that closed subsets
of C which are bounded subsets of W1 are compact in C'.

Assumptions (A3) and (A4) are naturally satisfied, e.g., in the case when A = X =
Wb ([0, T],R), and g and p have the form

-7

o(t.0.00) =g (L0 (1), o), [ AGQUO D) (3

-T

and
—ro

plt 0.0 = (B0 () 0 O), [ BEOUO D), @)

where t € [0,T], v € C,u € R", A € A, x € X and 0 < r9 < r. The next lemma shows
that assumption (A4) is satisfied under natural assumptions on p. Clearly, (A3) can be also
satisfied under similar assumptions on g.

Lemma 3.1 Assume X = WH([0,T],R), and p has the form (3.4), where

(i) p: [0,T] x R*UAHD x R — R is continuous, v',...,v*: [0,T] — R are continuous,
B: [0,T] x [=r,—ro] — R™" is continuous, and

0<rg<p(t,ug,...,upp1,v) <, te[0,T], wup,...,ups1 €R" veER,

and .
0<rg<vit)<r, i=1,....0, tel0,T];

(i1) p is twice continuously differentiable;

(iii) v, ..., vt [0,T] — R and B: [0,T] x [—r, —ro] — R™" are locally Lipschitz contin-
uwous wrt t, i.e., for every a € (0,T] there exist Ly = Lo(c) and L1y = Lig(a) such
that

() — v ()| < Lolt — 1, t,te0,a], i=1,...,¢,

and
|B(t,¢) — B(t,¢)| < Lo|t — ¢, t,t€0,a], ¢e€[-r —r.



Then p satisfies assumptions (A4) (i)-(iv).

Moreover, if in addition x,v',...,v* € C}([0,T],R) and B is continuously differentiable
wrt its first argument, then p(t,v,X) is differentiable wrt t for t € [0,T] and ¢ € C*, and
the map [0, T] x C* = R, (t,9) — Dip(t, 1, X) is continuous.

Proof (A4) (i) is clearly satisfied under the assumptions of the lemma with €, = C' and
Q7 = X. Suppose a € (0,T], M; is a closed subset of C' which is also a bounded subset of
Wt and M, C X is closed and bounded. Then there exists R; > 0 and Ry > 0 such that
M, C By1,~(0; Ry) and M; C Bx(0; Ry). We have

‘/ B, () d¢| < brasRir, L€ [0,a], ¥ € M,

where
bmaz = bmaz (@) == max{|B(t,()|: t € [0,a], ¢ € [-r,—1ro]}. (3.5)
Let
Ly = ‘7{Ha§+3max{|Diﬁ(t, Ur,. .1, v)| €[00, up, ..., u € Bra(0; Ry),

Upy1 € ERn (0, bmaleT), NS ER<O; Rg)}

Then Lemma 2.3 yields for t € [0,a], ¥,1 € My, and x, X € My

|p(t, 1, x) — p(t, 1, X)|
= |p(t v @), (=), /

i

-0

B(t, Q)v(C) dC, x(1))

—rQ

(D= O B 0), [ B0 e x(n)

'

b

¢ —ro
< Lu(1-r0) = S O)] + [ IBEOINE) - HOI + x(®) - X))

< Lua(C+ rhae) (_max [9() = $(Q)] + [ — T ).

CE [77‘777'0]

To show the Lipschitz continuity of p wrt ¢ consider for ¢,¢ € [0,a], ¥ € My, x € M;

(0, x) = p(E, 9, X))
< |p(t v o).

T

—7g

B(+,0)v(0) ¢, x(1))

~p(E 0 D), vl D), [ BEQUE) D)

b



y4 —-7r0
< Lu(jt=8+ 3w e) - w(-r @)+ [ B0 - BEOINO| &
+x(t) = x(@))

¢
< Lu(jt =1+ 3 [l () = D] + Luorlplolt = 2 + esssupl(s) ¢ ~ f).
i=1 s€[0,a
Therefore (A4) (ii) holds with Lg := max{ L1 (¢ + rbymaz), L11(1 + Ry Lo + Lior Ry + R2)}.
The differentiability of p yields for ¢t € [0,7],v € C, x € X, he€ Candn € X

Dyp(t, v, x)h
.

= 3 Diap (B v ) vl ) [ BE QWO A b= (D)

=T

—70

+Dap(t v 0. w00,

-

Bt Qw0 dex() [ Br.OMO &

and

—-7ro

DBP(t> ¢7 X)77 = DH—Sﬁ(t? ¢(—V1(t))a s »@D(—Ve(t))»/

-

B(t,Ov(€) d. (1) ) (@),

and clearly, Dop(t,7,x) € L(C,R) and Ds3p(t, v, x) € L(X,R) are continuous in ¢, ¢ and .
Similarly, if v € C', v* € C' (i = 1,...,{), B is continuously differentiable wrt ¢, and
x € CY([0,T],R), then for ¢ € [0, T]

Dip(t, 9, x) .
= Dip(t v )i @), [ B O ()

=T

—7rg

+Desap (B0 ) 0= @), [ BE QWO A

+Deap (10 (O), o O), [ BEOUO L)1)

-

Moreover, it is easy to see that the function [0,7] x C' — R, (t,%) +— Dip(t, ¢, x) is
continuous.
Let

Li; :=  max max{|DjDi[)(t, U, Uy, V)] € [0, al,
i =1, l+3

Uty ... up € Bra(0; R1),  ugs1 € Brn(0;bmae Rar), v € Br(0; Rz)}-

10



Then for ¢t € [0,a], ¥, € My, x,X € M7 and h € C we get
|D2p(t,77/1,X)h—Dgﬁ(t,’&,i)fﬂ

= ‘i Di+1ﬁ<ta Y(—v(t)),. .. ,w(—ye(t)), /

-Tr

—70

B(L, QY (Q) dC, x(1) ) A~ (1))

—-7r0

+Dap(t (= O). (= 0), [ BEOvOdx®) [ BrOMO

=T

= Dusap (8= O, ) [ BT X)) b (0)

—-ro

~Drsap(t (-2 @) B0, [

-

B0 6. x(0) [ B OO ]

¢ .
Lo (D5 W(=(0) = 9= (1) + / Bt OII(C) = O dC + (1) = x(1)])

IN

¢ o
(S Iren+ [ Bl )

< Ly(_max () —¥(Q)] + [x — x|x) max }!h(C)I

C€[=r,—ro] Ce[=r—ro

with L3 := Lio(€ + rbyaz)* B
Similarly, for ¢ € [0, ], ¥, € My, x,x € M7, n € X we have

’D?)p(ta 7% X)77 - D3p<t7 YL? )Z)n‘
—r0

= |Prap(t v ). = @), [ BEUO X )n(e)

~Desap(t. 50 O), . G0, [ B x(0)ate)

< Lu(X (v e) - @)+ [ IBEOINE) - 5] e

+x(®) = x(@)] ) Inlx
< Ly(_max [(Q) = Q) + Ix = Xlx)Inlx.

Ce[_Tv_TO]

For t,t € [0,a], ¥ € My, x € M; and h € C' we have

‘DQP(ta 1% X)h - D2p<f7 7% X)h|

S I (R ) /

~Drp(E 0~ D). v~ ), [




—70

et v O). v @), [ B OB a6 x0)

-

<[ B OO de

S| Dp(E v @) v D), [ BEOUE) D)
< (= (1) — b~ (D) )
#Decap(E 0 D)0/ B), [ BEOUE) A6 xD)]

-r

<[ B(t,¢) — BEOIIMC) ¢

IA

La(jt =1+ Y (- 0) o @)+ [ B0 - BEQIw(O]dC

4

+x(®) = x®1) (3 -ve)+ [

i=1 -

—70

B OlIR(Q)] )

V4 —70
(S (0) ~ b @) + [ B0 - BEOIIO] <)
i=1 -r
S (Lm(l + ERng + TLloRl + RQ)(E + Tbm(w) + TL11L10)|t — t_| Ce[ma)f | ’h(g)l

+Lulmax{|h(¢) — M(C)|: ¢.C € [=r, =70l [ —¢| < Lolt —1[}.
Finally,

[ Dap(t, 4, x)n — Dap(t, 4, x)n|
< [Drsap(tvr @), 0= @), [ BEOUO A D) ntt)
Draap(t 00 O), w2 @), [ BEORO D) (o)
#[Desap(F0 = O @), [ BEUQ dex®) nt) - )
< Lu(f-1+ Z o) — o= @)+ [ B0 - BEOINOIdg

() = x()])Inlx + Lulnlxlt — ),

SO (A4) (IV) holds with L7 = maX{Lé, L12(1 + gRng -+ TngRl -+ R2)<£ + Tbmax) + TL11L10 -+
L117 Lllg} and Lg = Lg. O
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We define the parameter space I' == WH™® x = x © x A x X, and use the notation
v o= (9,60,\%x) or v = (7%,7%,7%,7*,7X) for the components of v € T, and |y|p =
lolwie + |€]z + |0l + |Ala + |x|x for the norm on I'. We introduce the set of feasible
parameters

I = {(9075797)\>X)€F:906917 50<_T(07907§))€QZ> 96937 56947

90<_p(07907X)) S Q57 NS Qﬁ7 X € Q77 }

We will show in Theorem 3.2 below that II is an open subset of I'. Next define the special
parameter set

M = {(@,5,9,&){) eIl : g(t,v,u,\) and p(t, 1), x) are differentiable wrt ¢,
and the maps (¢,v,u) — Dig(t,v,u, A) and (¢,v) — Dyp(t, 9, x)
are continuous for t € [0,T], ¥ € Qy, u € Qy; peCh
£(0=) = D1g(0, ¢, o(=p(0, ¢, X)), A) + D2g(0, 0, (=p(0, ¢, X)), A)
+D39(0, ¢, o(=p(0, ¢, x)), M) (=p(0, ¢, X))
x(1 = D1p(0,9,x) = D2p(0, ¢, x)#) + f(0,90,0(=7(0, ¢,£)), 9)}-
Note that an analogous set was used for neutral FDEs in order to guarantee the existence
of a continuous semiflow on a subset of C'! in [27].

Next we show that under the assumptions listed in the beginning of this section the
IVP (3.1)-(3.2) has a unique solution which depends continuously on the parameter v =
(p,&,0, A, x) in the C-norm. The solution of the IVP (3.1)-(3.2) corresponding to a parameter
v and its segment function at ¢ are denoted by x(¢,v) and (-, ), respectively.

Theorem 3.2 Assume (A1) (i), (ii), (A2) (i), (i1), (A3) (i), (i1) and (A4) (i)-(ii), and let
~ € II. Then there exist § >0 and 0 < a < T finite numbers such that
(i1) the IVP (3.1)-(3.2) has a unique solution xz(t,7) on [—r,a] for all v € P;

(iii) there exist a closed subset My C C which is also a bounded and convex subset of Wh>,
My C Qy and Ms C Qs compact and convex subsets of R", such that x(t) = x(t,~)
satisfies

x; € M, x(t —7(t,2,€)) € My, and x(t — p(t,xs,x)) € M5 (3.6)
fort €[0,a] and v = (,£,0,A, x) € P;
(iv) z¢(-,7) € W fort € [0,a], v € P, and there exist N = N(«,d) and L = L(a, )

such that
|z:(+,7) lwres < N, te0,a], ye€P (3.7)

and
|l’t(',7) - mt('a7)|c < L|’7 - /7|F7 S [0,0j], v, € P. (38)

13



(v) Moreover, if (A3) (iii) and (A4) (iii) are also hold, then the function x(-,7): [—r,a] —
R™ is continuously differentiable for v € M N P.

Proof (i) Let 7 := (@, E, (/9\, 3\\, X) € II. Since Q4,...,$Q; are open subsets of their respective
spaces, there exists &, > 0 such that Bg(3;01) C €, B@(@ d1) C Qs Eg(é\; d1) C g,
Ba(X; 51) C Qg and Bx(X;61) C Q7. Introduce the vectors w; := @(—7(0,3,€)) and wy =
?(=p(0,3,X)). Let e; > 0 be such that Bgn(w;;e1) C Qo and Bgn(ws;e1) C Q5. The map

Rx(Cx=ZD [O,T] X Ql X Q4 - Rn; (tﬂ%f) = ¢(_7—(t7w7€))

is continuous, since

[W(=7(t,9,6)) — b(=T(t, ¥, )|
< (=7(t9,8)) = D(=7(t, 0, )] + [ (=7 (t, 9, €)) — Y(=7(F,9,8))|
< W —dle+ [0(=7(t,1,8) = O(=7(F ¥, )]
— 0, ast —t, v — 1, £ =€

Similarly, the map R x C' x Z D [0,7] x Q1 x Q7 — R™,  (¢,9,x) — ¥(—p(t, ¥, x)) is also
continuous, therefore there exist d, € (0,d;] and T} € (0,7 such that

|w(_7—(t7 w,f)) - wl’ <eéy, W(—P(tﬂ% X)) - U}2| <&
for t € [0, T1], ¥ € Bo(@;09), € € B=(&;02) and x € Bx(X;02)- (3.9)
In particular, we get that for v := (p,0, A\, &) € Br(7;d2) it follows ¢ € Qq, o(—7(0, g0,£))
Do, 0 € Q3, & € Q, p(—p(0,p,8)) € Q5, A € Qg and & € Q7. Therefore, part (i) of th
theorem holds for any 0 < § < 5.

Fix €p > 0. The continuity of the map (¢,,&,60) — f(t, 0, ¥(—71(t,%,§)),0) yields that
there exist d3 € (0,09] and Ty € (0,7}] such that

|f(t,¢, w(_T(ta @Z),f)), 9) - f(07 @7 @(_T(Ov 9/57 5))7 0)’ < &o

for t € [0, T3], ¥ € Ba(3;03), € € B=(&: 03) and 6 € Be(6: 55).
Define the sets

Mg = B’Rn<w1;€1), M3 = B@(Q§53), M4 = Bg(f; (53)

and
Ms := Bga(wa;e1), Mg := Ba(\;83), My := Bx(Y;03).

Throughout this proof the extension of the function ) € C' to the interval [—r, c0) by the
constant value ¥ (0) will be denoted by

o o ¢(t)> te [_T7 0]7
vit) = { ¥(0), t>0.
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We define the following constants and sets

~ o~

Ky = [f(0,%,8(=7(0,%,¢)),0)| + €0,
0
51 = 337
L . (03 &1
o = mln{g, 5},
Qg = |{5|W17°° + 57
Mg = {p e Wh=: [ = §lo < b3, [¢[re < ao}

It is easy to check that M g is closed in C' and it is bounded in Whe so let

Lso := L3(Ty, My, Ms, Mg) be the Lipschitz constant defined by (A3) (ii),

Leo = Lg(T3, My, M7) be the Lipschitz constant defined by (A4) (ii),
K171 = Lgy()(l+CLO(2+L6’0(1+(10))),
a; := max{ag, K11+ Ks},
ap = min{&, 8—1, T, 7’0},
ay 2CLO
E, = {y e C([-r,a1],R"): y(s) =0, s € [—r,0] and |y(s)| < f1, s € [0,041]}.
We have |@Q|re < [plwie < |@lwie + @ — @lwie < ag for ¢ € Byr(p;0), and so
By (9;0) C M. Then for y € By, ¢ € By (9;9), t € [0, 1] and ¢ € [—r, 0] we get

ly(t+ Q)+ ot +0) =2 < |yt + O+ @t +¢) — @] + [»(¢) — ()]
Br+tplre + 0

B+ arag +9

03, (3.10)

A\

IA A

and hence |y, + ¢y — p|c < d3. Consequently, y; + @ € Ba(p;03) C 1, and so
’f(ta Ye + o, y(t — 7t ye + 06,8)) + ot — 7(t, ye + 01, 6)), 9) ) < K,

and ¢ = y; + @, satisfies (3.9) for y € Fy, ¢ € Byr=(9;0), £ € BE(E, 9), 0 € Bo(p;0) and
t € [0, ay]. Therefore the definitions of My, M5 and (3.9) yield

e+ @) (=7t ¥,8)) € Mz, (g + @) (—p(t, 9, x)) € M5 (3.11)

for t € [0,1], y € E1, ¢ € By (3;6), x € Bx(X;6) and & € B=(&;6).

Fix v = (,0,6,X,X) € Br(%:6). Then ¢ € By ($;9), 0 € Bo(6;9), x € Bx(X;9),
A€ Ba(X;8) and y € By (R;6). We can use the method of steps to show that the IVP (3.1)-
(3.2) corresponding to v has a solution. First note that a solution will satisfy z;(¢) = x(t +
¢) =p(t+¢) = @i(C) for t € [0,79] and ¢ € [—r, —ro]. We have t — p(t, ¢s, x) < t—19 < 0 for
t €[0,70], soy(—p(t, o, x)) = 0fort € [0,70]. Hence (3.11) yields that ¢[t—p(t, &, X)] € M5
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for t € [0,70]. An estimate similar to (3.10) gives |¢; — @|c < 03 for t € [0,ro]. Therefore,
the function

/“Ll(t) = g{t7 QZt, gO[t - p(ta &tv X)]? /\}7 te [07 TO] (312>
is well-defined. Then (A3) (ii), (A4) (ii), Lemma 2.3, |¢|r~ < ag, @1 € My for t € [0,7],
and the definition of K ; yield

O =it @) < Lao{lt =11+ max fo(t+0) = T+

¢e[—r,—ro]
+elt = p(t, 2101 = ol = p(F, 70201}

< Loo{ [t =71+ |plelt = 71+ |plew 1+ Loo(1 + lplee)] 1t — 1}
< Kl,l‘t_ﬂa t,EE[O,TQ]. (313)

On the interval [0, 7¢] Equation (3.1) is equivalent to

(50— 0) = £t 70t~ 7 50,9).0), tE€0m)]

Therefore, (3.1) is equivalent to

¢
z(t) = p'(t) + ¢(0) — ' (0) + / f(s,zg, (s — 7(s,25,§)),0) ds, t€0,m0]. (3.14)
0
We introduce the new variable y(t) := z(t) — ¢(t), and we define the operator

T (y,7)(t)

- Ml(t)—ul(O)Jr/ f(svys+955,(y+95)(8—7(8,ys+955,§)),9>d8, t €[0,a],
0
0, t € [—r0].

Then in the new variable y, on the interval [—r, a;] the IVP (3.1)-(3.2) is equivalent to the
fixed point problem
y=T"y.7).

It is easy to check that T (-,~) maps the closed, bounded and convex subset E; of C into
E, for all v € Br(7;0). Therefore, Schauder’s Fixed Point Theorem yields the existence of a
fixed point y = y(+,7) of T*(-,7), and therefore, (3.1) has a solution z = x(-,7) = y(-,v) + &
on the interval [—7, a;]. Estimate (3.13) yields that u' is Lipschitz continuous, and therefore,
it is a.e. differentiable, and |u'(¢t)] < Ki; for a.e. ¢ € [0,a;]. Hence y, and so, x is also
a.e. differentiable on ¢t € [—r,aq], and (3.14) implies |Z(t)| = |y(t)] < K11 + K, for ae.
t € [0, 1], and so |Z(t)| < a; for a.e. t € [—r, aq].

(ii) Next we show by iteration that the solution obtained in part (i) of the proof can be
extended to a larger interval so that estimate (3.7) remains to hold with some N independent
of the selection of 7 from Br(7;6). Let j := 2, and let x = z(-,y) be the solution of (3.1)-(3.2)
on [—r,a;_1], ¢’ 1= o, , and

o (t) = g(t +aj, 0l @t — plt+ a1, 0, 1)), /\), t € [0,7],
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where ¢! denotes the segment function of ;@7 at t. If oj_1 < T3, repeating the first part of
the proof, we are looking for an extension of the solution of the IVP (3.1)-(3.2) by solving
the fixed point equation

y="1"(y.7),
where y(t) == x(t + aj_1) — &(t), and

T’ (y,v)(t)
w () — 1#(0)
— +/ f(S + aj—la Ys + 80?97 (y + 80])(8 - T(S + aj—h Ys + SO?%g))? 9) dS,
: 0
t e [07 A()éj],
0, te[—r0]

for some Aa; € (0, Ty — a;1]. Relation (3.10) yields that [¢/ — $|c < d3. Therefore, there
exists £; > 0 such that Bo(p?; ;) C Bo(P;d3). Define the constants and sets

B = %,
My = {eWh™: [ —@lo < 83, [[r~ < a1},
Lsj1 = L3(Ty, My j_1, M5, Mg) be the Lipschitz constant defined by (A3) (i),
Lej_1 = L¢(To, My j_1, M7) be the Lipschitz constant defined by (A4) (ii),
Kyj = Lsj1(1+a;1(24 Lej1(1 +aj-1))),
a; = max{a;_1, K ;+ K>},
Aa; = min{f—j, 2;;_1, Ty — a1, 7’0},
a; = aj1 + Aqg;

and

E; = {y € C([-r, Aqj],R"): y(s) =0, s € [—r,0] and |y(s)| < 3;, s € [O,Aaj]}.

Since |¢7|r~ < a;_1, it is easy to check that |y, + @] — ¢¥|c < ¢; for t € [0,Aq,], y € Ej,
and hence a; < Ty and (3.9) imply (y; + ¢1)(—7(t + aj 1,y + 1,€)) € My and (y, +

O (—p(t + aj 1,y + ¢l x)) € Ms for t € [0,Aq;], y € E;. Also, one can check that
|17 (8) — 2 (8)] < Ky 4|t — 1] for t,t € [0,70), and the operator T7(-,~y) maps E; into E; for all
v € Br(7;6). Hence Schauder’s Fixed Point Theorem yields the existence of a fixed point y
of T?(-,v) in E;, and hence the function z(t) := y(t —aj_1)+ @ (t— 1), t € [aj_1, ;] gives
an extension of the solution of the IVP (3.1)-(3.2) from [—r, c;_1] to the interval [—r, o).
Moreover, for the extended solution we have |#(t)| < a; for a.e. t € [-r, o ]. If o < T,
by repeating the previous iteration, we can extend the solution to a larger interval. In case
of an infinite iteration, we stop it after finitely many steps to guarantee the boundedness of
the sequence a;. Suppose we repeat the iteration & times. Then let o := ay,. This completes
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the proof of the existence of a solution x = x(-,7) of the IVP (3.1)-(3.2) on [—r, a] for any
v € Br(7;6), which satisfies |Z(t)| < a for a.e. t € [—r,a]. The estimate

¢
lz(t)| < |¢(0)] +/ |i(s)| ds < ag + agay, te€0,q]

0
yields that x satisfies (3.7) with N := max{ax, ap + ara}. Define the set

M, = My, = {¢ eWh®: [h — Ble < b5, [Y]re < @k}-

Then M, ; C M, for all j =0,...,k, and , € M, for t € [0,a]. The Arzela-Ascoli Theorem
implies that M; is a compact subset of C', and hence the solution x = z(+,~) constructed by
the above argument satisfies (3.6) for ¢ € [0,a] and v € Br(7;9).

(iii) The uniqueness of the solution will follow from (3.8). To show (3.8) suppose v =
(0,6,0,),x) and 7 = (,&,0, )\, ) are fixed parameters in Br(7;9), and let o be any fixed
solution of the IVP (3.1)-(3.2) corresponding to 7, and let Z := z(+;7) be the solution of
the IVP (3.1)-(3.2) obtained by the argument of part (i) of the proof on the interval [—r, a.
Then part (i) of the proof yields |Z;|y1.0 < N and

1Z: — Plo < 03, |Z(t —7(t, 2, 8)) —wi| <1, |Z(t—p(t, T, X)) — wa| < & (3.15)

for t € [0,a], and therefore Z(t — 7(t,7;,£)) € My and z(t — p(t, 7, X)) € M for t € [0, 0.
Since v € Br(7;6), it follows that ¢ € By1.(3;6), & € B=(£:6), 0 € Bo(0:6), A € Bo(X; 6)
and x € Bx(X;0). Hence § < 03 and (3.9) yield |¢ — @|c < 03, |o(—7(0, ¢, &) —w1| < &1 and
lo(—=p(0, ¢, X)) —we| < 1. Therefore the continuity of x implies that the above inequalities
are preserved for small ¢. Let o, € (0, a] be the largest number for which

7 —@le <05, ot =72, ) —wn| <&, w(t—p(t, e X)) —wa| <1 (3.16)

hold for ¢t € [0,a7). Then z(t — 7(t, 24, &)) € My and x(t — p(t, x4, x)) € Ms also hold for
t €10,a"].
Next we show that x; € M, for ¢t € [0,a7]. It is enough to show that |i;|;~ < a; for a.e.
€ [0,a7]. Let m = [a”/ro|, where here [] is the greatest integer part function. Note that
m < k since mry < o < a = o < krg. Let t; := jro for j = 0,...,m, and t,,41 := .
Suppose first that tg <t < ¢ < t;. Then integrating (3.1) from ¢ to ¢ and using (A3) (ii),
(A4) (i), (ii), (3.16), |@|L= < ap and the definitions of L3, L¢o, K2, K11 and a; we get

[2(t) —z(O)] < g,z 2(t — p(t, 24, X)), A) — g(t, 25, 2(t — p(t, 28, X)), M)
/ |f .20, 0(s — 7(5,,,€)), 0) ds

t, @, p(t — plt, %X)),A) 9(t, @r, o(t — p(t, 95 X)), M|
/Ifs:cs, ~ 7l 70, €)), )] ds
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< Lao(lt =t + max Jo(t+0) = (f +0)
—Tr,—7To

Hip(t = p(t, G0 x)) = olE = plE, @) ) + Kalt — 1
<L3’0<1 + a0(2 + L6,O(1 + Go))) + KQ) ‘t — ﬂ
< CLﬂt-ﬂ, t,fe[to,tl].

IN

Then ag < a; implies |z(t) — z(f)| < ay|t — ] for t,t € [—r, t,].
Suppose now that |x(t) — z(t)| < a;|t — t| holds for ¢,t € [—r,t;] for some j < m. Then
for ¢,t € [—r,t;11] we get easily that
2(t) =D < (Log(1+ a5+ Log(1 + 7)) + Kz ) |t 1
Clj+1|t — ﬂ, t,fe [to,tj+1].

IN

This shows that |z(t) — x(t)| < ax|t — t| for ¢,¢ € [—r,a?], hence |&|L~ < ay for t € [0, a7],
and therefore z; € M; for ¢t € [0,a7].

Let L1 = Ll(Oé, Ml,MQ,Mg), LQ = LQ(O./,Ml,M4), L3 = L3<Oé, Ml,M5,M6) and L6 =
L¢(a, My, M7) be the Lipschitz constants from (A1) (ii), (A2) (ii), (A3) (ii) and (A4) (ii),
respectively. Integrating (3.1) from 0 to ¢ we get for ¢ € [0, 7]

< gltswe, o(t — p(t, x4, %)), A) = g(t, e, Tt — p(t, Te, X)), M)+ 19(0) — 2(0))]
+ |g(07 2 go(—p(O, 2 X))? >‘) - 9(07 @, (,5(_)0(07 @, X))? /_\)|

/
0

< Lo max [e(t+C) =2t + O+ |e(t = p(t 20, X)) = 2(t = p(t, 70, X))

E[*T,*T‘o

HA= A + e —¢le )
+Ls([p — @le + [o(=p(0, 0, X)) — @(=p(0, 2, X)) + [A = Al)

¢
—|—L1/ <|ms — Tsle + |z(s — 7(s,25,&)) — (s — 7(s, @,E))| +16 — 6’_|9) ds.
0

Lemma 2.3, |Z;|y1.~ < N for ¢t € [0,a] and (A2) (ii) yield

|.CE(S—7'(S,£L’S,€)) _f(S_T(S’fsaf)ﬂ B
[7(s = 7(s,25,)) = T(s = 7(s, 5, )| + (s = 7(5,2,€)) = T(s = 7(s, 25, )|

N|T(Sux87§) - T(57i87§)| + |x3 - 'TS|C
LoN(|zs — Zsle + |€ —€lz) + |os — Zsle, s € [0,a”]. (3.17)

IA NN

Define pu(t) = max{|z(s) — z(s)| : —r < s < t} for t € [0,a”]. Assumption (A4) (i),
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Lemma 2.3, |Z;|y1.~ < N for ¢t € [0,a] and (A4) (ii) imply

|[z(t — p(t, 2, X)) — T(t — p(t, T4, X))
<zt = p(t, 2, X)) — Z(t = p(t, 2, X))+ |Z(E = p(t, 20, X)) — Z(E — p(t, Te, X))
< p(t —mo) + Nlp(t, ze, x) — p(t, Ze, X)|
< (1+ NLg)u(t —ro) + NLg|x — X|x, t€0,a7].

Similarly, |¢(—p(0,¢,x)) — @(=p(0,,X))| < (1 + NLg)|l¢ — @lc + NLg|x — X|x- Therefore
lz(t) — 2(t)] < Ksu(t —ro) + (K3 +1)|¢ — Glwree + 2L3|A — A| + 2N L3 Lg|x — X|x

+L1/((2+L2N)M(S)+L2N‘f—f‘5+’9—9’@)d8, tE[0,0ﬂ],
0

where K3 := L3(2+ NLg). Lemma 2.1 yields

t
u(0) < Kaplt = o) + Kby = 3le + K5 [ nls)ds, e (0.00),
0

where Ky := K3+ 1+ 2L3+2NL3Le + L1(LaN + 1)a and K5 := L1(2 + Lo N). Applying
Lemma 2.2 we get
a(t) - 2(t)] < p(t) < de*,  t e [-ra7), (3.18)

where ¢ > 0 is the solution of cK3e™° + K5 = ¢, and d = d(v,7) is defined by

d = max K4|fy_f_y|r ecr‘(’p_@’
' 1— ngfcm’ o

Therefore there exists Kg > 0 such that d(,7) < K|y —7|r, so, combining this with (3.18),
we get
w(t) = 30| < Ly — Ak, te[-na’, 7€ Bu(3:0), (3.19)

where L = Kge®. Note that the Lipschitz-constant L is independent of the selection of
7,7 € P. This concludes the proof of (3.8) on [—r,a7].

Hence if v = 7, then (3.19) yields that x(t) = z(t) for ¢ € [0,a”]. But then (3.15) and
the definition of a” yield that a” = «a. This concludes the proof of the uniqueness of the
solution of the IVP (3.1)-(3.2) on the interval [—r, ] for all v € Br(7;0). This completes
the proof of part (iv) of the theorem.

(iv) Fix v := (¢,£,0,\,x) € PN M, and suppose (A3) (iii) and (A4) (iii) hold. In
particular, we get ¢ € C'. Define the operator

oo o= 00, LS

It follows from (A3) (ii) and (A4) (ii), respectively, that g(¢, ¥, u, \) = g(t, Fio,u, ), p(t, 1, x) =
p(t, F1p, x), and hence Dag(t, ¥, u, A) = Dag(t, Fib,u, A), Dap(t, v, x) = D2p(t, Fip, x) for all
te0,al, ¥ € My, u € Ms, A € Mg and x € M;.

20



Next we show that the mapJO o] 2 t = Fp, € C is continuously differentiable, and its
derivative is F;. Here ¢; and ¢; denote the segment functions of ¢ and ¢ at t, respectively.
Let t € [0,70], and h be such that ¢t + h € [0,70]. Then t+¢ € [-r,0] and t + h+ ¢ € [—r, 0]
for ¢ € [—r, —ro|, and hence

| FGrin — For — hFnle = Jnax (FEean)(Q) = (FE)(Q) = A(F@)(Q)]

=  max |@n(C) —@(C) — hS;t(C”

CE [_T7_T0]

= nax p(t +h+C) =t +¢) = hp(t + )

< [hfmax{]p(u) = ¢(@)]: v, w & [=r,0], lu—al <[h[}.

This proves the differentiability of F@; wrt ¢ on [0, 7], using that ¢ € C', so ¢ is uniformly
continuous. A similar argument shows that |F¢, — Foi|lc — 0 as t — ¢ for t,t € [0, ro).

Then assumptions (A3) (iii) and (A4) (iii) yield that the function ' defined in (3.12) is
continuously differentiable on [0, r¢]. Therefore (3.14) implies that x is continuously differen-
tiable on [0, o], and the compatibility condition in the definition of M yields p(0—) = x(0+),
so z is continuously differentiable on [—r,ro|. Hence g(t, xy, x(t — p(t, x4, X)), A) is differen-
tiable wrt ¢ for ¢ € [0, ], and therefore on [0, o] the IVP (3.1)-(3.2) is equivalent to

2(t) = Dig(t,zy, 2(v(t), A) + Dag(t, 2, (v(t)), N + Dg(t, ze, w(v(t)), A)
% ()1 — Dap(t, 0, x) — Daplt, 2, )i} + (b, 2(u(t)),0),  (3.20)
where v(t) :=t — p(t,x, x) and u(t) .=t — 7(t, 2, ). (Al)—(A4) imply that the right-hand
side of (3.20) is continuous in ¢, therefore the definition of M yields that & is continuous

on [—r,ro]. Now the continuity of & follows from (3.20) and the definition of M, using the
method of steps with the intervals [irg, (i + 1)ro], i =0,1,2,.. .. O

4 Differentiability wrt parameters

In this section we study differentiability of solutions of the IVP (3.1)-(3.2) wrt the initial
function, ¢, the parameters &, 6, A and x of the functions 7, f, g and p, respectively.
Let the positive constants o and ¢§, the parameter set P, and the compact and convex

sets My, My and Ms be defined by Theorem 3.2. Let
My :=Bo(6;6), My :=DB=(£6), Mgs:=DBx(\;6) and My = Bx(:9), (4.1)

as in the proof of Theorem 3.2.
First we define a few notations will be used throughout this section. Introduce

wf(tviaﬂae_’l/}?u’e) = ( 2 (t 0) D2f( JJ a_é)(qvb ¢)
—sz( v, u )(u @) = Daf(t,4,@,0)(0 - 0)
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for t € [0,T), ¥, € My, 4,u € My, and 0,6 € Mz. Assumption (A1) (iii) and the convexity
of My, My and Mj yield

|wf(t7¢_)7ﬂa éa ¢)u7 9)|
< sup (| Daf (b + v =)@+ v(u =)0+ v(0 - 9))

o<v<1

_DZf(ta@Aaae)‘ hb w|C

L(CR™)

—ﬂDd@&+vW—¢%u+Wu—@ﬁ+vw—w) Dyf(t, 4, a,0)||u — 1l
+ ‘D4f(t,zf) Yo — ), i+ v(u—a),0+ (6 —8))

D
T 0.0.0)], 10— le)
for t € [0,a], ¥,v € My, u,u € My and 6,0 € Ms. Then
s (t, 6,1, 0,0,u,0)| < (J = dlo+u—al +10—0lo) ([~ Plo+u—ul+]0—flo ) (4.2)
for t € [0,a], ¥,v € My, u,u € My and 6,0 € Ms, where
O(e) = supfmax(|Daf (1,0, u,0) = Daf(t, 0,5, 0) e,
’D3f<t7wau79) - Dgf(t,&,ﬂ,é)',
|D4f<t71/}7 u, 0) - D4f<t71/_)7ﬂ7 é)lﬁ(@,R")) :

[ —dle+|u—al +10 —0le <e,
t€[0,a], ¥, € My, u,i € My, 9,96M3}.

Similarly, we define

wr(t7 77;7 ga ’QZ), g) = T(t> wv 5) - T(ta J)v g) - D2T(tv 1/;7 g)(¢ - ’IL) - D3T(ta ,JJ? @(f - g)
for t €[0,a], ¥, € M; and &, € My. Then Assumption (A2) (iii) gives that

et 9,9, €)] < Qe = Bl + I = &)1 — Blo + I — &) (4.3)
for t € [0,a], 1,% € M, and &, € € M,, where
() = sup{max(|Ds(t,,€) = Da(t, v, ) leicmn;
| Ds(t, 4, &) — Dst, %@M(E,w)) :
€(0,a], ¥, 0 € My, &€ My, [ —Plo+|¢— & <ef.
We introduce the function

wg(t,ﬁ,ﬂ,/_\,zﬁ,u, A) = gt )



for t € [0,a], ¥,v € My, 4,u € Ms, \,\ € Mg, and let Ly = Ly(a, My, Ms, M) be the
Lipschitz constant from (A3) (iv). Then (A4) (iii) yields

jwg (£, 9, @, A, ¥, u, N §L4( Jnax I@/)( Q)=+ lu—al+ A=A, (44)

for t € [0,a], ¥, € My, u,i € M5, \,\ € M.

Let ¥ = (5,£,0,)\, %) € PN M, and x(t) := x(t,7) be the corresponding solution of the
IVP (3.1)-(3.2) on [—7, a]. Note that Theorem 3.2 yields that x is continuously differentiable
on [—r,al. Fix h = (h“’ h&, h? h* hX) € T, and consider the variational equation

d - _
% (Z(t) - DQQ(t7It7x(t - p(t Tty X )) )\) D3g(t7 Ty, I<t - p(t T, X )) A)

x [t = plt, 2, ) { Daplt, 20, )2 + Dplt, w0, O} + 2t = plt, 20, 0))]
“Daglt, m, w(t — p(t, 20, 7)), A)hA)
= Dof(t,z, 2(t — 7(t, 95t>f)) )Zt + D f(t, e, x(t — T(taﬂ%,é)), é)
X [—x'(t — 7(t, x4, f)){DQT(t, 2y, &)z + Dat(t, 2y, é)hﬁ} + 2(t — 7(t, 2y, 5))}
+Duf(t, zy, x(t — 7(t, 24, 8)), 0)R7, t €[0,q] (4.5)
z(t) = h?(t), te[-r0]. (4.6)
This is an inhomogeneous linear time-dependent but state-independent NFDE for z with
continuous coefficients, therefore this IVP has a unique solution, z(t) = z(¢,7, h), which
depends linearly on h. The boundedness of the map I' — R", h +— z(t,7,h) for each
t € [0, o] follows from Theorem 4.1 below.
For a fixed ¢ € [0, @] we introduce the linear operator L(t,z): C' x = x © — R" defined
by
L(t,z) (¢, h*, h%)
= Daf(t,ar,a(t = 7(t,2,,€)), 0)¢ + Dsf (¢, w, a(t — 7(t, 21, €)), 0)
x| (t = 7(t 2, €){ Dar(t 20, ) + Dar(t, 2, O} + v(=7(t, 31, €))
+Duf(t, 2, x(t — 7(t, 24, €)), 0) R’ (4.7)
and the linear operator G(t,z): C' x A x X — R" defined by
G(t, ) (¥, h*, hX)
= Dag(t,wy, x(t = p(t 21, X)), VY + Dag(t, z, 2t — p(t, 21, X)), M)
x| (t = p(t, 2 ) { Daplt, 21, X6 + Dap(t, 2, O b+ w(=plt, 2, )|
+Dyg(t, y, x(t — p(t, 20, %)), . (4.8)
With these notations (4.5) can be rewritten as

%(z(t) — Gt @) (2, B, hX)> = L(t,2)(z, hE, 1Y), te0,al. (4.9)
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Let Ly = Ly(a, My, My, M3) and Ly = Lo(cv, My, My) be the Lipschitz constants from (A1)
(i) and (A2) (ii), respectively. Then (A1) (ii), (A2) (ii) and (3.7) yield

L(t2) (0, i, )
< Liliblo + Ly (NLa(lo + 11le) + [Vle ) + LalA’le

< N0<|1/)|c+ |hS|= + |h9|@>, te0,a], veC, = heo, (4.10)

where Ny := L1(2N Ly + 2).
Let L3 = Ls(a, My, M5, M), L¢ = L¢(av, My, M7) be defined by (A3) (ii) and (A4) (ii),
respectively. Then we have by (A3) (ii) and (A4) (ii) that

Gt 2) (@, P W) < Ny max (O] + P+ PX]x), e [0,a] (4.11)

Ce[fr’fr(ﬂ

for v € C, h* € A, hX € X, where Ny := L3(2N Lg + 2).

Theorem 4.1 Assume (A1) (i)-(iii), (A2) (i)-(iir), (A3) (i)-(iv) and (A4) (i)-(iv), let
a >0 and P C 11 be defined by Theorem 3.2. There exists Ny > 0 such that the solution of
the IVP (4.5)-(4.6) satisfies

|2(t, v, h)| < Nolh|r, te[-ral, hel, vePNM. (4.12)

Moreover, for ¥ € PN M there exists a monotone increasing function A = A(%) such that
A: [0,00) — [0,00), A(u) — 0 as u — 0, and

2(t,3,h) — 2(£,7,0)| < A(jt — )|Alr,  t,E€[-ra], heTl. (4.13)

Proof (i) Lety € PNM be fixed. For simplicity we use the notations h = (h¥, hé, h? h* hX) €
[, x(t) := x(t,y) and z(t) := z(t,7,h). Let 6, My, My and Mjs be defined by Theorem 3.2,
Ms, My, Mg and M; be defined by (4.1), Ly, ..., Lg be the corresponding Lipschitz constants
form (A1)-(A4), and let Ny and N; be corresponding constants defined by (4.10) and (4.11),
respectively. Integrating (4.9) from 0 to ¢ we get

(1) < IG(t,x)(Zt,hAah")!+W’(U)I+!G(0,$)(h”,hA,hX)!+/o |L(s,2)(zs, ¢, h*)] ds

for t € [0, a], and therefore (4.10) and (4.11) yield

lz(t)] < Ny max |z(t+ Q)| + (14 N)|R®|c + 2N (|h s + |hX]x)

¢e[—r,—ro)
t
+N0/(|zs|c+\h5|g+|h9|@)ds, te0al
0

An application of Lemma 2.1 implies
t
w(t) < Nyt — 1) + K7|h|r + No/ w(s)ds, t €0, q],
0
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where p(t) := max{|z(s)|: s € [-r,t]} and K7 := max{Nya, 1+ Ny,2N;}. Then Lemma 2.2
yields
[2(D)] < p(t) < Nofhlp, £ €[0,0],

K;
N — cr Ccxx
9 1= max {—1 ~ Nye—oro’ e } e

and c is the positive solution of ¢Nye=° + Ny = c¢. Moreover, (0) < Ny|h|r yields that
(4.12) holds for ¢ € [—r,0], as well. This concludes the proof of (4.12).

(ii) Let ¥ = (¢,£,0,\,X) € PNM, z(t) := z(t,75), h = (h¢,h, W b hX) € T, 2(t) :=
z(t, 7, h), v(t) .=t — p(t,x, X). Let t,t € [0, ], and consider

where

G(t, x)(z, B hX) = Gt )z x)(z5, I, hX) -
= Dag(t,z, x(v(t)), ) 2e — Dag(t, x, 2(v(t)), )Zt+D29(t i, w(v(t)), M) (2 — 1)
+|:D39(t,$t,x v(t)), ) — Dsg(t, zz, x(v(1)), )}

(
x [—:'U(U(t)){pw(t 26, X)2 + Dap(t, 1, X )hX} + z(v(t))}
+Dag(F, a 2(0(D), X) [~ (#(0(8) = #(0(D) ) { Daplt, 21, X) 2 + Daplt, 2, Oh }
—~Dig(F, x7, 2 (u()), Ni(v(D)) [sz(t 20, X)2 — DaplF, 25, )
(20 — 25) + Daplt, 20, Y)BX — Dap(F, a7, ;z)hX]
+Dag(F, a 2((D), X) [2(0(1)) = 2(0(D)]
+|Dag(t, zy, x(v(t)), ) — Dag(t, 7, 2(v(t)), 5\)} . (4.14)

AAXI

+
-
S
)
=
H

Let N be defined by (37), LG = Lﬁ(Oé, Ml, M7) L7 L7(Oé Ml, M7) and Lg Lg(Oé, Ml, M7>
be the Lipschitz constants defined by (A4) (ii) and (iv), respectively. Then (A4) (ii) and
(3.7) yield

() —o(@)] = |p(t, ze,X) — p(t, 25, X))
< Le(|t = t| + |2 — zilc)
< Le(l+ N)|t -1, t,t €[0,q], (4.15)
and hence
lz(v(t)) — x(v(t))] < NLg(1+ N)|t — ¢, t,t €10, al. (4.16)
Define the function
Q(c) = Sup{]x'( )—a(@)|: lu—a <e wae |- a]}. (4.17)

Since ¥ € M, x is continuously differentiable on [—r, a], hence Q;(¢) — 0 as ¢ — 0.
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Therefore (A3) (ii), (iv), (A4) (ii) and (3.7) imply for ¢,7 € [0, a]
|G(t, ) (2, h*, hX) — G(, 7) (2, b, hY)|
< La(jt = 11+ foe = wide + la(0(t) = a(0(@)] ) ¢

+Lymax{|z(t + () — z(t + {)|: ¢, ¢ € [-r,—ro), [¢ =] < Ls|t — ]}
+Ls max |z(t+¢) —2(t+ Q)|

ce [_T7_TO]

Lt = 11+ 2 = el + [2(v(t) = 2@@)]) (N Ls(lzle + 5¥]x) + |=(o(8)])
+Ls Qs (|v(t) — v()]) Le([z]c + |P*]x) + L3N<L7(\75 — [ + |z — @ilo)|zlc
+Lymax{|z(t + ) — 2(t+ Ol ¢,C € [—r, —ro), [¢ = (| < Lt — ]}

+Lg Ce%nax ] l2(t+C) —2(t+ Q)|+ Lo(|t — t| + |z — x;]c)|hX|X>
—r,—7g

+Lal2(0()) = 2(0(®)] + La([t = T+ |y = 2l + [2(0(2) = 2(0(D)]) 1]
Let
w(t,e) = max{|z(s) — 2(3)|: s,5 € [-nrt], |s—5 <e}, t€]0,a], €€]0,00).

Note that w(ty,e1) < w(ta, e2) for 0 <ty <ty < aand 0 < e; < ey. Then using (3.7), (4.12),
(4.15), (4.16) and the definition of w we get for 0 <t <t < «

|G (t,z) (2, K, hX) — G(L, z) (25, b, hY))|
+Lsw(t — 1o, [t — t])
+L4(1+ N+ NLg(1+ N))(NLg(Ny + 1) + No)|t — t]|h|r
Lo (Lo(1+ N)|t = 1) Lo(Na + D|hlr + LsN (Le(1 + N)Naft = 2|

+Lw(t — 1o, Ls|t — ) + Lgw(t — ro, |t — ) + Lo(1 + N)|t — ﬂ]h]p)
+Law(t — ro, Le(1 + N)|t — t|) + Ly(1 + N + NLg(1 + N))|t — t||h|r
S CLOOt—ﬂ)’h’F+K11U)(t—7”0,K12’t—ﬂ), (418)

where a’(u) := Kgu + KoQ;(Kou) with appropriate nonnegative constants Kg, Ko, K,
K117 and K12 = maX{l, L5, Lg, Lﬁ(l + N)}
Integrating (4.9) from ¢ to t we get

2(t) — 2(t) = G(t, ) (2, B, hX) — G(E, x) (2, B, RX) + ft L(s, z)(zs, h*, h%) ds.

Hence (4.10), (4.12) and (4.18) yield for 0 <t <t < «
|2(t) — 2()] < a'(|t —#])|hlr + Knw(t — 1o, Kia|t — t]) (4.19)
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with a'(u) := a®(u) + No(N2 + 1)u.

Let m := [a/ro] (here [-] denotes the greatest integer part), and t; := jro, j = 0,1,...,m,
tme1 := . First suppose t,t € [to, t;]. Then |h?| e~ < |h?|w1 < |h|p and Lemma 2.3 yield
|2(t) = 2(B)] = [h#(t) = h*(@)| < [t —#[[hlr, ¢, E€[=r,0].

Therefore (4.19) and the definition of w imply for ¢,¢ € [tg, 1]
|2(t) — ()] < a'(Jt = t)Ihlr + Kuw(to, Kioft — #) < a' ([t — )] h|r + K11 K|t — €] 2]r.

For —r <t <ty <t < t; the above inequalities yield

|2(t) — 2(2)| |2(t) = z(to)| + [2(to) — 2(2))]
a' (t)|h|r + K11 Kiat|h|r + [¢]|h|r
a' ([t —2)|Alr + (1 + K1 Kao)[t — #|[A]r. (4.20)

IA A CIA

But now it is easy to see that (4.20) holds for all —r < ¢ <t < t;, and therefore,
w(tl,s) S a1(5)|h|r+(1+K11K12)€|h|p7 e > 0. (421)
If t,t € [t1,t3], then (4.19) and (4.21) yield

|2() — 2(2)] a' ([t —t)|Alr + Kuw(ty, Kialt — 1)
a1(|t — ﬂ)’h’r‘ + Kllal(Ku]t — t_l)‘h‘r‘ + (KllKlQ
+E{ K )|t — |l

(14 Kn)a(it — B)lAle + (KK + K3 D)~ #Ble),

IA A

IA

where a*(u) := a'(Kjpu). But then for —r <t <t; <t <ty we have

12(t) —2(B)| < |2(t) — 2(t)| + |2(t1) — 2(2)]
< (24 Kn)ad®([t — t)|hlr + (14 2K11 Ko + K7 K|t — ||

Again, it follows that the last inequality holds for all ¢t,t € [—r,t

2).
Repeating the previous steps for the intervals [—r,¢;] for j = 2,...,m + 1, we get that
|2(t) = 2()] < A(|t — t])|h|r

for t,t € [—r,a] with an appropriate function A satisfying A(s) — 0 as s — 0+, which
proves (4.13). O
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We need the following estimates in the proof of the next theorem.

Lemma 4.2 Assume (A3) (i)-(iv), (A4) (i)-(iv). Suppose ¥ = (¢,£,0,\,X) € PN M,
hy, = (hf,hi,hz,hﬁ,hif) € I' is such that 5y + hy, € P for k € N, and |hg|r — 0 as k — oo.
Let x(t) == z(t,7), o¥(t) == z(t,7 + hi), 2"(t) = 2(,7, i), vF(t) := t — p(t,aF, x + k)
and v(t) :=t — p(t,zy,X). Then there exist a nonnegative constant Ny and a nonnegative
sequence Ay = Ag(7, hy) such that Ay — 0 as k — oo, and for k € N

lg(t, 2, 2" (0" (£), A+ hy) — g(t, 2, 2(v(1)), A) = G(t 2) (27, by, by
< Aulhele + Ny mex [2*(t+¢) —a(t+ ) =+ (), t€[0al

(4.22)

Proof Let a, M; and Mj5 be defined by Theorem 3.2, Mg and M; be defined by (4.1), and
Ls, ..., Ly be the corresponding Lipschitz constants from (A3)—(A4). Simple manipulations
yield

)
—Dog(t, zy, 2(v(t)), A (a:f — ) + Dog(t, x ,x(v(t)),X)(a:f - — zf)
D4g(t7 T, .’L’(U(t)), E‘)hz

— ()]

- &
|

+Daplt, ,, —)h;g] — Dag(t, ze, 2(0(1)), X)j;(v(t»sz(t, 4, X) [xf - zf]

4 Dag(t, x4, 2(v(t), ) [zk(vk(t)) - zk(v(t))}, tel0,a], keN. (4.23)
Using the definition of w,, and applying (A3) (iv), (A4) (ii), (3.7), (3.8) and (4.4) we have

Jwy(t, ze, 2(v(1), A, 2, 2" (V5 (1)), A+ B))|

< 4(|:c - mc (D) — () + 1)

< La(lek — mlo + [ 0HD) — 2@ O)] + | (0H (1)) — 2(wB)] + [dla)
< La(2laf — aile + firl= 04 () — o(0)] + 112 )

< L4( (2 + NLg)|a¥ — x| + NLg|hY|x + |h/\|A>

< Ly((2+ NL)L+ NLg + ) 2, te[0,a], keN.
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Assumptions (A4) (iii), (iv) and (3.8) imply

\vk(t) —v(t) + Dap(t, 4, X)(xf — x¢) + Dsp(t, z¢, )|

< |$f_$t|00@3§1|D2P(t7$t+V( ; —¢), X) — Dap(t, x4, X)| 2 rm)
+Ihilx fmax |Dap(t, ¢, X 4 vhy) — Dsp(t, 24, X)| o(x rm)

< L7|$f ﬂft|20+L7|h?§!§(

< Ly(LP 4 1) b, te[0,a], kel

Relations (3.8), (4.13) and (A4) (ii) yield

A(I*(t) = o)1) el
A(Lo(lek = e+ B¥]x)) el

|25 (0" (1) — 2" (u(®))]

IN

IA

< A<L6 (L+1) \hk|p)\hk\p, tel0,a], keN.
Relations (A4) (ii), (3.8), (4.13) and (4.17) imply

|2 (" (1)) — 2(v(t) — @(v(t) (V" (t) — v(?))]
< oMt — ()] sup {a(v(t) + v(v"(t) — v(1))) — &(u(t))[}

< LG(L+1)|hk]Qi<L6(L+1)|hk\p>, tel0,a], keN.

Combining the above estimates, t — r < v*(t) < t — ry together with (4.23), we get (4.22)
with Ay, = LsLe(L + 1) <L6(L + 1)|hk|) + L3A<L6(L + 1)|hkyp) + Kuslhilr and with
appropriate constants N, and K;i3. O

Lemma 4.3 Suppose (A1) (i)-(iii), (A2) (i)-(iii), and let ¥ = (¢,£,0,\,X) € PN M,
hy, = (hf,hi,hz,hﬁ,hx) e I" be such that7+hk € P for k € N and |hg|r — 0 as k — oc.
Let x(t) == x(t,7), 2"(t) = x(t,7 + hi), 2"(t) = 2(t, 75, hn), u(t) ==t — 7(t, 2, &), and
uF(t) ==t — 7(t,aF, €+ h). Then there exist a nonnegative constant N5 and a nonnegative
sequence By = By(7, hi) such that By — 0 as k — oo, and

|f (s, b, 2 (u"(5)), 0+ bY) = f(s, 25,2 (uls)), 0) — L(s, @) (=4, b, by
< Bilhilr + Ns|a® — 2, — 28|, t€0,a], keN. (4.24)

Proof Let a, M; and M, be defined by Theorem 3.2, M3 and M, be defined by (4.1), and
L, and Ly be the corresponding Lipschitz constants from (A1) (ii) and (A4) (ii), respectively.
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The definitions of wy and w, yield
(s, 2,25 (W4 (5)),0 + hi) = f(s, 25, 2(uls)),0) = L(s, z)(z¢, by, b)

= wyls, zg 2(u(s)), 0,05, 2" (WH(5)), 0+ bf) + Daf (s, 0y, 2(u(5)),0) [k — 2 - 2]
D3 (5,2, 2(u(s)), {2 (u(s)) = 2(u(s)) = 2 (u(5))
T (uh(5)) = a(u(s)) = #(u(s)(u(s) = u(s)) = @ (uls)wr (s, 2, € 2k, € + hf)
i (u(3)) Do (5,0, €) [ = 0y — 2] + 2 (u(5) — #(u(s)) }.
Using (3.17) we have that

% = wsle + " (¥ () — x(u(s))] + [hile
< 22k — zo + LaN (|28 — 240 + B3 ]2) + |hlle
< Kylhglr, se€0,a], keN,
where K14 := 2L+ LyN(L + 1) 4+ 1. Hence (4.2) implies
wi(s, @5, 2 (uls)), 0, a7, 2" (" (5)), 0 + h)| < Qp(Kalhiele) Kual e
for s € [0,a] and k € N. Similarly,
jwr(s, 0, & 2k, €+ M) < Qe (L + Dhilr)(L + Dlbilr, s €[0,a], keN.
Using (A2) (ii), (3.8) we get
W (s) = u(s)] < La(Jat — 2o+ [h§lz) < La(L + 1)l
and therefore the definition of {; and (4.13) yield

|2(u"(s)) — z(u(s)) — @(u(s))(u®(s) —u(s))] < (L2(L + 1)Ihk|r>Lz(L + 1)|ucr
and
25 (5)) = 2 ()] < A(Ju(5) = w(s)]) Il < A(La(L+ 1)l )
for s € [0,a] and k € N. Therefore, combining the above estimates we get
|f (s, 2%, 2" (uF(s)), 0+ hY) — f(s, x5, 2(ul(s)), 0) — L(s, )(z5, b, b))
< Qf (K14’hk‘F)K14’hk’I‘ + Ly — 2 — 25|o
+L1{Ix’“(uk(8)) — a(u"(s)) — 2 (u*(s))|
02 (La(L + Dl ) La(L + 1) il + N (L + D)lhale ) (£ + 1) el
YN Lo|2* — @y — 2F|o + A<L2(L n 1)|hk|p> |hk|p}.

Hence (4.24) holds with the sequence By, := Q¢ (K14|hg|r) K14+ L1Qs(Lo(L + 1) hg|r) Lo (L +
1)+ LiNQ((L+ V)|hg|r)(L+1) 4+ LiA(Ls(L + 1) |hg|r) and with the constant N5 := Li(2+
NL,). O
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Next we study differentiability of the function x(¢,y) wrt v. We denote this differentiation
by Dsx.

Theorem 4.4 Assume (A1) (i)-(iii), (A2) (i)-(iii), (A3) (i)-(iv) and (A4) (i)-(iv), and
let P and o > 0 be defined by Theorem 3.2, ¥ € PN M, and z(t;7) be the solution of the
IVP (3.1)-(3.2) on [—r,a] for v € Br(3;9). Then the function x(t,-): I' D P — R" is
differentiable at 7 for t € [0, ], and

Dox(t,3)h = z(t,7, h), hel, tel0,al
where z is the solution of the IVP (4.5)-(4.6).

Proof Let ¥y = (¢,£,0,)\ Y) € P be fixed, o, §, My, My and Ms be defined by Theorem 3.2,

M, My, Mg and M7 be defined by (4.1). Let hy = (b, hi, hY, hy, hY) € T be a sequence such

that |hx|r — 0 as k — co. We may assume that |hg|r < 6, hence 7 + hy € P for k € N. For

brevity, we use the notations x(t) := x(t,7), 28(t) := x(t, 5+ hg), 25(t) := 2(t, 7, hy), u(t) :=

t—7(t, x4, &), uF(t) == t—7(t, 2 E+hS), v(t) := t—p(t, zy, X) and v*(t) == t— p(t, zF, Y+ h)).
Integrating (3.1) and (4.5) we get for ¢ € [0, ]

(1) = gt 2 @ ), A+ ) + $(0) + hE(0)
—~g(0, @ + A, (0" (0) + AE(WH(0)), A + B)
/f (u¥(s)), 0+ ) ds.
2(t) = itz 2 (0(),X) + 3(0) — g(0, 5, P(v / F(5, 20, 2(u(s)), 0) ds,
)y = Gt,x)(F, hy, b)) + h{0) — G(0, x)(hf,hg,hx
+/OtL(s,x)(z§,h§,hZ)ds.
Therefore,

(1) — a(t) — (1) ] ]
= gl 2 WMD) 5+ 1Y) — gtz x(v(t)), A) — Gt ) (2F, b 1)

t.x
— [9(0.7+ A, 24 (0)) + B4 (0). A+ ) = 90,8, B(—0(0)), N
_G(va)(h%hz’h%)]
T / [ (s, 2 (04 (5)), 04 1) — F (5,20, 2(u(5)). )

_L(Sa l‘) (ng hia hi)} ds.
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Define the function w*(t) := 2*(t) —z(t) — 2*(t). Then Lemmas 4.2 and 4.3 yield for t € [0, a]
t

W) < Cplhalr + N4< max lwh(t + Q)| + N5/ lw¥|c ds, (4.25)
e|l—r,—7o0 0

where Cy 1= 24, + Bra — 0 as k — oo. Let pf(t) := max{|w*(s)|: —r < s < t}. We have
w®(t) = 0 for t € [—7,0]. Therefore Lemma 2.1 implies from (4.25) that

t

() < Cilhglr + Nap®(t — 7o) + N5/ pF(s)ds, t€0,a]. (4.26)
0

Therefore Lemma 2.2 and p*(t) = 0 for t € [—r, 0] yield

25 (8) — at) — 2(8)] < () < — o

>~ meca’hkhﬂ, t e [0,0é], (427)
- 4

where ¢ is the unique positive solution of cNye~“° + N5 = ¢. Hence the claim of the theorem
follows, since C}, — 0 as k — oo.
The proof of the theorem is complete. (I
The proof immediately implies differentiability of the parameter map in the C-norm:
Corollary 4.5 Assume the conditions of Theorem 4.4. Then the function
Fo>P—C  y=al7)
is differentiable at ¥ € PN M fort € [0,al, and its derivative is given by

Dyxy(-,7)h = z(-,7,h),  hel, tel0,a]
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