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via the solution of the approximating equationddt�yh(t)� yh(t� [�℄h)� = mXi=0 aiyh([t℄h � [�i℄h); t � 0: (1.2)Here  2 [0; 1), � > 0, ai 2 R, �i 2 [0;1), 0 � i � m, h > 0 is the stepsize,[t℄h = � th�h;where [�℄ denotes the greatest integer funtion.Our approximating equation is a so-alled equation with pieewise onstant argu-ments (EPCA). This kind of equation was �rst introdued and studied by Cooke andWiener in [2℄ and [3℄. For further developments see [4℄ and [21℄. EPCAs were usedto generate numerial approximation shemes for linear delay and neutral di�erentialequations with onstant delays in [6℄ and [1℄, and later these shemes were extendedto nonlinear delay and neutral di�erential equations with state-dependent delays in[9℄ and [13℄, respetively. Several variants of these shemes were used to generatenumerial algorithms for parameter estimation problems in [12℄, [14℄ and [15℄.In our main result (see Theorem 2.6 in Setion 2) we prove that if the zero solutionof Equation (1.1) is asymptotially stable, or equivalently, all the solutions of (1.1)tend to zero as t ! 1, then the solutions of (1.2) uniformly approximate those of(1.1) on [0;1).From the proof of our main result it follows the existene of a onstant dependingon the parameters of Equation (1.1)h0 = h0(; �; a0; : : : ; am; �0; : : : ; �m) > 0 (1.3)suh that for any h 2 (0; h0) the di�erene between the related solutions of Equations(1.1) and (1.2), respetively, goes to zero exponentially as t ! 1. From this it islear that when the zero solution of (1.1) is exponentially stable and h 2 (0; h0), thenall solution of (1.2) tend to zero as t!1.Our seond main goal in this paper is to give a method whih allows us to refor-mulate well-known stability results from the theory of delay and neutral di�erentialequations to disrete delay and neutral di�erene equations without repeating theproofs of the ontinuous ase (see Theorem 3.1 in Setion 3). We just remark that inseveral ases it is not self-evident how to onvert some results from the ontinuousase to the disrete one. Our approah is based on the above mentioned main resultand on the fat (see the begining of Setion 2 of this paper) that Equation (1.2) isequivalent to a disrete di�erene equation.Throughout this paper r > 0 is �xed, and C will be the Banah-spae of ontin-uous funtions [�r; 0℄ ! R with the norm k k = maxfj (s)j : �r � s � 0g. Theset of positive and nonnegative integers is denoted by N and N0 , respetively, the set2



of integers is denoted by Z. The forward di�erene of a sequene u(n) is de�ned as�u(n) = u(n+ 1)� u(n).2 Approximation of linear neutral equationsConsider the linear neutral di�erential equationddt�x(t)� x(t� �)� = mXi=0 aix(t� �i); t � 0; (2.1)together with the initial onditionx(t) = '(t); t 2 [�r; 0℄: (2.2)(H1) jj < 1, ai 2 R, �i 2 [0;1), (i = 0; : : : ; m), r � max(�; �0; : : : ; �m),(H2) ' 2 C,(H3) There exists K � 1 and � > 0 suh that for any initial funtion ' the or-responding solution of initial value problem (IVP) (2.1)-(2.2) satis�es jx(t)j �Ke��tk'k, t � 0, i.e., the trivial solution of (2.1) is exponentially stable.We may (and do) assume that � in (H3) is seleted so small that(H4) jje�� < 1holds.Fix 0 < h < �, and to IVP (2.1)-(2.2) we assoiate the EPCAddt�yh(t)� yh(t� [�℄h)� = mXi=0 aiyh([t℄h � [�i℄h); t � 0; (2.3)and the initial ondition yh(t) = 'h(t); (2.4)where 'h is the linear interpolate of ' using the mesh points �r;�jh;�(j�1)h; : : : ; 0,j � [r=h℄. Then k'� 'hk ! 0 as h! 0+.It is easy to show by the method of steps (see also [6℄) that the solution of IVP(2.3)-(2.4) is a ontinuous funtion, whih is linear between the mesh points nh.Integrating (2.3) from nh to t and taking the limit t ! (n + 1)h� we get forn 2 N0yh((n+1)h)� yh((n+1)h� [�℄h)� yh(nh) + yh(nh� [�℄h) = h mXi=0 aiyh(nh� [�i℄h):3



Therefore the sequene u(n) = yh(nh) satis�es the neutral di�erene equation��u(n)� u(n� [�=h℄)� = h mXi=0 aiu(n� [�i=h℄); n 2 N0 : (2.5)This equation together with the initial onditionu(n) = '(nh); n 2 Z; nh � �r (2.6)an be solved reursively. This sequene determines the solution of IVP (2.3)-(2.4)uniquely. Therefore IVPs (2.3)-(2.4) and (2.5)-(2.6) are equivalent in many sense, but,as we shall see later, instead of studying the disrete equation it is more onvenientto study the ontinuous equation (2.3) and use the tools of the di�erential equationsin out proofs.We reall the following result from [6℄, whih yields that the solutions of IVP (2.3)-(2.4) approximate the solution of (2.1)-(2.2) uniformly on ompat time intervals ash! 0+.Theorem 2.1 Assume (H1){(H2). Then for any T > 0limh!0+ max�r�t�T jx(t)� yh(t)j = 0:We show that under the additional assumption (H3) this result an be extendedfor the interval [�r;1).Introdue the funtion�h(t) � x(t)� yh(t); t � �r: (2.7)Clearly,ddt��h(t)� �h(t� �)� gh(t)� = mXi=0 ai�h(t� �i) + fh(t); t � 0; (2.8)where gh(t) � �yh(t� �)� yh(t� [�℄h)� (2.9)and fh(t) = mXi=0 ai�yh(t� �i)� yh([t℄h � [�i℄h)�: (2.10)4



Let v be the fundamental solution of (2.1), i.e., the solution of the IVPddt�v(t)� v(t� �)� = mXi=0 aiv(t� �i); t � 0; (2.11)v(t) = � 1; t = 0;0; t 2 [�r; 0): (2.12)It is known (see, e.g., [11℄) that (H3) implies that there exists K0 � 0 suh thatjv(t)j � K0e��t; t � 0: (2.13)Remark 2.2 It is easy to hek by the method of steps that v is ontinuouslydi�erentiable on the intervals (k�; (k + 1)�), (k = 0; 1; : : : ;), and it has jumpsv(k�+)� v(k��) = k (k = 0; 1; : : : ;).Relation (2.13) implies the next result.Lemma 2.3 Assume (H1){(H4). Then there exists ~K0 � 0 suh thatj _v(t)j � ~K0e��t; t > 0; t 6= k�; (k 2 N):Proof We have for t > 0, t 6= k�_v(t) =  _v(t� �) + mXi=0 aiv(t� �i);therefore j _v(t)j � jjj _v(t� �)j+ Ae��t; t > 0; t 6= k�; (2.14)where A = K0 mXi=0 jaije��i :Sine _v(t� �) = 0 for t 2 (0; �), we havej _v(t)j � Ae��t; t 2 (0; �):Hene (2.14) yields j _v(t)j � (jje�� + 1)Ae��t; t 2 (�; 2�);5



and, in general,j _v(t)j � (jjkek�� + � � �+ jje�� + 1)Ae��t; t 2 (k�; (k + 1)�);so the statement of the lemma follows with ~K0 = A=(1� jje��). 2We introdue the following notations:!(u) = maxfjx(s2)� x(s1)j : �r � s1 < s2 � 2r; s2 � s1 � ug; (2.15)and zh(t) = max�r�u�t e�uj�h(u)j; t � �r: (2.16)With this notations we an estimate the di�erene of funtion values of yh, whih willbe essential later.Lemma 2.4 Suppose (H1){(H4), and let �h and zh be de�ned by (2.7) and (2.16),respetively. Then for any 0 < h < � and 0 � t1 < t2 suh that t2 � t1 � r anysolution yh of IVP (2.3)-(2.4) satis�esjyh(t2)� yh(t1)j � jj t1� �e��(t2�t1��)zh(t2 � t1) + k'� 'hk+ !(t2 � t1)�+ Pmi=0 jaij1� jje�� (t2 � t1)e��(t1�r�h)(zh(t2) +Kk'k):Proof Let l � [t1=[�℄h℄. Then t1 � (l + 1)[�℄h < 0 � t1 � l[�℄h. Thereforeyh(t2)� yh(t1) = �yh(t2 � [�℄h)� yh(t1 � [�℄h)� + mXi=0 ai Z t2t1 yh([s℄h � [�i℄h) ds= l+1�yh(t2 � (l + 1)[�℄h)� yh(t1 � (l + 1)[�℄h)�+ lXk=0 k mXi=0 ai Z t2�k[�℄ht1�k[�℄h yh([s℄h � [�i℄h) ds:Thus, using the de�nition of �h,jyh(t2)� yh(t1)j � jjl+1����h(t2 � (l + 1)[�℄h)� �h(t1 � (l + 1)[�℄h)���+ jjl+1���x(t2 � (l + 1)[�℄h)� x(t1 � (l + 1)[�℄h)���+ lXk=0 jjk mXi=0 jaij Z t2�k[�℄ht1�k[�℄h j�h([s℄h � [�i℄h)j ds+ lXk=0 jjk mXi=0 jaij Z t2�k[�℄ht1�k[�℄h jx([s℄h � [�i℄h)j ds:6



Hene, relations l+1 � t1=�, t2�t1�� � t2�(l+1)[�℄h � t2�t1, t1�(l+1)[�℄h � 0,jx(t)j � Ke��tk'k for t � �r, assumption (H4), and the de�nition of zh implyjyh(t2)� yh(t1)j� jj t1� �e��(t2�(l+1)[�℄h)zh(t2 � (l + 1)[�℄h) + k'� 'hk+ !(t2 � t1)�+ lXk=0 jjk mXi=0 jaij Z t2�k[�℄ht1�k[�℄h e�([s℄h�[�i℄h)j�h([s℄h � [�i℄h)je��([s℄h�[�i℄h) ds+ lXk=0 jjk mXi=0 jaijKe��(t1�k��h�r)k'k(t2 � t1)� jj t1� �e��(t2�t1��)zh(t2 � t1) + k'� 'hk+ !(t2 � t1)�+ zh(t2)e�r mXi=0 jaij lXk=0 jjk Z t2�k[�℄ht1�k[�℄h e��(s�h) ds+ Kk'kPmi=0 jaij1� jje�� e��(t1�h�r)(t2 � t1):This implies the statement of the lemma using the estimateslXk=0 jjk Z t2�k[�℄ht1�k[�℄h e��s ds = lXk=0 jjk e��(t1�k[�℄h) � e��(t2�k[�℄h)�� e��t1 � e��t2� lXk=0 jjkek��� e��t1(t2 � t1)1� jje�� : 2Lemma 2.4 has the following immediate onsequenes.Lemma 2.5 Suppose (H1){(H4), 0 < h < �. Then there exist nonnegative onstantsA1; A2; B1; B2 suh thatjgh(t)j � A1jj t� (zh(h) + k'� 'hk+ !(h)) + A2e��(t�h)(zh(t) + k'k)h; t � �;andjfh(t)j � B1jj t� (zh(h) + k'� 'hk+ !(2h)) +B2e��(t�2h)(zh(t) + k'k)h; t � r:7



Now we are ready to prove our main theorem.Theorem 2.6 Assume (H1){(H4), and let x be the solution of (2.1)-(2.2), and forany 0 < h < � let yh be the solution of the orresponding IVP (2.3)-(2.4). Thenlimh!0+ max�r�t<1 jx(t)� yh(t)j = 0:Proof Fix T � r. Let Xh;T be the solution of (2.1) for t � T , orresponding to theinitial funtion Xh;T (t) = x(t)� yh(t); t 2 [T � r; T ℄:Then the variation of onstant formula (see, e.g., [11℄ for the general ase, and see [8℄for this speial ase of one delay in the neutral term) yields�h(t) = Xh;T (t)� v(t� T )gh(T ) + [ t�T� ℄Xk=0 kgh(t� k�)+ Z tT _v(t� s)gh(s) ds+ Z tT v(t� s)fh(s) ds: (2.17)Sine Xh;T is a solution of the homogeneous equation (2.1), there exist K � 1 suhthat jXh;T (t)j � Ke��(t�T ) maxT�r�u�T jx(u)� yh(u)j; t � T:ThereforejXh;T (t)j � Ke��(t�T ) maxT�r�u�T je�u�h(u)e��uj � Ke��(t�T )zh(T )e��(T�r); t � T:(2.18)Let s = � t�T� �. ThensXk=0 jjkjgh(t� k�)j � sXk=0 jjk�A1jj t�k�� (zh(h) + k'� 'hk+ !(h))+ A2e��(t�k��h)(zh(t� k�) + k'k)h�� A1(zh(h) + k'� 'hk+ !(h))jj t� (s+ 1)+ A2e��(t�h)(zh(t) + k'k)h mXk=0 jjkek��;� A1(zh(h) + k'� 'hk+ !(h))jj t� t� T + ��+ A21� jje�� e��(t�h)(zh(t) + k'k)h: (2.19)8



Therefore it follows from (2.13), (2.17), (2.18), (2.19), and Lemma 2.3 for t � Tj�h(t)j � Ke��(t�r)zh(T ) +K0e��(t�T )jgh(T )j+ A1(zh(h) + k'� 'hk+ !(h))jj t� t� T + ��+ A21� jje�� e��(t�h)(zh(t) + k'k)h+ Z tT ~K0e��(t�s)A1jj s� (zh(h) + k'� 'hk+ !(h)) ds+ Z tT ~K0e��(t�s)A2e��(s�h)(zh(s) + k'k)h ds+ Z tT K0e��(t�s)B1jj s� (zh(h) + k'� 'hk+ !(2h)) ds+ Z tT K0e��(t�s)B2e��(s�2h)(zh(s) + k'k)h ds:We de�ne the onstants Ch = zh(h) + k'� 'hk+ !(2h);� = ��� log jj� :Assumption (H4) yields � > 0. Multiplying both sides of the last inequality by e�tgives e�tj�h(t)j � Ke�rzh(T ) +K0e�T jgh(T )j+ A1Ch� e��t(t� T + �)+ A21� jje�� e�h(zh(t) + k'k)h+ Z tT ~K0(A1Che��s + A2e�h(zh(s) + k'k)h) ds+ Z tT K0(B1Che��s +B2e�2h(zh(s) + k'k)h) ds:We introdue MT = maxfe��t(t� T + �) : t � Tg;Ah;T = Ke�rzh(T ) +K0e�T jgh(T )j+ A1ChMT�+ A21� jje�� e�hk'kh+ ~K0A1Ch� + K0B1Ch� ;D1 = A21� jje�� e��;D2 = ( ~K0A2 +K0B2)e�2�:9



Then e�tj�h(t)j � Ah;T +D1zh(t)h + Z tT D2(zh(s) + k'k)h ds; t � T;whih implies, using the monotoniity of the right-hand-side in t and zh(t) � Ah;Tfor t � T , thatzh(t) � Ah;T +D1zh(t)h+ Z tT D2(zh(s) + k'k)h ds; t � T;and hene, for h < 1=D1, we getz(t) � Ah;T1� hD1 + D2h1� hD1 (t� T )k'k+ D2h1� hD1 Z tT zh(s) ds; t � T:Gronwall's inequality impliesz(t) � � Ah;T1� hD1 + D2h1� hD1 (t� T )k'k� e D2h1�hD1 (t�T );sojx(t)� yh(t)j � e��tzh(t) � � Ah;T1� hD1 + D2h1� hD1 (t� T )k'k� e���� D2h1�hD1 �t� D2Th1�hD1 :Therefore jx(t)� yh(t)j � Fh(t); t � 0; 0 < h < h1;where 0 < h1 < min(�; 1=D1), andFh(t) = (M1(h) +M2k'kht)e�(��M2h)t;M1(h) = Ah;T1� hD1 � D2h1� hD1Tk'k;M2 = D21� h1D1 :Let 0 < h < h0 < min(h1; �=M2). The funtion Fh has the maximum att� = 1��M2h � M1(h)M2k'kh:Therefore if t� > 0, thenFh(t) � Fh(t�) = M2k'kh��M2he�(��M2h)t� :10



On the other hand, if t� � 0, then Fh(t) � Fh(0) for t � 0. ThereforeFh(t) � max�M1(h); M2k'kh��M2h�; t � 0:This onludes the proof, sine limh!0+M1(h) = 0;using the de�nition of Ah;T and Theorem 2.1. 2The following estimate is the immediate onsequene of the proof of this theorem.Corollary 2.7 Assume (H1){(H4), and let x be the solution of (2.1)-(2.2), and forany 0 < h < � let yh be the solution of the orresponding IVP (2.3)-(2.4). Then thereexist a funtion M1 : (0; �) ! [0;1) satisfying limh!0+M1(h) = 0, and onstantsM2 � 0 and 0 < h0 < � suh thatjx(t)� yh(t)j � (M1(h) +M2k'kht)e�(��M2h)t; t � 0; 0 < h < h0:
3 Stability of di�erene equationsStability of several lasses of di�erene equations has been studied extensively inthe reent literature. Without ompleteness, we refer to [1℄, [5℄, [10℄, [16℄, [17℄, [19℄and [20℄. In [7℄ we obtained stability results for di�erene delay equations rewritingthem in an equivalent form as an EPCA and applying our earlier stability results fordi�erential delay equations.Here we use a similar approah, but, as an appliation of the previous setion,we use Corollary 2.7 together with known stability onditions for delay and neutraldi�erential equations. First onsider the abstrat version of this approah.Consider the neutral di�erential equationddt�x(t)� x(t� �)� = � mXi=0 aix(t� �i); t � 0: (3.1)We say that the parameter set S is a stability region to (3.1), if for any parameters(; �; a0; : : : ; am; �0; : : : ; �m) 2 S all the solutions of the orresponding Equation (3.1)tend to zero as t!1. 11



For any h > 0 we de�ne the setSh = n(; s; �0; : : : ; �m; l0; : : : ; lm) 2 (�1; 1)� N0 � Rm+1 � Nm+10 : s = h�hi ;�i = aih; li = h�ih i ; i = 0; : : : ; m; where (; �; a0; : : : ; am; �0; : : : ; �m) 2 So:(3.2)Theorem 3.1 For any (; �; a0; : : : ; am; �0; : : : ; �m) 2 S there exists a onstant h0 =h0(; �; a0; : : : ; am; �0; : : : ; �m) > 0 suh that any solution of the di�erene equation��u(n)� u(n� s)� = mXi=0 �iu(n� li); n 2 N0 (3.3)tends to zero as n!1, if (; s; �0; : : : ; �m; l0; : : : ; lm) 2 Sh and 0 < h < h0.Proof Let (; �; a0; : : : ; am; �0; : : : ; �m) 2 S, and h0 be the onstant de�ned by Corol-lary 2.7. We assoiate EPCAddt�yh(t)� yh(t� [�℄h)� = mXi=0 aiyh([t℄h � [�i℄h); t � 0 (3.4)to (3.1). Fix any 0 < h < h0, and let �i = aih, s = ��h�, and li = ��ih �. Then(; s; �0; : : : ; �m; l1; : : : ; lm) 2 Sh:Integrating both sides of (3.4) from nh to (n+ 1)h we getyh((n+1)h)�yh((n+1�s)h)�yh(nh)+yh((n�s)h) = � mXi=0 �iyh((n�li)h); n 2 N:Therefore u(n) = yh(nh). On the other hand, Corollary 2.7 yieldslimt!1 jyh(t)j � limt!1(jx(t)j+ jx(t)� yh(t)j) = 0;hene the trivial solution of (3.4) is asymptotially stable, whih proves the theorem.2Next we give an appliation of this result for delay equations.
12



Theorem 3.2 Suppose ai � 0, li 2 N0 (i = 0; : : : ; m), and0 < mXi=0 aili < �2 : (3.5)Then there exists k0 2 N suh that for every k � k0 the trivial solution of�u(n) = � mXi=0 aik u(n� lik); n � 0 (3.6)is asymptotially stable.Proof Consider the delay equation_x(t) = � mXi=0 aix(t� li); t � 0: (3.7)Our assumption (3.5) and a result of Krisztin (see [18℄) imply that the trivial solutionof (3.7) is asymptotially stable. Then Theorem 3.1 implies the statement of thistheorem using disretization parameters of the form h = 1=k. 2In the next two theorems we apply onditions whih imply asymptoti stability ofthe trivial solution of neutral di�erential equations independently of the delay in theneutral term. In this ase we an get onditions for some assoiated neutral di�ereneequations whih are also independent from the delay in the neutral term.Theorem 3.3 Suppose  2 R, s 2 N, ai 2 R, li 2 N0 (i = 0; : : : ; m), andjj+ mXi=0 jaijli < 1; and mXi=0 ai > 0: (3.8)Then there exists k0 2 N suh that for every k � k0 the trivial solution of��u(n)� u(n� s)� = � mXi=0 aik u(n� lik); n � 0 (3.9)is asymptotially stable.Proof Consider the salar neutral equationddt�x(t)� x(t� s=k)� = � mXi=0 aix(t� li); t � 0: (3.10)Then a result from [5℄ yields that the trivial solution of (3.10) is asymptotially stable.Then the proof follows from Theorem 3.1 with h = 1=k. 2Another stability ondition (see [22℄) gives the next result.13
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