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tIn this paper we study the asymptoti
 behavior and numeri
al approximation of thesingle neuron model equation _x(t) = �dx(t) + af(x(t)) + bf(x(t � �)) + I , t � 0 (1),where d > 0 and f(x) = 0:5(jx + 1j � jx � 1j). We obtain new suÆ
ient 
onditionsfor global asymptoti
 stability of 
onstant equilibriums of (1), give several numeri
alexamples to illustrate our results, and formulate 
onje
tures on the asymptoti
 behaviorof the solutions based on our numeri
al experiments.keywords: delayed 
ellular neural networks, global asymptoti
 stability, numeri
alapproximations1 Introdu
tionCellular neural networks (CNNs), introdu
ed by Chua and Yang in 1988 ([5℄), have beensu

essfully applied in various engineering and s
ienti�
 topi
s: in signal pro
essing systems,espe
ially in stati
 image treatment [6℄, in solving nonlinear algebrai
 equations [1℄. In theseappli
ations the existen
e and stability of the equilibrium solutions and the qualitativeproperties (os
illation, periodi
ity, asymptoti
 representation of the solutions) play veryimportant role. Be
ause of the importan
e of the qualitative properties of the solutions themodel equations of CNNs models have been extensively studied in the past de
ade (see,e.g., [2℄, [9℄ [16℄{[20℄, [26℄ and [28℄, and the referen
es therein).In a standard CNN model the model equations are ordinary di�erential equations(ODEs) assuming that the intera
tions in the system are instantaneous. On the otherhand it is known that in the real models of ele
troni
 networks time delays are likely to bepresent, due to the �nite swit
hing speed of ampli�ers. So in the so-
alled delayed CNNs(DCNNs) the model equations are delay di�erential equations, whi
h have mu
h more 
om-pli
ated dynami
s than the ODEs. The time delay in the response of a neuron 
an in
uen
estability (see, e.g., [13℄) or it 
reates os
illation (see, e..g., [11℄).This resear
h was partially supported by Hungarian National Foundation for S
ienti�
 Resear
h GrantNo. T031935. 1



Re
ently, DCNN models are applied in the arti�
ial neural networks ([23℄,[24℄). In theappli
ations DCNNs are usually required to be globally asymptoti
ally stable, 
ompletelystable, absolutely stable or stable independently of the delays. These di�erent types ofstability of DCNNs have been rigorously done and many 
riteria have been obtained so far(see, e.g., [4℄, [17℄, [19℄, [26℄{[28℄). Most of these methods and results are devoted to the
ase when a non-delayed, linear terms dominate the others.In this paper our attention is fo
used on a single neuron or the averaged potential of apopulation of neurons 
oupled by mutual inhibitory synapses. In that 
ase, based on thepaper [14℄, the model equation is a s
alar delay di�erential equation of the formC _x(t) = �x(t)R + �f(x(t)) + �f(x(t� �)) + ~I; t � 0;in whi
h C > 0, R > 0 and ~I is 
alled 
apa
itan
e, resistan
e and the external 
urrent input
onstants of the neuron, respe
tively; x(t) is the voltage of the neuron and f is a feedba
kfun
tion. The feedba
k time delay � may be 
aused by �nite 
ondu
tion velo
ities, synapti
transmission or other me
hanisms. In retinal network, an extraordinary value of � = 0:1se
 has been measured (see, e.g., [7℄ and [21℄).In our study we fo
us on global stability results, os
illation properties of the solution ofthe equation _x(t) = �dx(t) + af(x(t)) + bf(x(t� �)) + I; t � 0; (1.1)in the 
ase when the feedba
k fun
tion f is a Hop�eld a
tivation fun
tion de�ned byf(x) = 12(jx+ 1j � jx� 1j) = 8<: 1; x > 1;x; �1 � x � 1;�1; x < �1: (1.2)We assume throughout this paper that d > 0. Note that even in this single neuron modelwith this simple nonlinearity there is no 
omplete knowledge on the asymptoti
 or globalasymptoti
 stability of the equilibrium points of (1.1). The standard 
ondition 
an be foundin the literature for asymptoti
 stability of the trivial solution of (1.1) isd > jaj+ jbj+ jIj(see, e.g., [4℄ or [16℄). We will show in Se
tion 2 that this 
ondition 
an be relaxed, theweaker 
ondition d > a+ jbj+ jIj (1.3)implies the global asymptoti
 stability of the unique equilibrium point of (1.1) (see Theo-rem 2.3). In the se
ond part of Se
tion 2 we will study the 
ase when d � a + jbj + jIj.Then (1.1) may have more equilibrium points, and the dynami
s of the equation 
an bemore interesting. We will study in details the 
ase when b > 0 using the te
hnique ofmonotone semi
ows. In the 
ase when a + b � jIj < d � a + b + jIj we have a 
ompleteunderstanding of the dynami
s of (1.1) (see Theorems 2.8), but in the remaining 
ases wehave only partial theoreti
al results (see Theorems 2.9 and 2.12). In the latter 
ases wemade numeri
al studies, and based on those experiments we 
onje
ture that if b > 0, thenevery solution of (1.1) tends to a 
onstant equilibrium, i.e., (1.1) is 
ompletely stable.2



In the 
ase when b < 0 and a + b + jIj < d � a + jbj + jIj we will present numeri
alstudies and 
onje
ture 
ases when the solutions of (1.1) are asymptoti
ally periodi
.In Se
tion 3 we will de�ne two numeri
al approximation te
hniques we used in thesimulations. Note that these methods were originally introdu
ed in [10℄ for more generaldelay equations.We note that if e is an equilibrium point of (1.1) su
h that �1 < e < 1 (see Lemma 2.4below) then the linearization of (1.1) around this equilibrium gives equation_z(t) = 
z(t) + bz(t� �); t � 0; (1.4)where 
 = a� d. The asymptoti
 behavior of the solution of equation (1.4) is well-known.Theorem 1.1 (see, e.g., [13℄) The trivial (zero) solution of equation (1.4) is asymptoti-
ally stable independently of the delay if and only if �
 > jbj. Moreover, the exa
t stabilityregion of the trivial solution of (1.4) is bounded by the line b = �
 and by the 
urve
 = s 
ot(�s); b = � ssin(�s) ; s 2 h0; �� i :(See Figure 1 for the region.)
(1/τ,−1/τ)
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Figure 1: Stability region of the linearized equation.
2 Stability ResultsWe 
onsider again the single neuron model equation_x(t) = �dx(t) + af(x(t)) + bf(x(t� �)) + I; t � 0; (2.1)3



with the initial 
ondition x(t) = '(t); t 2 [��; 0℄: (2.2)We assume throughout this paper thatf(x) = 12(jx+ 1j � jx� 1j) (2.3)and d > 0; a; b 2 R; b 6= 0: (2.4)For a given 
 > 0 and  : [�r; 0℄! (0;1) 
onsider the equation_y(t) = �dy(t) + af(y(t)) + jbjf(y(t� �)) + 
; t � 0 (2.5)asso
iated to (2.1), and the initial 
onditiony(t) =  (t) t 2 [��; 0℄: (2.6)Lemma 2.1 Assume (2.3){(2.4). Let  : [��; 0℄ ! (0;1), 
 > 0, and let y be the 
orre-sponding solution of (2.5)-(2.6). Then there exists M > 0 su
h that0 < y(t) < M; t � 0:Proof Sin
e y(0) > 0 and y is 
ontinuous on [0;1), y(t) > 0 for small enough t � 0.Suppose there exists T > 0 su
h thaty(t) > 0 for t 2 [��; T ); and y(T ) = 0:Then _y(T�) � 0. On the other hand, (2.5) implies_y(T ) = �dy(T ) + af(y(T )) + jbjf(y(T � �)) + 
 = jbjf(y(T � �)) + 
 > 0;whi
h is a 
ontradi
tion. Therefore y(t) > 0 for all t > 0.To prove that y is bounded from above, assume that lim supt!1 y(t) =1. Then thereexists a monotone in
reasing sequen
e tn su
h thatlimn!1 tn =1; limn!1 y(tn) =1; and y(tn) = maxfy(t) : t 2 [��; tn℄g:Then _y(tn�) � 0, whi
h 
ontradi
ts to the relations_y(tn) = �dy(tn) + af(y(tn)) + jbjf(y(tn � �)) + 
 � �dy(tn) + a+ jbj+ 
 < 0for large enough n. �
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Lemma 2.2 Assume (2.3){(2.4), 
 > 0, andd > a+ jbj+ 
: (2.7)Let  : [��; 0℄! (0;1), and let y be the 
orresponding solution of (2.5)-(2.6). Thenlimt!1 y(t) = 
d� a� jbj : (2.8)Proof It follows from Lemma 2.1 thatlim supt!1 y(t) =M lim inft!1 y(t) = mare �nite and m � 0. There are two 
ases: either M = m, or M > m. In the �rst 
aseM = limt!1 y(t), and (2.5) yields0 = �dM + af(M) + jbjf(M) + 
: (2.9)In the se
ond 
ase there exists a sequen
e tn su
h thattn !1 as n!1; _y(tn) = 0; n = 1; 2 : : : ; and limn!1 y(tn) =M:We may also assume that limn!1 y(tn � �) = m�for somem � m� �M , sin
e otherwise we 
an sele
t a subsequen
e of tn with this property.Then 0 = limn!1 _y(tn)= limn!1��dy(tn) + af(y(tn)) + jbjf(y(tn � �)) + 
�= �dM + af(M) + jbjf(m�) + 
� �dM + af(M) + jbjf(M) + 
: (2.10)Therefore in both 
ases (2.10) holds. Suppose M � 1. Then (2.10), f(M) = 1 and (2.7)imply the 
ontradi
tion 0 � �d+ a+ jbj+ 
 < 0:Therefore 0 �M < 1. This means there exists t1 > 0 su
h that for t � t1 (2.5) is equivalentto _y(t) = (�d+ a)y(t) + jbjy(t� �) + 
; t � t1: (2.11)De�ne K = 
d� a� jbj :It follows from (2.7) that K < 1. Introdu
ing z(t) = y(t)�K we 
an rewrite (2.11) as_z(t) = (�d+ a)z(t) + jbjz(t� �); t � t1: (2.12)Sin
e d� a > jbj, Theorem 1.1 yields the trivial solution of (2.12) is asymptoti
ally stable(independently of the size of the delay), therefore (2.8) holds. �5



Theorem 2.3 Assume (2.3){(2.4), andd > a+ jbj+ jIj: (2.13)Then any solution x of (2.1)-(2.2) satis�eslimt!1x(t) = Id� a� b : (2.14)Proof Fix any  : [�r; 0℄! (0;1) su
h that (s) > j'(s)j; s 2 [�r; 0℄;and let 
 > jIj be su
h that d > a+ jbj+ 
. Let y denote the solution of the 
orrespondingIVP (2.5)-(2.6). Sin
e y(0) > jx(0)j, relation jx(t)j < y(t) holds for suÆ
iently small t > 0.Suppose there exists T > 0 su
h thatjx(t)j < y(t); t 2 [��; T ); and jx(T )j = y(T ): (2.15)It follows from Lemma 2.1 that jx(T )j = y(T ) 6= 0, therefore ddt jx(t)j exists at T , andddt jx(T )j = _x(T ) signx(T ). Hen
eddt jx(T )j = ��dx(T ) + af(x(T )) + bf(x(T � �)) + I� signx(T )= �djx(T )j+ af(jx(T )j) + bf(x(T � �)) signx(T ) + I signx(T )� �djx(T )j+ af(jx(T )j) + jbjf(jx(T � �)j) + 
< �dy(T ) + af(y(T )) + jbjf(y(T � �)) + 
= _y(T ):This 
ontradi
ts to assumption (2.15), therefore jx(t)j < y(t) holds for all t > 0. Moreover,Lemma 2.2 yields limt!1 y(t) = 
d� a� jbj < 1holds, therefore there exists t1 > 0 su
h that jx(t)j < 1 for t � t1. Then (2.1) is equivalentto _x(t) = (�d+ a)x(t) + bx(t� �) + I; t � t1:This implies (2.14) using an argument similar to that in the proof of Lemma 2.2. �L is an equilibrium of (2.1) if�dL+ af(L) + bf(L) + I = 0: (2.16)If L � 1, L � �1 and �1 � L � 1, then f(L) = 1, f(L) = �1 and f(L) = L, respe
tively.Therefore in this three 
ases we get three possible solutions of (2.16):e1 = a+ b+ Id ; e2 = �a� b+ Id ; and e3 = Id� a� b ; (2.17)6



assuming d 6= a + b in the third 
ase. Conversely, e1; e2 and e3 de�ned by (2.17) areequilibrium points of (2.1), if e1 � 1, e2 � �1 and �1 � e3 � 1. The next 
ases 
an be
he
ked easily:Lemma 2.4 Assume (2.3){(2.4), and let e1; e2 and e3 be de�ned by (2.17). Then(i) if d > max(a+ b+ jIj; 0), then �1 < e3 < 1 is the only equilibrium point of (2.1).(ii) if max(0; a+ b� jIj) < d � a+ b+ jIj, then (2.1) has only one equilibrium point:(1) if I > 0, then e1 � 1 is the equilibrium,(2) if I < 0, then e2 � �1 is the equilibrium,(iii) if 0 < d = a + b and I = 0, then any number e 2 [�1; 1℄ is an equilibrium of (2.1),and it has no other equilibrium outside [�1; 1℄,(iv) if 0 < d = a+ b� jIj and I 6= 0, then (2.1) has two equilibrium points:(1) if I > 0, then e1 > 1 and e2(= e3) = �1 are equilibriums,(2) if I < 0, then e1(= e3) = 1 and e2 < �1 are equilibriums,(v) if 0 < d < a + b � jIj, then e1 > 1, e2 < �1 and �1 < e3 < 1 are the equilibriumpoints of (2.1).Next we assume that b > 0. First we re
all some results from the theory of monotonedynami
al systems formulated for (2.1).Theorem 2.5 (see, e.g., [25℄) Assume (2.3) and b > 0.(i) Let '; : [��; 0℄! R be su
h that'(s) �  (s); s 2 [��; 0℄;and let x(t;') and x(t; ) denote the solution of (2.1) 
orresponding to initial fun
tion' and  , respe
tively. Then x(t;') � x(t; ); t � 0:(ii) Let x(t; 
) be the solution of (2.1) 
orresponding to a 
onstant '(s) = 
 initial fun
tion.If �d
 + af(
) + bf(
) + I � 0, then x(t; 
) is nonde
reasing, and if �d
 + af(
) +bf(
) + I � 0, then x(t; 
) is nonin
reasing fun
tion.Next we study the asymptoti
 behavior of (2.1) starting from 
onstant initial 
onditions.Consider a 
onstant initial fun
tion '(s) = 
, then the 
orresponding solution will bedenoted by x(t; 
). 7



Theorem 2.6 Assume (2.3) and b > 0. Then every solution of (2.1) starting from a
onstant initial fun
tion tends to a 
onstant equilibrium.Proof It follows from Theorem 2.5 (ii) that all solutions of (2.1) 
orresponding to a
onstant initial fun
tion are monotone fun
tions. On the other hand Lemma 2.1 yields thesolutions of (2.1) are bounded fun
tions. Therefore limt!1 x(t; 
) always exists, and hen
eit is an equilibrium point of Equation (2.1). �Theorems 2.3 and 2.6, and Lemma 2.4 have the following 
orollary, whi
h gives a 
om-plete des
ription of the asymptoti
 property of the solution of (2.1) starting from 
onstantinitial fun
tions.Theorem 2.7 Assume (2.3), b > 0, and let e1; e2 and e3 be de�ned by (2.17). Then(i) if d > max(a + b + jIj; 0), then e3 is a globally asymptoti
ally stable equilibrium of(2.1);(ii) if max(0; a+ b� jIj) < d � a+ b+ jIj, then(1) if I > 0, then x(t; 
)! e1 for any 
 2 R,(2) if I < 0, then x(t; 
)! e2 for any 
 2 R as t!1;(iii) if 0 < d = a+ b and I = 0, then(1) if 
 > 1, then x(t; 
)! 1 monotone de
reasingly;(2) if 
 2 [�1; 1℄, then x(t; 
) is 
onstant; and(3) if 
 < �1, then x(t; 
)! �1 monotone in
reasingly as t!1;(iv) if 0 < d = a + b � jIj and I 6= 0, then if 
 > e1, then x(t; 
) ! e1 monotonede
reasingly;(1) if I > 0, then if 
 2 (�1; e1), then x(t; 
)! e1 monotone in
reasingly; if 
 < �1,then x(t; 
)! �1 monotone in
reasingly;(2) if I < 0, then if 
 2 (e2; 1), then x(t; 
) ! e2 monotone de
reasingly; if 
 < e2,then x(t; 
)! e2 monotone in
reasingly as t!1;(v) if 0 < d < a+ b� jIj, then(1) if 
 > e1, then x(t; 
)! e1 monotone de
reasingly;(2) if 
 2 (e3; e1), then x(t; 
)! e1 monotone in
reasingly;(3) if 
 2 (e2; e3), then x(t; 
)! e2 monotone de
reasingly; and(4) if 
 < e2, then x(t; 
)! e2 monotone in
reasingly as t!1.8



To illustrate Theorem 2.7 we numeri
ally 
omputed solutions of (2.1) 
orresponding toseveral 
onstant initial fun
tions to di�erent parameter values. The 
orresponding solutions
an be seen in Figures 2{7.Figure 2 illustrates 
ase (i) of Theorem 2.7, here d = 4, a = 1, b = 1, I = �1 and � = 1.We see that all solutions tend to e3 = �0:5.In Figure 3 
ase (ii) (1) of Theorem 2.7 is illustrated. The solutions of (2.1) 
orrespondto d = 2, a = 1, b = 1, I = 1 and � = 1.Figure 4 
orresponds to parameter values d = 2, a = �1, b = 3, I = 0 and � = 1.We see that solutions starting from 
onstant value greater than 1 tend to 1, and similarly,solutions starting from a 
onstant less than -1 tend to -1, and solutions starting from
onstants between -1 and 1 remain 
onstant.In Figure 5 solutions of (2.1) with d = 2, a = 1, b = 3, I = 2 and � = 1 
an be seen.In this 
ase (2.1) has only two equilibriums: e1 = 3 and e2 = �1. This 
orresponds to 
ase(iv) (1) of Theorem 2.7. Case (iv) (2) is illustrated in Figure 6, where d = 1, a = �1, b = 3,I = �1, � = 1, and the equilibriums are e1 = 1, e2 = �3.In Figure 7 an example for 
ase (v) of Theorem 2.7 is studied. Here d = 2, a = 1,b = 3, I = 1 and � = 1, and the 
orresponding equation has three equilibriums: e1 = 2:5,e2 = �1:5 and e3 = �0:5. We 
an see from the graph that e1 and e2 are attra
tive withrespe
t to solutions starting from 
onstant initial fun
tions.
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Figure 2: 
ase (i), d = 4, a = 1, b = 1,I = �1, � = 1, and ' = 
onstant. 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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Figure 3: 
ase (ii) (1), d = 2, a = 1, b = 1,I = 1, � = 1, and ' = 
onstant.Newt we show that in 
ase (ii) of Theorem 2.7 the single equilibrium point of (2.1) isglobally asymptoti
ally stable for non
onstant initial fun
tions, as well.Theorem 2.8 Assume (2.3), b > 0, and max(0; a + b� jIj) < d � a+ b+ jIj. Let x(t;')be any solution of (2.1)-(2.2), and e1; e2 and e3 be de�ned by (2.17). Then(1) if I > 0, then x(t;')! e1, as t!1,(2) if I < 0, then x(t;')! e2, as t!1. 9
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Figure 4: 
ase (iii), d = 2, a = �1, b = 3,I = 0, � = 1, and ' = 
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Figure 5: 
ase (iv) (1), d = 2, a = 1, b = 3,I = 2, � = 1, and ' = 
onstant.
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Figure 6: 
ase (iv) (2), d = 1, a = �1,b = 3, I = �1, � = 1, and ' = 
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Figure 7: 
ase (v), d = 2, a = 1, b = 3,I = 1, � = 1, and ' = 
onstant.Proof Consider 
ase (1). Pi
k 
onstants h and k su
h thath < e3; k > e1; and h < '(t) < k; t 2 [��; 0℄:Then by Theorem 2.5 x(t;h) � x(t;') � x(t; k); t � 0:Sin
e by Theorem 2.7 limt!1x(t;h) = e1 = limt!1x(t; k);the theorem is proved. Case (2) 
an be proved similarly. �Finally we 
onsider 
ase (v) of Theorem 2.7, i.e., assume 0 < d < a+ b� jIj. Then thelinearized equation (1.4) has an unstable trivial solution (see Figure 1). We show that inthis 
ase the solutions of (2.1) either tend to e1 or e2, or os
illate around e3.10



Theorem 2.9 Assume (2.3), b > 0, and 0 < d < a+ b � jIj. Let e1; e2 and e3 be de�nedby (2.17), and let x(t;') be any solution of (2.1)-(2.2). Then either(i) limt!1x(t;') = e1,(ii) limt!1x(t;') = e2, or(iii) there exists a sequen
e tn � 0 su
h thatlimn!1 tn =1; jtn+1 � tnj � �; and x(tn;') = e3;i.e., x os
illates around e3.Proof We distinguish three 
ases. If there exists " > 0 and t0 � 0 su
h that x(t;') >e3 + " for t 2 [t0 � �; t0℄, then by Theorem 2.7, x(t; e3 + ") ! e1. Theorem 2.5 impliesx(t;') > x(t+ t0; e3 + "), therefore there exists T > 0 su
h that x(t;') > 1 for t > T . Butthen _x(t;') = �dx(t;') + a+ b+ I;and therefore x(t;')! e1.If there exists " > 0 and t0 � 0 su
h that x(t;') < e3� " for t 2 [t0� �; t0℄, then we getby a similar argument that x(t;')! e2.In the remaining 
ase statement (iii) holds. �Corollary 2.10 Assume (2.3), b > 0, and 0 < d < a+ b� jIj. Let e1; e2 and e3 be de�nedby (2.17), and let x(t;') be any solution of (2.1)-(2.2). Then(i) if '(t) > e3, t 2 [�r; 0℄, then limt!1x(t;') = e1,(ii) if '(t) < e3, t 2 [�r; 0℄, then limt!1x(t;') = e2.The next result shows that there are solutions of (2.1) (di�erent from the 
onstantfun
tion e3) satisfying 
ase (iii) of Theorem 2.9.Proposition 2.11 Assume (2.3), b > 0, and 0 < d < a + b � jIj. Let e3 be de�ned by(2.17). Then there exist initial fun
tions ' su
h that the 
orresponding solutions x(t;') of(2.1)-(2.2) satisfy 
ase (iii) of Theorem 2.9, moreover x(t;')! e3 as t!1.Proof Consider the linear equation_z(t) = (�d+ a)z(t) + bz(t� �) (2.18)asso
iated to (2.1). The 
hara
teristi
 equation � = �d+a+ be��� of (2.18) has a 
omplexroot � = � + i� with � < 0 and � > �=� (see, e.g., [13℄). Then z(t) = 
e�t 
os �t is a11



solution of (2.18) for any 
 2 R. Pi
k any 
 satisfying j
j < min(1 � e3; 1 + e3), and letx(t) = z(t) + e3. Then jx(t)j < 1, and it is a solution of (2.1) satisfying x(t)! e3. �Let �x(t) be a solution of (2.1) given in the proof of the last proposition, and let �' beits restri
tion to [�r; 0℄. Suppose �x(t) is stable. Then the solutions x(t;') of (2.1) startingfrom initial fun
tions ' 
lose to �' remains in the neighborhood of �x, where �1 < x(t;') < 1holds. But then de�ne z(t) = x(t) � e3 and �z(t) = �x(t) � e3. Then both z(t) and �z(t) aresolutions of (2.18), moreover the di�eren
e fun
tion w(t) = z(t) � �z(t) = x(t) � �x(t) isalso a solution of (2.18). But this is a 
ontradi
tion, sin
e in this 
ase the trivial solutionof (2.18) is unstable, and so w(t) 
an not be bounded. Therefore solution �x(t) of (2.1) isunstable, and hen
e it is diÆ
ult to observe it numeri
ally. In Figure 8 we plotted su
h asolution starting from the initial fun
tion '(t) = 0:5e�0:43177t 
os(2:3706t) (together withsome other solutions). We 
an see that this solution �rst approa
hes 0, but after sometime, due to numeri
al error, it gets o� the unstable equilibrium, and one of the stableequilibrium attra
ts the solution. We made several numeri
al runnings to test the stabilityof the equilibrium points in this 
ase for non
onstant initial fun
tions, and we found thatevery numeri
al solution tends to e1 or e2.Similarly to Theorem 2.9 and Corollary 2.10 one 
an prove the following result for 
ases(iii) and (iv) of Theorem 2.7.Theorem 2.12 Assume (2.3), b > 0, and let e1; e2 and e3 be de�ned by (2.17), and letx(t;') be any solution of (2.1)-(2.2).(i) Suppose 0 < d = a+ b and I = 0. Then(1) if '(t) > 1 for t 2 [�r; 0℄, then limt!1x(t;') = 1,(2) if '(t) < �1 for t 2 [�r; 0℄, then limt!1x(t;') = �1;(ii) Suppose 0 < d = a+ b� jIj and I > 0. Then(1) if '(t) > e2 for t 2 [�r; 0℄, then limt!1x(t;') = e1,(2) if '(t) < e2 for t 2 [�r; 0℄, then limt!1x(t;') = e2;(iii) Suppose 0 < d = a+ b� jIj and I < 0. Then(1) if '(t) > e1 for t 2 [�r; 0℄, then limt!1x(t;') = e1,(2) if '(t) < e1 for t 2 [�r; 0℄, then limt!1x(t;') = e2;Figure 9 studies 
ase (iii) of Theorem 2.7. Here we 
an observe that solutions startingfrom di�erent initial fun
tions tend to a 
onstant equilibrium (depending on the initialfun
tion). In Figure 10 we study 
ase (iv) of Theorem 2.7. In this 
ase, as well, thesolutions tend to one of the two equilibrium points.12



0 5 10 15 20 25 30 35 40
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 8: d = 1, a = 0:5, b = 1, � =2, I = 0, '(t) = 
os(2t) + 1, sin t + 1,0:5e�0:43177t 
os(2:3706t), 0:01 sin 5t, t2�1,and t� 2, respe
tively. 0 1 2 3 4 5 6 7 8 9 10
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 9: d = 2, a = �1, b = 3, � = 1,I = 0, '(t) = 2 
os t, t + 1:5, 
os 2t, sin t,t2 � 2, and �3 
os 10t, respe
tively.
Theorem 2.9, 2.12 and our numeri
al studies suggest that not only in 
ase (i) and (ii) ofTheorem 2.7, but also in 
ases (iii){(v) all solutions of (2.1) tend to a 
onstant equilibrium.Conje
ture 2.13 Assume (2.3), b > 0, and 0 < d � a + b � jIj. Then every solution of(2.1)-(2.2) tends to a 
onstant equilibrium.Finally, 
onsider the 
ase when b < 0. In this 
ase the method of monotone semi
ows(Theorem 2.5) does not work. Theorem 2.3 implies that e3 is globally asymptoti
ally stableif d > max(a+ jbj+ jIj; 0). We now study the 
ase whenmax(a+ b+ jIj; 0) < d � a+ jbj+ jIj: (2.19)In this 
ase Lemma 2.4 yields that e3 is the only equilibrium of (2.1), but it is an openquestion whether this equilibrium point is globally asymptoti
ally stable. Introdu
e z(t) =x(t) � e3. As we have seen in the proof of Proposition 2.11, z(t) satis�es equation (2.18)until x(t) remains 
lose to the equilibrium (more pre
isely, if jx(t)�e3j � 1). It follows fromTheorem 1.1 that the trivial solution of (2.18) is not asymptoti
ally stable independentlyof the delay, as it was in the 
ase of Theorem 2.3.First 
onsider an example where d = 2, a = 2 
ot 2 + 2 � 1:54234, b = �2= sin 2 ��1:09975, I = 1 and � = 2. Note that these parameters lie on the lower boundary ofthe stability region of the linearized equation (2.18) (see Theorem 1.1 and Figure 1). Inthis 
ase the trivial solution of (2.18) is stable but not asymptoti
ally stable. Then it isknown that the 
orresponding linear equation (2.18) has a periodi
 solution. (It is easy to
he
k that z(t) = � 
os t solves (2.18) for any � 2 [�1; 1℄.) First in Figure 11 we have thegraph of a few solutions of the 
orresponding nonlinear equation (2.1). We found that all13
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Figure 10: d = 1, a = �1, b = 3, � = 1,I = 1, '(t) = 4� t2, t+1, t3, 0:5 sin 5t� 1,and �3 
os 2t, respe
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Figure 11: d = 2, a = 1:54234, b =�1:09975, I = 1, � = 2, and '(t) = t2 + 2,0:7+0:1 sin t, 0:4, �0:5 
os 2t and t� 1, re-spe
tively.the numeri
ally observable solutions (ex
ept the 
onstant equilibrium) are asymptoti
allyperiodi
.In the next example we use parameter values d = 2, a = 1:54234, b = �0:8, I = 1,and � = 2. Then it is easy to 
he
k that the linear equation (2.18) has an asymptoti
allystable trivial solution, therefore equilibrium e3 of the nonlinear equation (2.1) is lo
allyasymptoti
ally stable, as well. Based on our numeri
al studies we 
onje
ture that in this 
asee3 is also globally asymptoti
ally stable. We plotted some solutions of the 
orrespondingequation (2.1) in Figure 12.Finally, 
onsider parameter values d = 1, a = 0:5, b = �2, I = 0, and � = 2. Then thezero solution of the linear equation (2.18) is unstable (see Figure 1). We found that thesolutions of the nonlinear equations are asymptoti
ally periodi
. We 
an see some solutionsof (2.1) in Figure 13. Of 
ourse, as in Proposition 2.11, we 
an �nd solutions of (2.18)whi
h tend to 0. E.g., z(t) = 0:3e�0:8146t 
os(10:19475t) is a solution of (2.18), thereforex(t) = z(t) is a solution of (2.1). In Figure 13 we plotted a numeri
al solution starting fromthis initial fun
tion. We 
an see that the numeri
al solution �rst follows the analyti
alsolution x(t), but after some time, due to numeri
al errors, a periodi
 solution attra
ts it.Based on numeri
al studies we made the following 
onje
ture on the asymptoti
 behaviorof the solution.Conje
ture 2.14 Assume (2.3) and (2.19). If the trivial solution of the 
orrespondinglinear equation (2.18) is asymptoti
ally stable, then e3 is a globally stable equilibrium of(2.1). Otherwise, \most of the solutions" of (2.1) are asymptoti
ally periodi
.
14
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Figure 12: d = 2, a = 1:54234, b = �0:8,I = 1, � = 2, and '(t) = 3 
os t, t + 2,sin 5t� 0:5 and �1:5, respe
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Figure 13: d = 1, a = 0:5, b = �2,� = 2, I = 0, and '(t) = t3 � t + 1,0:3e�0:8146t 
os(10:19475t), and �1:5 
os 3t,respe
tively.3 Numeri
al ApproximationIn this se
tion we de�ne two numeri
al s
hemes to approximate the solutions of (2.1).Our �rst method is the 
hain method, whi
h was �rst introdu
ed by Repin [22℄ andJanushevski [15℄, and later was also used in [10℄ and [12℄. We 
an rewrite (2.1) in the formddt�x(t) + bZ tt�� f(x(s)) ds� = �dx(t) + (a+ b)f(x(t)) + I; t � 0:Fix a positive integer N , introdu
e the stepsize h = �=N , and to this equation we asso
iatethe system of ODEs_y(N;0)(t) = �dy(N;0)(t) + af(y(N;0)(t)) + I + 1hy(N;N)(t) (3.1)_y(N;1)(t) = �1hy(N;1)(t) + bf(y(N;0)(t)) (3.2)_y(N;i)(t) = �1hy(N;i)(t) + 1hy(N;i�1)(t); i = 2; : : : ; N; (3.3)y(N;0)(0) = '(0); (3.4)y(N;i)(0) = Z �(i�1)h�ih bf('(s)) ds; i = 1; : : : ; N; (3.5)It 
an be shown (see the details in [12℄) thatlimN!1 jy(N;0)(t)� x(t)j = 0; limN!1 �����y(N;i)(t)� Z t�(i�1)ht�ih bf(x(s)) ds����� = 0; i = 1; : : : ; N:
15



Example 3.1 Consider the IVP_x(t) = �x(t) + f(x(t))� f(x(t� 1)); t � 0; (3.6)x(t) = 2; t 2 [�1; 0℄ (3.7)Its solution 
an be 
omputed using the method of steps:
x(t) =

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

2 t 2 [�1; 0℄;2e�t t 2 (0; log 2℄�t+ 1:69314718 t 2 (log 2; 1 + log 2℄0:5t2 � 2:69314718t + 3:12652087 t 2 (1 + log 2; 2 + log 2℄�0:166666667t3 + 1:84657359t2 � 6:31966805t6:38210568; t 2 (2 + log 2; 3 + log 2℄0:0416666667t4 � 0:782191197t3 + 5:25640762t2�14:5483473t + 14:1334177; t 2 (3 + log 2; 4 + log 2℄�0:00833333334t5 + 2372144659t4 � 2:61766040t3+13:8705347t2 � 34:9286972t + 33:1065757 t 2 (4 + log 2; 5 + log 2℄0:0013888889t6 � 0:0557762265t5 + 0:9124628997t4�7:743378692t3 + 35:75663620t2 � 84:76901587t+80:39795420 t 2 (5 + log 2; 6 + log 2℄In this example we used s
heme (3.1){(3.5) to get approximate solution of IVP (3.6)-(3.7).In Table 1 we 
ompared the numeri
al results to the true solution. We 
an observe linear
onvergen
e to the true solution.Table 1: Chain method.h N jy(N;0)(2)� x(2)j jy(N;0)(4)� x(4)j jy(N;0)(6)� x(6)j0.250000 5 0.090714 0.119166 0.0337560.111111 10 0.047653 0.066927 0.0298300.020408 50 0.009849 0.014230 0.0081600.010101 100 0.004756 0.007093 0.0041730.005025 200 0.002219 0.003469 0.002072Our next s
heme is based on the method of lines, whi
h is used frequently to approx-imate PDEs (see, e.g., [29℄ and the referen
es therein), and was used in [10℄ to approximateFDEs. Let u(t; s) = x(t� s), then (2.1) is equivalent to�u�t (t; s) + �u�s (t; s) = 0; 0 � s � �; t � 0 (3.8)�u�t (t; 0) = �du(t; 0) + af(u(t; 0)) + bf(u(t; �)) + I; t � 0 (3.9)16



Let N be �xed, and h = �=N . Consider the system of ODEs_v(N;0)(t) = �dv(N;0)(t) + af(v(N;0)(t)) + bf(v(N;N)(t)) (3.10)_v(N;i)(t) = �1hv(N;i)(t) + 1hv(N;i�1)(t); i = 1; : : : ; N; (3.11)v(N;i)(0) = '(�ih); i = 0; : : : ; N: (3.12)Then one 
an show (see details in [10℄) that limN!1 jv(N;i)(t)� u(t; ih)j = 0, i = 0; : : : ; N .The s
hemati
 pi
ture of the 
hain method and the method of lines 
an be seen in Figures14 and 15, respe
tively. It 
an bee seen that the di�eren
e between the two methods is the
omputation of the �rst and se
ond 
omponents, and the de�nition of the initial values ofthe variables.

Figure 14: 
hain method Figure 15: method of linesExample 3.2 Consider again IVP (3.6)-(3.7), and now we we use s
heme (3.1){(3.5) toget its approximate solution. In Table 2 we 
ompared the numeri
al results to the truesolution. We 
an observe linear 
onvergen
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