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Abstract In this paper we study parameter identification issues by computational
means for a set of nonlinear delay equations which have been proposed to model
the dynamics of a simplified version of the respiratory control system. We design
specific inputs for our system to produce “information rich”output data needed
to determine values of unknown parameters. We also considerthe effects of noisy
measurements in the identification process. Several case studies are included.

1 Introduction

Mathematical models describing the chemical balance mechanism of the respiratory
control system are given in the form of nonlinear, parameterdependent, delay dif-
ferential equations [3, 4, 5]. The analysis of the direct problem (i.e., it is assumed
that the values of the parameters are known) corresponding to the model equations
shows that the system has a unique equilibrium, and that the stability of this equi-
librium depends on the parameter values (see [5] for details). This observation leads
naturally to the question of parameter identification in themodel equations based
on available, but possibly noisy measurements. In this paper we present a compu-
tational procedure, applicable for large classes of functional differential equations
with state-dependent delays [11, 15, 16] which can be used toperform parameter es-
timation in respiratory control models. We also illustratehow information rich data
can enhance the effectiveness of the estimation process. Another issue we study
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is what are the most promising measurements available for identification purposes
(i.e., should one measure gas concentrations or ventilation volumes)?

In Section 2 we introduce our model equations; in Section 3 wedescribe the
numerical method we use to run simulations on the model equations. Section 4 out-
lines the parameter estimation process and contains several case studies. In Section
5 we provide a discussion of our findings.

2 Model equations

We consider the system of nonlinear delay equations describing a simple model of
the human respiratory control system

ẋ(t) = a11−a12x(t)−a13V (t,x(t − τ),y(t − τ))(x(t)− xI) (1)

ẏ(t) = −a21−a22y(t)+a23V (t,x(t − τ),y(t − τ))(yI − y(t)) (2)

wherex(t) and y(t) denote the arterialCO2 and O2 concentrations, respectively,
V (·, ·, ·) is the ventilation function,τ is the transport delay,xI andyI are inspired
CO2 andO2 concentrations. We assume that the ventilation function has the form

V (t,x,y) = GP(t)W (x,y) (3)

where the control gain,GP(t), is a function of time. For simplicity we assume that
the time dependency ofGP is piecewise constant, and in particular,

GP(t) =







GP1, 0≤ t < θ1,

GP2, θ1 ≤ t < θ2,

GP3, θ2 ≤ t.
(4)

whereθ1,θ2 > 0,GP1 ≥ 0,GP2 ≥ 0 andGP3 ≥ 0 are constant parameters.W is given
by

W (x,y) = e−0.05y(x− IP). (5)

Moreover, in (1)-(2) we have that

a11 = 863
Q̇KCO2PVCO2

MLCO2

a12 = 863
Q̇KCO2

MLCO2

a13 =
EF

MLCO2

a21 = 863
Q̇

MLO2

(−mvPVO2
+Ba −Bv)
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a22 = 863
Q̇ma

MLO2

a23 =
EF

MLO2

,

where the normal values of the parameters appearing on the right hand side of the
above equations are listed in Table 1 (See also [3]).

Table 1 Normal parameter values

Quantity Unit Value
τ min 0.1417
Q̇ l/min 6.0
KCO2 0.0057
PVCO2

mmHg 46.0
PVO2

mmHg 41.0
MLCO2

l 3.2
MLO2

l 2.5
mv 0.0021
ma 0.00025
Bv 0.0662
Ba 0.1728
GP1 l/min/mmHg 45.0
IP mmHg 35.0
xI 0
yI 146.0

Substitution of the normal values into equations (1)–(2) yields

ẋ(t) = 422.4277−9.2233x(t)

−0.21875V (t,x(t −0.1417),y(t −0.1417))x(t) (6)

ẏ(t) = −42.8946−0.5178y(t)

+0.28V (t,x(t −0.1417),y(t −0.1417))(146− y(t)) (7)

with ventilation function

V (t,x,y) = GP(t)e−0.05y(x−35), (8)

whereGP is defined by (3).
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3 Numerical Approximation

In this section we define a simple numerical scheme to approximate solutions of (1)–
(2). This method is introduced in [10] for linear scalar delay and neutral differential
equations, and later this scheme was extended for a large class of nonlinear delay
systems in [11, 12]. Leth be a fixed positive constant, and define the notation

[t]h =
[ t

h

]

h,

where[·] is the greatest integer function. Then[t]h as a function oft is piecewise
constant, since[t]h = nh for t ∈ [nh,(n + 1)h). For a fixedh > 0 we associate the
system

ẋh(t) = a11−a12xh([t]h)

−a13V ([t]h,xh([t]h − [τ]h),yh([t]h − [τ]h))(xh([t]h)− xI) (9)

ẏh(t) = −a21−a22yh([t]h)

+a23V ([t]h,xh([t]h − [τ]h),yh([t]h − [τ]h))(yI − yh([t]h)) (10)

for t ≥ 0. For negativet we associate the initial functions of (1) and (2) to (9) and
(10), respectively. System (9)–(10) is a system of equations with piecewise constant
argument (EPCA). Such equations were introduced and first studied by Cooke and
Wiener ([6, 7, 8, 20]). The solutions,xh andyh, of (9)–(10) are defined as continu-
ous functions, which are differentiable and satisfy system(9)–(10) on each interval
(nh,(n + 1)h) (n = 0,1,2, . . .). Since the right-hand-side of both (9) and (10) are
constant on each interval[nh,(n+1)h), we get that bothxh andyh are piecewise lin-
ear continuous functions (linear spline functions). Therefore, they are determined
by their values at the mesh pointsnh. Introduce the sequences

un = xh(nh) and vn = yh(nh),

and let
k =

[τ
h

]

.

Then integrating (9) and (10) fromnh to t and taking the limitt → (n + 1)h−, we
get by simple calculation thatun andvn satisfy

un+1 = un +h
(

a11−a12un −a13V (nh,un−k,vn−k)(un − xI)
)

, (11)

vn+1 = vn +h
(

−a21−a22vn +a23V (nh,un−k,vn−k)(yI − vn)
)

, (12)

for n = 0,1,2, . . ., where for negative integern the sequencesun andvn are defined
by un = x(nh) andvn = y(nh), i.e.,the initial functions corresponding to the original
system (1)–(2). Therefore the sequencesun andvn are well-defined and can be easily
generated by the explicit delayed recurrence relations (11)–(12), so the solutions of
(9)–(10) are uniquely determined. It is shown in [11] that
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lim
h→0+

xh(t) = x(t) and lim
h→0+

yh(t) = y(t)

uniformly on each interval[0,T ] for anyT > 0.

Example 1. In this example we study numerically the effect of changing the control
gain for the stability of the solutions of the respiratory system (1)–(2). We assume
normal table values except that we useτ = 0.25, i.e., we consider (6)-(7) with venti-
lation (3)–(5). Furthermore, in (4) we selectθ1 = 2, θ2 = 8 for the switching times,
andGP1 = 45, GP2 = 60 andGP3 = 30 for the control gains. We start the system
from its equilibrium corresponding to theGP(t) = GP1 constant gain, i.e., use con-
stant initial functions

x(t) = 41.1906, t ≤ 0, and y(t) = 81.5645, t ≤ 0,

The numerical solution corresponding to the discretization constanth = 0.001 is
shown in Figure 1.

Fig. 1
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We can see from the figure that the equilibrium of the system with gainGP(t) =
GP2 is unstable, (in fact, it is asymptotically periodic if we compute the solution for
a long enough time interval), but after switching back to gain constantGP(t) = GP3,
it is again asymptotically stable.

4 Parameter Estimation

We consider again system (1)–(2) with ventilation (3)-(4).We assume that some of
the parameters in this system are not known, and we denote theunknown parameters
by γ1, . . . ,γm. We can consider, for example, the control gain constantsGP1,GP2 and
GP3 as the unknown parameters (in that casem = 3 andγi = GPi for i = 1,2,3), or
the transport delayτ can be the only unknown parameter (m = 1, γ1 = τ), but we can
consider any other parameters in equations (1) and (2), or inthe ventilation func-
tion (3)–(4) to be unknown. The goal is to determine the values of these unknown
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parameters, assuming we know the measurements of the solutions at finitely many
times,t1, t2, . . . , tM. One standard approach to this problem is to define a least-square
cost function, and then find the parameter values with the least possible cost.

First we need to introduce the following notation. Assume all parameters (in-
cluding the initial functions) exceptγ1, . . . ,γm in (1)–(2), (3)-(4) are fixed. Then the
solutions corresponding to particular selections of the parameter valuesγ1, . . . ,γm of
this problem are denoted by

x(t;γ1, . . . ,γm) and y(t;γ1, . . . ,γm).

Suppose the measurements ofx andy at the timeti are denoted byXi andYi, re-
spectively, fori = 0, . . . ,M. We will use equally spaced measurements over a time
interval[T0,T ], i.e.,

ti = T0 +
T −T0

M
i, i = 0,1, . . . ,M. (13)

Of course, any time values could be used. Then we define the cost function by

J(γ1, . . . ,γm) =
M

∑
i=1

(x(ti;γ1, . . . ,γm)−Xi)
2 +

M

∑
i=1

(y(ti;γ1, . . . ,γm)−Yi)
2
. (14)

Then the mathematical problem is to find the parameter valuesγ1, . . . ,γm which
minimize the cost functionJ.

One standard approach to solve this problem used e.g., in [1,2, 13, 14, 17] is
the following: find finite dimensional approximate solutions xN , yN of (1)-(2), and
define the corresponding costJN as

JN(γ1, . . . ,γm) =
M

∑
i=1

(xN(ti;γ1, . . . ,γm)−Xi)
2 +

M

∑
i=1

(yN(ti;γ1, . . . ,γm)−Yi)
2
,

and find the minimizer(γN
1 , . . . ,γN

m ) of JN . One can show (see, e.g., [14]) that, under
minor assumptions, a subsequence of(γN

1 , . . . ,γN
m ) approaches to the minimizer of

J.
In this paper we consider a sequence of discretization constants,hN , tending to

0, and use the approximation scheme defined in the previous section corresponding
to hN as the numerical scheme in the above process. Then ifN is large enough,
i.e., equivalently,hN is small enough, we find the minimizer of the corresponding
cost functionJN by a a nonlinear least square minimization code, based on a secant
method with Dennis-Gay-Welsch update, combined with a trust region technique.
See Section 10.3 in [9] for detailed description of this method. Then we consider the
result as the approximation of the minimizer ofJ. Here we know that for the “true
parameters” the value of the cost function is 0, so if the numerical method stops at
a parameter value where the cost function is not close to 0, then we can conclude
that the method is terminated at a local minimum instead of a global minimum.
Then we restart the method from a different initial parameter value. Of course, we
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know that the numerical method converges only locally, so wehave to find initial
guesses close enough to the true parameter values in order toobserve convergence.
Another important issue in the parameter estimation process is that whether two
different parameter sets can generate the same measurements, i.e., the question of
identifiability of the parameters. This is a difficult theoretical problem (see, e.g.,
[18, 19] or Example 5.4 in [14]). The lack of identifiability can be another reason
for getting non converging approximations.

In the remaining part of this section we give several numerical examples to
demonstrate the applicability of the above parameter estimating process for the res-
piratory system (1)–(4). In all these examples we achieved good recovery of the
original parameters, which also indicated that we numerically observed identifiabil-
ity of the considered parameters.

Example 2. In this example we generated measurements of (1)–(4) corresponding to
the normal parameter values listed in Table 1 and using a constant gain coefficient
functionGP(t), i.e.,

GP1 = GP2 = GP3 = 45.

We assume that the system is at the equilibrium, so we use initial conditions
x(t) = 41.1906 andy(t) = 81.5645 which correspond to the equilibrium values. The
measurements are taken over the interval[T0,T ] = [0,2] using formula (13) with
M = 11. We consider the coefficientsa12,a13,a22 anda23 to be unknown, and the
goal in this example is to estimate these parameter values using the measurements.
In this example we used discretization stepsizeh = 0.01 and the initial parameters

a12 = 8.5, a13 = 0.3, a22 = 0.6, and a23 = 0.4.

The first three steps of the numerical method can be seen in Figure 2. The solid line
is the solutionx, y and the ventilation functionW along the solutions correspond-
ing to the true parameters, and the circles are the measurements of the respective
functions at sample time points. The dotted curves are the solutions x, y and the
ventilationV along the solutions corresponding to parameter values generated by
the numerical scheme in the first two steps. We can see that thegraphs approach
to the graph corresponding to the true parameter values evenin the first few steps.
Table 2 contains the value of the cost function, the actual parameter value, and the
error of the particular parameter when compared to the true parameter value at each
step. (We denote the error in the parameterγ by ∆(γ).) The method converges in five
steps, but in each parameter value a small error can be observed. Our explanation
for this error (which can be seen running the code from different initial values, as
well) is that the constant solution is not “rich enough” for better estimation.

Example 3. In this example we change the gain constants in the ventilation to move
the solutions away from the equilibrium. We use switching timesθ1 = 0.2 andθ2 =
0.4 and gain constants
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Fig. 2
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Table 2 Estimation ofa12,a13,a22,a23, caseGP1 = GP2 = GP3 = 45

step cost a12 a13 a22 a23 ∆(a12) ∆(a13) ∆(a22) ∆(a23)

0 287.84623772 8.50000 0.30000 0.60000 0.40000 0.72330 0.08125 0.08220 0.12000
1 0.38419648 8.80052 0.30321 0.86988 0.36664 0.42278 0.08446 0.35208 0.08664
2 0.00077480 8.81127 0.30535 0.86543 0.37275 0.41203 0.08660 0.34763 0.09275
3 0.00056159 8.81142 0.30538 0.86538 0.37282 0.41188 0.08663 0.34758 0.09282
4 0.00043748 8.81160 0.30541 0.86535 0.37287 0.41170 0.08666 0.34755 0.09287
5 0.00034371 8.81177 0.30544 0.86533 0.37290 0.41153 0.08669 0.34753 0.09290
6 0.00034371 8.81177 0.30544 0.86533 0.37290 0.41153 0.08669 0.34753 0.09290

GP1 = 45, GP2 = 0, GP3 = 60.

This corresponds to the physical case when one takes normal breaths, then stops
breathing for 12 seconds (between time 0.2 and 0.4 minutes), but then takes larger
breaths for a while. We again try to estimatea12,a13,a22 anda23. We used the same
initial parameter values, measurements andh = 0.01 as in Example 2. The numerical
results can bee seen in Figure 3 and in Table 3. In this case we achieved perfect
recovery of the true parameter values up to 5 decimal digits accuracy in the fifth
step.

Fig. 3
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Table 3 Estimation ofa12,a13,a22,a23, caseGP1 = 45,GP2 = 0, GP3 = 60

step cost a12 a13 a22 a23 ∆(a12) ∆(a13) ∆(a22) ∆(a23)

0 350.31169443 8.50000 0.30000 0.60000 0.40000 0.72330 0.08125 0.08220 0.12000
1 51.72675038 8.86517 0.33654 0.63847 0.30804 0.35813 0.11779 0.12067 0.02804
2 3.54921161 9.21149 0.25766 0.53943 0.29705 0.01181 0.03891 0.02163 0.01705
3 0.00525638 9.21676 0.22070 0.51609 0.27984 0.00654 0.00195 0.00171 0.00016
4 0.00000009 9.22328 0.21876 0.51779 0.28000 0.00002 0.00001 0.00001 0.00000
5 0.00000000 9.22330 0.21875 0.51780 0.28000 0.00000 0.00000 0.00000 0.00000

Example 4. Now we use the same measurements andh = 0.01 as in Example 3, but
this time we considerGP1,GP2 andGP3 as the unknown parameters in the system.
(The switching times are the same as in the previous example.) Starting from the
initial guessGP1 = GP2 = GP3 = 40, we again get good approximation of the true
parameters, as can be seen in Figure 4 and in Table 4.

Fig. 4

0 0.5 1 1.5 2
32

34

36

38

40

42

44

46
x

Step 0
Step 1
Step 2

0 0.5 1 1.5 2
60

70

80

90

100

110
y

Step 0
Step 1
Step 2

0 0.5 1 1.5 2
0

5

10

15

20

25
V

Step 0
Step 1
Step 2

Table 4 Estimation ofGP1, GP2 andGP3

step cost GP1 GP2 GP3 ∆(GP1) ∆(GP2) ∆(GP3)

0 483.75379438 40.00000 40.00000 40.00000 5.00000 40.00000 20.00000
1 14.01499742 47.97180 5.86922 68.70514 2.97180 5.86922 8.70514
2 0.90980645 44.53413 1.28130 59.25469 0.46587 1.28130 0.74531
3 0.04368879 45.07905 0.28985 59.98344 0.07905 0.28985 0.01656
4 0.03010176 44.99316 0.28580 60.00549 0.00684 0.28580 0.00549
5 0.01160245 44.80199 0.28644 60.08301 0.19801 0.28644 0.08301
6 0.01160203 44.80199 0.28644 60.08302 0.19801 0.28644 0.08302

Example 5. In this example we repeat the previous experiment with the only differ-
ence that in the measurements ofx andy there is a random error of normal distri-
bution with absolute value less than 0.3. The correspondingnumerical results can
be seen in Figure 5 and in Table 5. With these noisy measurements the numerical
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Fig. 5
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Table 5 Estimation ofGP1, GP2 andGP3 using noisy measurements ofx andy

step cost GP1 GP2 GP3 ∆(GP1) ∆(GP2) ∆(GP3)

0 485.59595635 40.00000 40.00000 40.00000 5.00000 40.00000 20.00000
1 14.52482670 47.17405 5.54416 68.35639 2.17405 5.54416 8.35639
2 1.15085189 43.70021 1.16266 58.68728 1.29979 1.16266 1.31272
3 0.24101584 44.26992 0.20717 59.44590 0.73008 0.20717 0.55410
4 0.22474717 44.17809 0.20403 59.46826 0.82191 0.20403 0.53174
5 0.20156319 43.98286 0.20541 59.55063 1.01714 0.20541 0.44937
6 0.20156185 43.98286 0.20541 59.55066 1.01714 0.20541 0.44934

results still converge, but we can observe larger errors, inGP1 andGP3, than in the
previous example.

Example 6. In this example we assume that we do not have direct measurements of
the solutionsx andy, instead, we suppose we can measure the value of the ventila-
tion function along the solution. Let̄GP1, ḠP3, ḠP3 denote the true parameters,

Vi = V (ti,x(ti; ḠP1, ḠP3, ḠP3),y(ti; ḠP1, ḠP3, ḠP3)), i = 0,1, . . . ,M,

and now we use the following cost function

J̃(GP1,GP3,GP3) =
M

∑
i=0

(V (ti,x(ti;GP1,GP3,GP3),y(ti;GP1,GP3,GP3))−Vi)
2

instead of the one defined by (14). Otherwise we used the same initial parameters
and discretization constant as in the previous example. Thecorresponding results
can be found in Figure 6 and in Table 6. We can see that the measurements of
the ventilation contained enough information on the parameters to guarantee the
convergence of the method. In fact, in this case the last stepwas even better than
that in the previous example.

Example 7. We repeat the previous experiment but adding a random error of normal
distribution with absolute value less than 0.3 to the measurements ofV used in the
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Fig. 6
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Table 6 Estimation ofGP1, GP2 andGP3 using measurements ofV

step cost GP1 GP2 GP3 ∆(GP1) ∆(GP2) ∆(GP3)
0 42.10899178 40.00000 40.00000 40.00000 5.00000 40.0000020.00000
1 2.63937045 48.52067 12.50361 71.69544 3.52067 12.50361 11.69544
2 0.22630530 44.09782 2.03095 57.15278 0.90218 2.03095 2.84722
3 0.00867380 45.50737 0.13858 60.12323 0.50737 0.13858 0.12323
4 0.00443630 45.31892 0.13395 60.05083 0.31892 0.13395 0.05083
5 0.00044917 45.01624 0.13081 59.99976 0.01624 0.13081 0.00024
6 0.00025245 44.95685 0.12889 60.00478 0.04315 0.12889 0.00478

previous example. With these noisy measurements the numerical approximations
still converge, but the rate of convergence is very slow. We listed only the first 7
steps of the numerical method in Table 7, and the first two iterates in Figure 7. We
can observe larger error than in the previous example.
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Example 8. In this example we assume that the transport delayτ is the only un-
known parameter. If we start the system from its equilibrium, then changing the
time delay has no effect on the solution, therefore it is not possible to identify the
delay from such measurement. Therefore it is necessary to move the system away
from the equilibrium. We apply the same procedure as before,i.e., we change the
gain values at the switching times as follows
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Table 7 Estimation ofGP1, GP2 andGP3 using noisy measurements ofV

step cost GP1 GP2 GP3 ∆(GP1) ∆(GP2) ∆(GP3)
0 41.06549791 40.00000 40.00000 40.00000 5.00000 40.0000020.00000
1 2.69930168 47.91054 12.67821 71.49751 2.91054 12.67821 11.49751
2 0.26392223 43.53271 2.32477 56.08888 1.46729 2.32477 3.91112
3 0.10162997 43.60376 0.87665 57.97591 1.39624 0.87665 2.02409
4 0.10161041 43.59960 0.87671 57.97828 1.40040 0.87671 2.02172
5 0.10148228 43.54956 0.88325 57.97853 1.45044 0.88325 2.02147
6 0.10142830 43.52050 0.89136 57.96415 1.47950 0.89136 2.03585
7 0.10135694 43.47035 0.90820 57.93390 1.52965 0.90820 2.06610

θ1 = 0.2, θ2 = 0.4, GP1 = 45, GP2 = 0, GP3 = 60.

We also observed that if we use measurements on the interval where the solution is
still constant, i.e., on[0,0.2], then at these points the solution again does not depend
on the delay, and the numerical minimization method will notusually converge.
Therefore now we used the interval[T0,T ] = [0.3,2] to make measurements using
equidistant time points withM = 11. Starting fromτ = 0.25 and usingh = 0.0005
we obtained a convergent sequence, what can be seen in Figure8 and in Table 8.
We get again a very good approximation of the original delay value,τ = 0.1417. In
this experiment the convergence of the scheme is sensitive for the selection of the
initial parameter value. The reason of it is that if at any step the numerical scheme
produces a “large”τ, then using thatτ the corresponding solution will be constant
on [0.3,1], therefore the minimization will fail. Also, in identifying the delay the
discretization constant has to be very small, since otherwise small change in the
delay has no effect on the approximate solution, so the minimization will fail. For
the same reason, in the minimization code the parameter which determines the time
steps of computing approximate derivatives has to be relatively large (compared to
the previous examples) otherwise again the change in the delay will not effect the
solution, so the minimization will fail.

Fig. 8
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Table 8 Estimation ofτ
step cost τ ∆(τ)
0 458.59350832 0.25000 0.10830
1 53.96078682 0.10704 0.03466
2 42.51290806 0.11226 0.02944
3 20.15586956 0.12306 0.01864
4 0.29816598 0.14364 0.00194
5 0.00000000 0.14178 0.00008

5 Conclusions

We have investigated parameter identification issues in a simplified model of the res-
piratory system. Case studies indicated identifiability ofvarious system parameters,
e.g., coefficients, gains, and transport delay. We obtainedstrong evidence that ”in-
formation rich” input data significantly improves the accuracy of the determination
of unknown parameters. Our numerical simulations also showed that identification
of system parameters is more or less equally possible eitherby measuringO2,CO2

concentrations or ventilation data. The method presented here is applicable to mod-
els with multiple state-dependent delays [17, 16].
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