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ABSTRACT: In this paper we study stability of periodic solutions of a class of nonlinear
functional differential equations (FDEs) with state-dependent delays using the method of
linearization. We show that a periodic solution of the nonlinear FDE is exponentially stable,
if the zero solution of an associated linear periodic linear homogeneous FDE is exponentially
stable.
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1. INTRODUCTION

Functional differential equation with state-dependent delays (sd-FDEs) appear frequent-
ly in applications as model equations (see, e.g., Aiello, Freedman & Wu (1992), Arino, Hbid
& Bravo del la Parra (1998), Cao, Fan & Gard (1992), and Mahaffy, Bélair & Mackey
(1998), and the study of such equations is an active research area (see the references in
this paper). Stability of the solution is one of the most important qualitative property of
a model. There are many papers which give sufficient conditions for the stability of the
trivial (zero) solution in sd-FDEs (see, e.g., Gy6ri & Hartung (2000), Yoneyama (1987) and
(1991)).

For nonlinear equations the method of linearization is a standard tool in stability inves-
tigations, but for sd-FDEs there are many technical problems with it. (See, e.g., Brokate
& Colonius (1990), Hartung (1997), Hartung & Turi (1997), and Krishnan (2002).) Lin-
earization theorems for obtaining stability of the zero or constant equilibriums were given
in Cooke & Huang (1996), Hartung & Turi (1995) and (2000) for various classes of sd-
FDEs. In this paper we extend these results for periodic solutions of a class of nonlinear
sd-FDEs (see Theorem 2.5 below). Our results were motivated by Luzyanina, Engelborghs
& Rose (2001), where the existence of such result was conjectured, and extensive numerical
investigation of stability of constant and periodic solutions of sd-FDEs was given.

For results concerning the existence of a periodic solutions of sd-FDEs we refer the
interested reader to Domoshnitsky & Drakhlin (1997), Magal & Arino (2000), Mallet-Paret,
Nussbaum & Paraskevopoulos (1994), and Smith & Kuang (1992).

2. MAIN RESULTS

Consider the nonlinear state-dependent delay system

z(t) = f(t,z(t), x(t — (¢, 1)), t>0 (2.1)



with initial condition
s(t) = p(t),  te[-n0] (2.2)

Here and later on z; denotes the solution segment function, i.e., x4(s) = z(t + s) for
s € [-r,0]. The Banach-space of continuous functions ¢: [—r,0] — R" with the supremum
norm |[[9|| = max{|y(s)|: s € [-r,0]} is denoted by C. A closed neighborhood with radius p
of a set A in a Banach-space X is denoted by Bx (4; 0) = {z € X: |z—a|x < p for some a €
A}. We use | - | for any fixed norm on R” and for the corresponding induced matrix norm
on R™*" as well. £(C,R) denotes the Banach-space of bounded linear functionals on C
with the norm | - [z R)-

We assume the following conditions throughout the paper:

(H1) f : [0,00) x 21 x Q9 — R” is continuously differentiable, where ©; and Q9 are open
subsets of R”, and let f be T-periodic, i.e.,

f(t,u,v):f(t-l-T,u,v), tZOa UEQla ’UGQQ,

(H2) (i) 7: [0,00) x Q3 — [0,r] is continuously differentiable, where Q3 is an open subset
of C, and 7 is T-periodic, i.e.,

(ii) 7 is locally Lipschitz-continuous in the following sense: for every bounded and
closed subset M of C there exists a constant Ly = Li(M) > 0 such that

IT(t, ) — T(t.9)| < Lillp —ll,  t€[0,T], 1,9 € M,

(iii) Dot is locally Lipschitz-continuous in the following sense: for every bounded and
closed subset M of C there exists a constant Ly = Lo(M) > 0 such that

‘DQT(t: 1/)) - DQT(tafJ))‘E(C,R) < L2||¢ - 1:Z||7 te [OaT]a %1; €M,

Let : [-r,00) — R be a T-periodic solution of (2.1). The restriction of Z to the
interval [—r, 0] is denoted by ¢, i.e., Z is the solution of (2.1)-(2.2) corresponding to initial
function @. It is assumed that ¢ and Z are fixed throughout this paper. Since Z is a
solution of (2.1), the continuity of f and 7 imply that z is continuous on [0, 00), therefore
Z is continuously differentiable on [—r, 0c), as well.

We note that, in general, assumptions (H1)—(H2) together with ¢ € C imply the exis-
tence, but not the uniqueness of the solution of (2.1)-(2.2). But the stronger assumption
¢ € C! is sufficient in order the solution # be unique. (See, e.g., [11] or [12].) Throughout
this paper z(t; ¢) will denote any solution of (2.1)-(2.2) corresponding to initial function
peC.

To simplify notation we introduce

Et)=z(t —7(t,2¢)) and )= z(t —7(t,34)).

The dependence of ¢ on z is omitted from the notation for simplicity, but it should always
be kept in mind. We define the following sets associated to z:

Ay ={z(t): t€]0,T]}, Ay ={&(t): t€[0,T]}, and Az ={z;: t€[0,T]}.



Then A; C R?, Ay C R® and A3 C C are compact subsets of the respective spaces, since
is continuous. The sets 1, Q9 and Q3 are opens subsets of the respective spaces, therefore
there exist positive constants g1, g2 and g3 such that

Brn(A1; 01) C Q1, Brn(A2: 02) C Qo and  Be(As; 03) C Q3.

Since f is T-periodic and continuously differentiable with respect to its second and third
arguments, there exists a constant Ny > 0 such that

|Daf (t,u,v)| < Ny and \Dsf(t,u,v)] < Ny (2.3)
for t > 0, u € Brn(A1; 01), and v € Bgrn(Asg; 09).

We shall need the following estimate.

Lemma 2.1 Assume (H2), and let z: [—r,00) — R" be a continuously differentiable and
T-periodic function. There exists a constant Ny > 1 such that for any S > 0

£(t) = E(t)| < Nollzy — &4ll,  t€]0,5]
for any continuous function x: [—r,00) — R™ satisfying
zy € Be(As; 03), t €[0,5]. (2.4)

Proof Let L; be the constant from (H2) (ii) associated to the set Bc(As; 03). The
definition of ¢ and &, and the Mean Value Theorem yield

€)= )] < Jat = 7(t,m1)) — 5t — (b 2))| + 2(t — (8, 20)) — 5t — 7(8,50))]
< llwe = @l + 12l (6 20) = 7(8, 20
which proves the statement using (H2) (ii) and No = 1 + Ly max{|z(t)|: ¢t € [0,T]}. O

For  and for any fixed ¢ > 0 we define the linear operator F(¢): C — R® by
F)y = Daf (t,2(1),£(1)4(0) + Daf (£, 2(t), () (=7 (t, 21))
— Dsf(t, (1), £(1)z(t — 7(t, %)) Do (t, T0)9, (2.5)
and the function
g [0,00) x Q3 =R, g(t,9) = f(t,9(0),9%(=7(t,9))) — F(t)3h. (2-6)

Note that for each ¢ > 0 the linear operator F'(¢) is bounded, since by (H2) it satisfies

Fyl < (max [Daf(t,3(2), €1))]

t€[0.T]

+ mae [ Dy (6,2(0),60) | (1 mae [(0)] max Do (20| cccm) ) 19

By these notations we can rewrite (2.1) as

&(t) = F(t)xe + g(t, z¢), t>0, (2.7)



and therefore we can consider it as a perturbation of the homogeneous linear T-periodic
FDE
gt = Fy, >0, (2.8)

We denote the fundamental solution of (2.8) by U(t,s), i.e., it is a matrix valued solution
of the initial value problem

0
SUlts) = FOUCs),  t2s (2.9)
Ult,s) = {é o (2.10)

It is known (see, e.g., [9]) that the asymptotic stability of the trivial solution of (2.8) is
equivalent to its exponential stability, and to that there exist constants Ky > 1 and ag > 0
such that

U(t, s)| < Koe~ @9 ¢ > (2.11)

The proof of our main theorem will be based on the following series of lemmas.

Lemma 2.2 Assume (H2), and let z: [—r,00) — R" be a continuously differentiable and
T-periodic function. Then there exists a constant N3 > 0 such that for every n > 0 there
exists 0 > 0 such that for any S > 0

(Bt =7ty 20)) — 2 (= 7(t, )+ (=7 (1, 50)) Do (b, 20) (54 —0)| < Na(n-+ e — el s — ]
for t €10, 5] and for any continuous function x: [—r,00) — R" satisfying
zy € Beo(As; 69), t €10,9]. (2.12)
Proof For a fixed t € [0, S] we introduce the real function
p(s) = z(t — 7(t, 2 + s(v¢ — 24))) + s2(t — 7(t, 24)) Dot (¢, 1) (T4 — 7).
The Chain Rule implies that the real function p is continuously differentiable, and
p(s) = (—d—c(t—r(t,:Et—i—s(xt—g_ct)))DgT(t, ot 8(2y— 1))+ 5 (E—7(t, &) Dot (. :Et)>(xt—9‘ct).

Then the definition of p and the Mean Value Theorem yield that there exists v € [0, 1] such
that

|Z(t — 7(t,3¢)) — T(t — 7(t,Z4)) + T(t — 7(t, Z)) Da7(t, Ty) (w1 — Ty)|
= [p(1) — p(0)|
= [p(v)]
< |E(t— Tt 3) — Bt — 7t Ty + v(w — @)))HDQT(t,gzt oo =)l
|£._B(t—7'(t, :ft))‘ DQT(t,i't) —DQT(t, :Et+1/(xt —i't))‘ H:Et —i‘tH. (213)

L(C,R)

Let Ly and L9 be the constants from (H2) (ii) and (iii), respectively, corresponding to the
set Bo(As; p3). Fix an arbitrary n > 0. Since # is T-periodic, and so it is uniformly



continuous, for any n > 0 there exists § > 0 such that |z(u) — z(a)| < n|u— | for u,u > —r
satisfying |u — @] < 4, and there exists a constant Ry > 0 such that |z(t)| < Ry for t > —r.
Let 03 = min(ps,d/L1), and suppose z satisfies (2.12). Then (H2) (ii) implies

|7(t,20) = 7(6, T + v(z — 20))| < Loz — ]| <0,
and hence
it = 7(t0) = it = 7t 20+ vl = 32))| < .
Using (H2) (iii) and the periodicity of 7 there exists a constant Ry > 0 such that

‘DQT(t,jﬁt + I/(QSt - jt))‘ CR) < ‘DQT(t, fit)‘ﬂ(CR) + LQHZEt - 53,5” < R2

3

£(

for any function satisfying (2.12). Then the statement of the lemma follows from (2.13)
with N3 = maX(Rg, RlLQ). O

Lemma 2.3 Assume (H1), (H2), and let T: [—r,00) — R" be a continuously differentiable
and T-periodic solution of (2.1) corresponding to initial function @, and let x be a solution
of (2.1)-(2.2) satisfying (2.4). Then there exists a constant Ny > 0 such that for any S > 0

#(0) — 5(t)] < Nullar — 2]l € [0.5] (214)
and
|l2¢ — 2| < el -], te€(0,8] (2.15)
for any solution = of (2.1) satisfying
Tt € Bc(A3; ,Q3), t e [0, S] (216)

Proof Let N be the constant from Lemma 2.1, fix S > 0, and suppose z satisfies (2.16).
Then the Mean Value Theorem, Lemma 2.1 and (2.3) yield for ¢ € [0, 5]

& (t) — z(t)| |£(t,2(2),€(1)) = £(t, 2(2), £(2))]
Ni(|z(t) — z(8)] + [£() = £(#)])
Ni(1+ No)|lzy — 2.

Therefore (2.14) holds with Ny = Ny (1 + Na).
To prove (2.15), consider the inequalities

<
<

t t
z(t) — z(#)] < l(0) — @(0)] +/0 i (s) — 2(s) ds < [lo — @l +N4/U 25 — 2s]| ds.

Let v(t) = max{|z(s) — z(s)|: —r < s <t}. Then

() - 2(t)] < [l — 9l +N4/0 o(s)ds,  te0,8],

and since the right-hand-side is monotone increasing in ¢, it implies
t

v(t) < llo— ol + N4/ v(s)ds,  t€0,T]
0

Therefore Gronwall’s inequality proves (2.15), since ||z; — 7| < v(#). O

We will need the following estimate of g.



Lemma 2.4 Assume (H1), (H2), and let T: [—r,00) — R" be a continuously differentiable
and T-periodic solution of (2.1) corresponding to initial function @, and let z be a solution
of (2.1)-(2.2). Then there ezists a constant N5 > 0 such that for every n > 0 there exists
03 > 0 such that for any S > r

N5(n+ 1)[lze — 24| 0<t<r,
t —g(t,zy)| <
lg(t, mt) — g(t, 21)] < N <77_|_ m<ax |zs — 335”) |z — 74, telrS
for x satisfying
Ty € Bc(Ag; 93), t e [O,S]. (2.17)

Proof The definition of g and F', and the Mean Value Theorem imply
lg(t,z1) — g(t.30)| = [f(t.2(t),&(t)) — f(t,2(t), £(2)) — F(t)( Ty — i"t)\

t
—Dﬁ(@méu»(w—ftm
-+aﬁmﬂwfmﬁa—Tu@»wafmm—fw

\_/

< |re . ew) - 113, €0) - Daf (1,3(0),£0) (1) - 5(0))
— Daf (£, 5(1), §D)(E(1) — £(1)]
+ | Daf (1,50, E0) (w(t = 7(t,20)) - a(t = 7(t, 7))
(= 7t 3)) Do () (0~ 7)) |
< sup Do (1.2(1) + w(alt) = #(1)),£0) + v (E(D) ~ E1))
—Dﬁ(fméwmaw—am
4 sup Dy (5.7(0) +w(n(t) = 2(),€0) + v (E(0) - €1)

—DﬁwﬂmamMm—am
+ | Daf (b a(t). £0) ((t = 7(t,20)) = a(t = 7(t, )
V 3(t — 7(t, 54)) Do (t, 7) (21 — gzt)) ‘ (2.18)

Fix n > 0 and S > r. By the continuous differentiability and T-periodicity of f guaranteed
by (H1) there exists § > 0 such that

‘DQf(t,U,’U)—DQf(t,fL,’lj)‘Sﬂ and |D3f(t,u,v)—D3f(t,ﬁ,1~))|§77

hold for ¢t > 0, u,u € Bgrn(A1; 01), v,0 € Brn(Ag; 02), and |u — 4| < ¢ and |v — 0] < 4. Let
L; and Ly be the constants from (H2) (ii) and (iii), respectively, corresponding to the set
Be(As; 03), let No, N3 and Ny be the constants from Lemmas 2.1, 2.2 and 2.3, respectively,
and let Ay be the constant from Lemma 2.2 corresponding to 7. Define

63 = min(d/Na, 01, 02/Na, 02, 03),



and suppose z satisfies (2.17). Then |z(t) — z(t)] < 6 and |£(t) — £(t)| < § for t € [0, S].
Therefore it follows from (2.3), (2.18), Lemma 2.1 and 2.2 for ¢ € [0, S]

lg(t, z1) — g(t, 74)]
< nla(t) — 2(0)] +nlE(t) — E(1)]
+ Ny Z(t —7(t,3y)) — Z(t — 7(t, Z)) + &(t — 7(¢, %)) Do (t, Ty) (z¢ — T)
+ Nzt — 7(t,x)) — x(t — (8, 74)) — Z(t — 7(t, ) + Z(t — 7(t, %))
n(1 + Ny + N\ N3)||z; — Z¢|| + N1 N3||zp — % ||?
+ Nzt —7(t,x)) — x(t — 7(8,5)) — Z(t — 7(t, ) + Tt — 7(t, &) (2.19)

IN

For ¢ € [0, ] we estimate the last term of (2.19) simply as
z(t —71(t,xe) —x(t —7(8, %)) — Z(t — 7(t, ) + Z(t — 7(¢,T4))| < 2|z — T4

For ¢ > r we use a different estimate: the Mean Value Theorem, (H1) (ii), and relations
t—7(t,zy) >0and t —7(t,z) > 0 yield

2(t = 7(t,20) —w(t = 7(8,34)) — 2t — 7t 20)) + 2(¢ — 7(E, 1))

< Ly max |2(s) — Z(s)|- ||z — 7]|-
S

3

Therefore Lemma 2.3 implies for ¢ € [r, S]

2(t — 7(t,24)) — 2(t — 7(,3¢)) — Z(t — 7(t, @) + 2(t — (¢, Z4))|
< L1N4sm§X |25 — Zs|| - lo¢ — @]

)

Hence the statement of the lemma follows from (2.19) with

N5 = max (1 + NQ + N1N3, N1N3 + L1N1N4, N1N3,Q3 + 2N1) .

We show that the exponential stability of the periodic steady-state solution z of the
nonlinear sd-FDE (2.1) can be obtained by that of the homogeneous linear FDE (2.8).

Theorem 2.5 Assume (H1), (H2), and let T : [-r,00) — R be a continuously differ-
entiable and T-periodic solution of (2.1) corresponding to initial function p. Suppose the
trivial solution of (2.8) is exponentially stable, i.e., there exist Ko > 1 and ag > 0 such
that (2.11) holds. Then for every 0 < a < «q there exists § > 0 and K > 1 such that if
lo — @l <0, then any corresponding solution x(t) = x(t; ) of (2.1) satisfies

a(t) —2(t)] < Ke™llp — @],  t2>0,
i.e., T 18 an exponentially stable periodic steady-state of (2.1).

Proof Fixe > 0and 0 < a < ap. Let Ny and N5 be the constants defined by Lemma 2.3
and 2.4, respectively, and let

el — @)
=\
2(1 + 6)KON5

—ar

Ui



Define 03 = 65(n) by Lemma 2.4, let

d1 = min <,Q1, 03, 03, m, Ni4> , K| =K, (1 + rN5e(°‘0+N4)T) , and K= (1+¢)Ky,

and finally, let
0

x|

Let ¢ € C be such that |[¢ — ¢|| < 6, and let z(t) = z(¢; ¢) be a corresponding solution of
(2.1)-(2.2). Then |z(t) — Z(t)| < d; for small £ > 0 since § < d;. Suppose there exists S > 0
such that

z(t) — Z(t)] < o1, for t €10,S5), and [|z(S)—Z(5)| = 4. (2.20)
The variation-of-constants formula (see, e.g., [9]) implies

(1) = Ut 0)(0) +/0 Ut s)g(s,2s)ds, £ >0.

Similarly,
t
z(t) = U(t,0)9(0) -I-/ Ul(t,s)g(s,Ts)ds, t > 0.
0

Therefore
z(t) — Z(t)] < [U(%,0)][¢(0) — (0)] + /Ot Ut s)llg(s,zs) —g(s,Zs)|ds,  t>0. (2.21)
Suppose S > r. Relations d; < 63, (2.11) and Lemma 2.4 imply for ¢ € [r, 5]
o)~ a(0] < Koe llp = gl + Ko [ eI+ Dl - 2, ds

t
+ Ko / e IN(n+ max |z — Zu|)l|zs — Zsl| ds.
r s—r<u<s

Since
max qu - ju” <0 <n, s € [075]7
s—r<u<s
it follows
T
z(t) — z(t)] < Koe *'|lo — @l + KoNs(n + 1)/ e 0|z, — 7, ds
0
t
+K0N5277/ efao(tfs)HfEs — || ds
r
T
< Koe g = gl + KaNoe ™ [ e o, — . ds
0

t
—|—K0N52nea0t/ e\ xs — T4 ds.
0

Note that the last inequality holds for ¢ € [0,r] and for S < r, as well. Multiplying both
sides of this inequality by e®!, and using relation (2.15) and the definition of K; we get
t

ea(t) —z(t) < Killg— ol + K0N52U€(a_a°)t/ "0 |zs — | ds.
0



Let v(t) = max{e®|z(s) — z(s)|: —r < s <t}. Then we have

t
alt) ~a(t) < Killp - ¢l + KoNszmo(pyeleentser [ loa-aie g,
0
KyN52
< Killo—ell+—=="eo(t),  te0,s].

Since the right-hand-side is monotone increasing in £, it implies

K0N5277 ey

u(t) < Killp -l +
o) —

(t),  tel0,5].
Then, using the definition of 7, we get

c o), fortelo,s],

t) <K -
o(t) < Killp - 2l + 7

and hence
z(t) — z(t)] < e () < Ke o —¢l, te[0,S].

But this yields
01 = ‘LE(S) — ZE(S)| < Ké§= 51,

which contradicts to the definition of S. Therefore S = oo, and
z(t) — 2(1)] < Ke™*[l¢ — o

holds for all ¢ > 0. The proof of the theorem is completed. O

We note that in the proofs of our results it was very important that the solution Z around
which we linearized the nonlinear sd-FDE is continuously differentiable. Linearization of
a nonlinear (not necessary periodic) sd-FDE around an absolutely continuous solution is
much more technical (see Brokate & Colonius (1990), Hartung (1997), and Hartung &
Turi (1997)), so it is an interesting open question to investigate linearized stability of such
solutions.
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