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Abstract

In this paper we study the asymptotic behavior and numerical approximation of the
single neuron model equation &(t) = —dz(t) + af(z(t)) + bf(x(t — 7)) + I, ¢t > 0 (1),
where d > 0 and f(z) = 0.5(]x + 1| — |z — 1|). We obtain new sufficient conditions
for global asymptotic stability of constant equilibriums of (1), give several numerical
examples to illustrate our results, and formulate conjectures on the asymptotic behavior
of the solutions based on our numerical experiments.

keywords: delayed cellular neural networks, global asymptotic stability, numerical
approximations

1 Introduction

Cellular neural networks (CNNs), introduced by Chua and Yang in 1988 ([5]), have been
successfully applied in various engineering and scientific topics: in signal processing systems,
especially in static image treatment [6], in solving nonlinear algebraic equations [1]. In these
applications the existence and stability of the equilibrium solutions and the qualitative
properties (oscillation, periodicity, asymptotic representation of the solutions) play very
important role. Because of the importance of the qualitative properties of the solutions the
model equations of CNNs models have been extensively studied in the past decade (see,
e.g., [2], [9] [16]-[20], [26] and [28], and the references therein).

In a standard CNN model the model equations are ordinary differential equations
(ODEs) assuming that the interactions in the system are instantaneous. On the other
hand it is known that in the real models of electronic networks time delays are likely to be
present, due to the finite switching speed of amplifiers. So in the so-called delayed CNNs
(DCNNs) the model equations are delay differential equations, which have much more com-
plicated dynamics than the ODEs. The time delay in the response of a neuron can influence
stability (see, e.g., [13]) or it creates oscillation (see, e..g., [11]).
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Recently, DCNN models are applied in the artificial neural networks ([23],[24]). In the
applications DCNNs are usually required to be globally asymptotically stable, completely
stable, absolutely stable or stable independently of the delays. These different types of
stability of DCNNs have been rigorously done and many criteria have been obtained so far
(see, e.g., [4], [17], [19], [26]-[28]). Most of these methods and results are devoted to the
case when a non-delayed, linear terms dominate the others.

In this paper our attention is focused on a single neuron or the averaged potential of a
population of neurons coupled by mutual inhibitory synapses. In that case, based on the
paper [14], the model equation is a scalar delay differential equation of the form

citt) =~y apatn) +pfi - + 1 120
in which C' > 0, R > 0 and I is called capacitance, resistance and the external current input
constants of the neuron, respectively; x(¢) is the voltage of the neuron and f is a feedback
function. The feedback time delay 7 may be caused by finite conduction velocities, synaptic
transmission or other mechanisms. In retinal network, an extraordinary value of 7 = 0.1
sec has been measured (see, e.g., [7] and [21]).

In our study we focus on global stability results, oscillation properties of the solution of

the equation

#(t) = —dz(t) + af(z(t)) + bf (x(t — 7)) + 1, t >0, (1.1)

in the case when the feedback function f is a Hopfield activation function defined by

1 1, z > 1,
f(x):§(|$+1|—\g:—1|): x, -1<z<1, (1.2)
-1, < —1.

We assume throughout this paper that d > 0. Note that even in this single neuron model
with this simple nonlinearity there is no complete knowledge on the asymptotic or global
asymptotic stability of the equilibrium points of (1.1). The standard condition can be found
in the literature for asymptotic stability of the trivial solution of (1.1) is

d > |a| + |b| + ||

(see, e.g., [4] or [16]). We will show in Section 2 that this condition can be relaxed, the
weaker condition
d>a+|b|+ I (1.3)

implies the global asymptotic stability of the unique equilibrium point of (1.1) (see Theo-
rem 2.3). In the second part of Section 2 we will study the case when d < a + |b| + |I|.
Then (1.1) may have more equilibrium points, and the dynamics of the equation can be
more interesting. We will study in details the case when b > 0 using the technique of
monotone semiflows. In the case when a + b — |I| < d < a+ b+ |I| we have a complete
understanding of the dynamics of (1.1) (see Theorems 2.8), but in the remaining cases we
have only partial theoretical results (see Theorems 2.9 and 2.12). In the latter cases we
made numerical studies, and based on those experiments we conjecture that if b > 0, then
every solution of (1.1) tends to a constant equilibrium, i.e., (1.1) is completely stable.



In the case when b < 0 and a+ b+ |I| < d < a+ |b| + |I| we will present numerical
studies and conjecture cases when the solutions of (1.1) are asymptotically periodic.

In Section 3 we will define two numerical approximation techniques we used in the
simulations. Note that these methods were originally introduced in [10] for more general
delay equations.

We note that if e is an equilibrium point of (1.1) such that —1 < e < 1 (see Lemma 2.4
below) then the linearization of (1.1) around this equilibrium gives equation

Z(t) = cz(t) + bz(t — 1), t>0, (1.4)
where ¢ = a — d. The asymptotic behavior of the solution of equation (1.4) is well-known.

Theorem 1.1 (see, e.g., [13]) The trivial (zero) solution of equation (1.4) is asymptoti-
cally stable independently of the delay if and only if —c > |b|. Moreover, the exact stability
region of the trivial solution of (1.4) is bounded by the line b = —c and by the curve

s s
¢ = scot(Ts), b__sin(Ts)’ 5 € [0, ;} .

(See Figure 1 for the region.)
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Figure 1: Stability region of the linearized equation.

2 Stability Results

We consider again the single neuron model equation

#(t) = —dz(t) + af(z(t)) + bf (x(t — 7)) + 1, t >0, (2.1)



with the initial condition
z(t) = o(t),  te[-7,0] (2.2)

We assume throughout this paper that
1
fl) = 5(z+ 1| = |z — 1)) (2.3)

and
d>0, abeR, b#D0. (2.4)

For a given ¢ > 0 and ¢: [—r,0] — (0, 00) consider the equation
y(t) = —dy(t) +af(y(#)) + I f (y(t = 7)) +¢, £20 (2.5)
associated to (2.1), and the initial condition
y(t) = () t € [—,0]. (2.6)

Lemma 2.1 Assume (2.3)—(2.4). Let ¢: [-7,0] = (0,00), ¢ > 0, and let y be the corre-
sponding solution of (2.5)-(2.6). Then there exists M > 0 such that

0<y(t) < M, t>0.

Proof Since y(0) > 0 and y is continuous on [0,00), y(t) > 0 for small enough ¢ > 0.
Suppose there exists T' > 0 such that

y(t) >0 forte[-7,T), and y(T)=0.
Then ¢(T'—) < 0. On the other hand, (2.5) implies
§(T) = =dy(T) + af (y(T)) + [blf (y(T = 7)) + ¢ = [bf(y(T = 7)) + ¢ >0,

which is a contradiction. Therefore y(t) > 0 for all ¢ > 0.
To prove that y is bounded from above, assume that lim sup,_, ., y(¢) = co. Then there
exists a monotone increasing sequence t,, such that

lim ¢, = oc, lim y(t,) = oo, and y(tn) = max{y(t): t € [—T,tn]}.
n—o0 n—o0

Then g(t,—) > 0, which contradicts to the relations
Y(tn) = —dy(tn) + af (y(tn)) + blf (y(tn — 7)) + ¢ < —dy(tn) + a+ [b] + ¢ <0

for large enough n. 0]



Lemma 2.2 Assume (2.3)(2.4), ¢ > 0, and

d>a+ b +c (2.7)
Let : [—7,0] = (0,00), and let y be the corresponding solution of (2.5)-(2.6). Then
) c
Ay = T (28)

Proof It follows from Lemma 2.1 that

limsupy(t) = M liminfy(t) =m

t—00 t—o0

are finite and m > 0. There are two cases: either M = m, or M > m. In the first case
M = lim;, oo y(t), and (2.5) yields

0=—dM +af(M) + [b|f(M) + c. (2.9)
In the second case there exists a sequence £, such that
tp, = 00 asn — 00, y(tn) =0, n=1,2..., and lim y(t,) = M.
n—oo

We may also assume that
*

nll)ngo y(t, —7) =m
for some m < m* < M, since otherwise we can select a subsequence of ¢, with this property.
Then
0 = lim y(t,)

n—o0

= Jim (=dy(ta) + af (1)) + Bl (it = 7)) +)

— —dM +af (M) + blf (m*) + ¢
< —dM +af(M) + |b|f(M) + c. (2.10)
Therefore in both cases (2.10) holds. Suppose M > 1. Then (2.10), f(M) = 1 and (2.7)

imply the contradiction
0<—-d+a+|b+c<0.

Therefore 0 < M < 1. This means there exists t; > 0 such that for ¢ > ¢; (2.5) is equivalent
to

§(t) = (—d+a)y®) + bly(t =)+, t>h. (2.11)
Define .
K= —.
d—a—|b|

It follows from (2.7) that K < 1. Introducing 2(t) = y(t) — K we can rewrite (2.11) as
2(t) = (—=d + a)z(t) + |b|z(t — 7), t> 1. (2.12)

Since d — a > |b|, Theorem 1.1 yields the trivial solution of (2.12) is asymptotically stable
(independently of the size of the delay), therefore (2.8) holds. 0



Theorem 2.3 Assume (2.3)(2.4), and
d>a+ b +|1|. (2.13)
Then any solution x of (2.1)-(2.2) satisfies
I

Proof Fix any ¢: [-r,0] — (0, 00) such that
'([)(S) > ‘QD(S)L s € [_Ta 0]7

and let ¢ > [I] be such that d > a + |b| + ¢. Let y denote the solution of the corresponding
IVP (2.5)-(2.6). Since y(0) > |z(0)|, relation |z(¢)| < y(¢) holds for sufficiently small ¢ > 0.
Suppose there exists T' > 0 such that

() <y(t), tel-rT), and [z(T)]=y(T) (2.15)

It follows from Lemma 2.1 that |z(T")| = y(T) # 0, therefore %\x(t)\ exists at T, and
%|x(T)\ = z(T) signz(T). Hence

(D) = (~ds(T) +af (2(T)) +bf (2(T = 7)) +T) signa(T)

—d|z(T)| + af(|z(T)|) + bf (z(T — 7)) signz(T) + I signz(T)
—d|z(T)| + af(|z(T)) + bl f(|2(T — 7)]) + ¢

—dy(T) + af(y(T)) + bl f(y(T' = 7)) + ¢

y(T).

This contradicts to assumption (2.15), therefore |z(¢)| < y(¢) holds for all £ > 0. Moreover,
Lemma 2.2 yields

a
dt

AN CIN

lim y(t) = ¥<1

t—o0 d—a—|b|

holds, therefore there exists ¢; > 0 such that |z(¢)| < 1 for ¢ > ¢;. Then (2.1) is equivalent
to
i(t) = (—d+a)z(t) +bz(t —7)+ 1,  t>t.

This implies (2.14) using an argument similar to that in the proof of Lemma 2.2. O

L is an equilibrium of (2.1) if
—dL+af(L)+bf(L)+I=0. (2.16)

IfL>1,L<-1and —1<L <1, then f(L)=1, f(L) = -1 and f(L) = L, respectively.
Therefore in this three cases we get three possible solutions of (2.16):

a+b+1 —a—-b+1 I
e = —, g = ——, and e3 = ——,
d—a—2>

d y (2.17)



assuming d # a + b in the third case. Conversely, ej,es and es defined by (2.17) are
equilibrium points of (2.1), if e; > 1, es < —1 and —1 < e3 < 1. The next cases can be
checked easily:

Lemma 2.4 Assume (2.3)-(2.4), and let e1,es and es be defined by (2.17). Then
(1) if d > max(a + b+ |I],0), then —1 < e3 < 1 is the only equilibrium point of (2.1).
(1) if max(0,a +b—|I]) <d < a+b+|I|, then (2.1) has only one equilibrium point:

(1) if I >0, then ey > 1 is the equilibrium,
(2) if I <0, then eg < —1 is the equilibrium,

(iii) if 0 < d=a+0band I =0, then any number e € [—1,1] is an equilibrium of (2.1),
and it has no other equilibrium outside [—1,1],

(w) if 0 <d=a+b—|I| and I # 0, then (2.1) has two equilibrium points:

(1) if I >0, then ey > 1 and ex(= e3) = —1 are equilibriums,
(2) if I <0, then e;(=e3) =1 and ey < —1 are equilibriums,

(v) if 0 <d<a+b-|I|, theneg > 1, ea < —1 and —1 < eg < 1 are the equilibrium
points of (2.1).

Next we assume that b > 0. First we recall some results from the theory of monotone
dynamical systems formulated for (2.1).

Theorem 2.5 (see, e.g., [25]) Assume (2.3) and b > 0.
(i) Let @, v: [—7,0] = R be such that
‘P(S) < 7/)(3)3 s € [_Ta O]a

and let z(t; ) and z(t; 1) denote the solution of (2.1) corresponding to initial function
@ and 1, respectively. Then

z(tip) <w(t;p), >0

(ii) Let z(t; c) be the solution of (2.1) corresponding to a constant ¢(s) = c initial function.
If —dc+af(c) +bf(c) + 1 >0, then x(t;c) is nondecreasing, and if —dc + af(c) +
bf(c)+ 1 <0, then x(t;c) is nonincreasing function.

Next we study the asymptotic behavior of (2.1) starting from constant initial conditions.
Consider a constant initial function ¢(s) = ¢, then the corresponding solution will be
denoted by z(¢; ¢).



Theorem 2.6 Assume (2.3) and b > 0. Then every solution of (2.1) starting from a
constant initial function tends to a constant equilibrium.

Proof It follows from Theorem 2.5 (ii) that all solutions of (2.1) corresponding to a
constant initial function are monotone functions. On the other hand Lemma 2.1 yields the
solutions of (2.1) are bounded functions. Therefore lim;_,, z(¢; ¢) always exists, and hence
it is an equilibrium point of Equation (2.1). ]

Theorems 2.3 and 2.6, and Lemma 2.4 have the following corollary, which gives a com-
plete description of the asymptotic property of the solution of (2.1) starting from constant
initial functions.

Theorem 2.7 Assume (2.3), b > 0, and let e1,es and e3 be defined by (2.17). Then

(i) if d > max(a + b+ |I|,0), then es is a globally asymptotically stable equilibrium of
(2.1);

(11) if max(0,a +b—|I|) <d <a+b+|I|, then

(1) if I >0, then z(t;c) — ey for any c € R,
(2) if I <0, then x(t;¢) — eg for any ¢ € R as t — oo;

(11i) if 0 <d=a+band I =0, then
(1) if ¢ > 1, then z(t;¢c) — 1 monotone decreasingly;
(2) if c € [-1,1], then x(t;¢) is constant; and
(8) if ¢ < —1, then x(t;¢) — —1 monotone increasingly as t — oo;

(w) if 0 < d=a+b- Il and I # 0, then if ¢ > ey, then z(t;c) — e; monotone
decreasingly;

(1) if I >0, then if c € (—1,e1), then z(t;c) — e; monotone increasingly; if c < —1,
then x(t;c) — —1 monotone increasingly;

(2) if I <0, then if ¢ € (ea,1), then x(t;c) — ea monotone decreasingly; if ¢ < ea,
then x(t;c) — es monotone increasingly as t — 0o;

(v) if 0 <d<a-+b—|I|, then

(1) if ¢ > e1, then x(t;c) — e; monotone decreasingly;
(2) if c € (es,e1), then z(t;c) — e; monotone increasingly;
(3) if ¢ € (ea,e3), then z(t;c) — ea monotone decreasingly; and

(4) if ¢ < ea, then x(t;c) — e2 monotone increasingly as t — oc.



To illustrate Theorem 2.7 we numerically computed solutions of (2.1) corresponding to
several constant initial functions to different parameter values. The corresponding solutions
can be seen in Figures 2-7.

Figure 2 illustrates case (i) of Theorem 2.7, here d=4,a=1,b=1,I = -1l and 7 = 1.
We see that all solutions tend to e3 = —0.5.

In Figure 3 case (ii) (1) of Theorem 2.7 is illustrated. The solutions of (2.1) correspond
tod=2,a=1,b=1,I=1and 7 =1.

Figure 4 corresponds to parameter values d = 2, a = =1, b =3, I = 0 and 7 = 1.
We see that solutions starting from constant value greater than 1 tend to 1, and similarly,
solutions starting from a constant less than -1 tend to -1, and solutions starting from
constants between -1 and 1 remain constant.

In Figure 5 solutions of (2.1) withd =2, a=1,b=3,I =2 and 7 = 1 can be seen.

In this case (2.1) has only two equilibriums: e; = 3 and e; = —1. This corresponds to case
(iv) (1) of Theorem 2.7. Case (iv) (2) is illustrated in Figure 6, where d =1, a = —1, b = 3,
I =—1, 7 =1, and the equilibriums are e; = 1, e9 = —3.

In Figure 7 an example for case (v) of Theorem 2.7 is studied. Here d = 2, a = 1,
b=3,1=1and 7 =1, and the corresponding equation has three equilibriums: e; = 2.5,
es = —1.5 and e3 = —0.5. We can see from the graph that e; and ey are attractive with
respect to solutions starting from constant initial functions.

Figure 2: case (i), d = 4, a = 1, b = 1, Figure 3: case (ii) (1), d=2,a=1,b=1,
I =-1,7=1, and ¢ = constant. I=1,7=1, and ¢ = constant.

Newt we show that in case (ii) of Theorem 2.7 the single equilibrium point of (2.1) is
globally asymptotically stable for nonconstant initial functions, as well.

Theorem 2.8 Assume (2.3), b > 0, and max(0,a+b—|I|) <d < a-+b+|I|. Let z(t;p)
be any solution of (2.1)-(2.2), and ey, es and es be defined by (2.17). Then

(1) if I >0, then z(t;p) — e1, as t — oo,

(2) if I <0, then z(t;p) — ea, as t — oco.
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Figure 4: case (iii), d = 2, a = —1, b = 3, Figure 5: case (iv) (1), d=2,a=1,b=3,
I =0,7=1, and ¢ = constant. I =2 7=1, and ¢ = constant.

Figure 6: case (iv) (2), d = 1, a = —1, Figure 7: case (v),d =2, a =1, b = 3,
b=3,1=-1,7=1, and ¢ = constant. I=1,7=1, and ¢ = constant.

Proof Consider case (1). Pick constants h and & such that
h < es, k> e, and h <o)<k te[-1,0]
Then by Theorem 2.5
z(t;h) < x(t; o) <z(tk),  t>0.
Since by Theorem 2.7

Jim z(t;h) = e = lim 2 (t; k),

the theorem is proved. Case (2) can be proved similarly. [

Finally we consider case (v) of Theorem 2.7, i.e., assume 0 < d < a + b — |I|. Then the
linearized equation (1.4) has an unstable trivial solution (see Figure 1). We show that in
this case the solutions of (2.1) either tend to e; or ey, or oscillate around es.
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Theorem 2.9 Assume (2.3), b > 0, and 0 < d < a+b—|I|. Let ey, ez and ez be defined
by (2.17), and let z(t; ) be any solution of (2.1)-(2.2). Then either

(i) Jim z(t; p) = e1,
(i) im z(t; ) = es, or
(111) there exists a sequence t, > 0 such that
lim ¢, =00, |th41 —tn| < 7, and z(tn; @) = es,
n—oo
i.e., x oscillates around es.

Proof We distinguish three cases. If there exists ¢ > 0 and #y > 0 such that z(¢;¢) >
es + ¢ for t € [tog — 7,t0], then by Theorem 2.7, z(t;e3 + ) — e;. Theorem 2.5 implies
z(t; ) > z(t + to; e3 + €), therefore there exists 7' > 0 such that z(¢; ) > 1 for t > T. But
then

(t;p) = —dz(t;p) +a+b+ 1,

and therefore x(t; ) — e;.

If there exists ¢ > 0 and ¢y > 0 such that z(¢; @) < e3 —e for ¢t € [tg — 7, o], then we get
by a similar argument that x(¢; ) — es.

In the remaining case statement (iii) holds. O

Corollary 2.10 Assume (2.3), b >0, and 0 < d < a+b—|I|. Let ey, es and eg be defined
by (2.17), and let z(t; @) be any solution of (2.1)-(2.2). Then
(1) if o(t) > e3, t € [-1,0], then lim z(t; ) = ey,

— 00

(ii) if p(t) < es, t € [—r,0], then lim z(t;¢) = es.
t—o0

The next result shows that there are solutions of (2.1) (different from the constant
function e3) satisfying case (iii) of Theorem 2.9.

Proposition 2.11 Assume (2.3), b > 0, and 0 < d < a+ b — |I|. Let e3 be defined by
(2.17). Then there exist initial functions ¢ such that the corresponding solutions x(t; ) of
(2.1)-(2.2) satisfy case (iii) of Theorem 2.9, moreover z(t; ) — e3 as t — oc.

Proof Consider the linear equation
2(t) = (—=d 4+ a)z(t) + bz(t — 1) (2.18)

associated to (2.1). The characteristic equation A = —d+a +be 7 of (2.18) has a complex
root A = a +if with o < 0 and 8 > 7/7 (see, e.g., [13]). Then z(t) = ce* cosft is a

11



solution of (2.18) for any ¢ € R. Pick any c¢ satisfying |c¢| < min(1 — e3,1 + e3), and let
z(t) = 2z(t) + es. Then |z(t)| < 1, and it is a solution of (2.1) satisfying z(t) — es. O

Let Z(t) be a solution of (2.1) given in the proof of the last proposition, and let ¢ be
its restriction to [—r,0]. Suppose Z(t) is stable. Then the solutions z(¢; ¢) of (2.1) starting
from initial functions ¢ close to ¢ remains in the neighborhood of z, where —1 < z(t; ) < 1
holds. But then define z(t) = x(t) — e3 and zZ(¢t) = Z(¢) — e3. Then both z(¢) and Z(t) are
solutions of (2.18), moreover the difference function w(t) = z(t) — z(t) = z(t) — z(¢) is
also a solution of (2.18). But this is a contradiction, since in this case the trivial solution
of (2.18) is unstable, and so w(¢) can not be bounded. Therefore solution Z(¢) of (2.1) is
unstable, and hence it is difficult to observe it numerically. In Figure 8 we plotted such a
solution starting from the initial function p(t) = 0.5e=%43177! ¢05(2.3706¢) (together with
some other solutions). We can see that this solution first approaches 0, but after some
time, due to numerical error, it gets off the unstable equilibrium, and one of the stable
equilibrium attracts the solution. We made several numerical runnings to test the stability
of the equilibrium points in this case for nonconstant initial functions, and we found that
every numerical solution tends to e; or es.

Similarly to Theorem 2.9 and Corollary 2.10 one can prove the following result for cases
(iii) and (iv) of Theorem 2.7.

Theorem 2.12 Assume (2.3), b > 0, and let e1,es and e3 be defined by (2.17), and let
x(t; @) be any solution of (2.1)-(2.2).

(i) Suppose 0 < d=a+0band I =0. Then
(1) if p(t) > 1 for t € [-r,0], then ltlim z(t; ) =1,
—00
(2) if p(t) < —1 for t € [-r,0], then tlim z(t; ) = —1;
— 00

(ii) Suppose 0 <d=a+b—|I| and I > 0. Then

(1) if p(t) > e fort € [—r,0], then 1tl_i)m z(t;0) = eq,
o<
(2) if p(t) < eq fort € [—r,0], then lim z(t; ) = ey;

t—oc

(/L”) Suppose O<d=a+b- |I| and I < 0. Then
(1) if p(t) > e fort € [~r,0], then lim z(t;p) = ey,
t—o0

(2) if p(t) < ey fort e [—r,0], then lim z(t;p) = eq;

t—o0

Figure 9 studies case (iii) of Theorem 2.7. Here we can observe that solutions starting
from different initial functions tend to a constant equilibrium (depending on the initial
function). In Figure 10 we study case (iv) of Theorem 2.7. In this case, as well, the
solutions tend to one of the two equilibrium points.

12



Figure 8: d =1, a = 05, b =1, 7 = Figure 9: d =2, a = -1,b=3, 7 =1,
2, I =0, p(t) = cos(2t) + 1, sint + 1, I =0, p(t) = 2cost, t + 1.5, cos2t, sint,
0.5e~ 043177 ¢05(2.3706t), 0.01sin 5¢, t2 — 1, t> — 2, and —3 cos 10t, respectively.

and ¢t — 2, respectively.

Theorem 2.9, 2.12 and our numerical studies suggest that not only in case (i) and (ii) of
Theorem 2.7, but also in cases (iii)—(v) all solutions of (2.1) tend to a constant equilibrium.

Conjecture 2.13 Assume (2.3), b > 0, and 0 < d < a+ b — |I|. Then every solution of
(2.1)-(2.2) tends to a constant equilibrium.

Finally, consider the case when b < 0. In this case the method of monotone semiflows
(Theorem 2.5) does not work. Theorem 2.3 implies that es is globally asymptotically stable
if d > max(a + [b| + |I],0). We now study the case when

max(a + b+ |I],0) <d <a+|b+|I (2.19)

In this case Lemma 2.4 yields that ez is the only equilibrium of (2.1), but it is an open
question whether this equilibrium point is globally asymptotically stable. Introduce z(t) =
z(t) — es. As we have seen in the proof of Proposition 2.11, z(t) satisfies equation (2.18)
until 2(¢) remains close to the equilibrium (more precisely, if |z(t) —eg| < 1). It follows from
Theorem 1.1 that the trivial solution of (2.18) is not asymptotically stable independently
of the delay, as it was in the case of Theorem 2.3.

First consider an example where d = 2, a = 2cot2 + 2 ~ 1.54234, b = —2/sin2 =~
—1.09975, I = 1 and 7 = 2. Note that these parameters lie on the lower boundary of
the stability region of the linearized equation (2.18) (see Theorem 1.1 and Figure 1). In
this case the trivial solution of (2.18) is stable but not asymptotically stable. Then it is
known that the corresponding linear equation (2.18) has a periodic solution. (It is easy to
check that z(t) = acost solves (2.18) for any a € [—1,1].) First in Figure 11 we have the
graph of a few solutions of the corresponding nonlinear equation (2.1). We found that all
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Figure 10: d = 1, a = —1, b =3, 7 = 1, Figure 11: d = 2, a = 1.54234, b =
T=1,0) =4—12,t+1,¢,0.5sin5t— 1, —1.09975, I =1, 7 = 2, and ¢(t) = t* + 2,
and —3 cos 2t, respectively. 0.7+ 0.1sint, 0.4, —0.5cos 2t and £ — 1, re-
spectively.

the numerically observable solutions (except the constant equilibrium) are asymptotically
periodic.

In the next example we use parameter values d = 2, a = 1.54234, b = —0.8, [ = 1,
and 7 = 2. Then it is easy to check that the linear equation (2.18) has an asymptotically
stable trivial solution, therefore equilibrium e of the nonlinear equation (2.1) is locally
asymptotically stable, as well. Based on our numerical studies we conjecture that in this case
e3 is also globally asymptotically stable. We plotted some solutions of the corresponding
equation (2.1) in Figure 12.

Finally, consider parameter values d =1, a = 0.5, b = —2, I = 0, and 7 = 2. Then the
zero solution of the linear equation (2.18) is unstable (see Figure 1). We found that the
solutions of the nonlinear equations are asymptotically periodic. We can see some solutions
of (2.1) in Figure 13. Of course, as in Proposition 2.11, we can find solutions of (2.18)
which tend to 0. E.g., z(t) = 0.3¢70-8116 c05(10.19475¢) is a solution of (2.18), therefore
x(t) = z(¢) is a solution of (2.1). In Figure 13 we plotted a numerical solution starting from
this initial function. We can see that the numerical solution first follows the analytical
solution z(¢), but after some time, due to numerical errors, a periodic solution attracts it.

Based on numerical studies we made the following conjecture on the asymptotic behavior
of the solution.

Conjecture 2.14 Assume (2.3) and (2.19). If the trivial solution of the corresponding
linear equation (2.18) is asymptotically stable, then ez is a globally stable equilibrium of
(2.1). Otherwise, “most of the solutions” of (2.1) are asymptotically periodic.
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Figure 12: d = 2, a = 1.54234, b = —0.8, Figure 13: d = 1, a = 0.5, b = -2,
I =1,7=2 and p(t) = 3cost, t +2, 7 = 2, I = 0, and ¢(t) = 3 —t + 1,
sinbt — 0.5 and —1.5, respectively. 0.3¢ 08146 ¢05(10.19475¢), and —1.5 cos 3t,
respectively.

3 Numerical Approximation

In this section we define two numerical schemes to approximate the solutions of (2.1).
Our first method is the chain method, which was first introduced by Repin [22] and
Janushevski [15], and later was also used in [10] and [12]. We can rewrite (2.1) in the form

%(m(t)er A fla(s) ds) = ~da(t) + @+ B)f(a() + 1. 1> 0.

Fix a positive integer N, introduce the stepsize h = 7/N, and to this equation we associate
the system of ODEs

V0@ = —dy™NO () + af (Y VO (1) + T + %y(N’N)(t) (3.1)

D) =~y () b (1) (32)

JE) = Ly 4 LDy, i (3.3)

yM00) = o(0), (3.4)
. —(i=1)h

00 = [ b s =1, (3.5)

It can be shown (see the details in [12]) that

lim |y™MO(8) — z(t)| = 0, lim

N—00 N—oxo

t—(i—1)h
(N:3) () — z(s)) ds
y (1) / bf (2(s)) d

—th

15



Example 3.1 Consider the IVP

a(t) = —x(t) + f(z(t) — flz(t - 1)),
z(t) = 2, te]-1,0]

Its solution can be computed using the method of steps:

(2
2¢~t
—t+1.69314718
0.5t2 — 2.69314718t + 3.12652087
—0.166666667t3 + 1.84657359t> — 6.31966805¢
6.38210568,
z(t) = { 0.0416666667t* — 0.782191197t3 + 5.25640762t>
—14.5483473t + 14.1334177,
—0.00833333334t° + 2372144659t* — 2.61766040¢>
+13.8705347t% — 34.9286972¢ + 33.1065757
0.0013888889t5 — 0.0557762265t° + 0.9124628997¢*
—7.743378692t3 + 35.75663620t> — 84.76901587¢
[ +80.39795420

>0, (3.6)

€ [-1,0],

€ (0, 10g2]

€ (log 2,1+ log 2]
€ (1+1log2,2 + log2]
€ (2+1og2,3 + log2]
€ (3 +1og2,4 + log2]

€ (4 +1log2,5 + log 2]

€ (5 +log2,6 + log 2]

In this example we used scheme (3.1)-(3.5) to get approximate solution of IVP (3.6)-(3.7).
In Table 1 we compared the numerical results to the true solution. We can observe linear

convergence to the true solution.

Table 1: Chain method.

h N [y ™M@ - 2@2)] [y —a@)] [y"™I(6) — «(6)]
0.250000 5 0.090714 0.119166 0.033756
0.111111 10 0.047653 0.066927 0.029830
0.020408 50 0.009849 0.014230 0.008160
0.010101 100 0.004756 0.007093 0.004173
0.005025 200 0.002219 0.003469 0.002072

Our next scheme is based on the method of lines, which is used frequently to approx-
imate PDEs (see, e.g., [29] and the references therein), and was used in [10] to approximate

FDEs. Let u(t,s) = z(t — s), then (2.1) is equivalent to

ou ou
g8+ 5o(ts) = 0, 0<s<m £20 (3.8)
g:(t 0) = —du(t,0)+af(u(t,0)) +bf(u(t. 7)) +1, t>0 (3.9
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Let N be fixed, and h = 7/N. Consider the system of ODEs

i) = O + af 0O (1) + bf (0 (1)) (3.10)
,U(N,l)(t) — —%’U(N’l)(t) + %/U(Niifl)(t)’ 7 = 1,___,N, (311)
oND(0) = p(—ih), i=0,...,N. (3.12)

Then one can show (see details in [10]) that limy o [0 (£) — u(t,ih)| = 0,i=0,...,N.

The schematic picture of the chain method and the method of lines can be seen in Figures
14 and 15, respectively. It can bee seen that the difference between the two methods is the
computation of the first and second components, and the definition of the initial values of
the variables.

Figure 14: chain method Figure 15: method of lines

Example 3.2 Consider again IVP (3.6)-(3.7), and now we we use scheme (3.1)—(3.5) to
get its approximate solution. In Table 2 we compared the numerical results to the true
solution. We can observe linear convergence to the true solution.
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