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Stability in delay perturbed di�erential and di�eren
eequationsIstv�an Gy}ori and Feren
 HartungDepartment of Mathemati
s and ComputingUniversity of Veszpr�emH-8201 Veszpr�em, P.O.Box 158, Hungarygyori�almos.vein.hu and hartung�szt.vein.hu1 Introdu
tionIn this paper we summarize our earlier work 
on
erning preserving stability un-der delay perturbation (see [1℄, [8℄{[10℄), and present some new stability theoremsfor 
ertain 
lasses of linear di�erential and di�eren
e equations. We will show thatour results extend many known so-
alled 3/2-type or �=2-type stability theorems(see, e.g., [14℄{[16℄, [20℄{[22℄). Our 
onditions are formulated with the help of thefun
tion �(�) = Z 10 ju(t; �)j dt;where u(t; �) is the fundamental solution of the linear delay di�erential equation_x(t) = �x(t� �); t � 0:We also present some new exponential estimates for u(t; �) and for �(�).2 Fundamental solution of a linear delay di�erential equationLet � > 0, and u be the solution of the initial value problem (IVP)_u(t) = �u(t� �); t � 0; (2.1)u(t) = � 1; t = 0;0; t < 0; (2.2)i.e., u is the fundamental solution of the s
alar delay di�erential equation_x(t) = �x(t� �); t � 0: (2.3)If we want emphasize that the fundamental solution 
orresponds to delay � , we usethe notation u(t; �).1991 Mathemati
s Subje
t Classi�
ation. 34K15, 34K20.This resear
h was partially supported by Hungarian National Foundation for S
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2 Istv�an Gy}ori and Feren
 HartungLet � = �0 + i�0 be the root of the 
hara
teristi
 equation� = �e��� (2.4)of (2.3) with maximal real part. It is known (see, e.g., [11℄) that �0 < 0 if and onlyif � 2 [0; �=2), and for any " > 0 there exists M" > 0 su
h that ju(t)j �M"e(�0+")tfor t � 0. The following result gives the value of M" expli
itly, and provides anexponential estimate of ju(t)j with exponent �0t, as well.Theorem 2.1 Let � 2 [0; �=2), u(t) = u(t; �) be the fundamental solution of(2.3), �0 + i�0 be the root of (2.4) with maximal real part, and " > 0 be su
h that�0 + " < 0. Then the fundamental solution satis�es for t � 0ju(t)j � 11� 
" e(�0+")t; where 
" = e��0� Z 0�� e�"(s+�) 
os�0s ds; (2.5)and ju(t)j � 2t+ �(1� 
)� e�0t; where 
 = e��0� Z ��=2�� 
os�0s ds: (2.6)Proof Let � 2 [0; �=2) be �xed, and let �0 + i�0 be the root of (2.4) withmaximal real part. It is known (see, e.g., [5℄ or Theorem 2.3 below) that �0 2[0; �=(2�)), therefore 
os�0s > 0; s 2 [��; 0℄: (2.7)It follows from (2.4) that �0 = e��0� sin�0� , thereforee��0� Z 0�� 
os�0s ds = 1: (2.8)This implies that 0 < 
" < 1 and 0 < 
 < 1, where 
" and 
 are de�ned by (2.5)and (2.6), respe
tively.The fun
tion y(t) = e�0t 
os�0t is a solution of (2.1), and so the variation-of-
onstants formula (see, e.g., [11℄) yieldsy(t) = u(t)y(0)� Z 0�� u(t� s� �)e�0s 
os�0s ds:Using (2.7) we getju(t)j � e�0t + Z 0�� ju(t� s� �)je�0s 
os�0s ds; t � 0: (2.9)Multiplying this inequality by e�(�0+")t, and using that u(t) = 0 for t < 0, we getthat the fun
tion w"(t) = e�(�0+")tju(t)j satis�esw"(t) � 1+ e��0� Z 0�� w"(t� s� �)e�"(s+�) 
os�0s ds � 1+ 
" max0�s�tw"(s); t � 0;whi
h proves (2.5).Similarly, de�ne w(t) = e��0tju(t)j. Then (2.9) yields for t � 0w(t) � 1 + e��0� Z ��=2�� w(t� s� �) 
os�0s ds+e��0� Z 0��=2w(t� s� �) 
os�0s ds: (2.10)



Stability in delay perturbed di�erential and di�eren
e equations 3Let Mn be de�ned by Mn = supfw(s) : n�=2 � s � (n+ 1)�=2g, n = 0; 1; : : : . Weshow by indu
tion that Mn � n+ 11� 
 ; n = 0; 1; : : : : (2.11)We have for t 2 [n�=2; (n+ 1)�=2℄(n� 1)�2 � t� s� � � (n+ 1)�2 ; for s 2 [��;��=2℄; (2.12)and (n� 2)�2 � t� s� � � n�2 ; for s 2 [��=2; 0℄: (2.13)Therefore, using that u(t) = 0 for t < 0, (2.10) yieldsw(t) � 1 + 
M0; t 2 [0; �=2℄;and so M0 � 1=(1 � 
). Suppose (2.11) is known for integers from 0 to n � 1.The de�nitions of 
 and Mn, relations (2.8), (2.10), (2.12) and (2.13), and theindu
tional hypothesis implyw(t) � 1 + 
maxfMn;Mn�1g+ (1� 
)maxfMn�1;Mn�2g� 1 + 
maxfMn;Mn�1g+ n t 2 [n�=2; (n+ 1)�=2℄:If Mn �Mn�1, thenw(t) � n+ 1 + 
 n1� 
 < n+ 11� 
 ; t 2 [n�=2; (n+ 1)�=2℄and so Mn � (n+ 1)=(1� 
). If Mn > Mn�1, thenw(t) � n+ 1 + 
Mn; t 2 [n�=2; (n+ 1)�=2℄;and hen
e Mn � n + 1 + 
Mn, i.e., Mn � (n + 1)=(1 � 
). Therefore we proved(2.11) for all n � 0, but this yields (2.6), using the inequality [2t=� ℄ � 2t=� , where[�℄ is the greatest integer fun
tion.It follows from the above results that the trivial solution of (2.3) is asymptoti-
ally stable, if and only if R10 ju(t; �)j ds <1. We introdu
e the fun
tion�(�) = Z 10 ju(t; �)j dt: (2.14)Then �(�) = 1 for � � �=2. It is known (see, e.g., [5℄) that u(t; �) > 0 fort > 0, if and only if � � 1=e. For � � 1=e it follows easily from (2.1) that�(�) = R10 u(t; �) dt = 1. For 1=e < � < �=2 numeri
al estimate of � yieldsFigure 1. Here we used a numeri
al approximation method introdu
ed in [6℄ toobtain approximate values of u, and the simple trapezoidal method to estimate �.As we will see in the next se
tion, we 
an formulate stability theorems withthe help of the fun
tion �, but in applying those results it is important to know anupper estimate of �(�). Theorem 2.1 has the following 
orollary in this dire
tion.
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0.2 0.4 0.6 0.8 1 1.2 1.4Figure 1 The graph of �(�)Corollary 2.2 Using the notations of Theorem 2.1, we have�(�) � �1(1� 
")(�0 + ") ; � 2 [0; �=2); (2.15)and �(�) � 11� 
 � 2�20� � 1�0� ; � 2 [0; �=2): (2.16)Note that both estimates are worse than that given in [5℄.Theorem 2.3 (Theorem 2.1, [5℄) For � 2 [0; �=2) the 
hara
teristi
 equa-tion (2.4) has a root �0 = �0 + i�0, su
h that �0 < 0, �0 2 [0; �=(2�)), �0 is thegreatest real part of the roots of (2.4), and�(�) � �20 + �20�20 : (2.17)Inequality (2.17) is exa
t for � 2 [0; 1=e℄, sin
e then �0 = 0. For a given� 2 (1=e; �=2) we 
an use Theorem 2.1 to estimate �(�) in the following way. Letun denote the restri
tion of u to the interval [n�; (n+1)� ℄. By integrating (2.1), itis easy to see thatu0(t) = 1; t 2 [0; � ℄;un(t) = un�1(n�)� Z tn� un�1(s� �) ds; t 2 [n�; (n+ 1)� ℄; n � 1;and therefore un is an nth order polynomial, whi
h 
an easily be generated, e.g.,using a 
omputer algebra system like Maple V. Sin
e un is a polynomial, MapleV 
an symboli
ally integrate R (n+1)�n� jun(s)j ds. Therefore if we write �(�) =RM�0 ju(t)j dt+ R1M� ju(t)j dt, then we 
an 
ompute the exa
t value of the �rst inte-gral, and, using Theorem 2.1, we have an upper estimateEM (�) = 1(1� 
)� Z 1M� (2t+ �)e�0t dt
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e equations 5of the se
ond one. Denoting the �rst integral by IM (�), we have �(�) � IM (�) +EM (�). Unfortunately, as numeri
al experiments show, this 
omputation of un isnot stable, i.e., for large n the 
omputed formula for un 
ontains signi�
ant round-o� errors. In Table 1 the numeri
al result of our 
omputer experiment 
an be seenwhere we sele
ted M by a 
ertain algorithm so that M be reasonably small, and
omputed IM (�) over [0;M� ℄ (by 
omputing the integral exa
tly over subintervalswhere the fun
tion un has 
onstant sign by the symboli
 integration of Maple V,and adding up those values). Note that � = 0:2 and 0.3 is 
omputed only to testthe method. Table 1� 0.2 0.3 0.4 0.5 0.6 0.7 0.8M 22 13 7 8 9 11 15IM (�) 0.997 0.998 1.001 1.083 1.260 1.511 1.846EM (�) 0.156 0.044 0.019 0.040 0.084 0.112 0.082IM (�) +EM (�) 1.153 1.042 1.02 1.123 1.344 1.623 1.928� 0.9 1.0 1.1 1.2 1.3 1.4 1.5M 17 20 26 26 26 25 24IM (�) 2.289 2.895 3.803 5.390 8.027 18.795 18.907EM (�) 0.191 0.402 0.591 4.254 29.77 243.5 3275IM (�) +EM (�) 2.48 3.297 4.394 9.644 37.80 262.3 3294Open problem This numeri
al estimate of � 
ertainly requires a lot of 
om-putations. It is still an interesting open problem to give a (
omputable) formulafor an upper estimate of �(�) better than (2.17). Find estimates for R10 ju(t; �)j dt,where u is the fundamental solution of the multiple delay equation_x(t) = � mXi=1 aix(t � �i):The next theorem shows that � is a 
ontinuous fun
tion.Theorem 2.4 The fun
tion � is 
ontinuous on [0; �=2).Proof Fix �0 2 [0; �=2), and let � 6= �0. The 
hara
teristi
 root with greatestreal part of (2.3) 
orresponding to �0 and � is denoted by �0 + i�0 and � + i�,respe
tively. It is easy to see that � ! �0 and � ! �0 as � ! �0 (see also [6℄). Itis known (see, e.g., [11℄) that u(t; �)! u(t; �0) as � ! �0 for every �xed t > 0. Let" > 0 be su
h that �0+2" < 0, and let � be su
h that the 
orresponding � satis�es� � �0 + ". Let 
�;" and 
�0;" be the 
onstants de�ned by (2.5) 
orresponding to" > 0 and to �; � and �0; �0, respe
tively. Then Theorem 2.1 yields thatju(t; �)� u(t; �0)j � 11� 
�;" e(�+")t + 11� 
�0;" e(�0+")t; t � 0:Sin
e 
�;" ! 
�0;" as � ! �0, there exists M > 0 su
h that ju(t; �) � u(t; �0)j �Me(�0+2")t, for t � 0. Then Lebesgue's Dominated Convergen
e Theorem yieldsj�(�) ��(�0)j � Z 10 ju(t; �)� u(t; �0)j dt! 0; as � ! �0:



6 Istv�an Gy}ori and Feren
 HartungOpen problem Prove that � is a monotone in
reasing fun
tion (as Figure 1indi
ates). 3 Stability of linear delay di�erential equationsThe fun
tion � introdu
ed in the previous se
tion plays an important role inthe stability theory of delay di�erential equations. We just re
all two examplesfrom the literature. In [5℄ global attra
tivity results was proved for equations ofthe form _x(t) = �ax(t� �) + f(t; x(t� �(t)))with the help of estimate (2.17) of �. In [9℄ the following theorem was proved forthe asymptoti
 stability of_x(t) = � mXi=1 aix(t � �i � �i(t)); t � 0; (3.1)
omparing its stability to the \unperturbed" equation_y(t) = � mXi=1 aiy(t� �i); t � 0: (3.2)Here �i : [0;1)! [0;1) are pie
ewise 
ontinuous bounded fun
tions.Theorem 3.1 (Theorem 3.1, [9℄) Suppose that the trivial solution of (3.2)is asymptoti
ally stable, andmXi=1 jaij limt!1j�i(t)j < 1(Pmi=1 jaij) R10 jv(t)j ds ; (3.3)where v is the fundamental solution of (3.2). Then the trivial solution of (3.1) isasymptoti
ally stable, as well.In the appli
ation of this theorem we need either the exa
t value of R10 jv(t)j ds,whi
h is known if v(t) > 0 (see [9℄), or an upper estimate of it, whi
h is known sofar only for the single delay 
ase (see Theorem 2.3).Let ai > 0 (i = 1; : : : ;m), and 
onsider the linear delay equation_x(t) = � mXi=1 aix(t� �i(t)); t � 0: (3.4)We 
an 
onsider Equation (3.4) as the delay perturbation of_y(t) = � mXi=1 ai! y(t� �) (3.5)with the perturbations �i(t) = �i(t)�� , where � � 0. Let v denote the fundamentalsolution of (3.5), then _v(t) = �(Pmi=1 ai)v(t � �). Therefore an appli
ation ofTheorem 3.1 yields that if 0 � �Pmi=1 ai < �=2, andmXi=1 ai limt!1j�i(t)� � j < 1(Pmi=1 ai) R10 jv(t)j dt ; (3.6)



Stability in delay perturbed di�erential and di�eren
e equations 7then the trivial solution of (3.4) is asymptoti
ally stable. Introdu
ing u(t) =v(t=Pmi=1 ai) we get_u(t) = 1Pmi=1 ai _v� tPmi=1 ai� = �v� tPmi=1 ai � �� = �u t� � mXi=1 ai! :On the other hand,� � mXi=1 ai! = Z 10 ju(t)j dt = Z 10 ����v� tPmi=1 ai����� dt =  mXi=1 ai!Z 10 jv(t)j dt:Therefore, using the relationlimt!1jf(t)j = max� limt!1f(t);� limt!1f(t)� ; (3.7)we get immediately the following result.Theorem 3.2 Suppose ai > 0, �i : [0;1) ! [0;1) is pie
ewise 
ontinuous(i = 1; : : : ;m), and there exists � 2 [0; �=(2a)) su
h that�a� 1�(�a) < mXi=1 ai limt!1�i(t) � mXi=1 ai limt!1�i(t) < �a+ 1�(�a) ; (3.8)where a �Pmi=1 ai. Then the trivial solution of (3.4) is asymptoti
ally stable.Note that the �rst inequality of (3.8) is automati
ally satis�ed if 0 � �a � 1=e,sin
e then �(�a) = 1. See Figure 2 for the numeri
ally generated graph of thefun
tions � + 1=�(�) and � � 1=�(�).
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Figure 2 The graphs of � + 1=�(�) and � � 1=�(�)Suppose there exists � 2 [0; �=2) su
h that � + 1=�(�) > �=2. Then, applyingTheorem 3.2 for m = 1 and a = 1, we 
ould �nd a 
onstant delay �(t) = � � �=2,su
h that the trivial solution of _x(t) = �x(t� �) was asymptoti
ally stable, whi
his impossible for su
h �. Therefore we have the following 
orollary of the theorem.
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 HartungCorollary 3.3 The fun
tion � satis�es1. 1�2 � � � �(�), � 2 [0; �=2),2. lim�!�2��(�) = +1.We get a spe
ial 
ase of Theorem 3.2 in the following way. De�ne�0 = infft : t� 1=�(t) � 0g: (3.9)Part 2 of Corollary 3.3 and 1=e < 1=�(1=e) yields that su
h �0 exists, and sin
e � is
ontinuous, �0 = 1=�(�0). The numeri
al study of Figure 2 indi
ates that equation� = 1=�(�) has exa
tly one solution, and �0 � 0:65.Corollary 3.4 Suppose ai > 0, �i : [0;1) ! [0;1) is pie
ewise 
ontinuous(i = 1; : : : ;m), and let �0 be de�ned by (3.9). Assumelimt!1�i(t) < 2�0Pmi=1 ai for i = 1; : : : ;m:Then the trivial solution of (3.4) is asymptoti
ally stable.Proof Let a =Pmi=1 ai, and �x � > 0 su
h that 2� < 2�0=a and limt!1�i(t) <2� for i = 1; : : : ;m. For this � we havemXi=1 ai limt!1�i(t) < 2a� < a� + 1�(a�) ;sin
e a� < �0. On the other hand a� � 1=�(a�) < 0, therefore Theorem 3.2 provesthe 
orollary.Consider the delay equation_x(t) = �x(t� �(t)); t � 0: (3.10)Myshkis showed in [17℄, that if supf�(t) : t � 0g < 3=2, then the trivial solution of(3.10) is asymptoti
ally stable, and he gave an example, where supf�(t) : t � 0g 2(3=2; �=2) and the 
orresponding equation has unstable trivial solution. Note thatin his example limt!1�(t) = 0. Many other papers generalized this 3/2-type result(see, e.g., [14℄, [20℄{[22℄). Ladas et al. showed [15℄ that if limt!1 �(t) 2 [0; �=2),then the trivial solution of (3.10) is asymptoti
ally stable.Our Theorem 3.2 generalizes both results. Ladas' 
ondition is in
luded in(3.8) using � = limt!1 �(t). Myshkis' 
ondition 
an be weaker than (3.8) in the
ase 0 < � � 1=�(�). On the other hand, we formulate our 
ondition in terms oflimt!1�(t) and limt!1�(t) instead of supt�0 �(t) and inft�0 �(t). Moreover, iflimt!1 �(t) does not exist, and limt!1�(t) 2 (3=2; �=2), then Theorem 3.2 andCorollary 3.3 imply that if limt!1�(t) is \not too small", then the trivial solutionof (3.10) is asymptoti
ally stable.Corollary 3.5 For any 
 2 (3=2; �=2) there exists b < 
, su
h that the trivialsolution of (3.10) is asymptoti
ally stable, ifb < limt!1�(t) � limt!1�(t) < 
:



Stability in delay perturbed di�erential and di�eren
e equations 9Now we give another appli
ation of Theorem 3.2. Consider the time-dependents
alar delay equation _x(t) = �a(t)x(t� �(t)); t � 0; (3.11)where a : [0;1) ! [0;1) is 
ontinuous su
h that R10 a(t) dt = 1. The nexttheorem extends the result of Yoneyama [19℄, where it was proved that0 < inft�0 Z t+qt a(s) ds � supt�0 Z t+qt a(s) ds < 32 ;where q = supt�0 �(t), implies the asymptoti
 stability of the trivial solution of(3.11). Ladas et al. [15℄ proved, that if �(t) = � is 
onstant, andlimt!1 Z tt�� a(s) ds 2 [0; �=2);then the trivial solution of (3.11) is asymptoti
ally stable. We have the followingresult.Theorem 3.6 Suppose a : [0;1)! [0;1) is 
ontinuous, the fun
tion A(t) =R t0 a(s) ds is stri
tly monotone in
reasing, R10 a(t) dt =1, and � : [0;1)! [0;1)is pie
ewise 
ontinuous and bounded, and assume there exists � 2 [0; �=2) su
h that� � 1�(�) < limt!1 Z tt��(t) a(s) ds � limt!1 Z tt��(t) a(s) ds < � + 1�(�) : (3.12)Then the trivial solution of (3.11) is asymptoti
ally stable.Proof The inverse of A exists, limt!1A�1(t) = 1, and A�1 is 
ontinuousand di�erentiable. De�ne the fun
tion�(t) = Z A�1(t)A�1(t)��(A�1(t)) a(s) ds:Then � : [0;1)! [0;1) is pie
ewise 
ontinuous, and�(t) = Z A�1(t)0 a(s) ds� Z A�1(t)��(A�1(t))0 a(s) ds = t�A�A�1(t)� �(A�1(t))�;and hen
e A�1(t� �(t)) = A�1(t)� �(A�1(t)): (3.13)Let y(t) = x(A�1(t)). Then_y(t) = ddt (A�1(t)) _x(A�1(t)) = �x�A�1(t)� �(A�1(t))�;therefore, using (3.13), y satis�es_y(t) = �y(t� �(t)): (3.14)We have limt!1 y(t) = 0, if and only if limt!1 x(t) = 0, sin
e limt!1A�1(t) =1.Hen
e Theorem 3.2 implies the statement of this theorem, usinglimt!1�(t) = limt!1 Z tt��(t) a(s) ds and limt!1�(t) = limt!1 Z tt��(t) a(s) ds:
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 Hartung4 Stability of linear delay di�eren
e equationsWe denote the set of nonnegative integers by N0 , and de�ne the forward dif-feren
e operator by �x(n) � x(n+ 1)� x(n). Consider the linear delay di�eren
eequation �x(n) = � mXi=1 aix(n� ki(n)); n 2 N0 ; (4.1)where ai > 0 and ki : N0 ! N0 , (i = 1; : : : ;m), and there exists r > 0 su
h thatki(n) � r for n 2 N0 and i = 1; : : : ;m. Equation (4.1) has a unique solution,assuming that x(n) = '(n); (4.2)for some ' : [�r; 0℄! R.In [1℄ it was proved that if ki(n) = ki are 
onstants for i = 1; : : : ;m andPmi=1 aiki < 1, then the trivial solution of (4.1) is asymptoti
ally stable. In [8℄ itwas shown that either one of the two 
onditions1. there exists T > 0 su
h that ki(n) � 1=(4Pmj=0 aj) for n > T and i =0; 1; : : : ;m;2. There exists T > 0 and 0 � � � 1 su
h that �=(4Pmj=0 aj) 2 N0 , ki(n) ��=(4Pmj=0 aj) for n > T and all i = 0; 1; : : : ;m, and mXi=0 ai limn!1ki(n) < 1+�4implies the asymptoti
 stability of the trivial solution of (4.1). The idea of theproof was to 
ompare the stability of (4.1) to that of the equation �y(n) =�(Pmi=1 ai)y(n � l), and use the dis
rete version of Theorem 2.3 (see [8℄ for de-tails).In this paper we 
ompare the stability of the dis
rete equation (4.1) to that ofa di�erential equation. We asso
iate the linear delay di�erential equation_y(t) = � mXi=1 aiy�[t℄� ki([t℄)�; t � 0; (4.3)and the initial 
ondition y(t) = '(t); t 2 [�r; 0℄; (4.4)to (4.1)-(4.2), where [�℄ is the greatest integer fun
tion. Equation (4.3) is a so-
alledequation with pie
ewise 
onstant argument (EPCA). EPCAs were �rst introdu
edand studied by Cooke and Wiener in [2℄ and [3℄. For further developments see[4℄ and [18℄. EPCAs were also used in [1℄, [6℄, [8℄ and [12℄ to get numeri
alapproximations for di�erent 
lasses of di�erential equations.Integrating both sides of (4.3) from n to t 2 [n; (n+ 1)), we gety(t)� y(n) = � mXi=1 aiy�n� ki(n)�(t� n):Therefore IVP (4.3)-(4.4) has a unique solution, whi
h is pie
ewise linear betweennonnegative integers, andy(n+ 1)� y(n) = � mXi=1 aiy�n� ki(n)�; n 2 N0 : (4.5)



Stability in delay perturbed di�erential and di�eren
e equations 11We 
an observe that the solutions of (4.1) and (4.3) are related by y(n) = x(n).Therefore the trivial solution of (4.1) is asymptoti
ally stable, if and only if, so isthe trivial solution of (4.3).Rewrite (4.3) as _y(t) = � mXi=1 aiy�t� �i(t)�; t � 0; (4.6)where �i(t) � ki([t℄) + t� [t℄: (4.7)Theorem 3.2 yields that the trivial solution of (4.6) (i.e., that of (4.3)) is asymp-toti
ally stable, if for some � 2 [0; �=(2a)) it follows�a� 1�(�a) < mXi=1 ai limt!1�i(t) � mXi=1 ai limt!1�i(t) < �a+ 1�(�a) ; (4.8)where a �Pmi=1 ai. Sin
elimn!1ki(n) � limt!1�i(t) and limt!1�i(t) � limn!1ki(n) + 1;we get the following result.Theorem 4.1 Suppose ai > 0 (i = 1; : : : ;m), a � Pmi=1 ai, and for some� 2 [0; �=(2a))�a� 1�(�a) < mXi=1 ai limn!1ki(n) � mXi=1 ai limn!1ki(n) < (� � 1)a+ 1�(�a) (4.9)holds. Then the trivial solution of (4.1) is asymptoti
ally stable.Note that the right-hand-side of (4.9) 
an not be repla
ed by �a + 1=�(�a),sin
e that would imply, using Corollary 3.3, that if m = 1 and ki(n) = k 
onstant,then the trivial solution of (4.1) was asymptoti
ally stable, if and only if ak < �=2.This 
ontradi
ts to the known 
ondition (see, e.g., [13℄) that the trivial solution of�x(n) = �ax(n� k) is asymptoti
ally stable if and only if0 < ak < 2k 
os k�2k + 1 :Applying Theorem 4.1 with � = 1=(ea) the theorem has the following 
orollary.Corollary 4.2 Suppose 0 < ai (i = 1; : : : ;m), andmXi=1 ai limn!1ki(n) < 1 + 1e � mXi=1 ai: (4.10)Then the trivial solution of (4.1) is asymptoti
ally stable.Similarly to Corollary 3.4 we get the next result.
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 HartungCorollary 4.3 Let �0 be de�ned by (3.9). Assume ai > 0 (i = 1; : : : ;m),Pmi=1 ai < 2�0, andlimn!1ki(n) < 2�0Pmi=1 ai � 1 for i = 1; : : : ;m:Then the trivial solution of (4.1) is asymptoti
ally stable.Note that Corollaries 4.2 and 4.3 improve the results of [8℄.The method of Theorem 3.6 
an be applied for dis
rete equations, as well.Consider the time-dependent s
alar linear delay di�eren
e equation�x(n) = �a(n)x(n� k(n)); n 2 N0 ; (4.11)where a : N0 ! [0;1), k : N0 ! N0 . Ladas et al. [16℄ proved that ifk(n) = k; 1Xn=0 a(n) =1 and limn!1 nXi=n�k a(i) < 1;then the trivial solution of (4.11) is asymptoti
ally stable. Gy}ori and Pituk [10℄showed that k(n) = k and limn!1 n�1Xi=n�k a(i) < 1imply the asymptoti
 stability or (4.11). In some 
ases the following theoremextends these results.Theorem 4.4 Assume P1n=0 a(n) = 1, and there exists � 2 [0; �=2) su
hthat � � 1�(�) < limn!1 n�1Xi=n�k(n) a(i) � limn!1 nXi=n�k(n) a(i) < � + 1�(�) : (4.12)Then the trivial solution of (4.11) is asymptoti
ally stable.Proof Let b : [0;1) ! [0;1) be the 
ontinuous fun
tion satisfying b(n) = 0and b(n+ 1=2) = 2a(n), and whi
h is pie
ewise linear between these values. ThenR n+1n b(s) ds = a(n), and the fun
tionB : [0;1)! [0;1); B(t) = Z t0 b(s) dsis a bije
tive, stri
tly monotone in
reasing fun
tion. Asso
iate the delay di�erentialequation _y(t) = �b(t)y([t℄� k([t℄)) (4.13)to (4.11). Integrating (4.13) from n to t 2 (n; n + 1) and taking the limit ast! (n+ 1)� we gety(n+ 1)� y(n) = ��Z n+1n b(s) ds� y(n� k(n));i.e., y(n) = x(n) for n 2 N0 . The fun
tion z(t) = y(B�1(t)) satis�es_z(t) = �y�[B�1(t)℄� k([B�1(t)℄)�: (4.14)
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e equations 13Let �(t) = Z B�1(t)[B�1(t)℄�k([B�1(t)℄) b(s) ds;then � satis�es [B�1(t)℄� k([B�1(t)℄) = B�1(t� �(t)), therefore (4.14) yields_z(t) = �z(t� �(t)): (4.15)We have limt!1�(t) � limt!1 Z [B�1(t)℄[B�1(t)℄�k([B�1(t)℄) b(s) ds = limn!1 n�1Xi=n�k(n) a(i)and limt!1�(t) � limt!1 Z [B�1(t)℄+1[B�1(t)℄�k([B�1(t)℄) b(s) ds = limn!1 nXi=n�k(n) a(i);therefore the theorem follows from Theorem 3.2.The theorem has the following 
orollary.Corollary 4.5 Assume P1n=0 a(n) =1, andlimn!1 nXi=n�k(n) a(i) < 1 + 1e :Then the trivial solution of (4.11) is asymptoti
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