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On Stability of Neural Networks with Delays

Istvan Gyori — Ferenc Hartung

Abstract

In this paper to continue our previous work for the scalar case, we study the
asymptotic stability of the neural network system of the form

zi(t) = _dixi(t)‘l‘z aijf(zj(t))-l-z bijf(zj(t—Ti))4u;, t>0, i=1,...,n.
7=1 7=1

1 Introduction

Cellular neural networks (CNNs), introduced by Chua and Yang in 1988 ([4]), have been
successfully applied in various engineering and scientific applications. In a standard
CNN model the model equations are ordinary differential equations (ODEs) assuming
that the interactions in the system are instantaneous. On the other hand it is known
that in the real models of electronic networks time delays are likely to be present, due
to the finite switching speed of amplifiers. So in the so-called delayed CNNs (DCNN5)
the model equations are delay differential equations, which have much more complicated
dynamics than the ODEs. In the applications DCNNSs are usually required to be globally
asymptotically stable, completely stable, absolutely stable or stable independently of the
delays. These different types of stability of DCNNs have been rigorously done and many
criteria have been obtained so far (see, e.g.,[2], [3], [6]-[10]). Most of these methods and
results are devoted to the case when a non-delayed, linear terms dominate the others.
In [5] we studied the single neuron model equation described by the scalar equation

(t) = —dx(t) + af(x(t)) + bf (x(t — 7)) + u, t>0, (1.1)
in the case when the feedback function f is a Hopfield activation function defined by

1 1, t>1,
F) =5+ = [t =1) = { & —1<t<1,
-1, t<—1.
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We proved that condition
d>a+ b+ |u| (1.2)

implies the global asymptotic stability of the unique equilibrium point of (1.1). In the
case when b > 0 and a+b—|u| < d < a+b+ |u| we have a complete understanding of the
dynamics of (1.1) (see [5]), but in the remaining cases we have only partial theoretical
results. In [5] we made numerical studies, and based on those experiments we conjecture
that if b > 0, then every solution of (1.1) tends to a constant equilibrium, i.e., (1.1) is
completely stable. In the case when b < 0 and a+b+ |u| < d < a+ |b|+|u| we presented
numerical studies and conjectured cases when the solutions of (1.1) are asymptotically
periodic.

In this paper we generalize condition (1.2) to the system case of (1.1), which extends
the results of [2]. Using numerical schemes introduced in [5] we illustrate our theoretical
findings on a numerical example.

2 Stability Results

We consider the system version of (1.1), i.e., consider the neuron model equation

!Ez(t) = —dimi(t)+Zaijf(mj(t))+Zbi]~f(mj(t—7'ij))+ui, tZ U, 1= 1,...,n,
j=1 j=1

(2.1)
where

1
d; > 0, TijZO; aij,bij,uieR(i,jzl,...,n), and f(t):§(‘t+1‘—|t—1|)

(2.2)
Let r = max{r;: 4,7 =1,...,n}. We associate the initial conditions
n) = glt),  tel-n0), i=1,...n (2.3
to (2.1).

To simplify notation we introduce the n xn matrices D = diag(dy, ..., d,), A = (a;j)
and B = (b;;), and the vectors u = (uy,...,u,)" € R* and 1 = (1,...,1)" € R". We
use the relation x < y for vectors x,y € R", if x; < y; for all i« = 1,...,n, where
Xx=(21,...,2)  and y = (y1,...,9.)T.

For the matrix A we associate the n x n diagonal matrix Ay = diag(ai1, as, ..., py),

i.e., the diagonal part of A, and let A; = A— A, be the off-diagonal part of A. Then with
this notation, which we use throughout this paper, we can rewrite A as A = Ay + A;.
For an n x n matrix B the symbol |B| denotes the corresponding n x n matrix with
ijth element |b;;|.
We say that the n x n matrix K = (k;;) is diagonally dominant, if

m

‘I{J“|>ZU{JU|, Z:L,n

j=1,
J#i



We say that an n X n matrix K is an M-matrix, if all of its diagonal elements are
nonnegative, and its off-diagonal elements are nonpositive, and all of its principal minors
are positive (see, e.g., [1] or [2]).

We can formulate the generalization of condition (1.2) for the stability of the scalar
equation (1.1) to neural system (2.1) as follows.

Theorem 2.1 Assume (2.2), D — Ay — |Ay| — | B| is a diagonally dominant M-matriz,
and u 1s such that
lu| < (D — Ay — |As| — |B|)1. (2.4)

Then any solution x of (2.1)-(2.3) satisfies

lim x(t) = (D — A — B) ', (2.5)

t—o00

i.e., equilibrium (D — A — B)~'u of (2.1)-(2.3) is globally asymptotically stable.

One can show that under the conditions of the previous theorem the system has
solutions satisfying |z;(t)| < 1 (i = 1,...,n) for large ¢, therefore it is equivalent to the
linearized version of (2.1):

SCZ(t) == —dlibz(t) + Zaij:rj(t) + Zbux](t — Tij) + Uy;, t Z 0, 1= 1, e, (26)
j=1 7=1

It is possible to show that under this condition system (2.6) has a globally stable unique
equilibrium solution. The above idea of the proof of Theorem 2.1 follows that of Theo-
rem 2.3 in [5], the details will be given elsewhere.

To illustrate this theorem consider the two-dimensional system

#i(t) = =2m(t) = f(22(0) + flza(1)) + (22t = 2)) + 0 (2.7)
Bo(t) = =3wa(t) + flw1(t)) = 2f (w2(t)) — 2f (21 (t = 1)) + ua, (2.8)

where f is defined by (2.2). Here

3 =2
D—A0—|A1—B0—Blz<_3 5),

which is a diagonally dominant M-matrix. Applying condition (2.4) and Theorem 2.1,
we get if |u;| < 1 and |ug| < 2, then the system has a unique equilibrium, which is
globally asymptotically stable. For example, if u; = —0.5 and us = 1, then system

(2.7)-(2.8) has equilibrium (e, eo)” = (—0.029412,0.20588). Solutions z;(¢) and x5 (t)
of (2.7)-(2.8) corresponding to initial conditions

(o1(1), o2(1)" = (#* + 2,cost —3)", (t—3,2—t)" and (0,0)", te€[-2,0]

can be seen on Figure 1 and 2, respectively. We can observe the corresponding solutions
tend to equilibrium (e;, ey)”.



We can easily find u; and uy in (2.7)-(2.8) so that condition (2.4) fails and for some
large t either |z1(¢)| > 1 or |z2(t)| > 1, so in such case (2.1) is not equivalent to the linear
system (2.6). For system (2.7)-(2.8) with a given u; and wus it is easy to compute the
equilibrium solutions of (2.1). In each case we tried we always got unique equilibrium
solutions, and observed that the numerically generated solutions tend to the equilibrium.
It is also easy to construct example when the conditions of Theorem 2.1 fail and the
corresponding system has periodic solutions. The analytical study of the asymptotic
behaviour of solutions in such cases is an interesting and difficult open problem.
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Figure 1: x1(t) Figure 2: z5(t)
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