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Abstract. In this paper we give a sufficient condition to imply local and global
asymptotic attractivity of the equilibrium of the Cohen-Grossberg neural network
with time-dependent delays of the form

ẋi(t) = ci(x(t))



−di(xi(t)) +

n
∑

j=1

aijfj(xj(t)) +

n
∑

j=1

bijfj(xj(t− τij(t))) − Ii





t ≥ 0 (i = 1, . . . , n) independently of the delays.

keywords: delayed cellular neural networks, global attractivity, M-matrix

1. Introduction

The notion of cellular neural networks (CNNs) was introduced by Chua and
Yang ([6]), and since then, CNN models have been used in many engineering
applications, e.g., in signal processing and especially in static image treat-
ment [7]. As a generalization of CNNs, cellular neural networks with delays
(DCNNs) were introduced by Roska and Chua [15].
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In [8] Cohen and Grossberg proposed a neural network model (CGNN)
described by the following system of ordinary differential equations

ẋi(t) = ci(xi(t))



−di(xi(t)) +

n
∑

j=1

aijfj(xj(t)) − Ii



 , t ≥ 0 (1.1)

(i = 1, . . . , n). Here n is the number of neurons in the network; xi(t) is the
potential of the ith neuron; ci(xi(t)) represents the amplification function;
di(xi(t)) is an appropriately behaved function such that the solution remains
bounded; fj(xj) is the activation function of the ith neuron; aij denotes the
strengths of the jth unit on the ith unit at time t; and Ii is an external input
to the ith neuron.

In this paper we study the asymptotic stability of the CGNN model with
time-dependent delays of the form

ẋi(t)=ci(xi(t))



−di(xi(t)) +

n
∑

j=1

aijfj(xj(t)) +

n
∑

j=1

bijfj(xj(t− τij(t))) − Ii





(1.2)
for t ≥ 0 (i = 1, . . . , n). Here τij(t) corresponds to delay of signals from the
ith neuron to the jth neuron. We associate the initial conditions

xi(t) = ϕi(t), t ∈ [−r, 0], i = 1, . . . , n, (1.3)

to (1.2), where r = max{supt≥0 τij(t) : i, j = 1, . . . , n}.
The delayed CGNN model (1.2) includes as a special case (using ci(x) =

1, di(x) = γix) the delayed Hopfield CNN model

ẋi(t) = −γixi(t) +

n
∑

j=1

aijfj(xj(t)) +

n
∑

j=1

bijfj(xj(t− τij(t))) − Ii, (1.4)

t ≥ 0, (i = 1, . . . , n).
We assume throughout this paper that

(H1) ci : R → (0,∞) is continuous for i = 1, . . . , n;

(H2) di : R → R is continuous and increasing for i = 1, . . . , n;

(H3) fi : R → R is continuous and increasing, and |fi(x)| ≤M for i = 1, . . . , n.
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A typical, widely used activation function is the Hopfield output function
f : R → R defined by

f(t) =
1

2
(|t+ 1| − |t− 1|) =







1, t > 1,
t, −1 ≤ t ≤ 1,
−1, t < −1

(1.5)

satisfies (H3). Another frequently used activation function in applications is
a sigmoid-type smooth function, like f(x) = tanhx.

The stability of (1.2) and more general classes of CGNNs has been in-
tensively studied, see, e.g., [1], [3]–[5], [10]–[11], [16]–[20], and the references
therein. Note that in these references (H1)–(H3) (together with some ad-
ditional conditions) are used as standard assumptions on the parameters of
(1.2).

Arik and Orman in [1] proved that if (H1)–(H3) holds and

0 < αi ≤ ci(x) ≤ αi (x ∈ R) (1.6)

di(x) − di(y)

x− y
≥ γi > 0, |gi(x) − gi(y)| ≤ Li|x− y|, (x 6= y, x, y ∈ R),

(1.7)

‖A‖1 + ‖B‖1 <
γmαm

αMLM

, (1.8)

where γm = min{γ1, . . . , γn}, αm = min{α1, . . . , αn}, αM = max{α1, . . . , αn},
LM = max{L1, . . . , Ln}, ‖ · ‖1 is the matrix norm generated by the ‖x‖1 =
∑n

k=1 |xi| vector norm, then (1.2) has a unique equilibrium, which is globally
exponentially stable. Hwang, Cheng and Liao [11] proved a similar result, but
instead of (1.8) they assumed

‖A‖2 + ‖B‖2 <
γmαm

αMLM

.

Wang, Zou [17] showed that under (H1)–(H3), (1.6), (1.7), aij = 0 (i, j =
1, . . . , n), and

αiγi > Li

n
∑

j=1

|bij |αj, i = 1, . . . , n (1.9)

yields that (1.2) has a unique equilibrium, which is globally exponentially
stable. Liao, Yang and Guo [14] and also Li and Yang [13] proved the same
result (for a slightly more general equation).

In Section 2 we give a sufficient condition which implies global attractivity
of the unique equilibrium of the delayed CGNN (1.2). In our results we do
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not assume boundedness of the functions c1, . . . , cn, so (1.6) is not necessarily
satisfied. We also present some other sufficient conditions, where, instead
of the global Lipschitz type condition (1.7), we assume nonlinear estimates,
which imply local attractivity of the equilibrium. We also present sufficient
conditions implying global attractivity of the equilibrium. In Section 3 we give
examples which illustrate that our main results are applicable to a larger class
of CGNNs than the existing ones cited above. Section 4 contains the proofs
of the main results.

First we introduce some notations. Let R+ be the set of nonnegative
real numbers. We use the relation x ≤ y (x ≪ y, respectively) for vec-
tors x,y ∈ R

n, if xi ≤ yi (xi < yi, respectively) for all i = 1, . . . , n, where
x = (x1, . . . , xn)T and y = (y1, . . . , yn)T . We introduce the vectors 0 =
(0, 0, . . . , 0)T ∈ R

n and 1 = (1, 1, . . . , 1)T ∈ R
n. Any fixed norm on R

n is
denoted by ‖ · ‖. The positive part of a real number a is denoted by a+, i.e.,
a+ = max(a, 0).

We say that an n×nmatrixH is an M-matrix, if all of its diagonal elements
are nonnegative, and its off-diagonal elements are nonpositive, and all of its
principal minors are nonnegative (see, e.g., [2]). It is known (see, e.g., [2])
that if H is a nonsingular M-matrix, then it is monotone, i.e., Hx ≥ 0 implies
x ≥ 0.

Remark 1.1 Let K be a matrix such that the diagonal elements of K are all
positive and the off-diagonal elements are all nonpositive. Then it is known
(see, e.g., Theorem 2.3 in [2]) that if K is diagonally dominant, then it is a
nonsingular M-matrix, as well. Moreover, K is a nonsingular M-matrix, if and
only if, there exists a positive diagonal matrix D such that KD is a diagonally
dominant matrix. This yields that the diagonal elements of a nonsingular M-
matrix are all positive. We note that there are 50 conditions listed in [2] which
are all equivalent to that a matrix is a nonsingular M-matrix.

2. Main results

The positivity of the functions ci yields that x∗ = (x∗1, . . . , x
∗
n)T is an equilib-

rium of (1.2), if and only if it satisfies

di(x
∗
i ) −

n
∑

j=1

aijfj(x
∗
j ) −

n
∑

j=1

bijfj(x
∗
j ) + Ii = 0, i = 1, . . . , n.
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It follows from the assumptions that (1.2) has at least one equilibrium.
For the proof see, e.g., [16] or [17].

Lemma 2.1 Suppose (H1)–(H3). Then there exists at least one equilibrium
of (1.2).

Let x∗ = (x∗1, . . . , x
∗
n)T be any equilibrium of (1.2), which will be fixed

throughout this paper. Substituting the new functions yi(t) = xi(t) − x∗i in
(1.2) leads to the system

ẏi(t) = αi(yi(t))



−βi(yi(t)) +

n
∑

j=1

aijgj(yj(t)) +

n
∑

j=1

bijgj(yj(t− τij(t)))





(2.1)
for t ≥ 0 (i = 1, . . . , n) αi(y) = ci(y + x∗i ), βi(y) = di(y + x∗i ) − di(x

∗
i ), and

gi(y) = fi(y + x∗i ) − fi(x
∗
i ), (i = 1, . . . , n).

It is easy to check that assumptions (H1)-(H3) yield the following proper-
ties for the new parameters:

(P1) αi(y) > 0 (y ∈ R) for i = 1, . . . , n;

(P2) βi(0) = 0, and βi(y) sign y > 0, (y 6= 0, y ∈ R), βi is increasing,
for i = 1, . . . , n;

(P3) gi(0) = 0, gi is increasing, and 0 ≤ gi(y) sign y ≤ 2Mi (y ∈ R) for
i = 1, . . . , n.

In addition to (H1)–(H3), we asume that the fixed equilibrium x∗ satisfies

(H4) there exists a function ηi : R+ → R+ such that ηi(0) = 0 and 0 <

ηi(|y|) ≤ βi(y) sign y, (y 6= 0, y ∈ R) for i = 1, . . . , n;

(H5) there exists a function ωi : R+ → R+ such that ωi(0) = 0, ωi(y) > 0 for
y > 0, ωi is increasing, and 0 ≤ gi(y) sign y ≤ ωi(|y|) ≤ M̃i (y ∈ R)
for i = 1, . . . , n.

We note that the dependence of the functions αi, βi, ηi and ωi on x∗ is
omitted in their notations, but always should be kept in mind.
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Theorem 2.1 Assume (H1)–(H3), and the equilibrium x∗ satisfies (H4)–
(H5), moreover, there exist positive numbers R1, . . . , Rn such that

ηi(Ri) > a+
iiωi(Ri) +

n
∑

j=1,

j 6=i

|aij |ωj(Rj) +

n
∑

j=1

|bij|ωj(Rj), i = 1, . . . , n, (2.2)

ηi(y) ≥ eiωi(y), 0 ≤ y ≤ Ri, i = 1, . . . , n, (2.3)

and the n× n matrix H = (hij) defined by

hij =

{

ei − a+
ii − |bii|, i = j,

−|aij | − |bij |, i 6= j
(2.4)

is a nonsingular M-matrix. Then the equilibrium x∗ is locally attractive, i.e.,
for any initial functions ϕ1, . . . , ϕn satisfying |ϕi(s) − x∗i | < Ri, s ∈ [−r, 0]
(i = 1, . . . , n) it follows that the corresponding solution x = (x1, . . . xn)T of
(1.2)-(1.3) satisfies

lim
t→∞

x(t) = x∗.

Under slightly more restrictive conditions we get global attractivity of the
equilibrium, which yields the uniqueness of the equilibrium.

Theorem 2.2 Assume (H1)–(H3), and the equilibrium x∗ satisfies (H4)–
(H5), moreover,

lim
y→∞

ηi(y) > a+
iiM̃i +

n
∑

j=1,

j 6=i

|aij |M̃j +

n
∑

j=1

|bij |M̃j , i = 1, . . . , n, (2.5)

ηi(y) ≥ eiωi(y), y ≥ 0, i = 1, . . . , n, (2.6)

and the n × n matrix H = (hij) defined by (2.4) is a nonsingular M-matrix.
Then x∗ is the only equilibrium of (1.2), and it is globally attractive, i.e., any
solution x = (x1, . . . xn)T of (1.2)-(1.3) satisfies

lim
t→∞

x(t) = x∗.

Now we consider a special class of (1.2), where ηi and ωi are linear.
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Theorem 2.3 Assume (H1)–(H3), and the equilibrium x∗ satisfies (H4)–
(H5), moreover,

ηi(y) = γiy and ωi(y) = Liy, y ≥ 0, i = 1, . . . , n, (2.7)

and the n× n matrix H̃ = (h̃ij) defined by

h̃ij =

{

γi − a+
iiLi − |bii|Li, i = j,

−|aij|Lj − |bij |Lj, i 6= j
(2.8)

is a nonsingular M-matrix. Then x∗ is the only equilibrium of (1.2), and it is
globally attractive.

Next we consider the special case of (1.2), the Hopfield DCNN (1.4). The-
orem 2.3 has the following immediate consequence.

Theorem 2.4 Suppose γ1, . . . , γn > 0, f1(x1), . . . , fn(xn) satisfy (H3), they
are Lipschitz continuous with Lipschitz constants L1, . . . , Ln, respecitvely, and
the matrix Ĥ = (ĥij) defined by

ĥij =

{

γi − a+
iiLi − |bii|Li, i = j,

−|aij|Lj − |bij |Lj, i 6= j
(2.9)

is a nonsingular M-matrix. Then (1.4) has a unique equilibrium, which is
globally attractive.

Note that a similar result was proved in [9], where it was shown that if
all activation functions are equal to the Hopfield function (1.5), the matrix K
with elements

kij =

{

γi − aii − |bii|, i = j,

−|aij| − |bij|, i 6= j

is diaginally dominant, and

|Ii| ≤ γi − aii −
n
∑

j=1,

j 6=i

|aij | −
n
∑

j=1

|bij |, i = 1, . . . , n,

then (1.4) has a unique equilibrium, which is globally attractive. Theorem 2.4
improves this result in the case when A has only nonnegative diagonal ele-
ments.
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3. Examples

Example 3.1 To illustrate our results, consider first the two-dimensional de-
layed CGNN model equations

ẋ1(t) =
(

sin(x1(t)) + 1.5
)(

−2x1(t) − 0.5 tanh(x1(t− 1))

+ 0.5 tanh(x2(t− 2)) − I1

)

(3.1)

ẋ2(t) =
(

cos(x2(t)) + 1.25
)(

−3x2(t) + tanh(x1(t− 1))

− tanh(x2(t− 2)) − I2

)

, (3.2)

for t ≥ 0. It is easy to see that in this example α1 = 0.5, α1 = 2.5, α2 = 0.25,
α2 = 2.25, γ1 = 2, γ2 = 3, L1 = L2 = 1, and for any equilibrium x∗, (H4) and
(H5) are satisfied with η1(x) = γ1x = 2x, η2(x) = γ2x = 3x, ω1(x) = L1x = x,
ω2(x) = L2x = x. Therefore the matrix H̃ defined by (2.8) equals to

H̃ =

(

1.5 −0.5
−1 2

)

,

and it is a nonsingular M-matrix. Hence Theorem 2.3 yields that for any input
(I1, I2)

T , (3.1)-(3.2) has a unique equilibrium, which is globally attractive.
We can check that ‖B‖1 = 1.5, ‖B‖2 = 1.5811,

γmαm

αM LM
= 2·0.25

2.5·1 = 0.2,
therefore the results of [1], [11], [13], [14] and [17] can not be applied.

Example 3.2 Consider now the following two dimensional CGNN model.

ẋ1(t) =
1

x2
1(t) + 1

(

−d(x1(t)) − 0.4f(x1(t− 1 + 0.1 sin(t)))

+ 0.5f(x2(t− 2)) − I1

)

(3.3)

ẋ2(t) = (x2
2(t) + 1)

(

−2d(x2(t)) + f(x1(t− 1))

− 0.5f(x2(t− 3 + cos t)) − I2

)

, (3.4)

where

d(x) =

{ √
x, x ≥ 0,

−√−x, x < 0,
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and f is the Hopfield activation function defined by (1.5). If we select I1 =
I2 = 0 inputs, then x∗ = 0 is an equilibrium of (3.3)-(3.4). Around this
equilibrium (H4) and (H5) hold with η1(x) =

√
x, η2(x) = 2

√
x and ωi(x) = x

for i = 1, 2. Select R1 = R2 = 1. Then (2.2) is satisfied, and (2.3) also holds
with e1 = 1 and e2 = 2, the matrix H defined by (2.4) is

H =

(

0.6 −0.5
−1 1.5

)

,

and it is a nonsingular M-matrix. Therefore Theorem 2.1 yields that 0 is lo-
cally attractive, all solutions starting from initial functions satisfying |ϕi(s)| <
1, s ∈ [−4, 0], i = 1, 2 will tend to 0 as t→ ∞.

Example 3.3 Finally, consider

ẋ1(t) = ex1(t)
(

−3x1(t) − 6f(x1(t)) + 0.5f(x2(t)) − 0.4f(x1(t− 2))

+ 0.5f(x2(t− 2)) − I1

)

(3.5)

ẋ2(t) =
1

x2
2(t) + 1

(

−2x2(t) − 0.5f(x1(t)) + f(x2(t)) + 0.7f(x1(t− 3))

− 0.5f(x2(t− 1)) − I2

)

, (3.6)

t ≥ 0, where f is the Hopfield activation function defined by (1.5). For this
equation we can apply Theorem 2.3, since the matrix

H̃ =

(

2.6 −1
−1.2 0.5

)

,

defined by (2.4) is a nonsingular M-matrix, and we get that (3.5)-(3.6) has a
unique globally attractive equilibrium for all inputs.

Note the importance of taking the positive part of aii in the definition of
H̃ in (1.5) instead of using |aii|, since otherwise the condition would be false
for our equation. We also comment that α1 and α2 do not satisfy (1.6) in this
example, therefore the results of [1], [11], [13], [14] and [17] can not be applied.
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4. Proofs

Let y be a fixed solution y of (2.1) and v1, . . . , vn be positive numbers. Then
consider the associated auxiliary system

żi(t) = αi(yi(t))

(

−ηi(zi(t)) + a+
iiωi(zi(t)) +

n
∑

j=1,

j 6=i

|aij|ωj(zj(t))

+

n
∑

j=1

|bij |ωj(zj(t− τij(t))) + vi

)

, t ≥ 0 (i = 1, . . . , n),(4.1)

and the initial condition

zi(t) = ψi(t) t ∈ [−r, 0], i = 1, . . . , n. (4.2)

The proof of our main results will be based on the following lemmas, which
collect some properties of the solutions of (4.1)-(4.2).

Lemma 4.1 Suppose (H1)–(H5), and there exist positive numbers R1, . . . , Rn

such that (2.2) holds. Let v = (v1, . . . , vn)T be such that 0 ≪ v and

ηi(Ri) > a+
iiωi(Ri) +

n
∑

j=1,

j 6=i

|aij |ωj(Rj) +

n
∑

j=1

|bij |ωj(Rj) + vi, i = 1, . . . , n.

(4.3)
Let ψi : [−r, 0] → R+ satisfying 0 < ψi(s) < Ri, s ∈ [−r, 0] (i = 1, . . . , n), and
let z1, . . . , zn be the corresponding solution of (4.1)-(4.2). Then

0 < zi(t) < Ri, t ≥ 0, i = 1, . . . , n.

Proof. Since zi(0) > 0 and zi is continuous on [0,∞) for all i = 1, . . . , n,
zi(t) > 0 for small enough t ≥ 0. Suppose there exist i and T > 0 such that

zi(T ) = 0 and zj(t) > 0 for t ∈ [−r, T ), j = 1, . . . , n.

Then żi(T ) ≤ 0. On the other hand, the positivity of vi implies

żi(T ) = αi(yi(T ))

(

−ηi(zi(T )) + a+
iiωi(zi(T )) +

n
∑

j=1,

j 6=i

|aij |ωj(zj(T ))
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+

n
∑

j=1

|bij |ωj(zj(T − τij(T ))) + vi

)

= αi(yi(T ))

( n
∑

j=1,

j 6=i

|aij |ωj(zj(T )) +

n
∑

j=1

|bij |ωj(zj(T − τij(T ))) + vi

)

> 0,

which is a contradiction. Therefore zi(t) > 0 for all t > 0 and i = 1, . . . , n.
To prove that zi(t) < Ri for all i = 1, . . . , n, suppose there exists t∗ > 0

and i such that

zi(t
∗) = Ri, and zj(t) < Rj , t ∈ [−r, t∗), j = 1, . . . , n.

Then żi(t
∗) ≥ 0. On the other hand, the monotonicity of ωj yields

0 ≤ żi(t
∗)

= αi(yi(t
∗))

(

−ηi(zi(t
∗)) + a+

iiωi(zi(t
∗)) +

n
∑

j=1,

j 6=i

|aij |ωj(zj(t
∗))

+

n
∑

j=1

|bij |ωj(zj(t
∗ − τij(t

∗))) + vi

)

≤ αi(yi(t
∗))

(

−ηi(Ri) + a+
iiωi(Ri) +

n
∑

j=1,

j 6=i

|aij |ωj(Rj) +
n
∑

j=1

|bij |ωj(Rj) + vi

)

< 0

This contradiction concludes the proof. �

Lemma 4.2 Assume (H1)–(H5), and suppose there exist positive numbers
R1, . . . , Rn and e1, . . . , en such that (2.2) and (2.3) hold, and the matrix H =
(hij) defined by (2.4) is a nonsingular M-matrix. Let v = (v1, . . . , vn)T be such
that 0 ≪ v and (4.3) hold. Let ψi : [−r, 0] → R+ satisfying 0 < ψi(s) < Ri, s ∈
[−r, 0] (i = 1, . . . , n), and let z(t) = (z1(t), . . . , zn(t))T be the corresponding
solution of (4.1)-(4.2). Then

ω(lim sup
t→∞

z(t)) ≤ H−1v, (4.4)

where ω(z) = (ω1(z1), . . . , ωn(zn))T .
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Proof. It follows from Lemma 4.1 that

mi = lim sup
t→∞

zi(t) and mi = lim inf
t→∞

zi(t)

satisfy 0 ≤ mi ≤ mi ≤ Ri. Consider first the case when mi = mi, i.e.,

limt→∞ zi(t) = mi. Then let t
(i)
k be an arbitrary sequence such that t

(i)
k → ∞

as k → ∞. We may also assume that

lim
k→∞

zj(t
(i)
k ) = m∗

ij and lim
k→∞

zj(tk − τij(t
(i)
k )) = m∗∗

ij (4.5)

for all j = 1, . . . , n for some m∗
ij ,m

∗∗
ij ∈ [mj,mj ], since otherwise we can select

a subsequence of t
(i)
k with this property. Then we get

0 = lim
k→∞

żi(t
(i)
k )

= αi(mi)

(

−ηi(mi) + a+
iiωi(mi) +

n
∑

j=1,

j 6=i

|aij |ωj(m
∗
ij) +

n
∑

j=1

|bij|ωj(m
∗∗
ij ) + vi

)

,

and therefore

0 = −ηi(mi) + a+
iiωi(mi) +

n
∑

j=1,

j 6=i

|aij|ωj(m
∗
ij) +

n
∑

j=1

|bij |ωj(m
∗∗
ij ) + vi

≤ −ηi(mi) + a+
iiωi(mi) +

n
∑

j=1,

j 6=i

|aij |ωj(mj) +
n
∑

j=1

|bij |ωj(mj) + vi.

Now consider the case when mi < mi. Then there exists a sequence t
(i)
k such

that

lim
k→∞

t
(i)
k = ∞, żi(t

(i)
k ) ≥ 0, k = 1, 2 . . . , and lim

k→∞
zi(t

(i)
k ) = mi.

We may again assume that (4.5) holds. It is easy to argue that in this case

0 ≤ −ηi(mi) + a+
iiωi(mi) +

n
∑

j=1,

j 6=i

|aij |ωj(m
∗
ij) +

n
∑

j=1

|bij |ωj(m
∗∗
j ) + vi (4.6)

≤ −eiωi(mi) + a+
iiωi(mi) +

n
∑

j=1,

j 6=i

|aij |ωj(mj) +

n
∑

j=1

|bij|ωj(mj) + vi (4.7)
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is satisfied, as well. Therefore (4.6) and (4.7) hold for all i = 1, . . . , n. We can
rewrite (4.7) as

HΩ(m)1 ≤ v,

Ω(m) = diag(ω1(m1), . . . , ωn(mn)), 1 = (1, . . . , 1)T . Since H is a nonsingular
M-matrix, it is monotone (see, e.g., [2]), therefore it implies Ω(m)1 ≤ H−1v,
or equivalently, ω(m) ≤ H−1v, and the proof of the lemma is complete. �

Now we are ready to prove Theorem 2.1.
Proof of Theorem 2.1. Let x∗ = (x∗1, . . . , x

∗
n)T be any fixed equilibrium

of (1.2), ϕ1, . . . ϕn be given initial functions satisfying |ϕi(s) − x∗i | < Ri for
s ∈ [−r, 0], x = (x1, . . . , xn)T be the corresponding solution of (1.2)-(1.3), and
y(t) = x(t) − x∗. Then fix initial functions ψi : [−r, 0] → R+ such that

|ϕi(s) − x∗i | < ψi(s) < Ri, s ∈ [−r, 0], i = 1, . . . , n.

Let 0 ≪ v = (v1, . . . , vn)T be such that (4.3) is satisfied. Let z = (z1, . . . , zn)T

denote the solution of the corresponding IVP (4.1)-(4.2). Since zi(0) > |yi(0)|,
relation |yi(t)| < zi(t) holds for sufficiently small t > 0 and i = 1, . . . , n.
Suppose there exists i and T > 0 such that

|yi(T )| = zi(T ), and |yj(t)| < zj(t), t ∈ [−τ, T ), j = 1, . . . , n. (4.8)

It follows from Lemma 4.1 that |yi(T )| = zi(T ) 6= 0, therefore d
dt
|yi(t)| exists

at T , and d
dt

(|yi(t)|)|t=T = ẏi(T ) sign yi(T ). Hence

d

dt
(|yi(t)|)|t=T = αi(yi(T ))

(

−βi(yi(T )) +
n
∑

j=1

aijgj(yj(T ))

+

n
∑

j=1

bijgj(yj(T − τij(T )))

)

sign yi(T ).

Since βi(yi(T )) sign yi(T ) ≥ 0 it follows from (P1) and (P2) that

βi(yi(T )) sign yi(T ) ≥ ηi(|yi(T )|).

If aii ≥ 0, then (P3) yields

0 ≤ aiigi(yi(T )) sign yi(T ) ≤ aiiωi(|yi(T )|).

If aii < 0, then (P3) yields

aiigi(yi(T )) sign yi(T ) ≤ 0. (4.9)
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Consequently,

d

dt
(|yi(t)|)|t=T < αi(yi(T ))

(

−ηi(|yi(T )|) + a+
iiωi(|yi(T )|)

+

n
∑

j=1,

j 6=i

|aij |ωj(|yj(T )|) +

n
∑

j=1

|bij |ωj(|yj(T − τij(T ))|) + vi

)

≤ αi(yi(T ))

(

−ηi(zi(T )) + a+
iiωi(zi(T )) +

n
∑

j=1,

j 6=i

|aij|ωj(zj(T ))

+

n
∑

j=1

|bij |ωj(zj(T − τij(T ))) + vi

)

= żi(T ).

This contradicts to assumption (4.8), therefore |yi(t)| < zi(t) holds for all t > 0
and i = 1, . . . , n. Moreover, Lemma 4.2 yields

ω(lim sup
t→∞

z(t)) ≤ H−1v.

Since v can be arbitraly close to 0, it imples

ω(lim sup
t→∞

z(t)) ≤ 0,

which yields
lim
t→∞

z(t) = lim sup
t→∞

z(t) = 0.

This concludes the proof. �

Proof of Theorem 2.2. Let ϕ1, . . . , ϕn be given initial functions, Ri be such
that sup{ϕi(s) : s ∈ [−r, 0]} < Ri and

ηi(Ri) > a+
iiM̃i +

n
∑

j=1,

j 6=i

|aij |M̃j +
n
∑

j=1

|bij |M̃j , (4.10)

for i = 1, . . . , n. Then (2.2) holds, and so Theorem 2.1 yields that the solution
x of (1.2) corresponding to these initial functions satisfies

lim
t→∞

x(t) = x∗.

�

The proof of Theorem 2.3 is based on the following version of Lemma 4.2.
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Lemma 4.3 Assume (H1)–(H5), (2.7) holds, and the matrix H̃ = (hij) de-
fined by (2.8) is a nonsingular M-matrix. Let v = (v1, . . . , vn)T be such that
0 ≪ v. Let ψi : [−r, 0] → R+ satisfying 0 < ψi(s), s ∈ [−r, 0] (i = 1, . . . , n).
Then the corresponding solution z of (4.1)-(4.2) satisfies

ω(lim sup
t→∞

z(t)) ≤ H−1v.

Proof. Let Ri be such that sup{ψi(s) : s ∈ [−r, 0]} < Ri and

ηi(Ri) > a+
iiM̃i +

n
∑

j=1,

j 6=i

|aij |M̃j +

n
∑

j=1

|bij |M̃j + vi

holds for i = 1, . . . , n. Then (2.2) is also satisfied.
It follows from (4.6) and (2.7)

0 ≤ −γimi + a+
iiLimi +

n
∑

j=1,

j 6=i

|aij |Ljmj +

n
∑

j=1

|bij |Ljmj + vi. (4.11)

We can rewrite (4.11) as
H̃M1 ≤ v,

where M = diag(m1, . . . ,mn)T . Since H̃ is a nonsingular M-matrix, it implies
M1 ≤ H−1v, which yields the statement of the lemma, since v can be arbi-
trary close to 0. �

Proof of Theorem 2.3. The result follows from Lemma 4.3 and the proof of
Theorem 2.1 using the fact that (2.2) holds with any large enough R1, . . . , Rn,
as it was argued in the proof of Lemma 4.3. The global attractivity clearly
implies the uniqueness of the equilibrium. �

Proof of Theorem 2.4. We apply Theorem 2.3 with ci(x) = 1 and di(x) =
γix (i = 1, . . . , n). �
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