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ABSTRACT

In this paper we study the numerical performance of a
parameter identification technique, based on approximation
by equations with piecewise constant arguments, on vari-
ous classes of hereditary systems. The examples considered
here include delay equations with state-dependent delays
and neutral equations.

1. INTRODUCTION

Hereditary systems, i.e., systems with memory, appear as
mathematical models in various applications in engineering.
Many times the general form of the model is known or as-
sumed, but the particular values of some parameters in the
corresponding differential equation (such as coeflicients, val-
ues of delays, the initial function, etc.) are not known, and
have to be identified.

Consider e.g., the initial value problem (IVP) for the non-
linear delay system with state dependent delays

i(t) = f(t,x(t),x(t—T(t,x(t)))), t>0 (L1
with initial condition

2(t) = (1),

We assume that certain parameters, v, in IVP (1.1)-(1.2)
are not known explicitly, but some information is available
on their values via measurements (Xo, X1,...,X;) of the
solution, z(t), at discrete time values ({g,t1,...,%¢;). The

t € [—r,0] (1.2)
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goal is to find the parameter value, which minimizes the
least squares fit-to-data criterion

l
T =Y leltsn) - X', €T,
=0

i.e., which is the best-fit parameter for the measurements.
(Denote this problem by P). Problem P has been studied
by many authors, for different classes of differential equa-
tions (see e.g. Banks and Kunish (1989) and the refer-
ences therein), including delay equations (see e.g. Banks
and Daniel (1982) and Murphy (1990)).

All the above cited papers use the same idea to find the
solution of the optimization problem P:

Step 1) First take finite dimensional approximations of the
parameters, v7, (ie., AN e oI dim IV < o0, v — ~
as N — o0).

Step 2) Consider a sequence of approximate initial value
problems (IVPMVN) corresponding to a discretization of IVP
(1.1)-(1.2) for some fixed parameter v € T with solutions
y™M (4N satisfying that y™(¢,4Y) — =(t,v) as N, M —
oo, uniformly on compact time intervals.

Step 3) Define the least square minimization problems
(PYM) for each N, M = 1,2,..., ie., find v € TV,
which minimizes the least squares fit-to-data criterion

!
TGN = M ) - X AV er™.
1=0

Step 4) Assuming that the actual parameters belong to a
compact subset of I', argue, that the sequence of solutions,



AMM (N, M =1,2,...), of the finite dimensional minimiza-
tion problems PNM™ has a convergent subsequence with
limit ¥ € T

Step 5) Show that ¥ is the solution of the minimization
problem P.

Note, that step 4) and 5) can be argued without using the
particular approximation method of the initial value prob-
lem, using only compactness arguments and step 2) above
(see e.g. in Murphy (1990)).

In Section 2 we define an FEuler-type approximation
scheme for a class of neutral equations which includes the
delay equations with time- and state-dependent delays of
form (1.1) as a special case. (This scheme was introduced
by Gy6ri (1991) for linear neutral equations with constant
delays.) In Section 3 we present numerical examples illus-
trating the applicability of this identification method. Sec-
tion 4 contains the conclusions.

2. NUMERICAL TECHNIQUE
Consider the vector neutral functional differential equa-

tion (NFDE)

%(wni qm(t—n)) - f(a,t,x(t),x(t—r(b,t,x(t))))
= (2.1)

for ¢ > 0, with initial condition

2(t) = (1),

Here ¢ € R® and b € R® on the righ hand side of equa-
tion (2.1) represent parameters in the equation and in
the delay function, respectively, ¢; € R and r; € [0, 00)
are constants (: = 1,...,m), f R® x [0,00) x R™ x
R" — R", = R® x [0,00) x R" — [0,00), and r =
max{r1,..., m,SUP;>q yege T(t, ¢)}, and the initial func-
tion ¢ € C = C([-r,0]; R"). Note that IVP (2.1)-(2.2)
contains IVP (1.1)-(1.2) as a special case by taking m =1
and ¢1 = 0.

Our objective is to identify parameters a and b in the right
hand side of the equation (2.1), the constants ¢; and r; of
the left hand side of (2.1), and the initial function, ¢. We
define v = (a,b,¢1,...,¢m, 71, ..., Tm, ) for our parameter
vector, and T' = R* x R* x R™ x R™ x C for our parameter
space.

Following the general method described in the Introduc-
tion, first we consider finite dimensional approximations
A o= @ WY oY) € TN of parameter
v € I'. Of course we need to approximate only the last
component, ¢, of v, since the other components are finite
dimensional. (In the numerical examples we shall use lin-
ear spline approximations with equidistant mesh points. It
is known (see e.g. Schultz, 1973) that by linear splines we

t € [—r,0] (2.2)

can approximate piecewise smooth functions uniformly on
compact time intervals.)

The second step is to define discretizations of IVP (2.1)-
(2.2) with parameter ~™. We use the natural generalization
of the numerical scheme introduced by Gyé&ri (1991):

Let h be a positive number. Throughout this paper we
shall use the notation [t], = [¢/h]h, where [-] is the greatest
integer function. FElementary estimates give that ¢ — h <
[¢]n <t and therefore [{]p — ¢ as b — 0.

We associate the following NFDE with piecewise constant
right-hand side to (2.1):

G0+ = 101) (23)
= S (™ T g ([, yn ([0 — [ (0, [, g ([21))]n) -

The subscript k of yx(t) emphasizes that y;(¢) is the solution
of (2.3) corresponding to the discretization parameter h.
The associated initial condition to (2.3) is

t € [—r,0]. (2.4)

By a solution of the initial value problem (2.3)-(2.4) we
mean a function yp [, 7] — R"™, which is defined
on [—r,0] by (2.4) and satisfies the following properties on
[0,T7:

(i) it is continuous on [0,77,

. .. d m
(ii) the derivative o (yh(t) + Zi=1 QzN?/h(t - [TzN]h)) ex-

ists at each point ¢ € [0,00) with the possible ex-
ception of the points kb (k = 0,1,2,...) where finite
one-sided derivatives exist,

(i) yn satisfies (2.3) on each interval [kh, (k+1)R)N[0,T]
for k=0,1,2,... .

Using the method of steps it can be verified that IVP
(2.3)-(2.4) has a unique solution on [0,00). Introduce the
notation z(k) = yn(kh). Then it is easy to see, using that
the right hand side of (2.3) is constant on the intervals
[kh, (k + 1)h), that the sequence z(k) satisfies

z(k+1)
= sR+ Yl (k= [0 — sk + 1 - )
+ RS (aN, kh, z(k), z(k — [r(b" , kh, z(k))]h))

for k = 0,1,..., and z(k) = @ (kh) for negative integer
k such that —r < kh < 0. Therefore computing z(k) is a
simple numerical task.

We conjecture the following result:

Theorem 2.1 Assume that the functions f, T and ¢ are lo-
cally Lipschitz-continuous in all of their variables. If v —
v in some “appropriate” sense, then yn(t;vY) — z(t;7)
uniformly on compact time intervals, as h — 07, N — oo,
where z(t;7) and yu(t;47) are the solutions of IVP (2.1)-
(2.2) and IVP (2.8)-(2.4}) corresponding to parameter v and
N respectively.



The proof of this theorem for state-dependent retarded
delay equations and for a very similar approximating scheme
can be found in Hartung (1995).

In practice we proceed as follows: We select “small
enough” h > 0 and “large enough” N, and consider the
least square criterion

!
WM = Mty - xi?, AN er?,
=0

then solve the (finite dimensional) minimization problem
numerically, and use the solution of it as an approximation
of the solution of the original identification problem. (Note
that if the initial function is known then the parameter space
is finite dimensional, and therefore there is no need for its
discretization.)

3. CASE STUDIES

In this section we present some numerical examples to
illustrate the identification method described in the Intro-
duction and in Section 2. We note, that in Examples 3.1,
3.2, 3.4 and 3.5 we used the built in numerical minimization
routine of Mathematica (which does not require the knowl-
edge of the derivative of the minimizing function) for solving
the finite dimensional minimization problems, i.e., for com-
puting the minimum of the least square cost functions, and
we also used Mathematica for evaluating the cost function
for each required value of the parameter, i.e., for computing
the solution of IVP (2.3)-(2.4). In Examples 3.3 and 3.6
(where we had higher dimensional optimization problems)
we used our own nonlinear least square minimization code,
based on secant method with Dennis-Gay-Welsch update,
combined with trust region technique. See Section 10.3 in
Dennis and Schnabel (1983) for detailed description of this
method.

Example 3.1 Consider the scalar equation with constant

delay
&(t) = z(t — 1), t € [0,4], (3.1)
with initial condition
z(t) =1, te[-3,0] (3.2)

t4+1, t e [0,1],
(t* 4 3)/2, te(1,2],
2(t:1) = (£ — 31> + 12t + 1) /6, te[2,3],
(1* — 8% + 42 — 601 4 85)/24, 1€ [3,4]

We used this formula to generate the “measured data” X;
corresponding to time values t; = 0.5¢, (1 = 0,...,8). Our
goal in this example is to identify the “true” delay, 7, using
these measurements. Since the parameter is scalar, there is
no need for discretizing the parameter space (Step 1 of the

general method). To follow Step 2, let A > 0 and define the
approximating [VP

yh(t) = yh([t]h - [T]h)’ te [0’4]’ (3'3)
with initial condition
yn(t)=1,  te€[-3,0] (3.4)

Following Step 3, consider the least squares function

8

Tn(r) = (nltism) = Xo)°,

1=0

r€[0.2,3.0],

where y5,(¢;7) is the solution of (3.3)-(3.4). Here we made
the apriori assumption that the parameter 7 is in the com-
pact set, [0.2,3]. We present the numerical solution of these
minimization problems in Table 3.1 for different h values us-
ing the initial guess 7 = 2.5 in each case. We print out the
computed 7, which minimizes Jx(7), and the corresponding
value of the cost function.

This experiment shows that computed delay values ap-
proximate the true delay, 7 = 1, as h gets smaller.

Table 3.1
h 7 JIn(7)
0.100 1.038789  0.0497927
0.050 1.012446  0.0128838
0.010 1.004631 0.0005232
0.005 1.001152 0.0001310
0.001 1.000847  0.0000052

Example 3.2 Consider the scalar delay equation with
state-dependent delay

&(t) = az® (t—blx(t)])+sin(ct)+sin* (t—sin’(t)), t€[0,3],
(3.5)

with initial condition
z(t) = sin®(1), t<0, (3.6)

where v = (a, b, ¢) are unknown parameters, but we assume
that v € T' =[5, 5] x[0, 5] x[—5, 5]. It is easy to see that the
solution of IVP (3.5)-(3.6) corresponding to parameter val-
ues a = —1.0, b = 1.0 and ¢ = 2.0 is #(t) = sin® ¢. We used
this function to generate data X; = sin® ¢; corresponding to
time values ¢; = 0.25¢, (1 =0,...,12).

The approximating equation corresponding to (3.5) is

gn(t) = ay ([l — [blyn([t]n)[1n) + sin(c[t]n)

+ sin' ([0 = B (@), t€0,3],

and the function to be minimized is

12

Jh(V)ZZ(yh(ti;v)—Xi)2, veTl.

1=0



Table 3.2 contains the numerical results. In this experiment
we used initial guess 2.5 for all unknown parameters, a, b
and c. In this example we also get a good approximation of
the true parameter values.

Table 3.2
h a b c Jn (%)
0.100 -1.07566 1.06121 2.05960 0.00769018
0.050 -1.03784 1.03633  2.03225 0.00181179
0.010 -1.00759 1.00826 2.00687  0.00006892
0.005 -1.00373 1.00443  2.00355  0.00001710
0.001  -1.00074 1.00089  2.00071  0.00000068

Example 3.3 Consider the scalar equation

Ml) = (t— 1- t%) . te0,2,  (3.7)

with initial condition

2(t) = o(1),

It is easy to check that the solution of IVP (3.7)-(3.8) with
initial function

t € [-2,0] (3.8)

2(t+2) -2<t< 05
J— 3 b - - )
wlt) = { 1, —05<t<0 (3.9)
is
sy = | TS = Flog(t41), tefo,1],
1—2log2+t, te1,2].

We generated measurements X; corresponding to time val-
ues t; = 0.1, (¢ = 0,...,20) by using this function.
The approximate equation corresponding to (3.7) is

yn(t) = yn ([t]h - [1 + [t]h%]h) . telo,2).

First we approximate the unknown initial function on [—2, 0]
by linear spline functions with three node points at —2,
—1 and 0, with corresponding values a1, a2 and as at the
node points. We assume that the parameter values satisfy
a; € [—4,4],1=1,2,3,ie, v = (a1,a2,a3) €T = [—4,4]°.
Then the parameter space is three dimensional. The corre-
sponding cost function is:

20

Tn(v) = (wnltsy) = X0)°,  v€l. (3.10)

1=0

We present the numerical solution of this problem in Ta-
ble 3.3 for several h values.

Next we consider 5 and 7 dimensional linear spline ap-
proximations of the initial function with node points at
Ti=-24(i—1)/2,i=1,....5and T, = =2+ (i — 1)/3,
1 = 1,...,7, respectively, and with the corresponding val-
ues a; (1 = 1,2,...,5 and ¢ = 1,2,...,7, respectively) at

Table 3.3

h a1 az a3 Jn ()
0.100 -0.312237 0.858357 1.032257 0.0069884
0.050 -0.376395 0.854938 1.032996 0.0069854
0.010 -0.419767  0.854892 1.032343 0.0068774
0.005 -0.423922 0.854539 1.032307 0.0068753
0.001 -0.426665 0.854214 1.032277  0.0068822

these points. Let v = (a1,...,as) and T = [—4,4]°, and
v = (a1,...,a7) and T' = [—4,4]", respectively. Then the
parameter space is five and seven dimensional, and the min-
imizing function, (3.10), is of five and seven variables. The
corresponding numerical results are shown in Table 3.4 and
Table 3.5. In Figure 3.1 we plotted the true initial function,
defined by (3.9) (solid line), and the computed approximate
initial functions with three, five and seven node points (dot-
ted linear splines) corresponding to h = 0.001.

Table 3.4
h aj an as
0.100 0.098056  0.150230 0.761572
0.050 0.088556  0.143898 0.742056
0.010 0.081379  0.140601 0.732469
0.005 0.080761  0.140047 0.731171
0.001 0.080713  0.139400 0.730222

h a4 as Jn(7)
0.100 1.068640 0.992574  0.0022000
0.050 1.075129 0.992861 0.0020954
0.010 1.074786 0.992916 0.0021417
0.005 1.074835 0.992928 0.0021403
0.001 1.074952 0.992918 0.0021432

Table 3.5

h aq an as Qg
0.100 0.055464 0.117036 0.371743 0.637042
0.050 0.030480 0.114776 0.358293 0.611259
0.010 0.007429 0.112583  0.348555 0.596303
0.005 0.006507 0.111256  0.347952 0.595390
0.001 0.005875 0.110454 0.347464 0.594431

h as de ar Jn(3)

0.100 1.140893 0.950127 0.997607 0.0013675
0.050 1.177600 0.954204 0.998046 0.0012264
0.010 1.170907 0.957232 0.998201 0.0012996
0.005 1.170391 0.957714 0.998191 0.0013049
0.001 1.170289 0.957939 0.998181 0.0013094

Example 3.4 Our next example is the scalar NFDE

d

E(x(t)—l—qx(t—l)) — a(t—2), t>0, (3.11)

z(t) ©(t), t€[-2,0], (3.12)



s -0.25¢

Figure 3.1

where the initial function is
— t+ 2a -
p(t) = { 2, te[=1.0]. (3.13)

It is easy to obtain by the method of steps that the solution
of IVP (3.11)-(3.12) corresponding to ¢ = —0.5 is

-t te[o,1],
s(ty=q 3t =3 +3t—3  te[L2] (3.14)
1L 2 -2 1 e[2,3]

The approximate IVP is

% (yh(t) +qy(t - [1]h))

yr([tle — [2]n), t€[0,3],

yn(t) = (1), te[-2,0]
We minimize
12
In(q) = Z(yh(ti; q) — Xi)7, q € [-3.0,3.0],
=0

where we use the formula of the true solution to gen-

erate data X; corresponding to time values ¢; = 0.251,
t = 0,...,12. The numerical results of the minimization
problems; corresponding to the initial guess ¢ = 0, are

shown in Table 3.6.

Table 3.6

h q Jn (@)
0.100 -0.486359 0.0033643
0.050 -0.492758 0.0008282
0.010 -0.498492 0.0000317
0.005 -0.499242 0.0000079
0.001 -0.499848 0.0000003

Example 3.5 Consider the scalar NFDE

t €[0,3]

%(x(t) ~0se(t-1)) = x(t-2)

with initial condition (3.12)-(3.13). Then, as we have seen in
the previous example, the solution corresponding to r = 1
is given by (3.14). The objective of this example is the
identification of the delay r, where we make the assumption
that 7 € [0.2,3]. We use the measurements of the previous
example. The cost function is

12

In(r) = (un(tisr) = Xa)%,

1=0

r€[0.2,3.0].

The numerical results, corresponding to initial guess r = 2,
are presented in Table 3.7.

Table 3.7
h 7 Jp(7)
0.100 1.06389  0.008292296
0.050 1.02878  0.002227256
0.010 1.01193 0.001047141
0.005 1.00212 0.000023315
0.001 1.00054  0.000000936

Example 3.6 Consider again the scalar NFDE

t e [o,2],
te[-2,0]

L (et —055(-1) = w(t-2),
x(t) = (),

The solution corresponding to initial function (3.13) is given
by (3.14). In this example we would like to identify the
initial function, using the measurements taken at the points
t; = 0.1z, ¢ = 0,...,30 and the formula (3.14). Since the
initial function is infinite dimensional, first we approximate
it using linear spline functions with equidistant mesh points.
In the fist case consider a 3 dimensional approximation, i.e.,
a linear spline with 3 mesh points at —2, —1 and at 0 with
corresponding function values a1, a2 and as. We assume
that v = (a1,a2,a3) € T = [—4,4]?, and we minimize the
cost function

30

Jh(V)ZZ(yh(ti;v)—Xi)2, veTl.

1=0

Table 3.8 presents our numerical findings, using initial
guesses a; = 0 (1 = 1,2,3). Table 3.9 and Table 3.10
contain the respective numerical results for 5 and 7 dimen-
sional spline approximation, using constant zero function
as the initial guess for ¢. We show the true initial func-
tion (solid line) and the identified initial functions (dotted
graphs) using 3, 5 and 7 dimensional spline approximation
and discretization parameter h = 0.001 in Figure 3.2. In
this exmple, despite the low (N = 3, 5 and 7) dimensional
approximation of the initial function, we get a “good” iden-
tification of the initial function.



Table 3.8

h a1 az a3 Jn(7)
0.100 0.135754 0.803422 -0.092011 0.0609659
0.050 0.085954 0.842106 -0.083065 0.0547063
0.010 0.039925 0.874002 -0.075508 0.0494167
0.005 0.033756  0.878037 -0.074540 0.0487403
0.001 0.028753 0.881273 -0.073762  0.0481969

Table 3.9
h aj an as
0.100 0.037568 0.533903 0.899094
0.050 0.020140 0.521371 0.936173
0.010 0.001626 0.509293 0.965196
0.005 -0.001013 0.507636 0.968778
0.001 -0.003178 0.506285 0.971635
h a4 as In (%)
0.100 0.137601 -0.014958 0.0027388
0.050 0.168314 -0.014970 0.0023605
0.010 0.195577 -0.014960 0.0021681
0.005 0.199150 -0.014954  0.0021505
0.001 0.202034 -0.014948 0.0021373
Table 3.10

h aj an as aaq
0.100 -0.049855  0.396062 0.674139 0.896522
0.050 -0.055801 0.386530 0.663527 0.945686
0.010 -0.063387 0.377568 0.653336 0.982823
0.005 -0.064632 0.376323 0.651967 0.987291
0.001 -0.065686  0.375301 0.650856 0.990834

h as de ar Jn(7)
0.100 0.364778 0.034412 -0.002997 0.0006052
0.050 0.396703 0.058223 -0.002624  0.0003475
0.010 0.423355 0.078563 -0.002712 0.0002502
0.005 0.426764 0.081188 -0.002744  0.0002449
0.001 0.429503 0.083302 -0.002772 0.0002418

-1.5

-1
Figure 3.2

4. CONCLUSIONS

In this paper we experimented with a numerical method
for parameter identification for various classes of hereditary
systems. Although our results are preliminary in nature,
the indication is that the method is applicable even to cer-
tain neutral functional differential equations. We intend to
continue this study in forthcoming publications.
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