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2 F. HARTUNG AND J. TURIdesribing the delay dependene is a Stieltjes-integral of the solution segment x(t + �) with respetto �(�; t; xt), whih is a matrix valued funtion of bounded variations depending on time t and thestate of the equation xt. Here and throughout this paper r > 0 is �xed and xt : [�r; 0℄ ! Rn isde�ned by xt(s) � x(t + s). For well-posedness results for (1.2) we refer to [10℄, the appendix of[12℄, and see also Theorem 2.2 below.Consider the linear time-dependent FDE of the form _x(t) = L(t)xt, where L(t) is a boundedlinear operator on the spae of ontinuous funtions. Then the Riesz Representation Theoremyields that L(t)xt has the form (1.3) with � = �(s; t). Therefore it seems like a natural extensionto assume the struture desribed by (1.3) for the state-dependent ase. Moreover, representation(1.3) inludes disrete and distributed onstant and time-dependent delays, and the \usual" state-dependent delays, x(t� �(t; x(t)) or x(t� �(t; xt)) as well. A nie feature of this form is that it alsoallows delayed terms of the form1Xi=1 Ai(t; xt)x(t� �i(t; xt)) + Z 0��0 G(s; t; xt)x(t+ s) ds: (1.4)In [12℄ a linearization result was obtained for the autonomous version of (1.2). In this paperwe extend the results of [12℄, and, under slightly more restritive onditions, we prove stabilitytheorems using linearization about any non-zero onstant solution, not only the trivial solution.This generalization was motivated by the paper [15℄, where numerial experiments showed that theasymptoti stability of the trivial solution of the linearized equation implies the asymptoti stabilityof the onstant or periodi steady-state of the state-dependent FDE. We also note that the resultdoes not follow immediately by translating the onstant solution to the origin, in this ase we needstronger onditions that those for the trivial solution. The tehnique of the proof we present hereis also a slightly di�erent from that of [12℄.The main problem to obtain linearization results for state-dependent FDEs is that it is diÆult todi�erentiate the delayed term in the presene of state-dependent delays (see a detailed disussion oflinearization and di�erentiability of solutions with respet to parameters for state-dependent delayequations in [5℄, [18℄, [11℄ and [12℄). We shall de�ne a bounded linear operator, F : C ! Rn , andpropose _x(t) = Fxt as a andidate for the linearized equation about the trivial solution. This is notthe \true" linearization at zero, sine the delayed term is not neessarily di�erentiable at zero (inthe spae C), but using assumption (H2) (ii) below, we an get an estimate on the error replaingthe right hand side of the equation by Fxt (see Lemma 3.2 below), whih turns out to be suÆientto prove that the asymptoti stability of the orresponding linearized equation implies that of thenonlinear equation.The lass of autonomous FDEs with state-dependent delays we investigate is desribed in detailesin Setion 2, and Setion 3 ontains our main theorem onerning linearized stability about aonstant steady-state (see Theorem 3.3 below).We lose this setion by introduing some notations whih will be used throughout this paper.Let j � j denote a �xed vetor norm on Rn , and the orresponding indued matrix norm on Rn�n isdenoted by j � j, as well. The partial derivatives of a funtion f of two variables with respet to its�rst and seond variables is denoted by D1f and D2f , respetively.We denote the spae of ontinuous funtions  : [�r; 0℄! Rn equipped with the supremum normk k � maxfj (s)j : s 2 [�r; 0℄g by C. Let L1 denote the Banah-spae of Lebesgue-measurable,essentially bounded funtions  : [�r; 0℄ ! Rn with norm j jL1 � ess supfj (s)j : s 2 [�r; 0℄g.W 1;1 is the Sobolev spae of absolutely ontinuous funtions  : [�r; 0℄ ! Rn with essentiallybounded derivatives. The norm in this Banah-spae is de�ned by j jW 1;1 � max(k k; j _ jL1).Let X be any normed linear spae. We denote the losed ball with radius % entered at the pointa 2 X by BX(a; %), i.e., BX(a; %) = fx 2 X : ja� xjX � %g.



LINEARIZED STABILITY IN FDES WITH STATE-DEPENDENT DELAYS 32. A Class of State-Dependent Delay Equations. Consider the nonlinear state-dependentdelay system _x(t) = f(x(t); �(xt; xt)); t � 0 (2.1)with initial ondition x(t) = '(t); t 2 [�r; 0℄: (2.2)We assume the following onditions throughout the paper:(H1) f : 
1 � 
2 ! Rn is ontinuously di�erentiable, where 
1 and 
2 are open subsets of Rn ,(H2) � : 
3 � C ! Rn , where 
3 is an open subset of C, and(i) � is linear in its seond argument, and there exists L1 � 0 suh thatj�( ; �)j � L1k�k;  2 C;(ii) � is loally Lipshitz-ontinuous in its �rst argument, i.e., for every M � 
3 ompatsubset of C there exists a onstant L2 = L2(M) suh thatj�( ; �)� �( ~ ; �)j � L2j _�jL1k � ~ k (2.3)for all � 2 W 1;1,  ; ~ 2M ,(H3) ' 2 C.It follows from property (H2) (i) and the Riesz Representation Theorem that the funtion � hasthe representation �( ; �) � Z 0�r ds�(s;  )�(s);where �(�;  ) is a matrix valued funtion of bounded variation. Therefore (2.1) is an autonomousversion of (1.2).Remark 2.1. We note that in [10℄ and [12℄ assumption (H2) (ii) was replaed by (H2) (ii'), where(2.3) was hanged to j�( ; �) � �( ~ ; �)j � L2j�jW 1;1k � ~ k:The di�erene between the two onditions is that this latter ondition allows a larger lass of delayedterms, inluding the autonomous version of (1.4). But if we assume the stronger ondition (2.3),that exludes the \distributed" delay terms of (1.4), and inludes only point state-dependent termsof the form �( ; �) = 1Xi=1 Ai�(��i( )); (2.4)where it is easy to formulate onditions on Ai and �i whih imply (H2) (ii). Note that the lassof state-dependent terms satisfying this ondition still inludes the \usual" point state-dependentdelays �( ; �) = �(��( )) or �( ; �) = �(��( (0)));where (2.3) an be satis�ed naturally assuming Lipshitz-ontinuity of � .We introdue the simplifying notation �( ) � �( ;  ):Then the right-hand-side of (2.1) an be written shortly as f(x(t);�(xt)).It is easy to see that in order have a well-posed problem, the initial funtion ' has to satisfy'(0) 2 
1; �(') 2 
2 and ' 2 
3: (2.5)We reall the following result from [10℄ onerning the well-posedness of IVP (2.1)-(2.2). Noteagain that this result was proved in [10℄ under the weaker ondition (H2) (ii') instead of (H2) (ii).



4 F. HARTUNG AND J. TURITheorem 2.2. Assume (H1){(H3), and (2.5) holds for ~'. Then there exist � > 0 and Æ > 0 suhthat IVP (2.1)-(2.2) has a solution x(t;') on [0; �℄ for all ' 2 BC( ~'; Æ). Moreover, if we assumethat ' 2 W 1;1, i.e., ' is Lipshitz-ontinuous, then the solution is unique, and there exists L > 0suh that jx(�;')t � x(�; ~')tjW 1;1 � Lj'� ~'jW 1;1 for all t 2 [0; �℄.Note that uniqueness is not required when we study stability, therefore we will assume (H3)instead of ' 2 W 1;1.We shall need the following estimate of �.Lemma 2.3. Assume (H2). Let M be a ompat subset of 
3, L1 be the onstant from (H2) (i),and L2 be the onstant orresponding to M from (H2) (ii). Thenj�( )� �( ~ )j � (L1 + L2j _~ jL1)k � ~ jjfor  ; ~ 2M and ~ 2W 1;1.Proof. The statement follows immediately from the relation�( )� �( ~ ) = �( ;  � ~ ) + �( ; ~ )� �( ~ ; ~ )and assumption (H2) (i) and (ii).The above lemma has immediately the following orollary.Corollary 2.4. Assume (H2). Let L1 be the onstant from (H2) (i), and  2 C be a onstantfuntion. Then j�( )� �()j � L1k � kfor any  2 
3.3. Linearized Stability. Consider again the state-dependent delay equation_x(t) = f(x(t);�(xt)); t � 0: (3.1)Let �x be a onstant funtion de�ned on [�r;1). For simpliity, both its value �x(t) and its segmentfuntion �xt at any t will be denoted as �x. Therefore we will write f(�x;�(�x)) for substituting it to theright-hand-side of (3.1). It should always be lear from the ontext whether �x denotes a onstantvetor or a onstant funtion.We assume that �x is a solution of (3.1), i.e.,f(�x;�(�x)) = 0: (3.2)The sets 
1, 
2 and 
3 are opens subsets of the respetive spae, therefore there exist positiveonstants %1, %2 and %3 suh thatBRn(�x; %1) � 
1; BRn(�(�x); %2) � 
2 and BC(�x; %3) � 
3:We de�ne the linear operator F : C ! Rn assoiated to �x byF � D1f(�x;�(�x)) (0) +D2f(�x;�(�x))�(�x;  ) (3.3)and the funtion g : C ! Rn ; g( ) � f( (0);�( ))� F : (3.4)Note that the linear operator F is a bounded operator, sine by (H2) (i) it satis�esjF j � �jD1f(�x;�(�x))j+ jD2f(�x;�(�x))jL1�k k:



LINEARIZED STABILITY IN FDES WITH STATE-DEPENDENT DELAYS 5By this notation we an rewrite (2.1) as_x(t) = Fxt + g(xt); t � 0; (3.5)and therefore we an onsider it as a perturbation of the autonomous linear delay equation_x(t) = Fxt; t � 0: (3.6)We denote the fundamental solution of (3.6) by U(t), i.e., it is a matrix valued solution of theinitial value problem _U(t) = FUt; t � 0; (3.7)U(t) = � I; t = 0;0; t < 0: (3.8)It is known (see, e.g., [9℄) that the trivial solution of (3.6) is exponentially stable, if and only if thereexist onstants K0 � 1 and �0 > 0 suh thatjU(t)j � K0e��0t; t � 0: (3.9)We also reall (see, e.g., [9℄) that the trivial solution of (3.6) is asymptotially stable, if and only ifit is exponentially stable.The proof of our main theorem will be based on the following two lemmas.Lemma 3.1. Assume (H1){(H3), and let �x be a onstant funtion satisfying (3.2). Let T > 0 begiven, and let x be a solution of (3.1) satisfyingjx(t)� �xj � %3 for t 2 [�r; T ℄: (3.10)Then there exists a onstant N1 > 0 independent of T suh thatj _x(t)j � N1kxt � �xk; t 2 [0; T ℄ (3.11)and kxt � �xk � eN1tk'� �xk; t 2 [0; T ℄: (3.12)Proof. Le L1 be the onstant from (H2) (i), and suppose (3.10). Then, by Corollary 2.4,j�(xt)� �(�x)j � L1kxt � �xk � L1%3;and therefore x(t) 2 BRn(�x; %3) and �(xt) 2 BRn(�(�x); L1%3) for t 2 [0; T ℄. Hene assumption (H1)yields that there exists a onstant L0 � 0 suh thatj _x(t)j = jf(x(t);�(xt))� f(�x;�(�x))j � L0�jx(t)� �xj+ j�(xt)� �(�x)j�:Then Lemma 2.3 implies (3.11) with N1 = L0(1 + L1).To prove (3.12), onsider the inequalitiesjx(t) � �xj � j'(0)� �xj+ Z t0 j _x(s)j ds � k'� �xk+N1 Z t0 kxs � �xk ds:Let v(t) � maxfjx(s)� �xj : �r � s � tg. Thenjx(t) � �xj � k'� �xk+N1 Z t0 v(s) ds; t 2 [0; T ℄;and sine the right-hand-side is monotone inreasing in t, it impliesv(t) � k'� �xk+N1 Z t0 v(s) ds; t 2 [0; T ℄:Therefore Gronwall's inequality proves (3.12), sine kxt � �xk � v(t).



6 F. HARTUNG AND J. TURIWe will need the following estimate of g.Lemma 3.2. Assume (H1){(H3), and let �x be a onstant funtion satisfying (3.2). Then thereexists a onstant N2 � 1 suh that for every � > 0 there exists a onstant � = �(�) > 0 suh that� � %3, and jg(xt)� g(�x)j � N2(� + 1)kxt � �xk; t 2 [0; r℄; (3.13)and jg(xt)� g(�x)j � N2�� + k _xtk�kxt � �xk; t � r; (3.14)for all solution x of (3.1) satisfyingjx(t)� �xj < � for t � �r: (3.15)Proof. The de�nition of g and F , and the linearity of � in its seond argument implyjg(xt)� g(�x)j= ���f(x(t);�(xt))� f(�x;�(�x))� D1f(�x;�(�x))(x(t) � �x)�D2f(�x;�(�x))(�(�x; xt)� �(�x; �x))���� ���f(x(t);�(xt))� f(�x;�(�x))� D1f(�x;�(�x))(x(t) � �x)�D2f(�x;�(�x))(�(xt)� �(�x))���+���D2f(�x;�(�x))(�(xt; xt)� �(�x; xt))���� sup0<�<1���D1f��x+ �(x(t) � �x);�(�x) + �(�(xt)� �(�x))��D1f(�x;�(�x))���jx(t) � �xj+ sup0<�<1���D2f��x+ �(x(t) � �x);�(�x) + �(�(xt)� �(�x))��D2f(�x;�(�x))���� j�(xt)� �(�x)j+ ���D2f(�x;�(�x))(�(xt; xt)� �(�x; xt))���: (3.16)Fix any � > 0. By the ontinuous di�erentiability of f guaranteed by (H1), there exists �1 > 0 suhthat if ju� ~uj; jv � ~vj � �1, u; ~u 2 BRn(�x; %1) and v; ~v 2 BRn(�(�x); %2), thenjD1f(u; v)�D1f(~u; ~v)j < � and jD2f(u; v)�D2f(~u; ~v)j < �: (3.17)Let L1 be the onstant from (H2) (i). Corollary 2.4 yieldsj�(xt)� �(�x)j � L1kxt � �xk; t � 0for all solution x of (3.1). Let � � min(�1; %1; �1=L1; %2=L1). Thenj�(xt)� �(�x)j � min(�1; %2); t � 0;for all solution x satisfying (3.15).Therefore, for suh x, inequality���Dif��x+ �(x(t) � �x);�(�x) + �(�(xt)� �(�x))�� Dif(�x;�(�x))��� < � (3.18)holds for all t � 0, 0 � � � 1 and i = 1; 2. It follows from (H2) (ii) that �(xt; �x) = �(�x; �x) for t � 0,therefore the linearity of � in its seond argument yields�(xt; xt)� �(�x; xt) = �(xt; xt � �x)� �(�x; xt � �x); t � 0: (3.19)



LINEARIZED STABILITY IN FDES WITH STATE-DEPENDENT DELAYS 7Then ombining (3.16), (3.18) and (3.19) we getjg(xt)� g(�x)j � �jx(t) � �xj+ �j�(xt)� �(�x)j+ jD2f(�x;�(�x))jj�(xt; xt � �x)� �(�x; xt � �x)j (3.20)for any x satisfying (3.15).For t 2 [0; r℄, using (H2) (i), we havej�(xt; xt � �x)� �(�x; xt � �x)j � 2L1kxt � �xk:Sine _x(t) = f(x(t);�(xt)) for t � 0, and f is ontinuous on BRn(�x; %1) � BRn(�(�x); %2), thereexistsm > 0 suh that j _xtjL1 � m for any x satisfying (3.15) and t � r. Moreover, _x(t) is ontinuousfor t � 0. Let M be the losure of the set BC(�x; �)\fy 2W 1;1 : j _yjL1 � mg in C. Then M � 
3,and by the Arsela-Asoli Lemma, it is a ompat subset of C. Let L2 be the onstant orrespondingto M from (H2) (ii). Then we getj�(xt; xt � �x)� �(�x; xt � �x)j � L2k _xtkkxt � �xk; t � r:Let N2 � max(1 + L1; jD2f(�x;�(�x))jL2; jD2f(�x;�(�x))j2L1), then (3.13) and (3.14) follow from(3.20).We show that the exponential stability of the onstant steady-state solution �x of the nonlinearstate-dependent autonomous FDE (3.1) an be obtained by that of the linear autonomous FDE(3.6).Theorem 3.3. Assume (H1){(H3), and let �x be a onstant funtion satisfying (3.2). Let F be thelinear operator de�ned by (3.3). Suppose the trivial solution of (3.6) is exponentially stable, i.e.,there exist K0 � 1 and �0 > 0 suh that (3.9) holds. Then for every 0 < � < �0 there exists Æ > 0and K � 1 suh that if k'� �xk < Æ, then any orresponding solution x(t) = x(t;') of (3.1) satis�esjx(t)� �xj � Ke��tk'� �xk; t � 0;i.e., �x is an exponentially stable steady-state of (3.1).Proof. Fix "0 > 0 and let 0 < " < "0, and let 0 < � < �0 be �xed. Let N2 � 1 be the onstant fromLemma 3.2, and let � � "(�0 � �)2(1 + ")K0N2 :De�ne � = �(�) by Lemma 3.2. Let N1 be the onstant de�ned by Lemma 3.1, and letÆ1 � min�%1; %3; �; �N1� and K � K0 �1 + r�N2e(�0+N1)r� ;and �nally, let Æ � Æ1(1 + "0)K :Let ' 2 C be suh that k' � �xk < Æ. Sine Æ < Æ1, there exists a neighborhood of 0 suh thatjx(t) � �xj < Æ1 for t within this neighborhood. Suppose there exists T > 0 suh thatjx(t)� �xj < Æ1; for t 2 [0; T ); and jx(T )� �xj = Æ1: (3.21)The de�nition of Æ1, (3.21) and Lemma 3.1 imply thatj _x(t)j � N1kxt � �xk � N1Æ1 � �; for t 2 [0; T ℄: (3.22)The variation-of-onstants formula (see, e.g., [9℄) impliesx(t) = U(t)'(0) + Z t0 U(t� s)g(xs) ds; t � 0:



8 F. HARTUNG AND J. TURISimilarly, �x = U(t)�x+ Z t0 U(t� s)g(�x) ds; t � 0:Therefore jx(t) � �xj � jU(t)jj'(0)� �xj+ Z t0 jU(t� s)jjg(xs)� g(�x)j ds; t � 0: (3.23)Suppose T > r. Relations Æ1 � �, (3.9), (3.21), (3.23) and Lemma 3.2 imply for t 2 [r; T ℄jx(t) � �xj � K0e��0tk'� �xk+K0 Z t0 e��0(t�s)N2�kxs � �xk ds+ K0 Z r0 e��0(t�s)N2kxs � �xk ds+K0 Z tr e��0(t�s)N2k _xskkxs � �xk ds:Multiplying both sides of this inequality by e�t, and using the de�nition of K and estimates (3.12)and (3.22), we gete�tjx(t) � �xj � K0e(���0)tk'� �xk+K0e(���0)t Z r0 e�0sN2�eN1rk'� �xk ds+ K0e(���0)t Z t0 e�0sN22�kxs � �xk ds� Kk'� �xk+K0N22�e(���0)t Z t0 e�0skxs � �xk ds:Note that the last inequality holds for t 2 [0; r℄ and for T � r, as well. Let v(t) = maxfe�sjx(s)� �xj :�r � s � tg. Then we havee�tjx(t) � �xj � Kk'� �xk+K0N22�e(���0)tv(t) Z t0 e(�0��)s ds= Kk'� �xk+K0N22�v(t) Z t0 e(���0)s ds; t 2 [0; T ℄:Sine the right-hand-side is monotone inreasing in t, it impliesv(t) � Kk'� �xk+K0N22�v(t) Z t0 e(���0)s ds� Kk'� �xk+ K0N22��0 � � v(t); t 2 [0; T ℄:Then, using the de�nition of �, we getv(t) � Kk'� �xk+ "1 + "v(t); for t 2 [0; T ℄;and hene jx(t)� �xj � e��tv(t) � (1 + ")Ke��tk'� �xk; t 2 [0; T ℄:But this yields Æ1 = jx(T )� �xj < (1 + "0)KÆ = Æ1;whih ontradits to the de�nition of T . Therefore T =1, andjx(t) � �xj � (1 + ")Ke��tk'� �xkholds for all t � 0. This implies the statement of the theorem, sine " was arbitrary small positivenumber.
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