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Abstract
In this paper we study numerical approximation of linear neutral differ-
ential equations on infinite interval using equations with piecewise constant
arguments. As an application of our approximation results, we obtain stability
theorems for some classes of linear delay and neutral difference equations.
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1 Introduction

There are several well-known results for both ordinary and delay differential equations
which guarantee that the distance between a solution of the original and a related
solution of the approximating one goes to zero uniformly on any compact time interval
if the stepsize goes to zero. It is very rare the uniform approximation is proved on a
halfline, for instance on [0, c0).

In this paper one of our main goals is to find the uniform numerical approximation
on [0, 00) of the solutions of the neutral delay differential equation

d

(2t et =0)) =Y aat-m).  t>0. (1.1)
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via the solution of the approximating equation

%(yh(t) — cyh(t — [O']h)> = Zaiyh([t]h — [Ti]h); t Z 0. (12)

Here c € [0,1),0 >0, a; € R, 7; € [0,00), 0 <i < m, h >0 is the stepsize,

1], = [ﬂ h,

where [-] denotes the greatest integer function.

Our approximating equation is a so-called equation with piecewise constant argu-
ments (EPCA). This kind of equation was first introduced and studied by Cooke and
Wiener in [2] and [3]. For further developments see [4] and [21]. EPCAs were used
to generate numerical approximation schemes for linear delay and neutral differential
equations with constant delays in [6] and [1], and later these schemes were extended
to nonlinear delay and neutral differential equations with state-dependent delays in
[9] and [13], respectively. Several variants of these schemes were used to generate
numerical algorithms for parameter estimation problems in [12], [14] and [15].

In our main result (see Theorem 2.6 in Section 2) we prove that if the zero solution
of Equation (1.1) is asymptotically stable, or equivalently, all the solutions of (1.1)
tend to zero as t — oo, then the solutions of (1.2) uniformly approximate those of
(1.1) on [0, 00).

From the proof of our main result it follows the existence of a constant depending
on the parameters of Equation (1.1)

ho = ho(e,0,a0, ..., A, Toy - o, T) >0 (1.3)

such that for any h € (0, hg) the difference between the related solutions of Equations
(1.1) and (1.2), respectively, goes to zero exponentially as ¢ — oc. From this it is
clear that when the zero solution of (1.1) is exponentially stable and h € (0, hg), then
all solution of (1.2) tend to zero as t — oo.

Our second main goal in this paper is to give a method which allows us to refor-
mulate well-known stability results from the theory of delay and neutral differential
equations to discrete delay and neutral difference equations without repeating the
proofs of the continuous case (see Theorem 3.1 in Section 3). We just remark that in
several cases it is not self-evident how to convert some results from the continuous
case to the discrete one. Our approach is based on the above mentioned main result
and on the fact (see the begining of Section 2 of this paper) that Equation (1.2) is
equivalent to a discrete difference equation.

Throughout this paper r > 0 is fixed, and C will be the Banach-space of contin-
uous functions [—r,0] — R with the norm ||¢|| = max{|¢(s)]: —r < s < 0}. The
set of positive and nonnegative integers is denoted by N and Ny, respectively, the set



of integers is denoted by Z. The forward difference of a sequence u(n) is defined as
Au(n) = u(n+1) — u(n).

2 Approximation of linear neutral equations

Consider the linear neutral differential equation

%(:c(t)—cxt—a) Zawt—ﬂ t >0, (2.1)

together with the initial condition

z(t) = (1), t € [—r0]. (2.2)
(H1) |e| <1, a4 € R, 7, € [0,00), (i=0,...,m), r = max(o, 7o, ..., Tm),
(H2) ¢ € C,

(H3) There exists K > 1 and a > 0 such that for any initial function ¢ the cor-
responding solution of initial value problem (IVP) (2.1)-(2.2) satisfies |z(t)| <
Ke g, t > 0, i.e., the trivial solution of (2.1) is exponentially stable.

We may (and do) assume that « in (H3) is selected so small that
(H4) |cle* < 1
holds.

Fix 0 < h < 0, and to IVP (2.1)-(2.2) we associate the EPCA

d m
@( n(t) = cyn(t = [o ) > agn(thh — [7). >0, (2.3)
1=0
and the initial condition
Yn(t) = on(t), (2.4)

where ¢y, is the linear interpolate of ¢ using the mesh points —r, —jh, —(j—1)h,...,0,
j = [r/h]. Then || — ¢n|| = 0 as h — 0+.
It is easy to show by the method of steps (see also [6]) that the solution of IVP
(2.3)-(2.4) is a continuous function, which is linear between the mesh points nh.
Integrating (2.3) from nh to ¢ and taking the limit ¢ — (n + 1)h— we get for
n € Ny

yn((n+1)h) — cyn((n+1)h = [o]n) — yn(nh) + cyp(nh — —hZalyh (nh — [7:]n).



Therefore the sequence u(n) = y,(nh) satisfies the neutral difference equation

A(u(n) — eu(n —[o/h)) ) - hZa, —In/h),  neN. (2.5)

This equation together with the initial condition
u(n) = p(nh), neZ, nh>-r (2.6)

can be solved recursively. This sequence determines the solution of IVP (2.3)-(2.4)
uniquely. Therefore IVPs (2.3)-(2.4) and (2.5)-(2.6) are equivalent in many sense, but,
as we shall see later, instead of studying the discrete equation it is more convenient
to study the continuous equation (2.3) and use the tools of the differential equations
in out proofs.

We recall the following result from [6], which yields that the solutions of IVP (2.3)-
(2.4) approximate the solution of (2.1)-(2.2) uniformly on compact time intervals as
h — 0+.

Theorem 2.1 Assume (H1)-(H2). Then for any T > 0

li — =0.
A8 % O O] =0

We show that under the additional assumption (H3) this result can be extended
for the interval [—r, 00).
Introduce the function

nu(t) = z(t) — yn(t), t>—r. (2.7)
Clearly,
d m
(0 —enli=0) =) = am(t—m) + 0, 120 (29
where
9u(t) = c(yn(t = o) = yult = o)) (2:9)
and

1t = > a (nt = 7) = (= ) (2.10)



Let v be the fundamental solution of (2.1), i.e., the solution of the IVP

%(”“)‘C”“—U)) = Y alt-m), >0, (2.11)
0 = {5 et 21

It is known (see, e.g., [11]) that (H3) implies that there exists K, > 0 such that

lv(t)| < Koe™ ™, t>0. (2.13)

Remark 2.2 It is easy to check by the method of steps that v is continuously
differentiable on the intervals (ko, (k 4+ 1)o), (k = 0,1,...,), and it has jumps
v(ko+) —v(ko—)=c* (k=0,1,...,).

Relation (2.13) implies the next result.

Lemma 2.3 Assume (H1)-(Hj). Then there exists Ky > 0 such that
[0(t)] < Koe ™,  t>0, t#ko, (keN).

Proof We have for ¢t > 0, t # ko

o(t) = ci(t— o)+ Y _aw(t—7),
=0
therefore
[0(t)] < |c||o(t — o)| + Ae™*, t>0, t#ko, (2.14)
where .
A= Kg Z |ai\ea”.
i=0

Since 0(t — o) = 0 for ¢t € (0,0), we have
(1)) < Ae™, t € (0,0).
Hence (2.14) yields

[o(t)] < (ele*” +1)Ae™,  t€ (0,20),



and, in general,
[9()] < (|efFeF* + -+ |ee® + 1) Ae™, t € (ko,(k+1)o),
so the statement of the lemma follows with Ky = A/(1 — |c[e®). a

We introduce the following notations:

w(u) = max{|z(s2) — z(s1)|: —r < s1 < 89 <21, $9— 51 < u}, (2.15)
and
2 (t) = max e |nn(u)], t>—r. (2.16)

With this notations we can estimate the difference of function values of y;, which will
be essential later.

Lemma 2.4 Suppose (H1)-(H4), and let n, and z, be defined by (2.7) and (2.16),
respectively. Then for any 0 < h < o and 0 < t; < ty such that ty — t; < r any
solution yp, of IVP (2.3)-(2.4) satisfies

t
yn(ts) —yn(t)| < = <€_a(t2_t1_”)zh(t2 —t1) + |l — onl| +w(ts — 751))

Z?lo |a;l

L. |c|eae

(tg — tl)eia(tlirih)(zh(tQ) + KHQOH)

Proof Let ! = [t;/[o]n]. Then t; — (I + 1)[o], < 0 < t; — [[o],. Therefore
Yn(ta) —yn(t1) = C(yh(t2 — [oln) =yt — Zaz/ yn([s]n — [1]n) ds

— (gl — 0+ Do) — sl — (14 Do)

to— k[o‘}

FS e [ it~ s

0 =0 t1—k[oln

MN

_|_

=
Il

Thus, using the definition of 7y,

nlta) = ()] < Jel " mn(ta = 0+ Dlod) = m(t = (@ + Do)

+lel*ata = L+ Dlod) = 2t — L+ Dol
! m to—klo]n
F Il [ (s~ [ s
ta—k[o]p
+ Z\C\’“Zlaz\ ki [z ([s]n = [7:]n)| ds.

6



Hence, relations l+1 Z tl/O', tg—tl—O' S tg-(l+1)[0’]h S tg—tl, tl—(l+1)[0']h S 0,
lz(t)| < Ke *||pl| for ¢ > —r, assumption (H4), and the definition of zj, imply

[yn(t2) — yn(t1)]

t
< 7 (e*““f(””[ﬂh’zh(w = (1+ Dloh) + llg = nll +w(ts — 1))

+ Z |C|kZ az|/ a([s]n=I[7iln |77h([ ]h _ [Ti]h)‘e—a([ﬂh—[ﬁ}h) ds

t1—k[o]n

+ Z ef* Z g K e =kr=h=) )| (1, — 1)
k=0 1=0

¢
< |C|71 <e—a(t2—t1—0)zh(t2 — tl) + ||gp — (th + u)(tg — t1)>
to—klo]n
+ zn(t2)e Z i Z Ck/ RRE
i—0 ti—k[o]n
K i
o KU S 0l i, g,

1 — |clexe
This implies the statement of the lemma using the estimates
to—klo]n —a(ti—k[o]p) e—a(tQ—k[U}h)

l
Z|C|k/ e~ ds — Z‘C‘ke ;

tlk

—at1 _ —Oztz

Z| |k kao

e~ h (tQ — tl)
11— c|ea

IN

Lemma 2.4 has the following immediate consequences.

Lemma 2.5 Suppose (H1)-(H4), 0 < h < o. Then there exist nonnegative constants
Al, AQ, Bl, BQ such that

l9n(1)] < Ailel7 (zn(B) + [l — @l +w(h)) + Ape M (1) + le)h,  t>0,
and

()] < Bulel7 (z(h) + [lo — enll +w(2h)) + Boe M (2 (t) + [lg)h, >



Now we are ready to prove our main theorem.

Theorem 2.6 Assume (H1)-(Hj), and let x be the solution of (2.

1)-(2.2), and for
any 0 < h < o let y,, be the solution of the corresponding IVP (2.3)-(2.4

. Then

li — =0.

Jim - max |z (t) = yu(t)] =0
Proof Fix T > r. Let X r be the solution of (2.1) for t > T', corresponding to the
initial function

Xnr(t) =z(t) — yn(t), te[T—rT.

Then the variation of constant formula (see, e.g., [11] for the general case, and see [8]
for this special case of one delay in the neutral term) yields

7]
m(t) = Xnr(t) = vt = T)gn(T) + Y Fanl(t — ko)
+ /sz(t—s)gh(s)ds+/Tv(t—s)fh(s)ds. (2.17)

Since X, r is a solution of the homogeneous equation (2.1), there exist X > 1 such
that

< 7Oé(t7T) _ > .
[ Xnr(t)] < Ke pmax o) —w(u)l,  t2T

Therefore

Xnr(t) < Ke -T)  max e np(u)e” | < Ke’o‘(t’T)zh(T)e’“(T’r), t>T.

T—r<u<lT
(2.18)
Let s = [%} Then

S

el Flgn(t = ko) <3 lel(Adlel S (anlh) + Ll = onll +co(B)
k=0

k=0
+ Age R (4 (t — ko) + ||80||)h>

Ai(z(B) + | — ol +w(h))|el7 (s + 1)
+ Ape™ M (2 (1) + DR Y JefFeker,
k=0

t—T+o

IN

A1 (zn(P) + |l — @nll + w(h))le|7

Ay
2 ealt=h) : 2.1
I CIOR B ) (219

IN
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Therefore it follows from (2.13), (2.17), (2.18), (2.19), and Lemma 2.3 for ¢t > T
()] < Ke U 0z(T) + Koe g (T)]

ct—T 40
+ A1(zn(h) + [[o = enll + w(h))|c|r ————
Ay
—Oé(t—h) t h
+ T a0 + )

/Ko@ =9 4, ¢l (zn(h) + |l — onll + w(h)) ds
/ng (1=3) 4,e=0l=) (5, (s) + || o} ds
/Koe 9Byl (zn(h) + o — onll + w(2h)) ds

b [ R B0 )+ gl s,
We define the constants

Ch = zn(h) +[le = enll +w(2h),

5 = _ logle|

Assumption (H4) yields 8 > 0. Multiplying both sides of the last inequality by e*
gives

g

AICh —ﬁt

()] < Ke®zu(T) + Koe" |gn(T)| +

Ao onut) + ll)h

1 — |clex

t
+ / Ro(ArCre + Ape®™ (z(s) + [l ol)h) ds

T

(t—T+o0)

t
+ / Ko(BiCre ® + By (z4(s) + |ll)h) ds
T

We introduce

My = max{eiﬁt(t—T—i—(j): t>T},

ACH, M
Apr = KeYz,(T) + Koe®" |gn(T)| + %

A2 ah
—_— h
e
A2
D = — 2 e
! 1-— \c\e‘me ’

DQ = (K()AQ-FKOBQ)BQQU.

KA, G, , KoBiG)
g g

9



Then
t
e (t)] < Apr + Dizp(t)h +/ Dy (zp(s) + ||l h ds, t>T,
T

which implies, using the monotonicity of the right-hand-side in ¢ and z,(t) < A7
for t < T, that

t
alt) < Anp + Dizn(®h+ [ DaCals) + [elhbds, 2T,
T

and hence, for h < 1/D;, we get

Apr Dsyh Dyh t
t) < : t—T d t>T.
(1) < 7o+ T (= Tl + e [ a(ds b

Gronwall’s inequality implies

A Doh _Dah oy
z(t)g( wr_ Do t—T>||so||)e1—2D1‘”>,

1—hD, 1—hD1(
SO

DyTh

fr_ _Deb (t—T)IIsOH)e‘(a‘—l?ffgl)t‘—l—wl.

1—hD1+1—hD1

() = yn()] < ez (1) < <

Therefore
lz(t) — yn(t)| < Fu(t), t>0, 0<h<hy,

where 0 < hy < min(o,1/D;), and

Fu(t) = (My(h) + Myf|g|[ht)e (om0,

Apr Dyh
My(h) = L T
() T nD, 1D, LIl
D,
M 2
? 1— D,

Let 0 < h < hy < min(hy, «/M;). The function Fj, has the maximum at

1 M, (h)

tr = — .
a—Mh  Msg|h

Therefore if t* > 0, then

M. h .
Fh(t) < F (t*) _ 2”90” ef(angh)t )

=h o — Myh

10



On the other hand, if t* < 0, then Fy(¢) < Fj,(0) for ¢ > 0. Therefore

lelwllh)’

Falt) < max(Ml(h), o

t>0.

This concludes the proof, since

lim M;(h) =0,

h—0+

using the definition of A, 7 and Theorem 2.1. O

The following estimate is the immediate consequence of the proof of this theorem.

Corollary 2.7 Assume (H1)-(H}), and let x be the solution of (2.1)-(2.2), and for
any 0 < h < o let yp, be the solution of the corresponding IVP (2.3)-(2.4). Then there
exist a function My : (0,0) — [0,00) satisfying lim,_,o. My(h) = 0, and constants
Ms > 0 and 0 < hg < o such that

(1) — yn(®)] < (M (h) + My|jg||ht)e @Mt 450 0< h< h.

3 Stability of difference equations

Stability of several classes of difference equations has been studied extensively in
the recent literature. Without completeness, we refer to [1], [5], [10], [16], [17], [19]
and [20]. In [7] we obtained stability results for difference delay equations rewriting
them in an equivalent form as an EPCA and applying our earlier stability results for
differential delay equations.

Here we use a similar approach, but, as an application of the previous section,
we use Corollary 2.7 together with known stability conditions for delay and neutral
differential equations. First consider the abstract version of this approach.

Consider the neutral differential equation

%(z(t) —c:r(t—a)) = _Zaz’«’f(t—ﬂ'), t>0. (3.1)

We say that the parameter set S is a stability region to (3.1), if for any parameters
(c,0,a0,...,am,To,...,Tm) €S all the solutions of the corresponding Equation (3.1)
tend to zero as t — oo.

11



For any h > 0 we define the set

S, = {(C,s,ao,...,am,lg,...,lm) € (=1,1) x Ng x R™ x Nt 5 = [%} ,
a; = a;h, l; = [%] , 1=0,...,m, where (¢,0,a0,...,0m,T0,---,Tm) € 8}.
(3.2)
Theorem 3.1 For any (¢,0,a9,...,0m,To,...,Tm) € S there exists a constant hy =
ho(c,0,a0,. .. Qm,Toy - -y Tm) > 0 such that any solution of the difference equation

A(u(n) —cu(n — 5)) = iaiu(n — 1), n € Ny (3.3)

tends to zero as n — 0o, if (¢, 8,0, ..., mylo, ..., lm) € Sy and 0 < h < hy.

Proof Let (c,0,a9,...,0m,T,...,Tm) € S, and hg be the constant defined by Corol-
lary 2.7. We associate EPCA

d

(o) = et = 010)) = S wwn(lth — [7d), =0 (3.4)

i=0
to (3.1). Fix any 0 < h < hg, and let o; = a;h, s = [%}, and [; = [Tﬂ Then
(¢, 8,00,y Qmy 1, 1y) € S

Integrating both sides of (3.4) from nh to (n + 1)h we get
yn((n+1)h)—cyn((n+1—=s)h)—yn(nh)+cy,((n—s)h) = — Zaiyh((n—li)h), n €N

Therefore u(n) = y,(nh). On the other hand, Corollary 2.7 yields
lim [y (8)] < Jim (2 (2)] + [ (2) — 3 (8))) = 0.

hence the trivial solution of (3.4) is asymptotically stable, which proves the theorem.
O

Next we give an application of this result for delay equations.

12



Theorem 3.2 Suppose a; >0, 1; €Ny (i =0,...,m), and

= 7
0< Wl < = 3.5
; aili < 5 (3.5)
Then there exists ky € N such that for every k > kg the trivial solution of

Au(n) = =" %u(n k), n>0 (3.6)

)

18 asymptotically stable.

Proof Consider the delay equation
B(t) ==Y am(t—1), t>0. (3.7)
i=0
Our assumption (3.5) and a result of Krisztin (see [18]) imply that the trivial solution
of (3.7) is asymptotically stable. Then Theorem 3.1 implies the statement of this
theorem using discretization parameters of the form h = 1/k. a

In the next two theorems we apply conditions which imply asymptotic stability of
the trivial solution of neutral differential equations independently of the delay in the
neutral term. In this case we can get conditions for some associated neutral difference
equations which are also independent from the delay in the neutral term.

Theorem 3.3 Suppose c€R, seN, a; R, ; €Ny (i=0,...,m), and

el + > lailli <1, and > a; > 0. (3.8)
i=0 1=0
Then there exists ky € N such that for every k > kg the trivial solution of
A( — cu(n — ):— Y (n = k), >0 3.9
u(n) — cu(n — s) ; : u(n ) n > (3.9)
18 asymptotically stable.
Proof Consider the scalar neutral equation
d m
E(x(t) ~exlt - s/k)) = - ;aix(t —1), t>0 (3.10)

Then a result from [5] yields that the trivial solution of (3.10) is asymptotically stable.
Then the proof follows from Theorem 3.1 with h = 1/k. O

Another stability condition (see [22]) gives the next result.

13



Theorem 3.4 Suppose ¢ € [0,1/2), se N, a >0, € Ny, and

3
2c(2—c)+al < 3 (3.11)

Then there exists ky € N such that for every k > kg the trivial solution of

A(u(n) — cu(n — s)) = —%u(n — k), n>0 (3.12)

18 asymptotically stable.
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