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Abstract

In this paper we study a parameter estimation method in functional differential
equations using quasilinearization technique. We define the method and test its
applicability in numerical examples. We estimate infinite dimensional parameters
such as coefficient functions, delay functions and initial functions in state-dependent
delay equations.

Key words: parameter estimation, state-dependent delays, quasilinearization

1 Introduction and Definition of the Scheme

Estimation of unknown parameters in various classes of differential equations,
and in particular in functional differential equations (FDEs), has been inves-
tigated by many authors (see, e.g., [1], [2], [5]-[7], [13], [14], [16], [17], [19],
[21]).

In this paper we consider the nonlinear state-dependent delay system

i(t) = f(t.x(t),2(t - 7(t,2(1),0)),0),  t€[0,T] (1)

with the associated initial condition

z(t) = ¢(1), t e [-r0]. (2)
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Here 8 € © and 0 € ¥ are parameters of the equation and the delay function,
respectively, where © and ¥ are normed linear spaces. In our examples the
parameters will be functions, i.e., the parameter space will be infinite dimen-
sional. We will consider the initial function ¢ as a parameter, too. We assume
that the parameters v = (¢, 0,6) are unknown, but there are measurements
Xo, X1,..., X, of the solution at the points ¢y, %q,...,%;. Our goal is to find a
parameter value which minimizes the least square cost function

min J(v) = > _(z(ti;7) — X;)? (3)

1=0

over the parameter space I' (or over an admissible set of parameters). Denote
this infinite dimensional minimization problem by P.

One standard approach used in the literature to solve this minimization prob-
lem reduces it to solving finite dimensional minimization problems:

Step 1) First take finite dimensional approximations of the parameters, 7",
(ie., YV eIV c T, dimI'Y < oo, ¥V — v as N — o).

Step 2) Consider a sequence of approximate initial value problems (IVP v)
corresponding to a discretization of IVP (1)-(2) for some fixed parameter vV €
'V with solutions y™(-;4") satisfying y™(¢t,7V) — x(t,7) as N, M — oc,
uniformly on compact time intervals.

Step 3) Define the least square minimization problems (PY:*) for each N, M =
1,2,..., ie., find Y™™ € T'V, which minimizes the least squares fit-to-data

criterion
!

JVM(AN) = Z M (i) = Xl AN erV.
i=0

Step 4) Assuming that the actual parameters belong to a compact subset of
T, argue that the sequence of solutions, vV (N, M = 1,2,...), of the finite
dimensional minimization problems PV has a convergent subsequence with
limit 7 € T.

Step 5) Show that ¥ is the solution of the minimization problem P.

Note that Step 5 can be proved independently of the particular choice of the
approximation schemes used in Step 1 and Step 2. This method was success-
fully used in [1], [2], [7] and [21] using spline-based approximation schemes in
Step 2. Note that these schemes have no known extension even for the simplest
classes of neutral equations. In the sequence of papers [13]-[16] and [19] we
defined several versions of a numerical identification scheme and proved their
theoretical convergence for a large class of FDEs including delay and neutral



state-dependent FDEs. The methods were based on an approximation tech-
nique called approximation by equations with piecewise constant arguments,
which was introduced for linear delay and neutral equations in [8] and was
generalized for nonlinear delay and neutral state-dependent FDEs in [9] and
[15], respectively.

The method of quasilinearization for parameter estimation was introduced for
ODEs in [3] and was applied to identify finite dimensional parameters in FDEs
in [5] and [6]. The idea is the following: take finite dimensional approximation
of the parameters (if they are infinite dimensional) v = (o, 0V), and
consider the corresponding IVP

Minimize the least square cost function

I
min J¥ (M) = Y (2N (t;97Y) - Xi)?,
i=0

by a gradient-based method. Note that this requires the computation of the
derivative of JV with respect to the parameter 4", i.e., we have to be able to
compute the derivative of the solution " of (4)-(5) with respect to parameters.
This problem was studied, e.g., in [4], [10], [11], [20] for several classes of state-
independent delay equations, and in [12] and [18] for state-dependent FDEs.

The algorithm of quasilinearization can be described as follows: Take a ba-
sis {el¥,...,eN} for the finite dimensional subspace TV of T, and let ¢ =
(c1,...,cn)T be the coordinates of the parameter vV € I'V with respect to
this basis, i.e., 7V = XX, c;eN. Then we identify vV with the column vector c,
and simply write 2 (¢; ¢) instead of 2V (¢; ¥V). We approximate the parameter
vector ¢ by the fixed point iteration described by the following equations:

B = g, k=0,1,..., (6)
g(e)=c — (D()'b(c) 7
D(c):iiOMT(ti;c)M(ti;c) (8)
be) = 3" M7 (1) (¥ () - ) 0
M(t;c):Z(_]\O/[l(t;c),...,MN(t; c)) (10)
Milt:0) = 2 1) (1)



This is exactly the same scheme that was used in [5] and [6] except that

there the parameter space was finite dimensional, and the set {el, ... eN}

. . N ., . .
was the canonical basis of RY. In our case %"”—7 is a linear functional defined

on a function space, e.g., on a space of continuous functions, and or™ (t;c)el
oy ?
denotes the value of the linear functional applied to the function e. For the

derivation of this method in the finite dimensional case we refer to [3].

In the next section we present several numerical examples which will illustrate
that this method works for identifying infinite dimensional parameters, as well.

2 Numerical Examples

In all of the numerical examples presented below we approximate the func-
tions by linear spline functions. Let o« = &1, &, ..., &y = [ be an equidistant
mesh of an interval [, 8], and {el,...,eX} in (11) be the “hat” functions
corresponding to the mesh {&;,..., &y}, ie., eV is the linear spline function
with the property that e (&;) = 0if i # j, and e} (&) = 1.

)

Example 1 Consider the linear delay equation

o(t)=0(t)z(t — a(t)), t €0,2] (12)

x(t) = (1), te[-2,0] (13)
If we take

o) = 2—t% tel0,1], o) = — t€0,1], o) = £ (14)

1, tel,2], -3, tell,2],

as the parameters in (12)-(13), then the solution of the corresponding IVP is

L5 Lt 45 4t 4 dlog(t + 1), t€[0,1],
r(t) =4 St6 — 245 — 2tlog(t + 1) — Lt* + 5t°
+ B¢ — 2+ 4log(2), telL,2].

We used this function to generate measurements at the points ¢; = 0.12, =
0,1,...,20. First let 0 and 6 be defined by (14) and consider ¢ as a parameter
in the equation. The derivative of the solution z(¢; ) of IVP (12)—(13) with
respect to the initial function ¢ satisfies the variational equation



it 0, §)=0()z(t —o(t);p,§).,  t€]0,2] (15)
2(t 9, &) =&(1), te[-2,0] (16)

where z(t; ¢, &) = g—;(t; ©)& denotes the derivative applied to the function &.
This IVP was solved numerically by the approximation technique of [8] to
obtain the derivative values used in (11). Then we computed one iteration of
(6)—(11) starting from the constant 2 initial parameter value. The numerical
results can be seen in Figure 1 using N = 3 and N = 9 dimensional spline
approximations of the initial function. The solid curve represents the “true”
initial function. We got the following values for the cost functions: J3(c(?)) =
J2(c®) = 57.574144, J3(cM)) = 0.000204 and J?(¢)) = 0.000001. In this
linear equation x(t; ) depends linearly on ¢, therefore M(t;¢) defined by
(10)-(11) is constant in c¢. Hence b is linear, and D is the derivative of b.
Therefore iteration (6) converges in one step, since it is the Newton-iteration
for finding the zero of the linear function b. We can observe that the first step
gives a good approximation of the identification problem: the shape of the
initial function is well approximated, and the corresponding solution fits well
to the measurements.
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Fig. 1. Estimation of ¢ in IVP (12)-(13): N =3 and N = 9.

Example 2 In this example we consider again IVP (12)-(13), but here we
assume that the coefficient function 6 is unknown, and the delay function o
and the initial function ¢ are given by (14). We used again the measurement of
Example 1. The derivative of the solution with respect to 8 can be computed
by solving the IVP

£(£:0,8) =0(t)2(t — o(1);0,8) + £()x(t — o(t);6), t€[0,2]
2(t;6,£) =0, t <0,

where 2(t;0,€) = %(t; 0)¢. We applied method (6)—(11) for the constant 1
starting value. The first 3 steps of the numerical results can be seen in Figure 2.
We observe fast convergence to the true parameter value. At the third step the
cost function was J*(c®®) = 0.000170 and J°(c®) = 0.000001, respectively.
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Fig. 2. Estimation of 6 in IVP (12)-(13): N =3 and N = 9.

Example 3 Consider again IVP (12)-(13). Here we assume that the delay
function ¢ is unknown, and the coefficient function # and the initial function
¢ are defined by (14). We used the same measurement as in Examples 1 and 2.
We have to compute the derivative of x(¢; o) with respect to o. This problem
was studied for the case when o is constant in [10] and [20] and in [12] and [18]
for the case when o is a function. Consider the following variational equation

1:0,6) = 00t — o(t): )W), 10,2
2(t;0,€) =0, t €[-2,0]

where z(t;0,€) is the candidate for 22(¢;0)¢. Tt is easy to check that z(t; o)
is continuously differentiable with respect to ¢ for any ¢ and o, therefore z is
well-defined, and Corollary 2 of [12] implies that 9%(t;0) = z(t; 0,-) for any o
and ¢. We did our calculations starting from a constant 2 delay function. The

numerical results are given in Figure 3. The value of the cost function was
J3(c®) = 0.000306 and J?(c™) = 0.000003, respectively.
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Fig. 3. Estimation of o in IVP (12)-(13): N =3 and N =9

Example 4 In this example and in the following two examples we consider
the state-dependent delay equation



o(t) = —t, o(t)= —— and o(t)=t>+1 (19)

as the “true parameters”. Note that the state-dependent delay term is given
by o?(t)2z(t). The analytic solution of this equation is difficult to compute,
therefore we obtained the measurements by numerically solving IVP (17)—(19)
at the points ¢; = 0.1i, i = 0, 1, ..., 20. First we defined 6 and o by (19), and
consider the initial function ¢ as an unknown parameter. To compute the
derivative of the solution with respect to ¢ we used the variational equation

it 9, &)=t (t - f:ff;lw) ?fffjiz(t; )
. (t - ‘Z‘“:Ef;l“)’l; @,f) . telo,2), (20)
2, §)=£(1),  te[-15,0]. (21)

Let z(t; ¢) denote the solution of (17)-(18) corresponding to initial function ¢,
and let @ be the “true” initial function, i.e., p(¢) = t*+1. Note that the solution
x(t; @) is continuously differentiable for ¢t > —1.5. For piecewise continuously
differentiable initial functions we interpret &(t) = ¢(t) for t € [—1.5,0] as the
right derivative D" (t). It follows from Theorem 2 of [12] that for any ¢ > 0 the
function mapping W1 ([—1.5,0], R) into R, ¢ — x(t; ) is differentiable at ¢,
and the derivative is given by z(¢; @, ). However, this theorem does not yield
that z(¢; ¢, -) is the derivative of the solution with respect to the initial function
at any other ¢, and certainly not at the finite dimensional approximations ¢
generated by the method. On the other hand, Corollary 6.3 of [18] yields that
the function mapping W1 ([—1.5,0], R) into W'?([0, 2], R), ¢ > z(-; @), for
any p satisfying 1 < p < oo is differentiable, and the derivative is given by(20)-
(21). Despite this lack of theoretical proof of differentiability in the pointwise
sense, iteration (6)—(11) works well for this case too. The results can be seen
in Figure 4. The cost function at the last step was .J3(c®) = 0.000006 and
J?(c?)) = 0.000005, respectively. The graph corresponding to N = 9 indicates
that the “true” initial interval, i.e., the portion of the initial interval which
is, in fact, used to compute the solution is smaller than [—1.5,0]. Using the
true parameter value we can see that it is [—1, 0]. For more detailed discussion
about the identification of the “true” initial interval we refer the reader to [17]
and [19].
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Fig. 4. Estimation of ¢ in IVP (17)-(18): N = 3 and N = 9.
Example 5 For IVP (17)-(18) consider # as the unknown parameter, and let

o and ¢ be defined by (19). We used the same measurements as in Example 4.
The derivative of the solution z(t;6) with respect to 6 is computed by

2(t:0,¢)

£(t;0,€) =—0(t)i (t _ 2%(4;0) ,9> 22(t; 6)

(t+1)2 ) (t+1)2
+ 9(t)z<t . éff))? 0, g) + g(t)x<t .

2(t:0,6)=0, te[-15,0]

22(t; 0)
(t+1)2

;9), t €[0,2]

where we use D"z(0; 0) instead of (0; #) when z is not differentiable at 0. We
have the same problem with this derivative as in Example 4, but, again, here
we can also observe good convergence of our scheme to the true parameter

(see Figure 5). We have J?(¢?) = 0.001721 and J°(c®) = 0.000725.
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Fig. 5. Estimation of § in IVP (17)-(18): N =3 and N = 9.

Example 6 Finally, consider IVP (17)-(18) with ¢ as unknown, and let § and
¢ be defined by (19). We used z(t; 0, ) defined by

i(t;0,8) = G(t){—:t(t — o’ ()2’ (t; 0); 0)20% () (t; 0)2(t; 0, &)



to generate the derivative of the solution with respect to o. In this case a
much weaker “pointwise differentiability” result can be proved than that of
the previous two cases (see Theorem 3 in [12]), but still, the “derivative”
generated by IVP (22)-(23) is good enough to produce nice approximations
of the function o (see Figure 6). We had J3(c®)) = 0.000008 and .J%(c?) =
0.000018, respectively, at the last step.
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Fig. 6. Estimation of ¢ in IVP (17)-(18): N =3 and N = 9.
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