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tionIn this paper we show that stability (in
luding asymptoti
 and exponential stability) prop-erties of 
ertain 
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iated di�erential equations. We present this general
omparison prin
iple in Se
tion 3. Our main interest in this paper is to apply this methodfor state-dependent delay equations. In this 
ase we 
an redu
e the stability investigationof su
h equations to studying stability properties of equations with delays whi
h are state-independent, but whi
h depend on a parameter (a fun
tion in our 
ase). We note that thisapproa
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tion will be the results of Se
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oeÆ
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not in the 
ontext of equi-stability. The results of Se
tion 2 will extend some of our earlierworks in this dire
tion [9℄, [11℄.Se
tion 4 will 
ontain appli
ations of the results of the 
omparison prin
iple of Se
tion3 and the perturbation results of Se
tion 2. Inspired by some earlier results given for linearequations in the papers [14℄ and [20℄ and for state-dependent equations in [8℄ we prove somesimilar, sometimes more general stability results fo nonlinear equations. It worth to notethat our method works for threshold-type di�erential equations, as well. To the best of ourknowledge our approa
h is original in the stability investigation of su
h equations.2 Perturbation ResultsFirst we introdu
e some basi
 notations used throughout this paper: a positive integer nand r > 0 are �xed. Let A = (aij) and B = (bij) be matri
es of the same dimension.By the notation A � B we mean that relation aij � bij holds for all i and j, and bymax(A;B) we denote a matrix with the ij-th 
omponent max(aij ; bij). Let j � j denote a�xed ve
tor norm on Rn su
h that the 
orresponding indu
ed matrix norm on Rn�n (whi
his denoted by j � j, as well) is monotone, i.e., it satis�es jAj � jBj for matri
es 0 � A � B,and jAj = jmax(A;�A)j. For example the j � j1 or j � j1 norms satisfy these properties. Wedenote the spa
e of 
ontinuous fun
tions  : [�r; 0℄ ! Rn equipped with the supremumnorm k k � maxfj (t)j : t 2 [�r; 0℄g by C, and the identi
ally zero fun
tion of C by 0.For a fun
tion x : [�r;1) ! R we de�ne xt : [�r; 0℄ ! Rn , xt(s) � x(t+ s) for t � 0 and�r � s � 0.Consider the linear delay systems_x(t) = A(t)x(t� �(t)); t � 0 (2.1)and _y(t) = B(t)y(t� �(t)); t � 0; (2.2)with the respe
tive initial 
onditionsx(t) = '(t); t 2 [�r; 0℄ (2.3)and y(t) = '(t); t 2 [�r; 0℄: (2.4)Throughout this paper ' 2 C, and we assume(H1) A;B : [0;1)! Rn�n are 
ontinuous fun
tions;(H2) the delay fun
tions �; � : [0;1)! R are 
ontinuous, and0 � �(t) � 
(t) and 0 � �(t) � 
(t); t � 0for some 
ontinuous 
 : [0;1) ! R satisfying 0 � 
(t) � t+ r and lim inf t!1t�
(t) > 0. 2



The solution of (2.1) 
orresponding to the initial time 0 and the initial fun
tion ' isdenoted by x(t;'). If we want to emphasize that the solution 
orresponds to the 
oeÆ
ientA and the delay � we use the more detailed notation x(t;';A; �).The trivial solution (i.e., x = 0) of the linear equation (2.1) is exponentially stable withorder � > 0, if there exists a 
onstant K� � 1 su
h that the solution of (2.1) 
orrespondingto initial fun
tion ' satis�es jx(t;')j � K�e��tk'k; t � 0: (2.5)We will 
onsider B and � to be �xed su
h that the trivial solution of (2.2) be exponen-tially stable. Equation (2.1) is 
onsidered as a perturbed equation of (2.2), i..e., we assumethat A and � are \
lose" to B and �, respe
tively. We will show in Theorem 2.2 that ifthe perturbations are \small enough", then the exponential stability of (2.2) is preservedfor (2.1).Preservation of stability under delay perturbation has been studied, e.g., in [2℄, [5℄,[11℄ and [19℄. In these papers it was assumed that the delays and the 
oeÆ
ients arebounded. We relax this 
ondition in this se
tion. Our Theorem 2.2 extends the resultsof [11℄ using the approa
h of [8℄. Note that it was shown in [2℄ that there always existsa \neighborhood" of B and � inside whi
h the exponential stability is preserved, but theproof gives only the existen
e of su
h a \neighborhood", not the size of it. We will de�nethe \neighborhood" expli
itly. Moreover, in Theorem 2.3 we de�ne su
h a \neighborhood",inside whi
h the exponential stability of the 
orresponding equation is uniform with respe
tto the parameters, i.e., the 
onstants K� and � in the de�nition of the exponential stability
an be sele
ted independently of the parameters. This is the result we will need in Se
tion 4.In the proof of our main theorem we need the following estimate whi
h 
an be provedeasily by using Gronwall's inequality (see, e.g., Lemma 2.1 in [8℄).Lemma 2.1 Assume (H1) and (H2). Then the solution x of the initial value problem(2.1)-(2.3) satis�es jx(t)j � eR t0 jA(s)j dsk'k (2.6)for all t � 0.Next we prove the main result of this se
tion.Theorem 2.2 Assume (H1) and (H2), and the trivial solution of (2.2) is exponentiallystable with order � > 0. Then for any 0 < � < � there exists " > 0 su
h that iflimt!1 jA(t)�B(t)je�
(t) + jB(t)je�
(t) �����Z t��(t)t��(t) jB(s)je�
(s) ds�����! < "; (2.7)then the trivial solution of the 
orresponding equation (2.1) is exponentially stable with order�, i.e., there exists K� � 1 su
h thatjx(t;')j � K�e��tk'k; t � 0: (2.8)3



Proof We 
an rewrite (2.1) in the form_x(t) = B(t)x(t� �(t)) + f(t);where f(t) � A(t)x(t� �(t)) �B(t)x(t� �(t)):Let V be the fundamental solution of (2.2), i.e., the matrix valued solution of the initialvalue problem �V�t (t; s) = B(t)V (t� �(t); s); t � s;V (t; s) = � I; t = s;0; t < s;where I and 0 is the identity and the zero matrix, respe
tively. Then the variation-of-
onstants formula (see, e.g., [13℄) impliesx(t) = y(t) + Z t0 V (t; s)f(s) ds; t � 0: (2.9)It is known (see, e.g., [13℄) that the assumed exponential stability with order � of the trivialsolution of (2.2) implies that there exist 
onstants � > 0, K� � 1 and ~K� � 1 su
h that yand V satisfyjy(t;')j � K�e��tk'k; and jV (t; s)j � ~K�e��(t�s) for t � s: (2.10)Therefore we get from (2.9) for any t1 > 0 thatjx(t)j� jy(t)j+ Z t0 jV (t; s)jjf(s)j ds� ( K�e��tk'k + ~K�e��t R t10 e�sjf(s)j ds; t 2 [0; t1℄K�e��tk'k + ~K�e��t �R t10 e�sjf(s)j ds+ R tt1 e�sjf(s)j ds� ; t > t1: (2.11)Let 0 < � < � be �xed, " � �� �~K� ; (2.12)and let A and � be su
h that (2.7) holds. We introdu
e the simplifying notationd � limt!1 jA(t) �B(t)je�
(t) + jB(t)je�
(t) �����Z t��(t)t��(t) jB(s)je�
(s) ds�����! ;and let Æ > 0 be su
h that d+ Æ < ", and let t1 > 0 be su
h that the inequalitiest� �(t) � 0; t� �(t) � 0; t � t1 (2.13)4



and jA(t)�B(t)je�
(t) + jB(t)je�
(t) �����Z t��(t)t��(t) jB(s)je�
(s) ds����� < d+ Æ; t � t1 (2.14)hold. Let t > t1. Then (2.11) and the de�nition of f yieldjx(t)j � K�e��tk'k+ ~K�e��t Z t10 e�s(jA(s)jjx(s � �(s))j+ jB(s)jjx(s� �(s))j) ds+ ~K�e��t Z tt1 e�sjA(s)�B(s)jjx(t� �(s))j ds+ ~K�e��t Z tt1 jB(s)jjx(s� �(s))� x(s� �(s))j ds: (2.15)The �rst integral of the right-hand-side of (2.15) 
an be estimated using Lemma 2.1 as~K�e��t Z t10 e�s(jA(s)jjx(s � �(s))j+ jB(s)jjx(s� �(s))j) ds � Ce��tk'k; (2.16)where C is de�ned byC � ~K�� maxs2[0;t1℄ jA(s)jeR t10 jA(s)j ds + maxs2[0;t1℄ jB(s)jeR t10 jB(s)j ds� e�t1 � 1� : (2.17)We have x(s � �(s)) � x(s � �(s)) = R s��(s)s��(s) _x(u) du for s � t1 by (2.13). Therefore thethird integral of the right-hand-side of (2.15) 
an be rewritten as~K�e��t Z tt1 jB(s)jjx(s� �(s))� x(s� �(s))j ds= ~K�e��t Z tt1 e�sjB(s)j �����Z s��(s)s��(s) _x(u) du����� ds� ~K�e��t Z tt1 e�sjB(s)j �����Z s��(s)s��(s) jA(u)jjx(u � �(u))j du����� ds: (2.18)Multiplying both sides of (2.15) by e�t, using the estimates (2.16) and (2.18), and intro-du
ing z(t) � e�tjx(t)j we get for t > t1z(t) � (K� + C)k'k + ~K�e��t+�t Z tt1 e�sjA(s)�B(s)jz(s� �(s))e��(s��(s)) ds+ ~K�e��t+�t Z tt1 e�sjB(s)j �����Z s��(s)s��(s) jB(u)jz(u � �(u))e��(u��(u)) du����� ds� (K� + C)k'k + ~K�e�(���)t max�r�u�t z(u)Z tt1 e(���)sjA(s)�B(s)je��(s) ds+ ~K�e�(���)t max�r�u�t z(u)Z tt1 e(���)sjB(s)j �����Z s��(s)s��(s) jB(u)je��(u�s��(u)) du�����ds:(2.19)5



Suppose �(s) � �(s). Then ��(s) � u � s � ��(s) for u 2 [s � �(s); s � �(s)℄, and sos � u � �(s). In the 
ase when �(s) � �(s) relation s � u � �(s) follows similarly foru 2 [s� �(s); s��(s)℄, hen
e in both 
ases s�u � 
(s). Therefore (2.19) and (2.14) implyz(t) � (K� + C)k'k+ ~K�e�(���)t max�r�u�t z(u)Z tt1 e(���)sjA(s)�B(s)je�
(s) ds+ ~K�e�(���)t max�r�u�t z(u)Z tt1 e(���)sjB(s)j �����Z s��(s)s��(s) jB(u)je�(
(s)+
(u)) du�����ds� (K� + C)k'k+ ~K�e�(���)t max�r�u�t z(u)(d + Æ)Z tt1 e(���)s ds= (K� + C)k'k+ ~K�e�(���)t max�r�u�t z(u)(d + Æ)e(���)t � e(���)t1�� �� (K� + C)k'k+ d+ Æ" max�r�u�t z(u): (2.20)It is easily follows from (2.11) that (2.20) holds for t 2 [0; t1℄, as well. Sin
e the right-hand-side of (2.20) is monotone in t, and z(t) = e�tj'(t)j � k'k � K�k'k for t � 0, therefore(2.20) yields max�r�u�t z(u) � (K� + C)k'k+ d+ Æ" max�r�u�t z(u);and hen
e z(t) � max�r�u�t z(u) � K�k'k, whereK� � K� + C1� d+Æ" : (2.21)This implies that jx(t)j � K�e��tk'k for t � 0. 2Next we give 
onditions when the 
onstant K� in (2.8) is independent of the sele
tion ofthe 
oeÆ
ient matrix A and the delay � satisfying (2.7), i.e., the trivial solution of (2.1) isexponentially equi-stable with respe
t to A and � satisfying (2.7) (see the formal de�nitionin Se
tion 3 below).Theorem 2.3 Assume (H1) and (H2), and the trivial solution of (2.2) is exponentiallystable with the order � > 0. Let ~K� be su
h that the fundamental solution V of (2.2)satis�es jV (t; s)j � ~K�e��(t�s) for t � s, and let 0 < � < � be �xed. Suppose the fun
tions�+;�� : [0;1)! Rn�n and �+;�� : [0;1)! R are su
h that0 � �+(t); 0 � ��(t); 0 � ��(t) � �(t); 0 � �+(t) � 
(t)� �(t) for t � 0;(2.22)andlimt!1 jmax(�+(t);��(t))je�
(t) + jB(t)je�
(t) Z t��(t)+��(t)t��(t)��+(t) jB(s)je�
(s) ds! < �� �~K� :(2.23)6



Suppose the parameters A : [0;1)! Rn�n and � : [0;1)! R belong to the set� � n(A; �) : B(t)� ��(t) � A(t) � B(t) + �+(t) and�(t)���(t) � �(t) � �(t) + �+(t) for t � 0o: (2.24)Then there exists K� � 1 su
h thatjx(t;';A; �)j � K�e��tk'k; t � 0; (A; �) 2 �;i.e., for any (A; �) 2 � the trivial solution of the 
orresponding equation (2.1) is exponen-tially stable with order �, and the 
onstant K� is independent of the parameters (A; �) 2 �.Proof If (A; �) 2 � then � satis�es (H2). We denote ij-th element of the matri
es A(t),B(t), �+(t) and ��(t) by aij(t), bij(t), 
+ij (t) and 
�ij (t), respe
tively. The de�nition of� yields that jaij(t) � bij(t)j � max(
+ij (t); 
�ij (t)) for all i and j, therefore the assumedproperties of the matrix norm implies jA(t) � B(t)j � jmax(�+(t);��(t))j for all t � 0.Therefore we havejA(t)�B(t)je�
(t) + jB(t)je�
(t) �����Z t��(t)t��(t) jB(s)je�
(s) ds������ jmax(�+(t);��(t))je�
(t) + jB(t)je�
(t) Z t��(t)+��(t)t��(t)��+(t) jB(s)je�
(s) ds; (2.25)whi
h, together with (2.12) and (2.23), implies that A and � satisfy (2.7). Therefore the
onstant K� de�ned by (2.21) in the proof of Theorem 2.2 satis�es (2.8). We have toshow that K� 
an be de�ned independently of the parti
ular 
hoi
e of (A; �) 2 �. Forthis (see (2.21) and (2.17)) it is enough to prove that C 
an be sele
ted independently of(A; �) 2 �. In view of the inequality jA(t)j � jB(t)j + jmax(�+(t);��(t))j (t � 0) and(2.17), we have to show only that t1 
an be independent of A and �. We re
all that t1 isde�ned by inequalities (2.13) and (2.14). Assumption (H2) yields that t � �(t) � t� 
(t)and t � �(t) � t� 
(t) for t � 0, therefore t1 
an be 
hosen so that (2.13) be satis�ed forany sele
tion of the delays. It follows from (2.25) that t1 
an be su
h that (2.14) holds forany (A; �) 2 �, whi
h 
ompletes the proof of this theorem. 2Remark 2.4 It is easy to see that the fun
tion�"(t) � ( 1; jB(t)j = 0;min�1; "3jB(t)je�
(t)maxfjB(s)je�
(s): s2[t��(t)�1;t��(t)+1℄g� ; jB(t)j 6= 0 (2.26)satis�es limt!1jB(t)je�
(t) Z t��(t)+�"(t)t��(t)��"(t) jB(s)je�
(s) ds < ":Therefore if the trivial solution of (2.2) is exponentially stable, there always exists a \neigh-borhood" of (B; �) of the form (2.24) su
h that the trivial solution of (2.1) 
orresponding to
oeÆ
ient A and delay � from this neighborhood is exponentially stable, as well.7



Corollary 2.5 If the delay fun
tions are bounded, i.e., 
 in (H2) is 
(t) � r, then thestatement of Theorem 2.3 remains valid when 
ondition (2.23) is repla
ed bylimt!1 jmax(�+(t);��(t))je�r + e2�rjB(t)jZ t��(t)+��(t)t��(t)��+(t) jB(s)j ds! < �� �~K� :If, in addition, jB(t)j � b0 for t � 0, then �+;��;�+ and �� 
an be sele
ted as �+(t) =��(t) = � is a 
omponentwise nonnegative 
onstant matrix, �+(t) = ��(t) = � is anonnegative 
onstant satisfying j�je�r + 2�b20e2�r < �� �~K� : (2.27)We note that if j�j+ 2�b20 < �~K� ;then relation (2.27) holds, as well, for some 0 < � < �.The results of this se
tion 
an be immediately generalized to linear equations of theform _x(t) = mXk=1Ak(t)x(t� �k(t)); t � 0; (2.28)where the fun
tions Ak and �k satisfy 
onditions (H1) and (H2), respe
tively, for all k =1; : : : ;m with bounds 
k. We formulate the generalization of Theorem 2.3 for this equation.Theorem 2.2 
an be stated similarly.Theorem 2.6 Assume Bk and �k satisfy 
onditions (H1) and (H2) with 
k, respe
tively,and suppose the trivial solution of_x(t) = mXk=1Bk(t)x(t� �k(t)); t � 0 (2.29)is exponentially stable with the order �. Let ~K� be su
h that the fundamental solution Vof (2.29) satis�es jV (t; s)j � ~K�e��(t�s) for t � s, let 0 < � < � be �xed. Suppose thefun
tions �+k ;��k : [0;1)! Rn�n and �+k ;��k : [0;1)! R are su
h that0 � �+k (t); 0 � ��k (t); 0 � ��k (t) � �k(t); 0 � �+k (t) � 
k(t)� �k(t)for t � 0, k = 1; : : : ;m, andlimt!1� mXk=1 jmax(�+k (t);��k (t))je�
k(t)+ mXk=1 jBk(t)je�
k(t) Z t��k(t)+��k (t)t��k(t)��+k (t) jBk(s)je�
k(s) ds� < �� �~K� :8



De�ne the parameter set� � n(A1; : : : ; Am; �1; : : : ; �m) : Bk(t)� ��k (t) � Ak(t) � Bk(t) + �+k (t) and�k(t)���k (t) � �k(t) � �k(t) + �+k (t) for t � 0; k = 1; : : : ;mo:Then there exists K� � 1 su
h thatjx(t;';A1; : : : ; Am; �1; : : : ; �m)j � K�e��tk'k; t � 0; (A1; : : : ; Am; �1; : : : ; �m) 2 �:3 Equi-Stability with respe
t to a Set of ParametersIn Se
tion 2 we studied a linear delay equation where we 
onsidered the 
oeÆ
ient and thedelay fun
tion as parameters in the equation. In Theorem 2.3 we gave 
onditions when thesolution tends to zero exponentially, and when the 
onstants in the exponential estimate
an be sele
ted independently of the parti
ular 
hoi
e of the parameters. In this se
tion westudy this \independen
e from the parameters" in a more general form. We introdu
e thenotion of equi-stability with respe
t to a set of parameters, and then prove our 
omparisonprin
iple for a 
ertain 
lass of fun
tional di�erential equations. Consider_y(t) = g(t; yt; p); t � 0 (3.1)with initial 
ondition y(t) = '(t); t 2 [�r; 0℄; (3.2)where g : [0;1) � 
 � U ! Rn , 
 � C in
luding the zero fun
tion 0, the parameter pbelongs to a 
ertain parameter set U , and g(t;0; p) = 0 for all t � 0 and p 2 U . Notethat in the appli
ations we will show in Se
tion 4 and in the next theorem the set U willbe a subset of a fun
tion spa
e, but for the sake of the following de�nitions U 
an be anarbitrary set without any stru
ture in it. A solution of (3.1){(3.2) 
orresponding to initialfun
tion ' and parameter p 2 U is denoted by y(t) = y(t;'; p).We say that the trivial (y = 0) solution of (3.1){(3.2) is equi-stable with respe
t toU , if for any " > 0 there exists Æ = Æ(") > 0 su
h that jy(t;'; p)j < " for any t � 0,k'k < Æ and p 2 U . We say that the trivial solution of (3.1){(3.2) is asymptoti
ally equi-stable with respe
t to U , if it is equi-stable with respe
t to U , and there exists � > 0 thatlimt!1 y(t;'; p) = 0 for k'k < � and p 2 U . We say that the trivial solution of (3.1){(3.2)is exponentially equi-stable with respe
t to U , if for any " > 0 there exist Æ = Æ(") > 0,K = K(") � 1 and � = �(") > 0 su
h that jy(t;'; p)j < Ke��tk'k for any t � 0, k'k < Æand p 2 U .Consider the fun
tional di�erential equation_x(t) = f(t; xt; xt); t � 0; (3.3)with initial 
ondition x(t) = '(t); t 2 [�r; 0℄; (3.4)where 9



(A) f : [0;1) � 
1 � 
2 ! Rn is 
ontinuous, 
1 and 
2 are open subsets of C both
ontaining the identi
ally zero fun
tion 0, and f(t;0; u) = 0 for t 2 [0;1) and u 2 
2.Let % > 0 be �xed, and S(%) denote the set of 
ontinuous fun
tions u : [�r;1) ! Rnsatisfying ju(t)j � % for t � �r. Suppose % is small enough to satisfy S(%) � 
2, and �x afun
tion u 2 S(%). We asso
iate the equation_y(t) = f(t; yt; ut); t � 0; (3.5)to the fun
tion u and to Equation (3.3) with the initial 
ondition (3.2) 
orresponding to(3.4). A solution of (3.5){(3.2) 
orresponding to initial fun
tion ' and the fun
tion u 2 S(%)is denoted by y(t) = y(t;'; u). Assumption (A) yields that the identi
ally zero fun
tion isa solution of both initial value problems (3.3){(3.4) and (3.5){(3.2).The next theorem shows that the equi-stability of the trivial solution of (3.5) impliesthe stability of the trivial solution of (3.3).Theorem 3.1 Assume (A), let % > 0 be su
h that S(%) � 
2, and u 2 S(%). Then(i) if the trivial solution of (3.5) is equi-stable with respe
t to S(%), then the trivial solutionof (3.3) is stable, as well;(ii) if the trivial solution of (3.5) is asymptoti
ally equi-stable with respe
t to S(%), thenthe trivial solution of (3.3) is asymptoti
ally stable, as well;(iii) if the trivial solution of (3.5) is exponentially equi-stable with respe
t to S(%), thenthe trivial solution of (3.3) is exponentially stable, as well.Proof (i) Fix any 0 < " < %, and let 0 < Æ < % be a 
onstant 
orresponding to " inthe de�nition of equi-stability with respe
t to S(%) of the trivial solution of (3.5). Let 'satisfy k'k < Æ, and let x(t) = x(t;') be any 
orresponding solution of (3.3){(3.4). Sin
e,by assumption, jx(0)j < %, the 
ontinuity of x yields that jx(t)j < % for t > 0 
lose to 0.Suppose there exists T > 0 su
h that jx(t)j < % for t 2 [0; T ) and jx(T )j = %. De�neu(t) = � x(t); t 2 [�r; T );x(T ); t � T:Then u 2 S(%). Let y(t) = y(t;'; u) be the solution of the 
orresponding (3.5){(3.2). Bythe equi-stability with respe
t to S(%) of (3.5), jy(t;'; u)j < " < % for t � 0. On the otherhand, y(t) = x(t) for t 2 [0; T ). Therefore, by 
ontinuity, jx(T )j = jy(T )j = % gives a
ontradi
tion to the de�nition of T . Hen
e jx(t)j = jy(t)j < " for t � 0, whi
h proves (i).(ii) By part (i) the trivial solution of (3.3) is stable, therefore there exists Æ > 0 su
hthat jx(t;')j < % for t � 0 and k'k < Æ. The asymptoti
 equi-stability of (3.5) implies theexisten
e of � > 0 that limt!1 y(t;'; u) = 0 for k'k < � and u 2 S(%). Let u(t) = x(t;')for a �xed ' satisfying k'k < �, then u 2 S(%). Therefore limt!1 x(t) = 0, as well, sin
ex(t;') = y(t;'; u). 10



(iii) As in part (ii), there exists Æ0 > 0 su
h that jx(t;')j < % for t � 0, k'k < Æ0.By assumption, there exist Æ > 0, K � 1 and � > 0 su
h that jy(t;'; u)j � Ke��tk'kfor t � 0, k'k < Æ and u 2 S(%). But for k'k < minfÆ0; Æg and u = x(�;') we havex(t;') = y(t;'; u), and so jx(t;')j � Ke��tk'k, t � 0. 2Theorem 3.1 
an be applied for example for state-dependent delay equations of the form_x(t) = h(t; x(t); x(t � �(t; xt))); t � 0; (3.6)where the delay fun
tion � : [0;1)�C ! R is 
ontinuous, and 0 � �(t;  ) � t+ r for t � 0and  2 C and h(t; 0; 0) = 0, t � 0. The asso
iated state-independent delay equation to(3.6) is _y(t) = h(t; y(t); y(t � �(t; ut))); t � 0: (3.7)Therefore some type of equi-stability of the trivial solution of (3.7) implies the same type ofstability of the trivial solution of (3.6). We note that su
h results 
an be generalized for forstate-dependent delay equations with multiple delays, and for other 
lasses of di�erentialequations, e.g., for equations with unbounded delays, (i.e., where the initial interval is[�r; 0℄ = (�1; 0℄) or for neutral di�erential equations. The appli
ability of these theoremsdepends on if we 
an give 
onditions implying equi-stability of the asso
iated equation.In the next se
tion we will present su
h 
onditions for several 
lasses of delay equationsin
luding equations with state-dependent delays.4 Appli
ationsIn our �rst example we give a 
ondition implying the equi-stability of a 
ertain delayequation. Consider the linear delay equation_x(t) = � mXi=1 ai(t; p)x(t� �i(t)); t � 0; (4.1)where p is a parameter in the equation belonging to a 
ertain set U .Theorem 4.1 Let r > 0, and assume �i : [0;1) ! [0; r℄ and ai : [0;1) � U ! [0;1) fori = 1; : : : ;m, and there exist 
onstants 0 � dik < 1 (i; k = 1; : : : ;m), T � r and K > 0su
h that Z tt��i(t) ak(s; p) ds � dik; t � T; p 2 U ; i; k = 1 : : : ;m;where mXi;k=1dik < 1; (4.2)and Z T0 mXi=1 ai(s; p) ds � K; p 2 U :11



(i) Then the trivial solution of (4.1) is equi-stable with respe
t to U .(ii) If we assume further that R10 Pmj=1 aj(s; p) ds =1 for p 2 U , then the trivial solutionof (4.1) is asymptoti
ally equi-stable with respe
t to U .(iii) If, moreover, there exists � > 0 su
h thatZ ts ai(s; p) ds � �(t� s) for t � s � 0; p 2 U and i = 1; : : : ;m;then the trivial solution of (4.1) is exponentially equi-stable with respe
t to U .Proof (i) Fix p 2 U . We have_x(t) = � mXi=1 ai(t; p)! x(t) + mXi=1 ai(t; p)(x(t) � x(t� �i(t))); t � 0:Using the variation-of-
onstant formula for ODEs we getx(t) = e� R t0 Pmi=1 ai(s;p) dsx(0) + mXi=1 Z t0 e� R ts Pmj=1 aj(u;p) duai(s; p)(x(s) � x(s� �i(s))) ds:Using t� �i(t) � 0 for t � T � r and i = 1; : : : ;m, Equation (4.1) yields for t � Tx(t) = e� R t0 Pmi=1 ai(s;p) dsx(0) + mXi=1 Z T0 e� R ts Pmj=1 aj(u;p) duai(s; p)(x(s) � x(s� �i(s))) ds� mXi=1 Z tT e� R ts Pmj=1 aj(u;p) duai(s; p)Z ss��i(s) mXk=1 ak(u; p)x(u � �k(u)) du ds:A simple generalization of Lemma 2.1 to Equation (4.1) impliesjx(t)j � eR T0 Pmj=1 aj(s;p) dsk'k � eKk'k; t 2 [0; T ℄; p 2 U ;therefore, for t � Tjx(t)j � e� R t0 Pmj=1 aj(s;p) dsjx(0)j + 2eKk'k mXi=1 Z T0 e� R ts Pmj=1 aj(u;p) duai(s; p) ds+ mXi=1 Z tT e� R ts Pmj=1 aj(u;p) duai(s; p)Z ss��i(s) mXk=1 ak(u; p)jx(u � �k(u))j du ds (4.3)� e� R t0 Pmj=1 aj(s;p) dsjx(0)j + 2eKk'k�e� R tT Pmj=1 aj(u;p) du � e� R t0 Pmj=1 aj(u;p) du�+ max�r�s�t jx(s)j mXi;k=1Z tT e� R ts Pmj=1 aj(u;p) duai(s; p)Z ss��i(s) ak(u; p) du ds� �1 + 2eK� k'k + max�r�s�t jx(s)j mXi;k=1 dik Z tT e� R ts ai(u;p) duai(s; p) ds12



= �1 + 2eK� k'k + max�r�s�t jx(s)j mXi;k=1 dik �1� e� R tT ai(u;p) du� (4.4)� �1 + 2eK� k'k + max�r�s�t jx(s)j mXi;k=1 dik:Note that the last inequality holds for t 2 [�r; T ℄, as well. It follows thereforemax�r�s�t jx(s)j � �1 + 2eK� k'k+ d max�r�s�t jx(s)j;where d � mXi;k=1dik < 1;hen
e jx(t)j � max�r�s�t jx(s)j � 1 + 2eK1� d k'k;whi
h yields the stability of the trivial solution of (4.1).(ii) Let x be any �xed solution of (4.1), then, by part (i), limt!1jx(t)j is �nite. Let " > 0be �xed, and let t1 > T be su
h that jx(t)j � limt!1jx(t)j+ " for t � t1� r. Similarly to (4.4)one 
an easily obtainjx(t)j � e� R tt1Pmj=1 aj(s;p) dsjx(t1)j+ ( lims!1jx(s)j+ ") mXi;k=1 dik �1� e� R tt1 ai(s;p) ds� ; t � t1:(4.5)Then taking the limit as t!1 we getlims!1jx(s)j � d( lims!1jx(s)j+ ");or equivalently, lims!1jx(s)j � d"1� d;whi
h yields limt!1 x(t) = 0, sin
e " > 0 was arbitrary.To prove part (iii) �x 0 < � < � su
h thatde2�r �1 + ��� �� < 1;and introdu
e z(t) = jx(t)je�t. Multiplying both sides of (4.3) by e�t and using thate� R t0 Pmj=1 aj(s;p) ds � e��t; t � 0; p 2 U ;
13



we getz(t) � k'k + 2eKk'ke�t �e� R tT Pmj=1 aj(u;p) du � e� R t0 Pmj=1 aj(u;p) du�+ e�t mXi;k=1Z tT e� R ts Pmj=1 aj(u;p) duai(s; p)� Z ss��i(s)ak(u; p)jz(u � �k(u))je��(u��k(u)) du ds� k'k + 2eKk'keR T0 Pmj=1 aj(u;p) du+ e�r max�r�s�t z(s) mXi;k=1Z tT e� R ts ai(u;p) du+�tai(s; p)e��(s��i(s)) Z ss��i(s) ak(u; p) du ds� (1 + 2e2K)k'k + e2�r max�r�s�t z(s) mXi;k=1 dik Z tT e� R ts ai(u;p) du+�(t�s)ai(s; p) ds:Integration by parts and inequality e� R ts ai(s;p) ds � e��(t�s) yieldz(t) � (1 + 2e2K)k'k+ e2�r max�r�s�t z(s) mXi;k=1 dik�1� e� R tT ai(u;p) du+�(t�T )+� Z tT e� R ts ai(u;p) due�(t�s) ds�� (1 + 2e2K)k'k+ e2�r max�r�s�t z(s) mXi;k=1 dik�1 + � Z tT e(���)(s�t) ds�� (1 + 2e2K)k'k+ e2�r max�r�s�t z(s)d�1 + ��� ��;whi
h implies easily z(t) �M�k'k, whereM� � 1 + 2e2K1� de2�r �1 + ����� :This therefore means that jx(t)j �M�e��tk'k, i.e., the trivial solution of (4.1) is exponen-tially equi-stable with respe
t to U . 2It has been shown in [14℄ by Krisztin (as a spe
ial 
ase of a result proved for distributeddelay 
ase) that the trivial solution of the s
alar equation_x(t) = � mXi=1 ai(t)x(t� �i(t)); t � 0 (4.6)is asymptoti
ally stable, if 0 � ai(t) � �i and 0 � �i(t) � qi for t � 0, andmXi=1 �iqi < 1:14



Yoneyama [20℄ proved the asymptoti
 stability of the trivial solution of the equation_x(t) = �a(t)x(t� �(t)); t � 0 (4.7)under the integral 
ondition that0 < inft�0 Z tt��0 a(s) ds � supt�0 Z tt��0 a(s) ds < 32 ;when 0 � a(t) and 0 � �(t) � �0 for t � 0. Our Theorem 4.1 was motivated by Yoneyama's
ondition and reformulates Krisztin's result using integral 
ondition. Note that the upperlimit 32 in the above 
ondition was in
reased in [9℄ (but at the same time the lower limit 0had to be in
reased, as well), where it was shown that if R10 a(s) ds =1 and the fun
tiont 7! R t0 a(s) ds is monotone in
reasing, then for any 
 2 (0; �=2) there exists b 2 (0; 
) su
hthat the trivial solution of (4.7) is asymptoti
ally stable, assumingb < lim inf t!1Z tt��(t) a(s) ds � limt!1Z tt��(t) a(s) ds < 
:In our next example we 
onsider the s
alar equation_x(t) = � mXi=1 ai(t; xt)x(t� �i(t)); t � 0: (4.8)Theorems 3.1 and 4.1 have the following 
orollary.Theorem 4.2 Assume �i : [0;1) ! [0; r℄, ai : [0;1) � C ! [0;1), there exist 
onstants% > 0, 0 � dik < 1 (i; k = 1; : : : ;m), T � r and K > 0 su
h thatZ tt��i(t) ak(s; us) ds � dik; t � T; u 2 S(%); i; k = 1; : : : ;m;where mXi;k=1dik < 1;and Z T0 mXi=1 ai(s; us) ds � K; u 2 S(%):(i) Then the trivial solution of (4.8) is stable.(ii) If we assume further that R10 Pmj=1 aj(s; us) ds = 1 for u 2 S(%), then the trivialsolution of (4.8) is asymptoti
ally stable.(iii) If, moreover, there exists � > 0 su
h thatZ ts ai(s; us) ds � �(t� s) for t � s � 0; u 2 S(%) and i = 1; : : : ;m;then the trivial solution of (4.8) is exponentially stable.15



Next we study the exponential stability of the state-dependent delay system_x(t) = B(t)x(t� �(t; xt)); t � 0; (4.9)with the asso
iated initial 
ondition (2.3). We assume that B satis�es (H1), and � satis�es(H3) � : [0;1)�C ! [0;1) is 
ontinuous, and there exist % > 0 and a 
ontinuous fun
tion
 : [0;1)! R su
h that 0 � 
(t) � t+ r for t � 0, lim inf t!1t� 
(t) > 0, and�(t; ut) � 
(t) for t � 0; u 2 S(%):Note that these 
onditions imply the lo
al existen
e of solutions of (4.9)-(2.3), but notne
essary the uniqueness of the solution (see, e.g., [4℄, [10℄).Remark 2.4 yields that for every n;m 2 N there exist fun
tions �+n;m;��n;m : [0;1) ![0;1) satisfying limt!1jB(t)je 1m
(t) Z t��(t;0)+�+n;m(t)t��(t;0)���n;m(t) jB(s)je 1m
(s) ds < 1n (4.10)and 0 � ��n;m(t) � �(t;0); 0 � �+n;m(t) � 
(t)� �(t;0) for t � 0:With the help of these fun
tions we 
an test if the exponential stability of the trivial solutionof _x(t) = B(t)x(t� �(t;0)); t � 0 (4.11)is preserved for that of (4.9). In parti
ular, assume that � is su
h that(H4) for every n;m 2 N there exist T = Tn;m > 0 and 0 < Æ = Æn;m � % su
h that�(t;0)���n;m(t) � �(t; ut) � �(t;0)+�+n;m(t); t � T and u 2 S(Æ): (4.12)Then we have the following result.Theorem 4.3 Assume (H1), (H3) and (H4), and the trivial solution of (4.11) is exponen-tially stable. Then the trivial solution of (4.9) is exponentially stable, as well.Proof For any u 2 S(%) we asso
iate equation_y(t) = B(t)y(t� �(t; ut)); t � 0 (4.13)to (4.9). The assumptions imply that there exists ~K� � 1 and � > 0 su
h that thefundamental solution V of (4.11) satis�es jV (t; s)j � ~K�e��(t�s) for t � s. Fix 1� < m0,and let n0 2 N be su
h that ~K�=(� � 1m0 ) < n0, and let T and Æ be the 
orresponding
onstants from (H4). We de�ne the fun
tions�+(t) � � �+n0;m0(t); t � T;
(t)� �(t;0); 0 � t < T16



and ��(t) � � ��n0;m0(t); t � T;�(t;0); 0 � t < Tand the set � = f� : �(t;0) ���(t) � �(t) � �(t;0) + �+(t); t � 0g:Then �(�; u�) 2 � for u 2 S(Æ), andlimt!1jB(t)je 1m0 
(t) Z t��(t;0)+�+(t)t��(t;0)���(t) jB(s)je 1m0 
(s) ds < �� 1m0~K� :Hen
e Theorem 2.3 implies that the trivial solution of (4.13) is exponentially equi-stablewith order 1=m0 with respe
t to the set S(Æ). Therefore Theorem 3.1 implies that thetrivial solution of (4.9) is exponentially stable, as well. 2Note that if jB(t)je�
(t) is bounded for t > 0 and for some � > 0, then, for large enoughm, �+n;m and ��n;m 
an be sele
ted to be 
onstants fun
tions. If both jB(t)j and 
(t) arebounded, Corollary 2.5 and the last theorem imply immediately the next 
orollary, whi
hslightly improves Theorem 2.2 of [8℄.Corollary 4.4 If jB(t)j � b0 for t � 0 and � : [0;1) � C ! [0; r℄, then Theorem 4.3remains true when assumption (H4) is repla
ed by(H4') for every " > 0 there exists Æ > 0 su
h thatlimt!1j�(t;0) � �(t; ut)j < "; u 2 S(Æ): (4.14)We note that in [8℄ it was proved, that if we have more smoothness on the delay � ,then the exponential stability of the trivial solution of (4.11) is not only suÆ
ient, but alsone
essary for the exponential stability of the trivial solution of (4.9).Our �nal result is formulated for the s
alar delay equation_x(t) = a(t)x(t� �(t; xt)); t � 0; (4.15)where the delay fun
tion is de�ned by the threshold relationZ tt��(t;xt) f(t; s; xt) ds = m; t � 0 (4.16)for some m > 0. Re
ently su
h threshold-type delay equations have re
eived 
onsiderableattention from modelling and theoreti
al point of view, as well (see, e.g., [1℄, [6℄, [7℄, [15℄{[18℄), but very little is known about the general stability theory of su
h equations (see[15℄).Let F be a positive 
onstant, r � m=F , and we assume17



(A1) a : [0;1)! R is 
ontinuous and bounded,(A2) f : [0;1) � [�r;1)� C ! (0;1) is su
h that(i) for every " > 0 there exist Æ > 0 and T > 0 su
h that jf(t; s;  )� f(t; s;0)j < "for t � T , s � T � r and  2 S(Æ),(ii) f(t; s;0) � F for t � 0 and s � �r.Note that assumption (A2) (ii) implies 0 < �(t;0) � r for t � 0.Theorem 4.5 Assume (A1) and (A2), and suppose the trivial solution of_x(t) = a(t)x(t� �(t;0)); t � 0; (4.17)is exponentially stable. Then the trivial solution of (4.15) is exponentially stable, as well.Proof By Remark 4.4 it is enough to show that (4.14) holds. Assumption (A2)(i) yieldsthat for any " > 0 there exist Æ > 0 and T > 0 su
h thatZ tt��(t;ut)(f(t; s;0)� ") ds � Z tt��(t;ut) f(t; s; ut) ds � Z tt��(t;ut)(f(t; s;0) + ") dsfor t > T and any u 2 S(Æ). On the other hand for su
h u the de�nition of �(t; ut) impliesZ tt��(t;ut) f(t; s; ut) ds = Z tt��(t;0) f(t; s;0) ds = m;thereforeZ tt��(t;ut)(f(t; s;0)� ") ds � Z tt��(t;0) f(t; s;0) ds � Z tt��(t;ut)(f(t; s;0) + ") ds;and so �"�(t; ut) � Z t��(t;ut)t��(t;0) f(t; s;0) ds � "�(t; ut):Hen
e F j�(t; ut)� �(t;0)j � �����Z t��(t;ut)t��(t;0) f(t; s;0) ds����� � "�(t; ut) (4.18)for t > T and u 2 S(Æ). Assumption (A2) (i) yieldsm = Z tt��(t;ut) f(t; s; ut) ds � (F � ")�(t; ut):Therefore it follows from (4.18) thatj�(t; ut)� �(t;0)j � "m(F �m)F ; t > T; u 2 S(Æ);whi
h implies property (H4'). 218
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