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Here � 2 � and � 2 � are parameters of the equation and the delay fun
tion,respe
tively, where � and � are normed linear spa
es. In our examples theparameters will be fun
tions, i.e., the parameter spa
e will be in�nite dimen-sional. We will 
onsider the initial fun
tion ' as a parameter, too. We assumethat the parameters 
 � ('; �; �) are unknown, but there are measurementsX0; X1; : : : ; Xl of the solution at the points t0; t1; : : : ; tl. Our goal is to �nd aparameter value whi
h minimizes the least square 
ost fun
tionminJ(
) � lXi=0(x(ti; 
)�Xi)2 (3)over the parameter spa
e � (or over an admissible set of parameters). Denotethis in�nite dimensional minimization problem by P .One standard approa
h used in the literature to solve this minimization prob-lem redu
es it to solving �nite dimensional minimization problems:Step 1) First take �nite dimensional approximations of the parameters, 
N ,(i.e., 
N 2 �N � �, dim�N <1, 
N ! 
 as N !1).Step 2) Consider a sequen
e of approximate initial value problems (IVPM;N )
orresponding to a dis
retization of IVP (1)-(2) for some �xed parameter 
N 2�N with solutions yM(�; 
N) satisfying yM(t; 
N) ! x(t; 
) as N;M ! 1,uniformly on 
ompa
t time intervals.Step 3) De�ne the least square minimization problems (PN;M) for ea
h N;M =1; 2; : : :, i.e., �nd 
N;M 2 �N , whi
h minimizes the least squares �t-to-data
riterion JN;M(
N ) = lXi=0 jyM(ti; 
N)�Xij2; 
N 2 �N :Step 4) Assuming that the a
tual parameters belong to a 
ompa
t subset of�, argue that the sequen
e of solutions, 
N;M (N;M = 1; 2; : : :), of the �nitedimensional minimization problems PN;M has a 
onvergent subsequen
e withlimit �
 2 �.Step 5) Show that �
 is the solution of the minimization problem P .Note that Step 5 
an be proved independently of the parti
ular 
hoi
e of theapproximation s
hemes used in Step 1 and Step 2. This method was su

ess-fully used in [1℄, [2℄, [7℄ and [21℄ using spline-based approximation s
hemes inStep 2. Note that these s
hemes have no known extension even for the simplest
lasses of neutral equations. In the sequen
e of papers [13℄{[16℄ and [19℄ wede�ned several versions of a numeri
al identi�
ation s
heme and proved theirtheoreti
al 
onvergen
e for a large 
lass of FDEs in
luding delay and neutral2



state-dependent FDEs. The methods were based on an approximation te
h-nique 
alled approximation by equations with pie
ewise 
onstant arguments,whi
h was introdu
ed for linear delay and neutral equations in [8℄ and wasgeneralized for nonlinear delay and neutral state-dependent FDEs in [9℄ and[15℄, respe
tively.The method of quasilinearization for parameter estimation was introdu
ed forODEs in [3℄ and was applied to identify �nite dimensional parameters in FDEsin [5℄ and [6℄. The idea is the following: take �nite dimensional approximationof the parameters (if they are in�nite dimensional) 
N = ('N ; �N ; �N), and
onsider the 
orresponding IVP_xN(t)=f�t; xN(t); xN (t� �(t; xN (t); �N)); �N�; t 2 [0; T ℄ (4)xN (t)='N(t); t 2 [�r; 0℄: (5)Minimize the least square 
ost fun
tionminJN (
N) � lXi=0(xN (ti; 
N)�Xi)2;by a gradient-based method. Note that this requires the 
omputation of thederivative of JN with respe
t to the parameter 
N , i.e., we have to be able to
ompute the derivative of the solution xN of (4)-(5) with respe
t to parameters.This problem was studied, e.g., in [4℄, [10℄, [11℄, [20℄ for several 
lasses of state-independent delay equations, and in [12℄ and [18℄ for state-dependent FDEs.The algorithm of quasilinearization 
an be des
ribed as follows: Take a ba-sis feN1 ; : : : ; eNNg for the �nite dimensional subspa
e �N of �, and let 
 =(
1; : : : ; 
N)T be the 
oordinates of the parameter 
N 2 �N with respe
t tothis basis, i.e., 
N = PNi=1 
ieNi . Then we identify 
N with the 
olumn ve
tor 
,and simply write xN (t; 
) instead of xN (t; 
N). We approximate the parameterve
tor 
 by the �xed point iteration des
ribed by the following equations:
(k+1)= g(
(k)); k = 0; 1; : : : ; (6)g(
)= 
� (D(
))�1b(
) (7)D(
)= lXi=0MT (ti; 
)M(ti; 
) (8)b(
)= lXi=0MT (ti; 
)(xN(ti; 
)�Xi) (9)M(t; 
)= (M1(t; 
); : : : ;MN(t; 
)) (10)Mi(t; 
)= �xN�
 (t; 
)eNi : (11)3



This is exa
tly the same s
heme that was used in [5℄ and [6℄ ex
ept thatthere the parameter spa
e was �nite dimensional, and the set feN1 ; : : : ; eNNgwas the 
anoni
al basis of RN . In our 
ase �xN�
 is a linear fun
tional de�nedon a fun
tion spa
e, e.g., on a spa
e of 
ontinuous fun
tions, and �xN�
 (t; 
)eNidenotes the value of the linear fun
tional applied to the fun
tion eNi . For thederivation of this method in the �nite dimensional 
ase we refer to [3℄.In the next se
tion we present several numeri
al examples whi
h will illustratethat this method works for identifying in�nite dimensional parameters, as well.2 Numeri
al ExamplesIn all of the numeri
al examples presented below we approximate the fun
-tions by linear spline fun
tions. Let � = �1; �2; : : : ; �N = � be an equidistantmesh of an interval [�; �℄, and feN1 ; : : : ; eNNg in (11) be the \hat" fun
tions
orresponding to the mesh f�1; : : : ; �Ng, i.e., eNi is the linear spline fun
tionwith the property that eNi (�j) = 0 if i 6= j, and eNi (�i) = 1.Example 1 Consider the linear delay equation_x(t)= �(t)x(t� �(t)); t 2 [0; 2℄ (12)x(t)='(t); t 2 [�2; 0℄: (13)If we take�(t) = 8><>: 2� t2; t 2 [0; 1℄;1; t 2 [1; 2℄; �(t) = 8><>:� tt+1 ; t 2 [0; 1℄;�12 ; t 2 [1; 2℄; '(t) = t2 (14)as the parameters in (12)-(13), then the solution of the 
orresponding IVP isx(t) = 8>>>>><>>>>>:�15 t5 � 14 t4 + 43t3 � 4t+ 4 log(t+ 1); t 2 [0; 1℄;160 t6 � 340 t5 � 2t log(t+ 1)� 124t4 + 712t3+ 83120 t� 10324 + 4 log(2); t 2 [1; 2℄:We used this fun
tion to generate measurements at the points ti = 0:1i, i =0; 1; : : : ; 20. First let � and � be de�ned by (14) and 
onsider ' as a parameterin the equation. The derivative of the solution x(t;') of IVP (12){(13) withrespe
t to the initial fun
tion ' satis�es the variational equation4



_z(t;'; �)= �(t)z(t� �(t);'; �); t 2 [0; 2℄ (15)z(t;'; �)= �(t); t 2 [�2; 0℄; (16)where z(t;'; �) = �x�'(t;')� denotes the derivative applied to the fun
tion �.This IVP was solved numeri
ally by the approximation te
hnique of [8℄ toobtain the derivative values used in (11). Then we 
omputed one iteration of(6){(11) starting from the 
onstant 2 initial parameter value. The numeri
alresults 
an be seen in Figure 1 using N = 3 and N = 9 dimensional splineapproximations of the initial fun
tion. The solid 
urve represents the \true"initial fun
tion. We got the following values for the 
ost fun
tions: J3(
(0)) =J9(
(0)) = 57:574144, J3(
(1)) = 0:000204 and J9(
(1)) = 0:000001. In thislinear equation x(t;') depends linearly on ', therefore M(t; 
) de�ned by(10)-(11) is 
onstant in 
. Hen
e b is linear, and D is the derivative of b.Therefore iteration (6) 
onverges in one step, sin
e it is the Newton-iterationfor �nding the zero of the linear fun
tion b. We 
an observe that the �rst stepgives a good approximation of the identi�
ation problem: the shape of theinitial fun
tion is well approximated, and the 
orresponding solution �ts wellto the measurements.
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Fig. 1. Estimation of ' in IVP (12)-(13): N = 3 and N = 9.Example 2 In this example we 
onsider again IVP (12)-(13), but here weassume that the 
oeÆ
ient fun
tion � is unknown, and the delay fun
tion �and the initial fun
tion ' are given by (14). We used again the measurement ofExample 1. The derivative of the solution with respe
t to � 
an be 
omputedby solving the IVP_z(t; �; �)= �(t)z(t� �(t); �; �) + �(t)x(t� �(t); �); t 2 [0; 2℄z(t; �; �)= 0; t � 0;where z(t; �; �) = �x�� (t; �)�. We applied method (6){(11) for the 
onstant 1starting value. The �rst 3 steps of the numeri
al results 
an be seen in Figure 2.We observe fast 
onvergen
e to the true parameter value. At the third step the
ost fun
tion was J3(
(3)) = 0:000170 and J9(
(3)) = 0:000001, respe
tively.5
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Step 3 Fig. 2. Estimation of � in IVP (12)-(13): N = 3 and N = 9:Example 3 Consider again IVP (12)-(13). Here we assume that the delayfun
tion � is unknown, and the 
oeÆ
ient fun
tion � and the initial fun
tion' are de�ned by (14). We used the same measurement as in Examples 1 and 2.We have to 
ompute the derivative of x(t; �) with respe
t to �. This problemwas studied for the 
ase when � is 
onstant in [10℄ and [20℄ and in [12℄ and [18℄for the 
ase when � is a fun
tion. Consider the following variational equation_z(t; �; �)=��(t) _x(t� �(t); �)�(t); t 2 [0; 2℄z(t; �; �)= 0; t 2 [�2; 0℄where z(t; �; �) is the 
andidate for �x�� (t; �)�. It is easy to 
he
k that x(t; �)is 
ontinuously di�erentiable with respe
t to t for any t and �, therefore z iswell-de�ned, and Corollary 2 of [12℄ implies that �x�� (t; �) = z(t; �; �) for any �and t. We did our 
al
ulations starting from a 
onstant 2 delay fun
tion. Thenumeri
al results are given in Figure 3. The value of the 
ost fun
tion wasJ3(
(3)) = 0:000306 and J9(
(4)) = 0:000003, respe
tively.
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Fig. 3. Estimation of � in IVP (12)-(13): N = 3 and N = 9Example 4 In this example and in the following two examples we 
onsiderthe state-dependent delay equation 6



_x(t)= �(t)x �t� �2(t)x2(t)� ; t 2 [0; 2℄ (17)x(t)='(t); t 2 [�1:5; 0℄; (18)where we 
hoose�(t) = �t; �(t) = 1t + 1 and '(t) = t2 + 1 (19)as the \true parameters". Note that the state-dependent delay term is givenby �2(t)x2(t). The analyti
 solution of this equation is diÆ
ult to 
ompute,therefore we obtained the measurements by numeri
ally solving IVP (17){(19)at the points ti = 0:1i, i = 0; 1; : : : ; 20. First we de�ned � and � by (19), and
onsider the initial fun
tion ' as an unknown parameter. To 
ompute thederivative of the solution with respe
t to ' we used the variational equation_z(t;'; �)= t _x t� x2(t;')(t+ 1)2 ;'! 2x(t;')(t+ 1)2 z(t;'; �)� tz t� x2(t;')(t+ 1)2 ;'; �! ; t 2 [0; 2℄; (20)z(t;'; �)= �(t); t 2 [�1:5; 0℄: (21)Let x(t;') denote the solution of (17)-(18) 
orresponding to initial fun
tion ',and let �' be the \true" initial fun
tion, i.e., �'(t) = t2+1. Note that the solutionx(t; �') is 
ontinuously di�erentiable for t � �1:5. For pie
ewise 
ontinuouslydi�erentiable initial fun
tions we interpret _x(t) = _'(t) for t 2 [�1:5; 0℄ as theright derivativeD+'(t). It follows from Theorem 2 of [12℄ that for any t � 0 thefun
tion mappingW 1;1([�1:5; 0℄;R) into R, ' 7! x(t;') is di�erentiable at �',and the derivative is given by z(t; �'; �). However, this theorem does not yieldthat z(t;'; �) is the derivative of the solution with respe
t to the initial fun
tionat any other ', and 
ertainly not at the �nite dimensional approximations 'Ngenerated by the method. On the other hand, Corollary 6.3 of [18℄ yields thatthe fun
tion mapping W 1;1([�1:5; 0℄;R) into W 1;p([0; 2℄;R), ' 7! x(�;'), forany p satisfying 1 � p <1 is di�erentiable, and the derivative is given by(20)-(21). Despite this la
k of theoreti
al proof of di�erentiability in the pointwisesense, iteration (6){(11) works well for this 
ase too. The results 
an be seenin Figure 4. The 
ost fun
tion at the last step was J3(
(2)) = 0:000006 andJ9(
(2)) = 0:000005, respe
tively. The graph 
orresponding to N = 9 indi
atesthat the \true" initial interval, i.e., the portion of the initial interval whi
his, in fa
t, used to 
ompute the solution is smaller than [�1:5; 0℄. Using thetrue parameter value we 
an see that it is [�1; 0℄. For more detailed dis
ussionabout the identi�
ation of the \true" initial interval we refer the reader to [17℄and [19℄. 7
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Fig. 4. Estimation of ' in IVP (17)-(18): N = 3 and N = 9.Example 5 For IVP (17)-(18) 
onsider � as the unknown parameter, and let� and ' be de�ned by (19). We used the same measurements as in Example 4.The derivative of the solution x(t; �) with respe
t to � is 
omputed by_z(t; �; �)=��(t) _x t� x2(t; �)(t+ 1)2 ; �! 2x(t; �)(t+ 1)2 z(t; �; �)+ �(t)z t� x2(t; �)(t+ 1)2 ; �; �!+ �(t)x t� x2(t; �)(t+ 1)2 ; �! ; t 2 [0; 2℄z(t; �; �)= 0; t 2 [�1:5; 0℄:where we use D+x(0; �) instead of _x(0; �) when x is not di�erentiable at 0. Wehave the same problem with this derivative as in Example 4, but, again, herewe 
an also observe good 
onvergen
e of our s
heme to the true parameter(see Figure 5). We have J3(
(2)) = 0:001721 and J9(
(2)) = 0:000725.
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Fig. 5. Estimation of � in IVP (17)-(18): N = 3 and N = 9.Example 6 Finally, 
onsider IVP (17)-(18) with � as unknown, and let � and' be de�ned by (19). We used z(t; �; �) de�ned by_z(t; �; �)= �(t)�� _x�t� �2(t)x2(t; �); ��2�2(t)x(t; �)z(t; �; �)8



� _x�t� �2(t)x2(t; �); ��2�(t)�(t)x2(t; �)+ z�t� �2(t)x2(t; �); �; ���; t 2 [0; 2℄; (22)z(t; �; �)= 0; t � 0; (23)to generate the derivative of the solution with respe
t to �. In this 
ase amu
h weaker \pointwise di�erentiability" result 
an be proved than that ofthe previous two 
ases (see Theorem 3 in [12℄), but still, the \derivative"generated by IVP (22)-(23) is good enough to produ
e ni
e approximationsof the fun
tion � (see Figure 6). We had J3(
(2)) = 0:000008 and J9(
(2)) =0:000018, respe
tively, at the last step.
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