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1. INTRODUCTION

Preservation of stability under perturbation, uncertain equations, robust stability
has been studied by many authors for several classes of functional differential equa-
tions (see, e.g., [1],[3]-]6], [10],[11], [15]-[18] and [21]). Many of these papers deal with
perturbation of the delays in retarded differential equations, however, to the best of
our knowledge, there is no similar investigation done in this direction for neutral
functional differential equations (NFDEs).

In this paper we study preservation of stability under delay perturbations of the
vector NFDE

%(m(t) — Cx(t—7— a(t))) = > Al =i = (1), (1.1)

We prove (see Theorem 4 below) that if the trivial solution of the “unperturbed”
equation

(50 = 0xte =) = Al - ) (1:2)

is asymptotically stable, then the same remains true for the trivial solution of (1.1),
assuming that the delay perturbations are “small”. This theorem extends our results
of [10] and [11] where similar questions were studied for delay differential equations.
As a special case of Theorem 4 we get that if lim; . o(t) = 0 and lim;_, 1;(t) = 0 for
i =0,...,m, then the asymptotic stability of the trivial solution of (1.2) implies that
of Equation (1.1). This generalizes a result of Ladas et al. [14] from delay differential
equations to NFDEs.



In the scalar case two standard conditions are given in the literature for the
asymptotic stability of (1.2). Either

Cl+) A <1, > A >0, (1.3)
=0 =0
or, for m = 0,
3
202-0)+Am <5, Ce0.1/2), A>0 (1.4)

implies the asymptotic stability of the trivial solution of (1.2) (see, e.g., [7] and [19],
respectively, and see [2] and [20] for the generalization of these results for different
classes of NFDEs). In both cases the asymptotic stability is independent of the delay
7 of the neutral term of (1.2). But there are equations (see, e..g, Example 3.1 below)
where the stability of (1.2) depends on 7, as well. In this paper we investigate this
more general case where we perturb the delay 7, as well. This introduces considerable
technical difficulties to the problem.

Section 2 contains our perturbation theorems, and in Section 3 examples and
applications are given. In particular, as an application of Theorem 4 we obtain
stability theorems for NFDEs with time-dependent delays.

2. MAIN RESULTS

Consider the vector neutral differential equation

d

= (x(t) — Ca(t—1— a(t))) =Y Aa(t—ri—n(), 20 (21)

with initial condition

z(t) = ¢(1), —r <t<0, (2.2)
where z(-) € R?, and C, A; € R?*7. Let |- | denote a fixed vector norm on R?. The
corresponding induced matrix norm will be denoted by | - |, as well. Assume

(H1) |C] < L
(H2) 0< 7, 0<rg<mr <...<rp, max(r,ry,) <r;

(H3) o: [0,00) — R and 7;: [0,00) — R are continuous, and 0 < 7+ o(t) < r,
0<ri+n(t)<r fort>0 (i=0,...,m);

(H4) ¢: [-r,0] — R? is continuous.
We consider the corresponding unperturbed system with constant delays, i.e.,

L (o)~ Oyl =) = 3 dagts — ), 23

and we assume that



(H5) the trivial solution of (2.3) is asymptotically stable.

We can rewrite (2.1) in the form

d m

= (:c(t) ~Cx(t—1) — g(t)) =3 Awlt—r) + (1), (2.4)

where .
£ =3 Aol = e m(e) — at = ) (2.5)

and :
g(t) = C(:c(t—T—a(t)) —x(t—7)>. (2.6)

In this setting (2.4) can be considered as the homogeneous equation corresponding
to (2.3). Let T > 0, = be a solution of initial value problem (IVP) (2.1)-(2.2), and yr
be the solution of the homogeneous equation

d

T (yT(t) — Cyr(t - T)) = ZAin(t — 1), t>T, (2.7)

corresponding to the initial condition
yr(t) = z(t), for —r<t<T. (2.8)

Assumption (H5) implies that limy o yr(t) = 0 for any T > 0, since (2.7) is an
autonomous equation. The variation-of-constants formula (see, e.g., [12]) gives the
following expression for the solution of IVP (2.1)-(2.2):

t t

q(s) dsV(t—s)—l—/ V(t—s)f(s)ds, t>T,
T
(2.9)
where V(-) € R7%? is the fundamental solution of (2.7), i.e., the solution of the
following IVP

o) = yr(t) +9(0)V{t-T)g(T) - [

T

m

%(V(t) —OV(t-1)) =S AV(E-r),  t>0, (2.10)
and ; B
V(t) = { 0 i;g (2.11)

Here I and 0 denote the identity and the zero matrix, respectively. It is known (see,
e.g., [12]) that V is absolutely continuous on the intervals (k7, (k+1)7), £ =0,1,.. .,
the right- and left-sided limit of V" exist at each points k7, and V(k7+) — V(k7—) =
C*. Therefore (2.9) can be rewritten as

<] t
z(t) = yr(t)=V(Et-T)g9(T)+ Z Crg(t — k7) + /T V(t—s)g(s)ds
+ /t V(t—s)f(s)ds, t>T. (2.12)



It is known (see, e.g., [12]) that if (H5) holds then V' tends to zero exponentially,
therefore fooo |V (s)| ds < oco. But then, by the next proposition, fooo |V (s)| ds is finite,
as well.

Proposition 1 The fundamental solution of (2.3) satisfies

/000 [V(s)lds < 72177:“”(}4 /OOO [V(s)lds.

Proof The statement follows from the inequality
V)| <[CIVE=T)+ D [AllV(E=r),  ae t>0
i=0

by integrating it from 0 to ¢, changing variables, and using that V (¢) = 0 and V() = 0
for t < 0. O

For simplicity of the presentation we extend o(t) to (—o0,0) by o(t) = o(0).
Introduce the following sequence of functions

a(t)=t, ai(t)=t—717—0(t), aji(t)=ai(a;(t)) for j=1,2,.... (2.13)
It is easy to see that

j—1

aj(t) =t—jr = ola(t), j=1.2,.... (2.14)

Assumption (H3) yields that 0 < 7+ o(t) < r for all ¢, therefore
t—jr <a;(t) <t for t>0 and j5=0,1,....

In particular, if ¢ > T, and

n=n(t) = [t;T], (2.15)

where [-] is the greatest integer part function, then for all s > ¢
T < aj(s) < s, j=0,1,...,n, and T —1r < ag(s) <s. (2.16)

Assumption (H3) implies that —7 < o(t) < r — 7, hence |o(t)| < max(r — 7,7) for
t > 0. Suppose
lo(t)] < b, for t>T (2.17)

for some nonnegative constants 7' and b. Let T < t; < ty, n = n(t;) be defined by
(2.15). Then it follows from (2.14) and (2.17) that

|aj(t2)—ozj(t1)| S |t2—t1‘+]26, j:(],l,...,n. (218)

The proof of our main result will be based on the following proposition.



Proposition 2 Assume (H1)-(H4) and suppose (2.17) holds for some T > 0 and
0 <b<r. Letx bethe solution of IVP (2.1)-(2.2), and T < t; < ty, to—1t; < r.
Then there exists a monotone decreasing function h : [0,00) — [0,00) satisfying
lim, o0 h(u) = 0, such that

|z (t2) — x(t1)]

y

+h(ty = T) - max_ |z(u)l. (2.19)

T—r<u<T

Proof Let n = n(t;) be defined by (2.15). Integrating (2.1) from #; to 5, and
applying the resulting relation n times, we get

(tz) — x(t1) N
= C(:c(al(tQ)) — x(ay(ty) ) +ZAZ/ x(s—r; —ni(s)) ds

1 & 210 &
+1_|C;|Ait2_tl+ BTSIE Z|A1)T@f£2|x( )|

2

= ont! (:r(an+1(t2)) — z(p11(th) ) ZC’] ZA / x(s —r; —ni(s)) ds.
Therefore relations (2.16) and 7'+ r < aj(s) forty <sand j=0,1,...,n— 1 imply
|z (t2) — x(t1)]

n—1 m
< 200 max[a(uw)|+ Y ICP Y Al(te) — oy(th)| max |z (u)

T—r<u<ts T<u<ts

OIS Al lan(t) = an(t)], max_[o(u)| + max (u)]).

- T—r<u<T T<u<ts
1=

Then (2.17), (2.18), 72, |Cl = =7 and 32, j|C = 1% vield

|2 (t2) = x(t,)]

< 0P max |+Z|0\Z|Aut2 il + j26) mas Jo(u)
+ 10 LAl = 6+ n2),, max Ja(w)

< n+1 n . -

< (20| +IOP 3 |4l t1|+n2b>) L max_fo(u)

1 & 21C1h &
n+1 - ) o
+<20| +1_C|;|Azt2 Wl e Z\A |> Joax [a(u)]

Hence the statement of the proposition follows from the inequality #—1 <n< #
using the function

h(u) = Z |A;|(d + 2u), (2.20)




where d > r is selected such that h be monotone decreasing. O

Proposition 3 The solution, x, of (2.1)-(2.2) satisfies

1 |C‘ Z':U|Ai‘
€T < X L] >
(t)—1—0|||’”el<1—0|t  £20

where ||p|| = max{|p(t)|: t € [-r,0]}.

Proof Integrating (2.1) from 0 to ¢ and applying simple estimates we get

jz(t)| < |Cllz(t =7 =0 ()| +|¢(0)[+]Cllp(=T—a( |+Z|A/ @(s—ri—mi(s)| ds.

Therefore
m t
()] < |Clw(t) + 1+ [CDlel + Ai|/0 w(s) ds
i=0
where w(t) = max{|z(u)|: —r < u < t}. The right-hand-side is monotone in ¢,

therefore it implies

w(t) < [Clw(t) + (1 + |C)||<pII+Z|Ai/0 w(s) ds

and hence
+|C]

w(t) < PHE o+ Z2 2l gy

The statement of the proposition follows from Gronwall’s inequality. O

Theorem 4 Assume (H1)-(H5), and suppose the delay perturbations satisfy

K Jim o]+ / 5| ds ( 4 i m(U)) <1, (221)
where
(1+[0)Cla (1 +]C)ICla [ 2Ca? [
K= + Vi(s)lds + ——— Vi(s)|ds,
a—ep Toa=iey J, Vet aTer [ Ve

a=>"01A4, and V is the fundamental solution of (2.3). Then the trivial solution
of (2.1) is asymptotically stable.

Proof It follows from the assumptions that there exists § > 0 such that

K(Fmo()| +8) + 1= / )| ds (Z 44T (o) +6>) <1, (222)



and lim |o(u)|+6 < r. The last relation follows from the inequality |o(#)| < max(r —
U—0C
7,7) < r for t > 0. To this 6 we can choose T' > 0 such that

lo(t)] < Tim |o(u)|+6, |n:(t)| < lim |n;(u)| + 9, for t>T, i=0,...,m.
U— 00 U— 00
B (2.23)
Proposition 2 with b = lim |o(u)|+ 0 < r, ts = max(t — 7 — o(t),t — 7) and t; =
uU— 00
min(t — 7 — o(t),t — 7) implies for ¢ > T that

lgt)] < |Clla(t —T —o(t)) —x(t —1)|
< |Clh(t = T) - max _u(u)
hoTy wa lim |o(u max |r
+<20 + g oo ol e )+5)> Aax o(u)].

For simplicity, we extend the function h to ¢ < 0 by h(¢t) = h(0). Then the mono-
tonicity of A and the inequalities t — r < t; <ty <t imply

9O < (=T =) max la(u)

+ <2|CtrT +%a(u@a(u)|+5)> Jnax lz(u)]  (2.24)

for t > T. Similarly,

t=T—r

f@ < ah(t =T —r) max [|o(u)+2a|C[™ max [a(u)]
.- mZ\Ai T ()| +9) guas, L)
+ %(hma( )| +9) jgggi{tu( u)l, t>T. (2.25)

Next we show that the trivial solution of (2.1) is stable. For this it is enough to
show that the solution x of (2.1)-(2.2) corresponding to an initial function satisfying
]l <1 is bounded on [0, 00) by a constant independent of .

Let ¢ > T be fixed and let p = p(t) = [==L]. Tt follows from (2.12) that

z(B)] < Jyr@®)] + V(E=T)[g(T |+Z C1*lg(t — k)|
t .
[0 s)lato) s+ / V(e s)lfs)lds. (220
T T
We estimate the last three terms of (2.26) separately. An application of (2.24) yields

p
> [CFlg(t = k)l
k=0

p p
< SO Rt~k =T =) - max_|ae(uw)]+23 " [C]TF*F max |z(u)

T—r<u<T T<u<t




(1+1epic]

A P k
+ TEelE (hm\ u)| +6) Z\C| nggxm z(u)l
p CI*'h(t —kr =T —r)- 2 el
< 3 T ) max lau)] + T'( u)
1+ loDC
L d+1epie] a( T [o(u)| + 6) mas |r(u). (2.27)

(1-1Cl)3 T<u<t

To estimate the first term of (2.27) we use the definition of h given by (2.20). We
have

p
Y ICIH Rt —kr =T — 1)

- QZ\CV TR L a(d+ 2t — 2r — 2T) Z\CV R

k=0 k=0

p
—2ar Y K|C|TE
k=0

2 =1 a(d+2t—2r t=T—r 2ar|C|'+ =T
Sp——CT L oyt - 2O o
1—|C|' —[C] (1=1C"7)
Define the function h: [0, 00) — [0, 00) by
~ 2 u a(ci-i— 2u —2r), |, u=r 2ar|C|'~F uer
h(u) = ——=—=|Cl" + —Cl"" — ———==5ICI"",
1—|Cf'~ 1—|C|'=~ (1—1Cf'=r)?

where d > d is selected so that » be monotone decreasing. Then lim, iL(u) =0,
and (2.27) yields

Y 1CFlg(t = k)| < ’Nl(t—T)-T_r@chTx(u)|+2%T<u<t|x( )l
A+ ODIC] I
1—[C)? a( lim |o(u u)l +6) max |z(u)l.  (2.28)

Let T < S, where S will be specified later. It follows from Proposition 3 that there
exist constants Xg > 0 and Gs > 0 such that and |z(s)] < Xg||l¢|| < Xs and
g(s) < Gsllepl| < Gs for s < S. Then (2.24) implies for t > S

/T V(¢ — 5)/|g(s)] ds

= / |Vt—ng |ds+/|Vt—sg s)|ds

< GS/ V(s)|ds + |C|Xsh(S — T—r/|Vt—s)ds
t—S

- 1+ |C))|C
(a4 GO

TETEE (1m|0( )+6>max|x /Vt—s|ds

(2.29)



Similarly, there exists Fs > 0 such that |f(s)| < Fsl||¢|| < Fs for s < S. Then (2.25)
implies for t > S

/ V(= 5)||f(s)] ds

< Fs/ V(s)|ds + aXsh(S — T—r/|Vt—s)ds
t—S

S—T-—r a _
+ (2a|0 Tt Z|Ai\(l}ggolm(w|+5)
1=0

2010 e s ot [ VG o) ds
+ (1—‘C|)2(’u1~)00| ( )+5)> ‘ )|/5 ‘V(t )‘d (2_30)

T<u<t
Combining inequalities (2.26), (2.28), (2.29) and (2.30), we get for T'< S <t
a(t)
=T t=T
< Qrlo) + V=TT +Gs [ Wlds+Fs [ Vi)lds

t—S t—S

<h(S T) 4+ (s~ T 1) |c/ |ds+a/ooo|V(s)|ds>>X5
+<2%+2|0 /UOOV(S)ds+2a|CSTTT/OOO| (s )|ds) -

(o] +0) (S G2 + LT [T

2|Ca? >
n m/ V(s)]ds) uas. [x(u)

+ s ‘C|Z|A\ T ()| + 0) g, (o |/ 5)| ds. (2.31)

Let M; denote the left-hand-side of inequality (2.22), and define the functions

t—T

ot) = ) + [V =T)lo(T) +Gs | [V(s)lds+Fs [ V(s)las.

-S

™
£
Il

hu—T)+ |Clh(u—T —r) /000 V(s)|ds + ah(u — T —r) /000 |V (s)]| ds,

TT_T/ |V (s)|ds.
0

Since lim,_, y(u) = 0, there exists S > T such that v(S) < (1 — Ms)/2. With this
S and the notations introduced above, (2.31) simplifies to

|C‘u T /OO .
u) = 27T + 2|05 V

14 M
> 5. .
5 Trgggt\x( u)l, t>S8 (2.32)

z(t) < at)+ p(S)Xs +




The assumptions imply that there exists a constant «g > 0 such that a(t) < aq for
all t > 0, therefore (2.32) yields that

1+ M5
<
Orggéct\x(uﬂ < Xg+ g+ B(S)Xs + 5 Juax,

ie.,
2(Xs + ag + 5(S)Xs)
<
max [v(u)] < = ’

This proves that the solution corresponding to any initial function ||¢|| < 1 is
bounded, i.e., the trivial solution of (2.1) is stable. In particular, we get that the
constants Fg, Gg and Xg we used above can be selected independently of S.

Finally, we show that lim; .., 2:(¢) = 0 for any ¢. We may assume that, in addition
to (2.23), T satisfies

t>0.

lz(t)| < Tim |z(u)|+06, t>T. (2.33)
uU— 00
Then using that lim;_,, a(t) = 0, (2.32) implies

1+ Ms —
T2 (T [ ()| + ),

T [o(u)| < B(S)Xs +

therefore 25(5) X Y
e + J

0< 1 < 516 :

< lim [z (u)] < Ay

This implies lim |z(u)| = 0, since the right-hand-side can be arbitrary small, since §
uU— 00

and S can be chosen arbitrary small and arbitrary large, respectively. O

In the special case when the delay perturbations tend to 0, the theorem has the
following corollary, which extends a result of Ladas et at. [14] for neutral equations.

Corollary 5 Assume (H1)-(H5), and

lim o(t) =0, and tlirn ni(t)=0 fori=0,...,m.
—00

t—00

Then the trivial solution of (2.1) is asymptotically stable.

Theorem 4 and Proposition 1 imply:

Corollary 6 Assume (H1)-(H5), and the delay perturbations satisfy

AL+ICD[Cla . B—|C)ICla® [* _
( (1—|C|)3 - (1—|C])3 /0 V(s)] dS)l}Lrglo\a(uﬂ

a > - T
[ weas (ol ) <1,
1—1C1 ueo

1=0

+

where a = Y |Ail, and V' is the fundamental solution of (2.3). Then the trivial
solution of (2.1) is asymptotically stable.



Proposition 7 If the trivial solution of (2.3) is asymptotically stable, then the fun-
damental solution of (2.3) satisfies

(iAl) /UOO V(s)ds=—1 and (I-20C) /Uoov(s) ds — —J.

Proof By integrating (2.10) from 0 to ¢ > 0 we get

V(t)—CV(t—T1)—V(0)+CV (- ZA/ (s —r;) ds.

A change of variables in the integrals and the assumed initial conditions V' (0) = I
and V(t) = 0 for t < 0 yield

—Ti

V(t)—CV(t—r) I—ZA/ V(s)ds,

which implies the first statement by taking the limit ¢ — oo. The second relation
follows from the identity

/OTV(S)ds:C/OTV(S—T)ds+§Ai/OTV(3_ri)ds.

O

For a special class of scalar equations the previous result gives an explicit condition
for stability. Consider the scalar neutral equation

%(:ﬁ(t) —ea(t—7— a(t))) ==Y awlt—ri-m(t), 120 (2.34)

and the corresponding unperturbed equation

%(y(t)—cyt—7'> Zax t > 0. (2.35)

Note that we used negative sign of the coefficients on the right-hand-side of the
equations. If the fundamental solution of (2.35) is nonnegative, then Proposition 7
gives explicite value of the integral of the absolute value of the fundamental solution
we used in our conditions before. The following result from [8] gives a condition
guaranteeing the positiveness of the fundamental solution.

Proposition 8 (see Lemma 2.1 of [8]) If0<c<1,a; >0 (i=0,...,m), and the

characteristic equation
m

ML —ce™) = — Zaie_)‘” (2.36)
i=0
of (1.2) has a real solution, then the fundamental solution v(t) of (2.35) satisfies
v(t) >0 fort >0, limy,v(t) =0, and o(t) <0 for a.e. t > 0.



In the next proposition a simple explicit condition is given guaranteeing the exis-
tence of a real root of (2.36).

Proposition 9 Assume 0 <c<1,a; >0 (i=0,...,m), and
- . 1
ced 1+d;ai < = where d = max{rq,..., m}. (2.37)
1=

Then the fundamental solution v(t) of (2.35) satisfies v(t) > 0 fort > 0, limy_,» v(t) =
0, and v(t) <0 for a.e. t > 0.

Proof Let p(\) = M(1—ce™7)+>" a;e™", then p(0) > 0. For d = max{rg,...,7m}
we have
D (—1> < 1 (1 — ceﬁ) + <i a~> e.
d) — d — '

Hence, if (2.37) holds, then the characteristic equation (2.36) has a root in the interval
[—1/d,0). Therefore Proposition 8 implies the statement. O

Theorem 4, Propositions 7 and 9 imply immediately the next result.

Corollary 10 Assume

(i) 0<ec<l1l,a;>0(i=0,...,m),

T . 1
(ii) ced 1+d;ai < o where d = max{ro,...,"m},
3 .
i—0 T 1 =
(ii1) ﬁ JLIEO\J(UH + 1% ;ail}g&m(u) <1

Then the trivial solution of (2.34) is asymptotically stable.

3. APPLICATIONS

In the case when [ |v(t)|ds and [;°[0(¢)| ds can not be computed analytically
the condition of Theorem 4 can be checked numerically, since it is easy to obtain good
numerical approximations of these integrals. The next example illustrates this case.

Example 3.1 Consider the NFDE

%(m(t) ~0sa(t—24—0(1)) = st~ 1-n(H). 120,  (31)



and its “unperturbed” equation

d

y (y(t) —0.5y(t — 2.4)) ——y(t—1), t>0. (3.2)

We computed the numerical approximation of the fundamental solution v of (3.2)
using the following numerical scheme introduced in [9] and [13]:

z2(n+1) = z(n)—0.52z(n+1-1[2.4/h]) + 0.5z(n — [2.4/h])
— 0.5hz(n — [1/h]), n >0

2(0) = 1,
z(n) = 0, n <0,
where h is the stepsize of the numerical approximation, [-] is the greatest integer

function, and z(n) is the numerical approximation of the value of the fundamental
solution at the mesh point nh. Figure 1 contains the corresponding result for h = 0.01.
We can observe from this graph that the trivial solution of (3.2) is asymptotically
stable. Note that numerical studies show that the asymptotic stability of (3.2) is lost
if we increase the delay 2.4 of the neutral term to 3.3 or decrease it to 1. Therefore in
this example the stability of the trivial solution of the equation depends on the delay
of the neutral term.

We define a sequence w(n) by the same definition as z(n), except that w(0) = 0.
Then this sequence approximates the left-sided limit of the value of the fundamen-
tal solution at mesh points. Using this two sequences and the trapesoidal-rule, we

approximated
N

[ olds = 5 300 + i + 1)

i=0
where N is sufficiently large. We got [ |v(t)| ds ~ 3.0306077. Define the sequences
Z'(n) and w'(n) by

Z'(n) = —052'(n—[2.4/h]) — 2(n —[1/R]), n >0,
Z'(n) = 0, n <0

and
w'(n) = —0.5w'(n—[24/h]) —w(n—[1/h]), n >0,
w'(n) = 0, n <0,

respectively. Then 2'(n) and w'(n) approximate the right- and the left-sided deriva-
tives of v at the mesh point nh. Then, similarly to the approximation of fooc lv(t)] ds,
we can get, using the sequences 2'(n) and w'(n), that [ |6(t)| ds ~ 3.9210814. Then
Theorem 4 yields that if the delay perturbations ¢ and n satisfy

29.885675 - lim |o(t)| + 6.0612154 - lim |n(t)| < 1,
t—o0 t—o0

then the trivial solution of (3.1) is asymptotically stable. Figure 2 contains the numer-
ical approximation of (3.1) corresponding to the initial function of the fundamental
solution and to delay perturbations o(t) = 0.1sin(5¢) and 7(t) = 0.4 + 3/(t + 1).
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As an application of the results of the previous section we present stability theo-
rems for the scalar NFDE

d m
= (:r:(t) ~ea(t — a(t))) = =S aa(t - n(t),  t>0, (3.3)
=0
Where0<a(t)<rand0<nz() r(i=20,...,m) fort > 0. Suppose 0 < ¢ < 1,

Sitpa; >0, let 1 <a<ibe arbltrary, and deﬁne

(1—ac)lna

T=
Doty i
Then \ = ﬁ < 0 is a root of the equation
m
ML —ce™) = — Z a;,
i=0

therefore, by Proposition 8, the trivial solution of the neutral equation

%(y(t) —ey(t-7)) = (Z ai) y(t) (3.4)

is asymptotically stable, and its fundamental solution, v, is positive and @(¢) < 0 for
t > 0. Then if we consider (3.3) as the delay perturbed equation of (3.4), we get the
following result.

Proposition 2 Assume

(i) 0<c<1l, ¥ia;>0,1<a<i,

(Z ) T o

(it)

(1—ac)lna 1 & —
R S t1 ZGZJLTOUZ(U) <1
i=0 " i=0



Then the trivial solution of (3.3) is asymptotically stable.

Finally we compare the stability of (3.3) to that of the equation

%(x(t) —cx(t — 7')) = — (Z az’) z(t — d), t>0. (3.5)

1=0

Corollary 10 implies immediately:

Corollary 3 Assume

(i) 0<c<l,a;>0(i=0,...,m),

. “ 1
.. -1 d Z< L
(i) ced " + ;a <=

m

€3 .
fiii) —=L T |o(u) = 7| + —— 3 a T () — ] < 1
101 (1 — 0)3 uggo o(u T Ty - azuLIgO ni\u .

Then the trivial solution of (3.3) is asymptotically stable.

Example 3.4 Consider the NFDE

d
dt
For 7 = 0.05 and d = 0.25 condition (ii) of Corollary 3 is satisfied. Therefore condition
(iii) of the same corollary yields that if |[r — 0.25| < 1 then (3.6) is asymptotically

stable. This holds, e.g., for r = 1, as well, but the asymptotic stability of (3.6) in this
case does not follow from conditions (1.3) or (1.4).

(x(t) —0.53(t — 0.05)) — 05a(t—7), t>0. (3.6)
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