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1 Introduction

In this paper we summarize our earlier work concerning preserving stability un-
der delay perturbation (see [1], [8]-[10]), and present some new stability theorems
for certain classes of linear differential and difference equations. We will show that
our results extend many known so-called 3/2-type or 7/2-type stability theorems
(see, e.g., [14]-[16], [20]-[22]). Our conditions are formulated with the help of the
function

6r) = [ Jutt ol dr,
0
where u(t; 7) is the fundamental solution of the linear delay differential equation
z(t) = —x(t — 1), t>0.

We also present some new exponential estimates for u(t; 7) and for ®(7).

2 Fundamental solution of a linear delay differential equation

Let 7 > 0, and u be the solution of the initial value problem (IVP)

a(t) = —u(t—r71), t>0, (2.1)
1, t =0,
u(t) = { 0. F<0 (2.2)
i.e., u is the fundamental solution of the scalar delay differential equation
z(t) = —x(t — 1), t>0. (2.3)

If we want emphasize that the fundamental solution corresponds to delay 7, we use
the notation wu(t; 7).
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Let A = ag + i be the root of the characteristic equation
A= —e N (2.4)

of (2.3) with maximal real part. It is known (see, e.g., [11]) that g < 0 if and only
if 7 €[0,7/2), and for any £ > 0 there exists M, > 0 such that |u(t)| < M.e(@0+e)*t
for ¢ > 0. The following result gives the value of M. explicitly, and provides an
exponential estimate of |u(t)| with exponent agt, as well.

Theorem 2.1 Let 7 € [0,7/2), u(t) = u(t;7) be the fundamental solution of
(2.3), ag + i be the root of (2.4) with mazimal real part, and ¢ > 0 be such that
ag + € < 0. Then the fundamental solution satisfies for t > 0
0

1
lu(t)] < T eloote)t where 7. = e*ao"/ e ) cos Bosds,  (2.5)
— Ve r
and
2t 77’/2
lu(t)] < a +7)- et where 7y = e*%"/ cos fBps ds. (2.6)
- )T —T

Proof Let 7 € [0,7/2) be fixed, and let ag + iy be the root of (2.4) with
maximal real part. It is known (see, e.g., [5] or Theorem 2.3 below) that 3, €
[0,7/(27)), therefore

cos s > 0, s € [-T,0]. (2.7)
It follows from (2.4) that Sy = e~%°7 sin By 7, therefore

0
e_a‘”/ cos fosds = 1. (2.8)
This implies that 0 < 7. < 1 and 0 < v < 1, where 7. and ~ are defined by (2.5)
and (2.6), respectively.

The function y(t) = e*°* cos Byt is a solution of (2.1), and so the variation-of-
constants formula (see, e.g., [11]) yields

apt

0
y(t) = u(t)y(0) — / u(t — s — 7)e®°® cos Bys ds.
Using (2.7) we get

0
u(t)] < et + / |u(t — s — 7)]e*°? cos By s ds, t>0. (2.9)
Multiplying this inequality by e~(®0+¢)t and using that u(t) = 0 for t < 0, we get
that the function w, (t) = e~ (*0+=)|y(t)| satisfies
0
we(t) <1+e 07 / w.(t—s—1)e ) cos fosds < 147, Jnax we(s), t>0,
which proves (2.5).
Similarly, define w(t) = e~ ®°*|u(t)|. Then (2.9) yields for ¢ > 0

—7/2
w(t) < 1+e_°‘°T/ w(t —s —7) cos fosds

e~ aor / w(t —s —T)cos s ds. (2.10)
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Let M, be defined by M,, = sup{w(s): n7/2<s<(n+1)7/2},n=0,1,.... We
show by induction that

n+1
1—7’
We have for t € [n7/2,(n + 1)7/2]

M, <

n=0,1,.... (2.11)

(n—l)% St—s—rg(n—}—l)%, for se€[-7,—7/2], (2.12)
and
(n—Q)%St—s—Tgn%, for se[-7/2,0]. (2.13)
Therefore, using that u(t) = 0 for ¢t < 0, (2.10) yields

w(t) S 1 +7M07 te [07T/2]a

and so My < 1/(1 — ). Suppose (2.11) is known for integers from 0 to n — 1.
The definitions of v and M,, relations (2.8), (2.10), (2.12) and (2.13), and the
inductional hypothesis imply

w(t) < 1+ymax{M,,M,_1}+ (1 —v)max{M,_1, M,_»}
< l1+~vymax{M,,M,_1}+n t€nr/2,(n+1)7/2].

If M,, < M, 1, then

n <n+1
I—y " 1-9’

and so M, < (n+1)/(1—7). If My, > M, _1, then

wt) <n+1+7

te Inr/2,(n+1)7/2]

w(t) <n+14yM,, t€nr/2,(n+1)7/2],

and hence M,, < n+ 1+ yM,, i.e., M, < (n+ 1)/(1 —~). Therefore we proved
(2.11) for all n > 0, but this yields (2.6), using the inequality [2t/7] < 2t/T, where
[-] is the greatest integer function. O

It follows from the above results that the trivial solution of (2.3) is asymptoti-
cally stable, if and only if fooo |u(t; T)| ds < oo. We introduce the function

B(r) = /Ooo u(ts 7)) dt. (2.14)

Then ®(1) = oo for 7 > w/2. It is known (see, e.g., [5]) that u(t;7) > 0 for
t > 0, if and only if 7 < 1/e. For 7 < 1/e it follows easily from (2.1) that
o(1) = fooou(t;r) dt = 1. For 1/e < 7 < m/2 numerical estimate of ® yields
Figure 1. Here we used a numerical approximation method introduced in [6] to
obtain approximate values of u, and the simple trapezoidal method to estimate ®.

As we will see in the next section, we can formulate stability theorems with
the help of the function ®, but in applying those results it is important to know an
upper estimate of ®(7). Theorem 2.1 has the following corollary in this direction.
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Figure 1 The graph of ®(7)

Corollary 2.2 Using the notations of Theorem 2.1, we have

O(7) < =)@ T2 T €[0,7/2), (2.15)
and
(1) < ﬁ (% - ai0> . rel0n/2). (2.16)

Note that both estimates are worse than that given in [5].

Theorem 2.3 (Theorem 2.1, [5]) For 7 € [0,7/2) the characteristic equa-
tion (2.4) has a root Ao = ag + if, such that ag < 0, By € [0,7/(27)), g is the
greatest real part of the roots of (2.4), and

2 2
a(r) < 0T

2
Qp

(2.17)

Inequality (2.17) is exact for 7 € [0,1/e], since then By = 0. For a given
T € (1/e,m/2) we can use Theorem 2.1 to estimate ®(7) in the following way. Let
u,, denote the restriction of u to the interval [n7, (n + 1)7]. By integrating (2.1), it

is easy to see that

ug(t) = 1, t €10,7],

t

un(t) = up—1(nt)— / Un—1(s — 7)ds, t€nr,(n+1)1], n>1,
nrt

and therefore u, is an nth order polynomial, which can easily be generated, e.g.,

using a computer algebra system like Maple V. Since u, is a polynomial, Maple

V can symbolically integrate féfH)T |un(s)|ds. Therefore if we write ®(1) =

fOMT lu(t)|dt + [y |u(t)|dt, then we can compute the exact value of the first inte-
gral, and, using Theorem 2.1, we have an upper estimate

En(r) = ﬁ /Moi(Qt + 7)et dt



Stability in delay perturbed differential and difference equations 5

of the second one. Denoting the first integral by I/ (7), we have ®(7) < I (1) +
En (7). Unfortunately, as numerical experiments show, this computation of wu,, is
not stable, i.e., for large n the computed formula for u,, contains significant round-
off errors. In Table 1 the numerical result of our computer experiment can be seen
where we selected M by a certain algorithm so that M be reasonably small, and
computed Ips(7) over [0, M 7] (by computing the integral exactly over subintervals
where the function u, has constant sign by the symbolic integration of Maple V,
and adding up those values). Note that 7 = 0.2 and 0.3 is computed only to test
the method.

Table 1
T 0203 1] 04| 05 ] 06 0.7 0.8
M 22 13 7 8 9 11 15
I (1) 0.997{0.998 (1.001|1.083(1.260| 1.511 | 1.846

Ep (1) 0.156 {0.044|0.019|0.040|0.084| 0.112 | 0.082
In (1) + Epm(7)|1.153(1.042] 1.02 |1.123|1.344| 1.623 | 1.928

T 09 | 10|11 |12 | 13 14 1.5
17 20 26 26 26 25 24
Ing(7) 2.289(2.895|3.803|5.390|8.027|18.795| 18.907

En (1) 0.1910.402[0.591 4.254(29.77| 2435 | 3275
T0(7) + By (7) | 2.48 [3.207(4.394|9.644]37.80] 262.3 | 3294

Open problem This numerical estimate of ® certainly requires a lot of com-
putations. Tt is still an interesting open problem to give a (computable) formula
for an upper estimate of ®(7) better than (2.17). Find estimates for f0°° lu(t; T)]| dt,
where u is the fundamental solution of the multiple delay equation

z(t) = — Z a;z(t — 7).

The next theorem shows that ® is a continuous function.

Theorem 2.4 The function ® is continuous on [0,7/2).

Proof Fix 15 € [0,7/2), and let 7 # 79. The characteristic root with greatest
real part of (2.3) corresponding to 7o and 7 is denoted by ap + 89 and « + i3,
respectively. It is easy to see that a = ag and § — [y as 7 — 7o (see also [6]). Tt
is known (see, e.g., [11]) that u(t; 7) = u(t;70) as 7 — 79 for every fixed ¢ > 0. Let
€ > 0 be such that ap +2¢ < 0, and let 7 be such that the corresponding « satisfies
a < ag+e. Let 74,0 and v4,,. be the constants defined by (2.5) corresponding to
€ > 0 and to 7, and 79, ag, respectively. Then Theorem 2.1 yields that

1
e(oz+5)t
1 —7ae L= Yag .
Since Ya,e = Yag,e 88 T — Tp, there exists M > 0 such that |u(t;7) — u(t; 70)] <
Me(®0+29)t for ¢ > 0. Then Lebesgue’s Dominated Convergence Theorem yields

u(t; ) —u(t; )| < e(a”g)t, t>0.
u(t;T) — u(t; 7o)

\@(T)—<1>(TO)|3/ w(tir) — ultimo)| dt — 0, as T — 7.
0
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O

Open problem Prove that 7 is a monotone increasing function (as Figure 1
indicates).

3 Stability of linear delay differential equations

The function ® introduced in the previous section plays an important role in
the stability theory of delay differential equations. We just recall two examples
from the literature. In [5] global attractivity results was proved for equations of
the form

i(t) = —aa(t = 7) + f(t, 2t = n(1)))
with the help of estimate (2.17) of ®. In [9] the following theorem was proved for
the asymptotic stability of

m
B(t) = =Y a(t— 7 —mi(t),  t>0, (3.1)
i=1
comparing its stability to the “unperturbed” equation
m
=3 ay(t—7),  t>0. (3.2)
i=1
Here n;: [0,00) — [0, 00) are piecewise continuous bounded functions.

Theorem 3.1 (Theorem 3.1, [9]) Suppose that the trivial solution of (3.2)
is asymptotically stable, and

|a;| Tim |n;(t)] < (3.3)
z’:zl f=eo z 1‘ il) fo |d5

where v is the fundamental solution of (3.2). Then the trivial solution of (3.1) is
asymptotically stable, as well.

In the application of this theorem we need either the exact value of fooo lv(t)| ds,
which is known if v(¢) > 0 (see [9]), or an upper estimate of it, which is known so
far only for the single delay case (see Theorem 2.3).

Let a; >0 (i =1,...,m), and consider the linear delay equation
m
=Y ax(t—oi(t), >0 (3.4)
We can consider Equation (3.4) as the delay perturbation of

<Z az> (t—7) (3.5)

with the perturbations 7;(t) = o;(t) — 7, where 7 > 0. Let v denote the fundamental
solution of (3.5), then o(t) = lel a;)v(t — 7). Therefore an application of
Theorem 3.1 yields that if 0 < 7" a; < 7/2, and

; im oy (8) — 3.6
izzlatggo\ﬂ() 7| < fo O’ (3.6)
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then the trivial solution of (3.4) is asymptotically stable. Introducing u(t) =
v(t/ Yk, a;) we get

On the other hand,
o (T§a> :/ODO |u(t)dt:/000 v (ﬁ)‘dt: (zm:a> /ODO lw(t)| dt.
i ()| = max { i 10, lim ) (3.7)

Therefore, using the relation
t—o0 t—o0

we get immediately the following result.

Theorem 3.2 Suppose a; > 0, 0;: [0,00) = [0,00) is piecewise continuous
(i=1,...,m), and there exists T € [0,7/(2a)) such that

1 - o 1

Ta — B(ra) < ; aitli_rroloai(t) < ; aitlggoai(t) <Ta+ B(ra)’ (3.8)

where a = Y _."  a;. Then the trivial solution of (3.4) is asymptotically stable.
Note that the first inequality of (3.8) is automatically satisfied if 0 < 7a < 1/e,

since then ®(ra) = 1. See Figure 2 for the numerically generated graph of the
functions 7 + 1/®(7) and 7 — 1/®(7).

1.4
1.2
0.84
0.67

0.44
0.24

Figure 2 The graphs of 74 1/®(7) and 7 — 1/®(7)

Suppose there exists 7 € [0,7/2) such that 7+ 1/®(7) > n/2. Then, applying
Theorem 3.2 for m = 1 and a = 1, we could find a constant delay o(t) = o > 7/2,
such that the trivial solution of %(t) = —x(t — o) was asymptotically stable, which
is impossible for such o. Therefore we have the following corollary of the theorem.
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Corollary 3.3 The function ® satisfies

1. ﬂl <®(r), T1€[0,7/2),
-7

2
2. lim ®(7) = +oo.
T3 —

We get a special case of Theorem 3.2 in the following way. Define
7o = inf{t: ¢t —1/®(t) > 0}. (3.9
Part 2 of Corollary 3.3 and 1/e < 1/®(1/e) yields that such 7 exists, and since ® is

continuous, 79 = 1/®(79). The numerical study of Figure 2 indicates that equation
7 =1/®(7) has exactly one solution, and 79 = 0.65.

Corollary 3.4 Suppose a; > 0, o;: [0,00) = [0,00) is piecewise continuous
(i=1,...,m), and let 19 be defined by (3.9). Assume
—_— 27'0
limo;(l) < =—
A oilt) < s

Then the trivial solution of (3.4) is asymptotically stable.

fori=1,...,m.

Proof Leta = )", a;, and fix 7 > 0 such that 27 < 27y/a and limy 00 0(t) <
27 for i = 1,...,m. For this 7 we have

m
_ 1
i_zl “itll{gof’i(t) < 2ar < at + B(ar)’
since ar < 7p. On the other hand ar — 1/®(ar) < 0, therefore Theorem 3.2 proves
the corollary. O

Consider the delay equation
i(t) = —z(t — o(t)), t>0. (3.10)

Myshkis showed in [17], that if sup{o(t): ¢t > 0} < 3/2, then the trivial solution of
(3.10) is asymptotically stable, and he gave an example, where sup{c(t): ¢t > 0} €
(3/2,7/2) and the corresponding equation has unstable trivial solution. Note that
in his example lim, , o (t) = 0. Many other papers generalized this 3/2-type result
(see, e.g., [14], [20]-[22]). Ladas et al. showed [15] that if lim;_,~ o(t) € [0,7/2),
then the trivial solution of (3.10) is asymptotically stable.

Our Theorem 3.2 generalizes both results. Ladas’ condition is included in
(3.8) using 7 = limy_,, o(t). Myshkis’ condition can be weaker than (3.8) in the
case 0 < 7 — 1/®(7). On the other hand, we formulate our condition in terms of
limy_,000(t) and lim, ,. o(t) instead of sup,~o(t) and inf;>o o (t). Moreover, if
lim;_, o o(t) does not exist, and lim; o0 (t) € (3/2,7/2), then Theorem 3.2 and
Corollary 3.3 imply that if lim;_,..0(t) is “not too small”, then the trivial solution
of (3.10) is asymptotically stable.

Corollary 3.5 For any ¢ € (3/2,7/2) there exists b < ¢, such that the trivial
solution of (3.10) is asymptotically stable, if

b< limo(t) < tligloa(t) <e.

t—o0
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Now we give another application of Theorem 3.2. Consider the time-dependent
scalar delay equation

i(t) = —a(t)z(t — o(t)), t>0, (3.11)

where a : [0,00) — [0,00) is continuous such that fooo a(t)dt = oc. The next
theorem extends the result of Yoneyama [19], where it was proved that

t+q t+q 3

0 < inf asds<su/ a(s)ds < -,

inf | (s)ds < up | (s) 5

where ¢ = sup;»q0(t), implies the asymptotic stability of the trivial solution of
(3.11). Ladas et al. [15] proved, that if o(t) = o is constant, and

lim t a(s)ds € [0,7/2),

t—00 —o

then the trivial solution of (3.11) is asymptotically stable. We have the following
result.

Theorem 3.6 Suppose a: [0,00) — [0,00) is continuous, the function A(t) =
fot a(s) ds is strictly monotone increasing, fooo a(t)dt = oo, and o: [0,00) — [0, 00)
is piecewise continuous and bounded, and assume there exists T € [0,7/2) such that

1 ! — (! 1
T——— < lim a(s)ds < lim a(s)ds < 7+ ——. (3.12)
®(1) o0 iow) t=00 Jy o(t) ®(7)

Then the trivial solution of (3.11) is asymptotically stable.

Proof The inverse of A exists, lim;_,o, A71(t) = 0o, and A~! is continuous
and differentiable. Define the function

A7)
n(t) = / a(s) ds.
A=l (t)—o(AZ1(1))

Then n: [0,00) — [0, 0c) is piecewise continuous, and

A7) AT (1) —o(A7H (1)
n(t) = /0 a(s) ds — /0 as)ds =t — A(A*l(t) - a(A’l(t))),
and hence
A7t = n(t) = A7 (1) — o (A7 (1), (3.13)
Let y(t) = 2(A~%(t)). Then

(1) = AT )AT (1) = (47 (1)~ o (47 (1),

therefore, using (3.13), y satisfies
y(t) = —y(t —n(t)). (3.14)

We have lim;_,, y(t) = 0, if and only if lim;_,o, () = 0, since lim;_, o, A7 1(t) = .
Hence Theorem 3.2 implies the statement of this theorem, using
t t
lim n(t) = lim a(s) ds and lim n(t) = lim a(s) ds.

t—o0 t—oo Jt—o(t) t—=0o0 t20 Ji_q(t)



10 Istvan Gydri and Ferenc Hartung

4 Stability of linear delay difference equations

We denote the set of nonnegative integers by Ny, and define the forward dif-
ference operator by Az(n) = z(n + 1) — z(n). Consider the linear delay difference
equation

Az(n) ==Y aiz(n—ki(n)), neNy, (4.1)
i=1
where a; > 0 and k;: Ng — Ny, (i = 1,... ,m), and there exists r > 0 such that
ki(n) < rforn € Ny and i = 1,... ,m. Equation (4.1) has a unique solution,
assuming that
z(n) = ¢(n), (4.2)

for some : [-r,0] = R
In [1] it was proved that if k;(n) = k; are constants for ¢ = 1,...,m and
S, aik; < 1, then the trivial solution of (4.1) is asymptotically stable. In [8] it
was shown that either one of the two conditions
1. there exists 7' > 0 such that k;i(n) < 1/(43°7_ja;) for n > T and i
0,1,...,m;
2. There exists T > 0 and 0 < a < 1 such that a/(4 Z;”:O a;) € Ny, ki(n) >
= a

a/(43 " ya;) forn > Tandalli=0,1,... ,m, and 2 aln@kl(n) <1+ 1
implies the asymptotic stability of the trivial solution of (4.1). The idea of the
proof was to compare the stability of (4.1) to that of the equation Ay(n) =
—(>i%, a;)y(n — 1), and use the discrete version of Theorem 2.3 (see [8] for de-
tails).

In this paper we compare the stability of the discrete equation (4.1) to that of
a differential equation. We associate the linear delay differential equation

i) = =Y aw(f] - k(D). t=0, (4.3)

and the initial condition
y(t) = (p(t)a te [_’I“, 0]7 (44)

to (4.1)-(4.2), where [-] is the greatest integer function. Equation (4.3) is a so-called
equation with piecewise constant argument (EPCA). EPCAs were first introduced
and studied by Cooke and Wiener in [2] and [3]. For further developments see
[4] and [18]. EPCAs were also used in [1], [6], [8] and [12] to get numerical
approximations for different classes of differential equations.

Integrating both sides of (4.3) from n to ¢t € [n, (n + 1)), we get

Y

o0 =) = = 3w (ki) ¢ =),

Therefore IVP (4.3)-(4.4) has a unique solution, which is piecewise linear between
nonnegative integers, and

yin+1)—y(n) = —Zaiy(n—ki(n)), n € Np. (4.5)
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We can observe that the solutions of (4.1) and (4.3) are related by y(n) = z(n).
Therefore the trivial solution of (4.1) is asymptotically stable, if and only if, so is
the trivial solution of (4.3).

Rewrite (4.3) as

g(t) = — Zaiy(t —ai(t)),  t>0, (4.6)
where
0i(t) = ki([t]) +t — [t]. (4.7)

Theorem 3.2 yields that the trivial solution of (4.6) (i.e., that of (4.3)) is asymp-
totically stable, if for some 7 € [0,7/(2a)) it follows

1 s UL 1
— i () < i 1i i(t _ 4.8
Ta (I)(Ta)<izzlazt%oal()_izzlaltl)rgoal()<Ta+(I)(Ta), (4.8)

where a = 3"/ | a;. Since

lim k;(n) < lim o;(¢) and lim o;(t) < lim k;i(n) + 1,

n—o00 t—o0 t—o0 T n—oo

we get the following result.

Theorem 4.1 Suppose a; > 0 (i = 1,...,m), a = 3" a;, and for some
T €1[0,7/(2a))

lim &;(n) < Zainll_{goki(n) <(r=1a+

n— oo .
i=1

1 m
™" 3(ra) © ;“ B(ra)

holds. Then the trivial solution of (4.1) is asymptotically stable.

Note that the right-hand-side of (4.9) can not be replaced by Ta + 1/®(7a),
since that would imply, using Corollary 3.3, that if m = 1 and k;(n) = k constant,
then the trivial solution of (4.1) was asymptotically stable, if and only if ak < 7/2.
This contradicts to the known condition (see, e.g., [18]) that the trivial solution of
Az(n) = —ax(n — k) is asymptotically stable if and only if

km
2
0<ak< k6082k+1

Applying Theorem 4.1 with 7 = 1/(ea) the theorem has the following corollary.
Corollary 4.2 Suppose 0 < a; (i=1,...,m), and

m - 1 m
; aanLH;OkZ(R) <1+ g — Zl ;. (410)
Then the trivial solution of (4.1) is asymptotically stable.

Similarly to Corollary 3.4 we get the next result.
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Corollary 4.3 Let 10 be defined by (3.9). Assume a; > 0 (i = 1,...,m),
St a; <27, and

T 27-0 .
nll_)H;okz(n)<m—1 fOT'L—l,...,’ITL.

Then the trivial solution of (4.1) is asymptotically stable.

Note that Corollaries 4.2 and 4.3 improve the results of [8].

The method of Theorem 3.6 can be applied for discrete equations, as well.
Consider the time-dependent scalar linear delay difference equation

Az(n) = —a(n)xz(n — k(n)), n € Np, (4.11)
where a: Ny — [0,00), k: Ng — Ny. Ladas et al. [16] proved that if
k(n) =k, Zoa(n) =00 and nh—>H;o _Z_k a(i) <1,

then the trivial solution of (4.11) is asymptotically stable. Gyéri and Pituk [10]
showed that

n—1

k(n) =k and n11_>n;o Z a(i) <1
i=n—=k
imply the asymptotic stability or (4.11). In some cases the following theorem

extends these results.

Theorem 4.4 Assume Y.~ a(n) = oo, and there ezists 7 € [0,7/2) such
that

n—1 n

]' . . T . ]-
T — m < nh—>_n;o Z a(i) < nan;O Z a(i) < 7+ m (4.12)

i=n—k(n) i=n—k(n)
Then the trivial solution of (4.11) is asymptotically stable.

Proof Let b: [0,00) — [0,00) be the continuous function satisfying b(n) = 0
and b(n + 1/2) = 2a(n), and which is piecewise linear between these values. Then

fsﬂ b(s) ds = a(n), and the function
B: [0,00) » [0,00),  B(t) = / b(s) ds

is a bijective, strictly monotone increasing function. Associate the delay differential
equation

y(t) = =b(t)y([t] — k([1])) (4.13)
to (4.11). Integrating (4.13) from n to ¢t € (n,n + 1) and taking the limit as
t— (n+1)— we get

n+1
et )=y == ([ 0051 ds) o - k).
i.e., y(n) = z(n) for n € Ny. The function 2(t) = y(B~1(t)) satisfies

s(t) = —y (B~ 0] - k(B (®)]). (4.14)
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Let
B™(t)
o = [ b(s) ds,
[B=1(t)]—k([B=1(1)])
then 7 satisfies [B~1(t)] — k([B~'(t)]) = B~ (t — n(t)), therefore (4.14) yields
2(t) = —2z(t — n(t)) (4.15)
We have
[B~(1)] n—1
lim 7(¢) > lim b(s)ds = lim a(i)
t—oo t—oo JIB=1 ()] —k([B~'(})]) 0 k(n)
and
o BT+ o n
lim n(t) < lim b(s)ds = lim a(i),
freo 2o JIB-1 (0] —k([B-1 (1) nree i:nz;(n)
therefore the theorem follows from Theorem 3.2. O

The theorem has the following corollary.

Corollary 4.5 Assume Y . a(n) = oo, and

o 1
im ) a(i) <1+ -,

n—o00
i=n—k(n)

Then the trivial solution of (4.11) is asymptotically stable.
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