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Abstract

In this paper we study the numerical performance
of parameter identification techniques, based on Euler-
type approximation schemes, for non-singular and sin-
gular neutral delay differential equations.

1. Introduction

In a recent paper [6] we presented case studies for
a parameter identification method, based on approx-
imation by equations with piecewise constant argu-
ments, on various classes of hereditary systems, in-
cluding state-dependent delay systems and non-singular
neutral equations. In this paper we continue experi-
menting with this method for more general non-singular
neutral equations (NFDEs), and also for singular neu-
tral equations (SNFDEs).

Consider e.g., the initial value problem (IVP) corre-
sponding to the NFDE

( )+ Z gi()z(t — 7 ( t))) = f(t, e(t), z(t — o(t)))

(1.1)
for t € [0,T], with initial condition

z(t) = (1), te[-r0]. (1.2)
We assume that certain parameters, v, in IVP (1.1)-
(1.2) are not known explicitly, but some informa-
tion 1s available on their values via measurements
(X0, X1, ..., X)) of the solution, z(¢), at discrete time
values (tg,?1,...,%7). The goal is to find the parame-
ter value, which minimizes the least squares fit-to-data
criterion

Z|l‘ Z’ )(|2 P}/Era
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i.e., which is the best-fit parameter for the measure-
ments. (Denote this problem by P). Problem P has
been studied by many authors, for different classes of
differential equations (see e.g. [1] and the references
therein), including delay equations (see e.g. [2] and
).

All the above cited papers use the same idea to find
the solution of the optimization problem P:

Step 1) First take finite dimensional approximations
of the parameters, vV, (i.e., ¥V € IV C T, dimI'V <
00, 7V — 7y as N — o).

Step 2) Consider a sequence of approximate ini-
tial value problems (IVPa n) corresponding to a dis-
cretization of TVP (1.1)-(1.2) for some fixed parame-
ter vV € TV with solutions y™ (-;"V) satisfying that

Mt Ny — z(t,7) as N, M — oo, uniformly on com-
pact time intervals.

Step 3) Define the least square minimization prob-
lems (PNM) for each N, M =1,2,.. ., i.e., find VM ¢
I'Y, which minimizes the least squares fit-to-data crite-
rion

JNM (5 Z |y™ - X%, ANerh.

Step 4) Assuming that the actual parameters belong
to a compact subset of I', argue, that the sequence of
solutions, YV"M (N, M = 1,2,...), of the finite dimen-
sional minimization problems PYM has a convergent
subsequence with limit 7 € T'.

Step 5) Show that ¥ is the solution of the minimiza-
tion problem P.

Note, that step 4) and 5) can be argued without using
the particular approximation method of the initial value
problem, using only compactness arguments and step 2)
above (see e.g. in [8]).

In Section 2 we define an Euler-type approximation
scheme for a class of non-singular neutral equations.
(This scheme is a natural generalization of that in [4]
for linear neutral equations with constant delays.) In



Section 2 we present numerical examples for identifica-
tion of coefficient ¢;(¢), delays 7; and the initial function
¢(1). In Section 5 we apply an Euler-type approxima-
tion technique for identification of parameters in some
singular neutral equations.

2. An Approximation Framework

Consider the vector NFDE

4 (o +Zqz w(t=7i(1))) = (L.2(0). (0~ o(1)

for t € [0,T], with initial condition
z(t) = (1), te[-r0]. (2.2)
0, T —=R, 7 : [0,T]—=[e,0) (i=1,...,m)
(for some ¢ > 0), f : [0,7] x R* x R® — R"
[0,T] — [0,00), and ¢ : [ r,0] — R" are contmuous
functions, where » > 7(2),..., 7 (t), o(t) for t € [0,T].
In this paper we concentrate on identifying param-
eters in the left hand side of the equations, such as
coefficients ¢;, delays 7;, and the initial function ¢. Pa-
rameters in the right hand side of the equation can
be treated similarly, see e.g. [6]. We define v =
(41, qm,T1,-- ., Tm, ) for our parameter vector, and
r'=C™(0,T]; R") x C™([0,7T]; R) x C([-r, 0]; R") for

our parameter space.

Here ¢; :

Following the general method described in the Intro-
duction, first we consider finite dimensional approxima-
tions vV = (¢I¥,..., 7Y, ..., ") € TV of parameter
v € I'. In the numerical examples we shall use linear
spline approximations with equidistant mesh points. It
is known (see e.g. [9]) that linear splines can be used to
approximate piecewise smooth functions uniformly on
compact time intervals.

The second step is to define discretizations of IVP
(2.1)-(2.2) with parameter vV. We use the natural gen-
eralization of the numerical scheme introduced in [4]:

Let i be a positive number. Throughout this paper
we shall use the notation [t], = [t/h]h, where [] is the
greatest integer function. Elementary estimates give
that t — h < [t]p <t and therefore [t], — ¢ as h — 0.

We associate the following NFDE with piecewise con-
stant right-hand side to (2.1):

( )+ Zqz Wyt = [7 N([t]h)]h)) (2.3)
= f([t]h’yh([t])ayh([t]h = [e(t]a)]n) -

The subscript h of yx(t) emphasizes that ya(t) is the
solution of (2.3) corresponding to the discretization pa-

rameter h. The associated initial condition to (2.3) is
yn(t) = o™ (1), te[—r0]. (2.4)
By a solution of the initial value problem (2.3)-(2.4)
we mean a function yp : [—r,T] — R”, which is defined

on [—r,0] by (2.4) and satisfies the following properties
n [0,7]:

(i) it is continuous on [0, T,

(ii) the function yu(t)+3=77, " ([ )yn (=7 ([]n)]n)
is differentiable at each point ¢ € (0,7") with the
possible exception of the points kh (k =0,1,2,..))
where finite one-sided derivatives exist,

(iii) yp satisfies (2.3) on each interval [kh, (k + 1)h) N
[0,T] for k=0,1,2,....

Using the method of steps it can be verified that IVP
(2.3)-(2.4) has a unique solution on [0,00). We intro-
duce the notation a(k) = yn(kh). It is easy to see, using
that the right hand side of (2.3) is constant on the in-
tervals [kh, (k + 1)h), that the sequence a(k) satisfies

ak+1) = k)+§:(q§v(kh)a (k— [%D
— ¥ ((k+ 1)h)a (k +1- [w] ))
T hf (kh,a(k),a (k - [" ]]zh)]))
for k=0,1,..., (2.5)
a(k) = ¢~ (kh), for —r <kh<O0. (2.6)

Therefore computing a(k) is a simple numerical task.
Note, that this scheme uses approximate solution values
only at mesh points.

We conjecture the following:

Theorem 2.1 Assume that the function f is locally
Lipschitz-continuous in its second and third arguments.
If ¥V — v (in a product norm), then yu(t;7Y) —
z(t; ) uniformly on compact time intervals, as h — 07,
N — oo, where z(t;7) and yu(t; V) are the solutions
of IVP (2.1)-(2.2) and IVP (2.3)-(2.4) corresponding

to parameter v and vV, respectively.

The proof of this theorem for state-dependent re-
tarded delay equations and for a very similar approxi-
mating scheme can be found in [5].

In practice we proceed as follows: We select “small
enough” k> 0 and “large enough” N, and consider the
least square criterion

Z|yh i )(|2
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then solve the (finite dimensional) minimization prob-
lem numerically, and use the solution of it as an ap-
proximation of the solution of the original identification
problem.

3. Case Studies

In this section we present some numerical examples
to illustrate the identification method described in Sec-
tions 1 and 2. We note, that in Examples 3.5, 5.1 and
5.2 we used a simple golden section search method for
solving the one dimensional minimization problems. In
the other examples, where we had high dimensional op-
timization problems, we used a nonlinear least square
minimization code, based on a secant method with
Dennis-Gay-Welsch update, combined with a trust re-
gion technique. See Section 10.3 in [3] for detailed de-
scription of this method.

Example 3.1 Consider the vector NFDE

i)+ (D)) =2 (i),

t€10,3], (3.1)

z1(t)\ _ [cosmwt _
OV () reen oo
It is easy to check that the solution of IVP (3.1)-(3.2)
for ¢ = —1is x1(t) = cosat and zo(t) = sinwt. We

generated the measurements X; = (X 1, Xiyz)T at t; =
0.25¢ (i = 0,1,...,12) using the true solution. The
corresponding approximate IVP is

G stz fi) e

_ —yn,2([t]n)
= 2r (yh,1([t]h - [Q]h)) , t€]0,3]

Yn,1 () _ cos mt ~
(yh,z(t)) - (sinﬂ't)’ te[-2,01. (34
We minimize
12

In(g) =" ((yh,l(ti; q) = Xi1)* + (yn,2(tis 0) — Xz',z)z)

i=0
for ¢ € [-3,3]. The numerical results of the minimiza-
tion problem, corresponding to initial guess ¢ = 0, are
shown in Table 1.

Example 3.2 Consider a scalar NFDE with two de-
lays

(=0 + 0l = )+ et - 2)
= -, t >0,
z(t) = +t, te[-2,0].

Table 1
h q In(9)
0.1000 -1.023867 9.5308382

0.0100 -1.002190 0.0948585
0.0010 -1.000218  0.0009480
0.0001 -0.999988  0.0000007

The solution of this IVP corresponding to ¢ = —1 and
qo = 218

—t—12/2, t €[0,1],
z(t) =< 3/2—2¢—17, tell,2], (3.5)
(=1 —4t—1t%)/2, te€]2,3].

The corresponding approximate IVP is

d
() + qun(t = [00) + et [20)
= _[t]ha t Z Oa
yh(t) = _ta te [_Qa 0]
Using function (3.5) we generated measurements X; at
t; = 0.1 (i = 0,...,30). Consider the minimization
problem
30
min Jp(q1,q2) = Z(yh(ti; q1,42) — Xi)?,
i=0
for (q1,42) € [-3,3] x [-3,3]. The numerical solutions
of this problem for different h values are listed in Ta-

ble 2.

Table 2
h 01 G2 Jn(q1, 2)
0.1000 -1.015760 2.055376  9.32088e-04
0.0100 -1.001582  2.005536  9.46526e-06
0.0010 -1.000158 2.000554  9.47992e-08
0.0001 -1.000016  2.000055 9.48138e-10

Example 3.3 Our next example is the scalar NFDE

d
= (x(t) ~2u(t - 2)) = —z(t—1), >0,
x(t) = @), te[-20].
The solution of this IVP corresponding to ¢(¢) = (t+1)?
18
(1—4t+2¢*—13%)/3 t eo0,1],
(1) = (53 — 136t + 782 — 1243 +t4)/12 t € [1,2],
TN (3097 — 33201+ 1310¢% — 24043
+ 20t — 1%)/60 te€[2,3].

With this function we generated measurements X; at
t; = 0.14 (¢ = 0,...,30). Since the initial function is
infinite dimensional, first we approximate it using linear
spline functions with equidistant mesh points. In the



first case consider a 3 dimensional approximation, i.e.,
a linear spline with 3 mesh points at —2, —1 and at 0
with corresponding function values a;, as and as. We
assume that v = (a1,a2,a3) € I' = [-4,4]%, and we
minimize the cost function

30

Ta(v) =D (wn(tiy) — X)?,  veT.

=0
Table 3 presents our numerical findings, using initial
guesses a; = 0 (¢ = 1,2,3). Table 4 and Table 5 contain
the value of the cost function and the maximal error,
(i.e., max;=o, 30 |yn(ti;y) — Xi|), respectively, for 3, 7,
11 and 15 dimensional spline approximations and sev-
eral h values, using constant zero function as the initial
guess for ¢. We show the true initial function (solid
line) and the identified initial functions (dashed lines)
using 3, 5 and 7 dimensional spline approximations and
discretization parameter h = 0.0001 in Figure 1.

Table 3
h a az as Jn(%)
0.1000 0.883875 -0.172934 0.750900 1.7943582
0.0100 0.876778 -0.136629  0.727087  1.7510779
0.0010 0.876124 -0.133062 0.724640 1.7473206
0.0001 0.876059 -0.132706  0.724395 1.7469508

Table 4 : Jp(¥)
h 3 7 11 15

0.1000 1.794358  0.022129 0.009508 0.003518
0.0100 1.751077  0.018978 0.006181 0.000076
0.0010 1.747320 0.019012 0.006189  0.000037
0.0001 1.746950 0.019019 0.006193  0.000036

Table 5 : Maximal error
h 3 7 11 15

0.1000  0.249100 0.068077 0.061564 0.058939
0.0100 0.272913 0.025331 0.011904 0.010888
0.0010 0.275360 0.023690 0.008381 0.006894
0.0001 0.275605 0.023846 0.008483 0.006646

Example 3.4 In our next example we consider

%(x(t) +qe(t—= 1)) =—t, 120,

(t)=1, te[=2,0].
The solution of this IVP with ¢(t) =1 — (t — 1)?/4 is
1—t/2—12/4, t €[0,1],
(1) = (13— 10t +2¢% — t*)/16, tell, 2],
A=Y (52— 40t + 247 + 643 — 21 ¢4
+ 81° —15)/64, te€[2,3].

We used this function to generate the measurements
at t; = 0.1¢ (¢ = 0,1,...,30). First we approximated
q(t) on [0, 3] by 3 dimensional linear splines. The corre-
sponding numerical results are in Table 6. In Tables 7
and 8 we show the cost function and the maximal error
for 3, 11, 19 and 27 dimensional cases. In Figure 2 we
plotted out the true ¢(¢) (solid line) and the identified
q(t) (dashed lines) for 3, 5 and 7 dimensional cases, cor-
responding to A = 0.001 and constant zero initial guess.

Table 6
h a az as Jn (%)
0.1000 0.648225 1.000492 -0.190801 0.1584303
0.0100 0.751983 1.041864 -0.113512 0.1514255
0.0010 0.762359 1.046010 -0.105767  0.1507152
0.0001 0.763397 1.046424 -0.104992  0.1506441

Table 7 : Ju(%)
h 3 11 19 27

0.1000 1.584e-1  2.200e-4  2.697e-06  5.884e-07
0.0100 1.514e-1 1.980e-4 2.817e-06  5.532e-09
0.0010 1.507e-1  1.966e-4 2.861e-06  5.226e-11
0.0001 1.506e-1 1.964e-4 2.866e-06 3.762e-11

Table 8 : Maximal error
h 3 11 19 27

0.1000  0.190801 0.123327 0.123439 0.123373
0.0100  0.113512 0.014406 0.012419 0.012337
0.0010 0.108510 0.007543 0.003063 0.001233
0.0001 0.108924 0.008260 0.003803 0.000782

Example 3.5 Consider the scalar NFDE

%(x(t) — 0.5t — T)) =2(t—2), 1>0, (3.6)

_ t+2a tE[—Q,—l],
x(t) = { 2, te[-1,0]. (3.7)
We assume that 7 € [0.1,2]. The solution correspond-

ingtor=11s

12—t t e [0,1],
e(t)=< -2+t -%  tell,2),
1 is 37, ~ 43
2207+ 5 -2 te2,3]
We generate X; at t; = 0.25¢ (¢ = 0,...,12) using this

function. Consider the approximate IVP

(0 = 05t~ [710) = ([ — [2), (38)
yh(t):{ i;’rz igja]l] (3.9)



and the minimization problem

12
in J = ti, 7)) — Xi)% 3.10
dnin Ja(7) ;(yh( ™) = Xi) (3.10)

Unfortunately, a secant-type numerical minimization
routine fails for (3.10), since Jp(7) is piecewise con-
stant, due to the discretization, [7], of 7in (3.8). But
(3.10) does have a solution, which we found by a golden
section search method. Table 9 contains the results.

Table 9
h 7 Jn(7)
0.1000 1.000000 4.1461e-03
0.0100 1.000000 4.6388e-05
0.0010  1.000000 4.6825e-07
0.0001  1.000000 4.6870e-09

4. Modified Approximation Scheme

In Example 3.5 we have observed that the approx-
imate scheme (2.5)-(2.6) is not appropriate for delay
identification, since it discretizes the delay, and there-
fore makes the objective function to be piecewise con-
stant. We modify (2.5)-(2.6) as follows: Given h > 0,
let z3(2) be a piecewise linear function on the intervals

[kh,(k+ 1)h] (k=0,1,...), defined by
zn((k+ 1)h)

)+ i(qlN kh)zp (kh — 7 (kh))

—%(%+¢MVM%+Uh—#W%+UMD
+ hf(kh, (kh), 2 (kh — [a(kh)]h))
for k=0,1,..., (4.1)
() = oN(t), for —r <t <O0. (4.2)

Note, that the difference between (2.5)-(2.6) and (4.1)-
(4.2) is that in the latter scheme we use an interpolate
value for the solution at kh—r;(kh), instead of using the
value at the corresponding mesh point, kh — [7;(kh)]s.
Also note, that on the initial interval, [—7,0], we do
not interpolate between mesh points. This interpola-
tion slightly slows down the method, but the advantage
is that the solution depends continuously on the delays,
7;, and hopefully it is differentiable with respect to de-
lays, so we can use the secant method for the numerical
optimization.

Example 4.1 Here we redo Example 3.5 using the
modified approximation scheme, (4.1)-(4.2), and our se-
cant optimization method. The numerical results, using
initial guess 7 = 0.5, are presented in Table 10.

Table 10
h 7 Jn(7)
0.1000 1.017260 3.8472e-03
0.0100 1.001874 4.0117e-05
0.0010 1.000189 4.0263e-07
0.0001 1.000019 4.0278e-09

Example 4.2 Consider the scalar NFDE
d
= (x(t) +a(t— T(t))) —x(t—1), >0,
e(t)=t, t<0.

The solution of this IVP corresponding to the delay
function

(t) = —1*+2t+2, tel0,2],
| 0.5+ 3, te[2,3]
18
_%tza [ ’ ]
1 1 1 1
w={ To Ay, i
— gttt — Rt + 3 te[225]

— gttt 2P L 4 32 te[2.5,3].
We used this function to generate the measurements at
t; = 0.025¢ ({ = 0,1,...,120). The numerical solutions
of the corresponding minimization problems, using 3,
5 and 7 dimensional spline functions, discretization pa-
rameter A = 0.001, and initial guess 7(¢) = 1.5, are
printed out in Figure 3. Tables 11 and 12 contain the
cost function and the maximal error of the numerical
solution, respectively, for dimensions 3, 5, 7 and 9.

Table 11 : Ju(%)

h 3 5 7 9
0.1000  5.627e+4+00 2.174e-01  5.052¢-02  1.933e-02
0.0100  5.452e+00 2.501e-01  5.977e-02  2.646e-02
0.0010 5.405e+00 2.494e-01 6.001e-02  2.656e-02
0.0001  5.400e+00 2.493e-01  6.003e-02  2.713e-02

Table 12 : Maximal error
h 3 5 7 9

0.1000  0.311296  0.177627 0.084575 0.107679
0.0100 0.246514 0.141536  0.056191  0.083910
0.0010  0.244553 0.138008 0.053530 0.086728
0.0001 0.244352 0.137672 0.053275 0.066188

5. Singular Neutral Equations

In this section we experiment with identification
methods for singular neutral equations using an Fuler-
type approximation scheme and the general identifica-



tion method of Section 1. We illustrate our approxima-
tion method on two examples (see also [7]).

Example 5.1 Consider the scalar SNFDE

/0(—5)%(t+s)ds = 1, t>0, (5.1)

x(t) = 0, te[-1,0], (52)

where « 1s the parameter to be identified. The exact
solution of IVP (5.1)-(5.2) corresponding to o = —1/2
is

L=t/ 0<t<l,

e(t)y =< 212 1<t<?2,
%t—l/2 (1 + Z arctan (%)1/2) , 2<t<3.

(5.3)

We hope to approximate the solution of IVP (5.1)-(5.2)
by functions yy(t) as N — oo, which are linear on each
interval [k/N,(k+ 1)/N], (k= =-N,—-N +1,...), and
satisfy

0
/ (=s)*yn(t+s)ds = 1, t>0, (5.4)
-1
yn(k/N) = 0, k=—N,...,0. (5.5)
Introduce the notations a(k) = yn(k/N) and
(k+1)/N
Iy k) = / s%ds. (5.6)
k/N

Linearity of yn(?) yields for t € [k/N, (k + 1)/N] that
yv(@) = alk)+ N(a(k + 1) — a(k))(s — k/N). (5.7)
Elementary manipulations and (5.6) and (5.7) imply

/_1(—5)ayN(n/N +s)ds

k=0 “k/N

N-1 (k4+1)/N
= / 5 (a(n — k)

k=0 k/N

+ N(a(n— k) — a(n — k — 1))(s — k/N)) ds
Y (a(n — k) + k(a(n — k)

—a(n—k— 1)))I(a, k)
—+ 3 N(a(n—k)—a(ln —k— 1) (a+1,k)

= an—N)(NI(a+1,N = 1)

~ (N = D)I(a, N — 1))

N-1

D>

k=n—-N+1
— NI(a+1,n—k)
+ Nl{a+1,n—k—-1)

—(n—k—l)[(a,n—k—l))

a(k) ((n — b+ 1) (o, n — k)

+ a(n) (I(a,0) = NI(a +1,0)). (5.8)

Using relation (5.8) and equation (5.4), we can ob-
tain a simple difference equation for a(n), and conclude
that TVP (5.4)-(5.5) has unique solution, which is nu-
merically easy to obtain. We used this approximation
scheme and the general 1dentification method described
in Section 1 to identify & in IVP (5.1)-(5.2). We gen-
erated the measurements X; by the function (5.3) at
t; =0.5¢ (i =0,1,...,6). We found the minimum of
6
In(e) = (yn(ti;a) — X;)%,

i=0

a €[-0.9,3.0]

by the golden search method. Table 13 contains our
numerical findings, which show good convergence to the
true parameter, o = —1/2.

Table 13
N a In(a)
5 -0.594451 0.102035
10 -0.583831 0.053790

20 -0.559629  0.025588
50  -0.524100 0.003814
100 -0.500188  0.000051

Example 5.2 Our next example is the vector SNFDE

a4 (xl(t) +/_0 ealt 4 5) ds) = aa(t), 120, (5.9)

1

4 (/0 (=8)%2a(t + 5) ds) = (1), £20, (5.10)

_ te[-1,0], (5.11)

l‘l(t) = 1,
o) =0,  te[-1,0]. (5.12)

The objective in this example is the identification of
a. The solution of IVP (5.9)-(5.12) corresponding to
a=—1/2is

0<t <1,

L,
v1(t) = { L+ 2@ -13%2  1<t<2,

and

241/2
t) = T '
l‘z() { 2—1—%(151/2—1)—1—%(15—1)2,

m

0<t<l,
l<t<2



The corresponding approximate IVP is

% (yN,l(t) +/_01 yn2(t + 5) ds) =ynoa(t), (5.13)

% (/_1(—5)ayN,2(t + 5) dS) = yn,1(1), (5.14)
yva(k/NY=1, k=—N,...,0, (5.15)
un2(k/N) =0,  k=—N,...0, (5.16)

where we assume that yn 1 (t) and yn 2(t) are piecewise
linear functions on the intervals [k/N, (k+ 1)/N] (k =
—N,—N +1,...). Integrating (5.13) from n/N to (n+
1)/N we get
0
vl D)+ [ (o D/N +9)ds

-1
0

= yN,l(n/N)—l-/lyN,z(n/N—l—s) ds

(n+1)/N
+ / yn2(s) ds.
n/N

Changing variables in these integrals yields

(n+1)/N
wa(n+ /) + v a(s) ds
(n—N+1)/N

(n+1)/N
yn2(s) ds.

=yn,1(n/N) —I-/
(n=N)/N

Therefore, using the notations a1 (k) = yn,1(k/N) and

as(k) = yn2(k/N), we have the simple recursive for-

mula for a;(n + 1):

ar(n+1) = ai(n)+ (az(n—N—l—l)—l—az(n—N))/(QN).
Integrating (5.14) from n/N to (n + 1)/N gives

/_ (—)%yn2((n+ 1)/N + s)ds

1
(n+1)/N
yn1(s)ds.

0
= / (—s)%yn2(n/N + s) ds—i—/
-1 n/N
From this equation, applying relation (5.8) and the fact
that we have already obtained a1(n + 1), we can find
a recursive formula for as(n + 1), which we omit here.
This shows that TVP (5.13)-(5.16) has a unique solution,
and numerical testing proves that it approximates the

solution of IVP (5.9)-(5.13).

We generated measurements X; = (Xiyl,Xiyz)T at
t; = 0.2¢ (¢ = 0,...,10), using the solution of IVP
(5.9)-(5.13) corresponding o« = —1/2. The approximate
minimum of

10
In(a) = Z((@/N@(hﬁ a)—Xi 1) (w2 (t; a)_Xi,Z)Z)

i=0

for o € [—0.9, 3] is presented in Table 14. The numerical
result is surprisingly good, even for very small N values.

Table 14
N a In(a)
5 -0.501357 1.3592e-03
10 -0.499989 2.6756e-05
20 -0.500019 1.0103e-07

50  -0.500004 8.5005e-09
100 -0.500001  5.3938e-10
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