
Linearized Stability in Periodi
 Fun
tional Di�erentialEquations with State-Dependent DelaysFeren
 HartungDepartment of Mathemati
s and Computing, University of Veszpr�emH-8201 Veszpr�em, P.O.Box 158, HungaryABSTRACT: In this paper we study stability of periodi
 solutions of a 
lass of nonlinearfun
tional di�erential equations (FDEs) with state-dependent delays using the method oflinearization. We show that a periodi
 solution of the nonlinear FDE is exponentially stable,if the zero solution of an asso
iated linear periodi
 linear homogeneous FDE is exponentiallystable.AMS(MOS) subje
t 
lassi�
ation. 34K201. INTRODUCTIONFun
tional di�erential equation with state-dependent delays (sd-FDEs) appear frequent-ly in appli
ations as model equations (see, e.g., Aiello, Freedman & Wu (1992), Arino, Hbid& Bravo del la Parra (1998), Cao, Fan & Gard (1992), and Maha�y, B�elair & Ma
key(1998), and the study of su
h equations is an a
tive resear
h area (see the referen
es inthis paper). Stability of the solution is one of the most important qualitative property ofa model. There are many papers whi
h give suÆ
ient 
onditions for the stability of thetrivial (zero) solution in sd-FDEs (see, e.g., Gy}ori & Hartung (2000), Yoneyama (1987) and(1991)).For nonlinear equations the method of linearization is a standard tool in stability inves-tigations, but for sd-FDEs there are many te
hni
al problems with it. (See, e.g., Brokate& Colonius (1990), Hartung (1997), Hartung & Turi (1997), and Krishnan (2002).) Lin-earization theorems for obtaining stability of the zero or 
onstant equilibriums were givenin Cooke & Huang (1996), Hartung & Turi (1995) and (2000) for various 
lasses of sd-FDEs. In this paper we extend these results for periodi
 solutions of a 
lass of nonlinearsd-FDEs (see Theorem 2.5 below). Our results were motivated by Luzyanina, Engelborghs& Rose (2001), where the existen
e of su
h result was 
onje
tured, and extensive numeri
alinvestigation of stability of 
onstant and periodi
 solutions of sd-FDEs was given.For results 
on
erning the existen
e of a periodi
 solutions of sd-FDEs we refer theinterested reader to Domoshnitsky & Drakhlin (1997), Magal & Arino (2000), Mallet-Paret,Nussbaum & Paraskevopoulos (1994), and Smith & Kuang (1992).2. MAIN RESULTSConsider the nonlinear state-dependent delay system_x(t) = f(t; x(t); x(t� �(t; xt))); t � 0 (2.1)



with initial 
ondition x(t) = '(t); t 2 [�r; 0℄: (2.2)Here and later on xt denotes the solution segment fun
tion, i.e., xt(s) = x(t + s) fors 2 [�r; 0℄. The Bana
h-spa
e of 
ontinuous fun
tions  : [�r; 0℄! Rn with the supremumnorm k k = maxfj (s)j : s 2 [�r; 0℄g is denoted by C. A 
losed neighborhood with radius %of a set A in a Bana
h-spa
e X is denoted by BX(A; %) = fx 2 X : jx�ajX � % for some a 2Ag. We use j � j for any �xed norm on Rn and for the 
orresponding indu
ed matrix normon Rn�n , as well. L(C;R) denotes the Bana
h-spa
e of bounded linear fun
tionals on Cwith the norm j � jL(C;R).We assume the following 
onditions throughout the paper:(H1) f : [0;1)�
1 �
2 ! Rn is 
ontinuously di�erentiable, where 
1 and 
2 are opensubsets of Rn , and let f be T -periodi
, i.e.,f(t; u; v) = f(t+ T; u; v); t � 0; u 2 
1; v 2 
2;(H2) (i) � : [0;1)�
3 ! [0; r℄ is 
ontinuously di�erentiable, where 
3 is an open subsetof C, and � is T -periodi
, i.e.,�(t;  ) = �(t+ T;  ); t � 0;  2 
3;(ii) � is lo
ally Lips
hitz-
ontinuous in the following sense: for every bounded and
losed subset M of C there exists a 
onstant L1 = L1(M) � 0 su
h thatj�(t;  ) � �(t; ~ )j � L1k � ~ k; t 2 [0; T ℄;  ; ~ 2M;(iii) D2� is lo
ally Lips
hitz-
ontinuous in the following sense: for every bounded and
losed subset M of C there exists a 
onstant L2 = L2(M) � 0 su
h thatjD2�(t;  )�D2�(t; ~ )jL(C;R) � L2k � ~ k; t 2 [0; T ℄;  ; ~ 2M;Let �x : [�r;1) ! Rn be a T -periodi
 solution of (2.1). The restri
tion of �x to theinterval [�r; 0℄ is denoted by �', i.e., �x is the solution of (2.1)-(2.2) 
orresponding to initialfun
tion �'. It is assumed that �' and �x are �xed throughout this paper. Sin
e �x is asolution of (2.1), the 
ontinuity of f and � imply that _�x is 
ontinuous on [0;1), therefore�x is 
ontinuously di�erentiable on [�r;1), as well.We note that, in general, assumptions (H1){(H2) together with ' 2 C imply the exis-ten
e, but not the uniqueness of the solution of (2.1)-(2.2). But the stronger assumption�' 2 C1 is suÆ
ient in order the solution �x be unique. (See, e.g., [11℄ or [12℄.) Throughoutthis paper x(t;') will denote any solution of (2.1)-(2.2) 
orresponding to initial fun
tion' 2 C.To simplify notation we introdu
e�(t) � x(t� �(t; xt)) and ��(t) � �x(t� �(t; �xt)):The dependen
e of � on x is omitted from the notation for simpli
ity, but it should alwaysbe kept in mind. We de�ne the following sets asso
iated to �x:A1 � f�x(t) : t 2 [0; T ℄g; A2 � f��(t) : t 2 [0; T ℄g; and A3 � f�xt : t 2 [0; T ℄g:



Then A1 � Rn , A2 � Rn and A3 � C are 
ompa
t subsets of the respe
tive spa
es, sin
e �xis 
ontinuous. The sets 
1, 
2 and 
3 are opens subsets of the respe
tive spa
es, thereforethere exist positive 
onstants %1, %2 and %3 su
h thatBRn(A1; %1) � 
1; BRn(A2; %2) � 
2 and BC(A3; %3) � 
3:Sin
e f is T -periodi
 and 
ontinuously di�erentiable with respe
t to its se
ond and thirdarguments, there exists a 
onstant N1 > 0 su
h thatjD2f(t; u; v)j � N1 and jD3f(t; u; v)j � N1 (2.3)for t � 0, u 2 BRn(A1; %1), and v 2 BRn(A2; %2).We shall need the following estimate.Lemma 2.1 Assume (H2), and let �x : [�r;1) ! Rn be a 
ontinuously di�erentiable andT -periodi
 fun
tion. There exists a 
onstant N2 � 1 su
h that for any S > 0j�(t)� ��(t)j � N2kxt � �xtk; t 2 [0; S℄for any 
ontinuous fun
tion x : [�r;1)! Rn satisfyingxt 2 BC(A3; %3); t 2 [0; S℄: (2.4)Proof Let L1 be the 
onstant from (H2) (ii) asso
iated to the set BC(A3; %3). Thede�nition of � and ��, and the Mean Value Theorem yieldj�(t)� ��(t)j � jx(t� �(t; xt))� �x(t� �(t; xt))j+ j�x(t� �(t; xt))� �x(t� �(t; �xt))j� kxt � �xtk+ k _�xtkj�(t; xt)� �(t; �xt)j;whi
h proves the statement using (H2) (ii) and N2 � 1 + L1maxfj _�x(t)j : t 2 [0; T ℄g. 2For �x and for any �xed t � 0 we de�ne the linear operator F (t) : C ! Rn byF (t) � D2f(t; �x(t); ��(t)) (0) +D3f(t; �x(t); ��(t)) (��(t; �xt))� D3f(t; �x(t); ��(t)) _�x(t� �(t; �xt))D2�(t; �xt) ; (2.5)and the fun
tiong : [0;1)� 
3 ! Rn ; g(t;  ) � f(t;  (0);  (��(t;  ))) � F (t) : (2.6)Note that for ea
h t � 0 the linear operator F (t) is bounded, sin
e by (H2) it satis�esjF (t) j � � maxt2[0;T ℄ ��D2f(t; �x(t); ��(t))��+ maxt2[0;T ℄ ��D3f(t; �x(t); ��(t))�� (1 + maxt2[0;T ℄ j _�x(t)j maxt2[0;T ℄ jD2�(t; �xt)jL(C;R))�k k:By these notations we 
an rewrite (2.1) as_x(t) = F (t)xt + g(t; xt); t � 0; (2.7)



and therefore we 
an 
onsider it as a perturbation of the homogeneous linear T -periodi
FDE _y(t) = F (t)yt; t � 0: (2.8)We denote the fundamental solution of (2.8) by U(t; s), i.e., it is a matrix valued solutionof the initial value problem�� tU(t; s) = F (t)U(�; s)t; t � s; (2.9)U(t; s) = � I; t = s;0; t < s: (2.10)It is known (see, e.g., [9℄) that the asymptoti
 stability of the trivial solution of (2.8) isequivalent to its exponential stability, and to that there exist 
onstants K0 � 1 and �0 > 0su
h that jU(t; s)j � K0e��0(t�s); t � s: (2.11)The proof of our main theorem will be based on the following series of lemmas.Lemma 2.2 Assume (H2), and let �x : [�r;1) ! Rn be a 
ontinuously di�erentiable andT -periodi
 fun
tion. Then there exists a 
onstant N3 � 0 su
h that for every � > 0 thereexists �2 > 0 su
h that for any S > 0j�x(t��(t; xt))��x(t��(t; �xt))+ _�x(t��(t; �xt))D2�(t; �xt)(xt��xt)j � N3(�+kxt��xtk)kxt��xtkfor t 2 [0; S℄ and for any 
ontinuous fun
tion x : [�r;1)! Rn satisfyingxt 2 BC(A3; �2); t 2 [0; S℄: (2.12)Proof For a �xed t 2 [0; S℄ we introdu
e the real fun
tionp(s) = �x(t� �(t; �xt + s(xt � �xt))) + s _�x(t� �(t; �xt))D2�(t; �xt)(xt � �xt):The Chain Rule implies that the real fun
tion p is 
ontinuously di�erentiable, and_p(s) = �� _�x(t��(t; �xt+s(xt��xt)))D2�(t; �xt+s(xt��xt))+ _�x(t��(t; �xt))D2�(t; �xt)�(xt��xt):Then the de�nition of p and the Mean Value Theorem yield that there exists � 2 [0; 1℄ su
hthatj�x(t� �(t; xt))� �x(t� �(t; �xt)) + _�x(t� �(t; �xt))D2�(t; �xt)(xt � �xt)j= jp(1) � p(0)j= j _p(�)j� ��� _�x(t� �(t; �xt))� _�x(t� �(t; �xt + �(xt � �xt)))������D2�(t; �xt + �(xt � �xt))���L(C;R)kxt � �xtkj _�x(t� �(t; �xt))j���D2�(t; �xt)�D2�(t; �xt + �(xt � �xt))���L(C;R)kxt � �xtk: (2.13)Let L1 and L2 be the 
onstants from (H2) (ii) and (iii), respe
tively, 
orresponding to theset BC(A3; %3). Fix an arbitrary � > 0. Sin
e _�x is T -periodi
, and so it is uniformly




ontinuous, for any � > 0 there exists Æ > 0 su
h that j _�x(u)� _�x(~u)j � �ju� ~uj for u; ~u � �rsatisfying ju� ~uj � Æ, and there exists a 
onstant R1 � 0 su
h that j _�x(t)j � R1 for t � �r.Let �2 � min(%3; Æ=L1), and suppose x satis�es (2.12). Then (H2) (ii) impliesj�(t; �xt)� �(t; �xt + �(xt � �xt))j � L1kxt � �xtk � Æ;and hen
e ��� _�x(t� �(t; �xt))� _�x(t� �(t; �xt + �(xt � �xt)))��� � �:Using (H2) (iii) and the periodi
ity of � there exists a 
onstant R2 � 0 su
h that���D2�(t; �xt + �(xt � �xt))���L(C;R) � ���D2�(t; �xt)���L(C;R) + L2kxt � �xtk � R2for any fun
tion satisfying (2.12). Then the statement of the lemma follows from (2.13)with N3 = max(R2; R1L2). 2Lemma 2.3 Assume (H1), (H2), and let �x : [�r;1)! Rn be a 
ontinuously di�erentiableand T -periodi
 solution of (2.1) 
orresponding to initial fun
tion �', and let x be a solutionof (2.1)-(2.2) satisfying (2.4). Then there exists a 
onstant N4 > 0 su
h that for any S > 0j _x(t)� _�x(t)j � N4kxt � �xtk; t 2 [0; S℄ (2.14)and kxt � �xtk � eN4tk'� �'k; t 2 [0; S℄ (2.15)for any solution x of (2.1) satisfyingxt 2 BC(A3; %3); t 2 [0; S℄: (2.16)Proof Let N2 be the 
onstant from Lemma 2.1, �x S > 0, and suppose x satis�es (2.16).Then the Mean Value Theorem, Lemma 2.1 and (2.3) yield for t 2 [0; S℄j _x(t)� _�x(t)j = jf(t; x(t); �(t)) � f(t; �x(t); ��(t))j� N1(jx(t)� �x(t)j+ j�(t)� ��(t)j)� N1(1 +N2)kxt � �xtk:Therefore (2.14) holds with N4 = N1(1 +N2).To prove (2.15), 
onsider the inequalitiesjx(t)� �x(t)j � j'(0) � �'(0)j+ Z t0 j _x(s)� _�x(s)j ds � k'� �'k+N4 Z t0 kxs � �xsk ds:Let v(t) � maxfjx(s)� �x(s)j : �r � s � tg. Thenjx(t)� �x(t)j � k'� �'k+N4 Z t0 v(s) ds; t 2 [0; S℄;and sin
e the right-hand-side is monotone in
reasing in t, it impliesv(t) � k'� �'k+N4 Z t0 v(s) ds; t 2 [0; T ℄:Therefore Gronwall's inequality proves (2.15), sin
e kxt � �xtk � v(t). 2We will need the following estimate of g.



Lemma 2.4 Assume (H1), (H2), and let �x : [�r;1)! Rn be a 
ontinuously di�erentiableand T -periodi
 solution of (2.1) 
orresponding to initial fun
tion �', and let x be a solutionof (2.1)-(2.2). Then there exists a 
onstant N5 � 0 su
h that for every � > 0 there exists�3 > 0 su
h that for any S > rjg(t; xt)� g(t; �xt)j � 8<: N5(� + 1)kxt � �xtk 0 � t � r;N5�� + maxt�r�s�t kxs � �xsk� kxt � �xtk; t 2 [r; S℄for x satisfying xt 2 BC(A3; �3); t 2 [0; S℄: (2.17)Proof The de�nition of g and F , and the Mean Value Theorem implyjg(t; xt)� g(t; �xt)j = jf(t; x(t); �(t)) � f(t; �x(t); ��(t))� F (t)(xt � �xt)j= ���f(t; x(t); �(t)) � f(t; �x(t); ��(t))�D2f(t; �x(t); ��(t))(x(t) � �x(t))� D3f(t; �x(t); ��(t))�x(t� �(t; �xt))� ��(t)�+ D3f(t; �x(t); ��(t)) _�x(t� �(t; �xt))D2�(t; �xt)(xt � �xt)���� ���f(t; x(t); �(t)) � f(t; �x(t); ��(t))�D2f(t; �x(t); ��(t))(x(t) � �x(t))� D3f(t; �x(t); ��(t))(�(t) � ��(t))���+ ���D3f(t; �x(t); ��(t))�x(t� �(t; xt))� x(t� �(t; �xt))+ _�x(t� �(t; �xt))D2�(t; �xt)(xt � �xt)����� sup0<�<1���D2f�t; �x(t) + �(x(t)� �x(t)); ��(t) + �(�(t)� ��(t))�� D2f(t; �x(t); ��(t))���jx(t)� �x(t)j+ sup0<�<1���D3f�t; �x(t) + �(x(t)� �x(t)); ��(t) + �(�(t)� ��(t))�� D3f(t; �x(t); ��(t))���j�(t)� ��(t)j+ ���D3f(t; �x(t); ��(t))�x(t� �(t; xt))� x(t� �(t; �xt))+ _�x(t� �(t; �xt))D2�(t; �xt)(xt � �xt)����: (2.18)Fix � > 0 and S > r. By the 
ontinuous di�erentiability and T -periodi
ity of f guaranteedby (H1) there exists Æ > 0 su
h thatjD2f(t; u; v)�D2f(t; ~u; ~v)j � � and jD3f(t; u; v)�D3f(t; ~u; ~v)j � �hold for t � 0, u; ~u 2 BRn(A1; %1), v; ~v 2 BRn(A2; %2), and ju� ~uj � Æ and jv � ~vj � Æ. LetL1 and L2 be the 
onstants from (H2) (ii) and (iii), respe
tively, 
orresponding to the setBC(A3; %3), let N2, N3 and N4 be the 
onstants from Lemmas 2.1, 2.2 and 2.3, respe
tively,and let �2 be the 
onstant from Lemma 2.2 
orresponding to �. De�ne�3 � min(Æ=N2; %1; %2=N2; �2; %3);



and suppose x satis�es (2.17). Then jx(t) � �x(t)j � Æ and j�(t) � ��(t)j � Æ for t 2 [0; S℄.Therefore it follows from (2.3), (2.18), Lemma 2.1 and 2.2 for t 2 [0; S℄jg(t; xt)� g(t; �xt)j� �jx(t) � �x(t)j+ �j�(t)� ��(t)j+ N1����x(t� �(t; xt))� �x(t� �(t; �xt)) + _�x(t� �(t; �xt))D2�(t; �xt)(xt � �xt)���+ N1jx(t� �(t; xt))� x(t� �(t; �xt))� �x(t� �(t; xt)) + �x(t� �(t; �xt))j� �(1 +N2 +N1N3)kxt � �xtk+N1N3kxt � �xtk2+ N1jx(t� �(t; xt))� x(t� �(t; �xt))� �x(t� �(t; xt)) + �x(t� �(t; �xt))j: (2.19)For t 2 [0; r℄ we estimate the last term of (2.19) simply asjx(t� �(t; xt))� x(t� �(t; �xt))� �x(t� �(t; xt)) + �x(t� �(t; �xt))j � 2kxt � �xtk:For t � r we use a di�erent estimate: the Mean Value Theorem, (H1) (ii), and relationst� �(t; xt) � 0 and t� �(t; �xt) � 0 yieldjx(t� �(t; xt))� x(t� �(t; �xt))� �x(t� �(t; xt)) + �x(t� �(t; �xt))j� L1 maxs2[t�r;t℄ j _x(s)� _�x(s)j � kxt � �xtk:Therefore Lemma 2.3 implies for t 2 [r; S℄jx(t� �(t; xt))� x(t� �(t; �xt))� �x(t� �(t; xt)) + �x(t� �(t; �xt))j� L1N4 maxs2[t�r;t℄ kxs � �xsk � kxt � �xtk:Hen
e the statement of the lemma follows from (2.19) withN5 � max (1 +N2 +N1N3; N1N3 + L1N1N4; N1N3%3 + 2N1) : 2We show that the exponential stability of the periodi
 steady-state solution �x of thenonlinear sd-FDE (2.1) 
an be obtained by that of the homogeneous linear FDE (2.8).Theorem 2.5 Assume (H1), (H2), and let �x : [�r;1) ! Rn be a 
ontinuously di�er-entiable and T -periodi
 solution of (2.1) 
orresponding to initial fun
tion �'. Suppose thetrivial solution of (2.8) is exponentially stable, i.e., there exist K0 � 1 and �0 > 0 su
hthat (2.11) holds. Then for every 0 < � < �0 there exists Æ > 0 and K � 1 su
h that ifk'� �'k < Æ, then any 
orresponding solution x(t) = x(t;') of (2.1) satis�esjx(t)� �x(t)j � Ke��tk'� �'k; t � 0;i.e., �x is an exponentially stable periodi
 steady-state of (2.1).Proof Fix " > 0 and 0 < � < �0. Let N4 and N5 be the 
onstants de�ned by Lemma 2.3and 2.4, respe
tively, and let � � "(�0 � �)2(1 + ")K0N5 e��r:



De�ne �3 = �3(�) by Lemma 2.4, letÆ1 � min�%1; %3; �3; �; �N4� ; K1 � K0 �1 + rN5e(�0+N4)r� ; and K � (1 + ")K1;and �nally, let Æ � Æ1K :Let ' 2 C be su
h that k' � �'k < Æ, and let x(t) = x(t;') be a 
orresponding solution of(2.1)-(2.2). Then jx(t)� �x(t)j < Æ1 for small t > 0 sin
e Æ < Æ1. Suppose there exists S > 0su
h that jx(t)� �x(t)j < Æ1; for t 2 [0; S); and jx(S)� �x(S)j = Æ1: (2.20)The variation-of-
onstants formula (see, e.g., [9℄) impliesx(t) = U(t; 0)'(0) + Z t0 U(t; s)g(s; xs) ds; t � 0:Similarly, �x(t) = U(t; 0) �'(0) + Z t0 U(t; s)g(s; �xs) ds; t � 0:Thereforejx(t)� �x(t)j � jU(t; 0)jj'(0) � �'(0)j+ Z t0 jU(t; s)jjg(s; xs)� g(s; �xs)j ds; t � 0: (2.21)Suppose S > r. Relations Æ1 � �3, (2.11) and Lemma 2.4 imply for t 2 [r; S℄jx(t)� �x(t)j � K0e��0tk'� �'k+K0 Z r0 e��0(t�s)N5(� + 1)kxs � �xsk ds+K0 Z tr e��0(t�s)N5(� + maxs�r�u�skxu � �xuk)kxs � �xsk ds:Sin
e maxs�r�u�skxu � �xuk � Æ1 � �; s 2 [0; S℄;it followsjx(t)� �x(t)j � K0e��0tk' � �'k+K0N5(� + 1)Z r0 e��0(t�s)kxs � �xsk ds+K0N52� Z tr e��0(t�s)kxs � �xsk ds� K0e��0tk' � �'k+K0N5e��0t Z r0 e�0skxs � �xsk ds+K0N52�e��0t Z t0 e�0skxs � �xsk ds:Note that the last inequality holds for t 2 [0; r℄ and for S � r, as well. Multiplying bothsides of this inequality by e�t, and using relation (2.15) and the de�nition of K1 we gete�tjx(t)� �x(t)j � K1k'� �'k+K0N52�e(���0)t Z t0 e�0skxs � �xsk ds:



Let v(t) = maxfe�sjx(s)� �x(s)j : �r � s � tg. Then we havee�tjx(t)� �x(t)j � K1k'� �'k+K0N52�v(t)e(���0)t+�r Z t0 e(�0��)s ds� K1k'� �'k+ K0N52��0 � � e�rv(t); t 2 [0; S℄:Sin
e the right-hand-side is monotone in
reasing in t, it impliesv(t) � K1k'� �'k+ K0N52��0 � � e�rv(t); t 2 [0; S℄:Then, using the de�nition of �, we getv(t) � K1k'� �'k+ "1 + "v(t); for t 2 [0; S℄;and hen
e jx(t)� �x(t)j � e��tv(t) � Ke��tk'� �'k; t 2 [0; S℄:But this yields Æ1 = jx(S)� �x(S)j < KÆ = Æ1;whi
h 
ontradi
ts to the de�nition of S. Therefore S =1, andjx(t)� �x(t)j � Ke��tk'� �'kholds for all t � 0. The proof of the theorem is 
ompleted. 2We note that in the proofs of our results it was very important that the solution �x aroundwhi
h we linearized the nonlinear sd-FDE is 
ontinuously di�erentiable. Linearization ofa nonlinear (not ne
essary periodi
) sd-FDE around an absolutely 
ontinuous solution ismu
h more te
hni
al (see Brokate & Colonius (1990), Hartung (1997), and Hartung &Turi (1997)), so it is an interesting open question to investigate linearized stability of su
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