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t. In this paper we prove that a 
onstant steady-state of an autonomous state-dependent delayequation is exponentially stable if a zero solution of a 
orresponding linear autonomous equation isexponentially stable.1. Introdu
tion and notations. Fun
tional di�erential equations (FDEs) with state-dependentdelays appear frequently in appli
ations as model equations (see, e.g., [1℄{[3℄, [17℄), and the studyof su
h equations is an a
tive resear
h area (see, e.g., [4℄{[7℄, [10℄{[16℄, [18℄{[21℄). Stability of thesolution is one of the most important qualitative property of a model. There are many papers whi
hgive suÆ
ient 
onditions for the stability of the trivial (x = 0) solution in state-dependent FDEs(see, e.g., [7℄, [8℄, [20℄, [21℄).In [4℄ and [12℄ linearized stability results were proved for 
ertain 
lasses of state-dependent FDEs
on
erning the asymptoti
 stability of the trivial solution. It was shown that the asymptoti
 stabilityof the trivial solution of the equation is implied by that of the trivial solution of an asso
iated lineardelay equation, the so-
alled linearized equation. Note the results of [4℄ and [12℄ are equivalent inthe sense that they both provide the same asso
iated linear equation for nonlinear equations whi
h
an be rewritten in both forms, but the 
lasses of the equations studied were di�erent. Cooke andHuang [4℄ investigated the nonlinear FDE with state-dependent delays of the form_x(t) = g�xt; Z 0�r0 d�(s)g�x(t+ s� �(xt))�� ; (1.1)where � : C ! [0; r1℄, � is a matrix valued fun
tion of bounded variation, r0 > 0, and r is su
hthat r � r0 + r1. Motivated by the form of the delayed term in (1.1), the nonlinear FDE withstate-dependent distributed delays_x(t) = f �t; x(t); Z 0�r ds�(s; t; xt)x(t+ s)� ; t � 0; (1.2)was investigated in [10℄. The term Z 0�r ds�(s; t; xt)x(t + s) (1.3)1991 Mathemati
s Subje
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2 F. HARTUNG AND J. TURIdes
ribing the delay dependen
e is a Stieltjes-integral of the solution segment x(t + �) with respe
tto �(�; t; xt), whi
h is a matrix valued fun
tion of bounded variations depending on time t and thestate of the equation xt. Here and throughout this paper r > 0 is �xed and xt : [�r; 0℄ ! Rn isde�ned by xt(s) � x(t + s). For well-posedness results for (1.2) we refer to [10℄, the appendix of[12℄, and see also Theorem 2.2 below.Consider the linear time-dependent FDE of the form _x(t) = L(t)xt, where L(t) is a boundedlinear operator on the spa
e of 
ontinuous fun
tions. Then the Riesz Representation Theoremyields that L(t)xt has the form (1.3) with � = �(s; t). Therefore it seems like a natural extensionto assume the stru
ture des
ribed by (1.3) for the state-dependent 
ase. Moreover, representation(1.3) in
ludes dis
rete and distributed 
onstant and time-dependent delays, and the \usual" state-dependent delays, x(t� �(t; x(t)) or x(t� �(t; xt)) as well. A ni
e feature of this form is that it alsoallows delayed terms of the form1Xi=1 Ai(t; xt)x(t� �i(t; xt)) + Z 0��0 G(s; t; xt)x(t+ s) ds: (1.4)In [12℄ a linearization result was obtained for the autonomous version of (1.2). In this paperwe extend the results of [12℄, and, under slightly more restri
tive 
onditions, we prove stabilitytheorems using linearization about any non-zero 
onstant solution, not only the trivial solution.This generalization was motivated by the paper [15℄, where numeri
al experiments showed that theasymptoti
 stability of the trivial solution of the linearized equation implies the asymptoti
 stabilityof the 
onstant or periodi
 steady-state of the state-dependent FDE. We also note that the resultdoes not follow immediately by translating the 
onstant solution to the origin, in this 
ase we needstronger 
onditions that those for the trivial solution. The te
hnique of the proof we present hereis also a slightly di�erent from that of [12℄.The main problem to obtain linearization results for state-dependent FDEs is that it is diÆ
ult todi�erentiate the delayed term in the presen
e of state-dependent delays (see a detailed dis
ussion oflinearization and di�erentiability of solutions with respe
t to parameters for state-dependent delayequations in [5℄, [18℄, [11℄ and [12℄). We shall de�ne a bounded linear operator, F : C ! Rn , andpropose _x(t) = Fxt as a 
andidate for the linearized equation about the trivial solution. This is notthe \true" linearization at zero, sin
e the delayed term is not ne
essarily di�erentiable at zero (inthe spa
e C), but using assumption (H2) (ii) below, we 
an get an estimate on the error repla
ingthe right hand side of the equation by Fxt (see Lemma 3.2 below), whi
h turns out to be suÆ
ientto prove that the asymptoti
 stability of the 
orresponding linearized equation implies that of thenonlinear equation.The 
lass of autonomous FDEs with state-dependent delays we investigate is des
ribed in detailesin Se
tion 2, and Se
tion 3 
ontains our main theorem 
on
erning linearized stability about a
onstant steady-state (see Theorem 3.3 below).We 
lose this se
tion by introdu
ing some notations whi
h will be used throughout this paper.Let j � j denote a �xed ve
tor norm on Rn , and the 
orresponding indu
ed matrix norm on Rn�n isdenoted by j � j, as well. The partial derivatives of a fun
tion f of two variables with respe
t to its�rst and se
ond variables is denoted by D1f and D2f , respe
tively.We denote the spa
e of 
ontinuous fun
tions  : [�r; 0℄! Rn equipped with the supremum normk k � maxfj (s)j : s 2 [�r; 0℄g by C. Let L1 denote the Bana
h-spa
e of Lebesgue-measurable,essentially bounded fun
tions  : [�r; 0℄ ! Rn with norm j jL1 � ess supfj (s)j : s 2 [�r; 0℄g.W 1;1 is the Sobolev spa
e of absolutely 
ontinuous fun
tions  : [�r; 0℄ ! Rn with essentiallybounded derivatives. The norm in this Bana
h-spa
e is de�ned by j jW 1;1 � max(k k; j _ jL1).Let X be any normed linear spa
e. We denote the 
losed ball with radius % 
entered at the pointa 2 X by BX(a; %), i.e., BX(a; %) = fx 2 X : ja� xjX � %g.



LINEARIZED STABILITY IN FDES WITH STATE-DEPENDENT DELAYS 32. A Class of State-Dependent Delay Equations. Consider the nonlinear state-dependentdelay system _x(t) = f(x(t); �(xt; xt)); t � 0 (2.1)with initial 
ondition x(t) = '(t); t 2 [�r; 0℄: (2.2)We assume the following 
onditions throughout the paper:(H1) f : 
1 � 
2 ! Rn is 
ontinuously di�erentiable, where 
1 and 
2 are open subsets of Rn ,(H2) � : 
3 � C ! Rn , where 
3 is an open subset of C, and(i) � is linear in its se
ond argument, and there exists L1 � 0 su
h thatj�( ; �)j � L1k�k;  2 C;(ii) � is lo
ally Lips
hitz-
ontinuous in its �rst argument, i.e., for every M � 
3 
ompa
tsubset of C there exists a 
onstant L2 = L2(M) su
h thatj�( ; �)� �( ~ ; �)j � L2j _�jL1k � ~ k (2.3)for all � 2 W 1;1,  ; ~ 2M ,(H3) ' 2 C.It follows from property (H2) (i) and the Riesz Representation Theorem that the fun
tion � hasthe representation �( ; �) � Z 0�r ds�(s;  )�(s);where �(�;  ) is a matrix valued fun
tion of bounded variation. Therefore (2.1) is an autonomousversion of (1.2).Remark 2.1. We note that in [10℄ and [12℄ assumption (H2) (ii) was repla
ed by (H2) (ii'), where(2.3) was 
hanged to j�( ; �) � �( ~ ; �)j � L2j�jW 1;1k � ~ k:The di�eren
e between the two 
onditions is that this latter 
ondition allows a larger 
lass of delayedterms, in
luding the autonomous version of (1.4). But if we assume the stronger 
ondition (2.3),that ex
ludes the \distributed" delay terms of (1.4), and in
ludes only point state-dependent termsof the form �( ; �) = 1Xi=1 Ai�(��i( )); (2.4)where it is easy to formulate 
onditions on Ai and �i whi
h imply (H2) (ii). Note that the 
lassof state-dependent terms satisfying this 
ondition still in
ludes the \usual" point state-dependentdelays �( ; �) = �(��( )) or �( ; �) = �(��( (0)));where (2.3) 
an be satis�ed naturally assuming Lips
hitz-
ontinuity of � .We introdu
e the simplifying notation �( ) � �( ;  ):Then the right-hand-side of (2.1) 
an be written shortly as f(x(t);�(xt)).It is easy to see that in order have a well-posed problem, the initial fun
tion ' has to satisfy'(0) 2 
1; �(') 2 
2 and ' 2 
3: (2.5)We re
all the following result from [10℄ 
on
erning the well-posedness of IVP (2.1)-(2.2). Noteagain that this result was proved in [10℄ under the weaker 
ondition (H2) (ii') instead of (H2) (ii).



4 F. HARTUNG AND J. TURITheorem 2.2. Assume (H1){(H3), and (2.5) holds for ~'. Then there exist � > 0 and Æ > 0 su
hthat IVP (2.1)-(2.2) has a solution x(t;') on [0; �℄ for all ' 2 BC( ~'; Æ). Moreover, if we assumethat ' 2 W 1;1, i.e., ' is Lips
hitz-
ontinuous, then the solution is unique, and there exists L > 0su
h that jx(�;')t � x(�; ~')tjW 1;1 � Lj'� ~'jW 1;1 for all t 2 [0; �℄.Note that uniqueness is not required when we study stability, therefore we will assume (H3)instead of ' 2 W 1;1.We shall need the following estimate of �.Lemma 2.3. Assume (H2). Let M be a 
ompa
t subset of 
3, L1 be the 
onstant from (H2) (i),and L2 be the 
onstant 
orresponding to M from (H2) (ii). Thenj�( )� �( ~ )j � (L1 + L2j _~ jL1)k � ~ jjfor  ; ~ 2M and ~ 2W 1;1.Proof. The statement follows immediately from the relation�( )� �( ~ ) = �( ;  � ~ ) + �( ; ~ )� �( ~ ; ~ )and assumption (H2) (i) and (ii).The above lemma has immediately the following 
orollary.Corollary 2.4. Assume (H2). Let L1 be the 
onstant from (H2) (i), and 
 2 C be a 
onstantfun
tion. Then j�( )� �(
)j � L1k � 
kfor any  2 
3.3. Linearized Stability. Consider again the state-dependent delay equation_x(t) = f(x(t);�(xt)); t � 0: (3.1)Let �x be a 
onstant fun
tion de�ned on [�r;1). For simpli
ity, both its value �x(t) and its segmentfun
tion �xt at any t will be denoted as �x. Therefore we will write f(�x;�(�x)) for substituting it to theright-hand-side of (3.1). It should always be 
lear from the 
ontext whether �x denotes a 
onstantve
tor or a 
onstant fun
tion.We assume that �x is a solution of (3.1), i.e.,f(�x;�(�x)) = 0: (3.2)The sets 
1, 
2 and 
3 are opens subsets of the respe
tive spa
e, therefore there exist positive
onstants %1, %2 and %3 su
h thatBRn(�x; %1) � 
1; BRn(�(�x); %2) � 
2 and BC(�x; %3) � 
3:We de�ne the linear operator F : C ! Rn asso
iated to �x byF � D1f(�x;�(�x)) (0) +D2f(�x;�(�x))�(�x;  ) (3.3)and the fun
tion g : C ! Rn ; g( ) � f( (0);�( ))� F : (3.4)Note that the linear operator F is a bounded operator, sin
e by (H2) (i) it satis�esjF j � �jD1f(�x;�(�x))j+ jD2f(�x;�(�x))jL1�k k:



LINEARIZED STABILITY IN FDES WITH STATE-DEPENDENT DELAYS 5By this notation we 
an rewrite (2.1) as_x(t) = Fxt + g(xt); t � 0; (3.5)and therefore we 
an 
onsider it as a perturbation of the autonomous linear delay equation_x(t) = Fxt; t � 0: (3.6)We denote the fundamental solution of (3.6) by U(t), i.e., it is a matrix valued solution of theinitial value problem _U(t) = FUt; t � 0; (3.7)U(t) = � I; t = 0;0; t < 0: (3.8)It is known (see, e.g., [9℄) that the trivial solution of (3.6) is exponentially stable, if and only if thereexist 
onstants K0 � 1 and �0 > 0 su
h thatjU(t)j � K0e��0t; t � 0: (3.9)We also re
all (see, e.g., [9℄) that the trivial solution of (3.6) is asymptoti
ally stable, if and only ifit is exponentially stable.The proof of our main theorem will be based on the following two lemmas.Lemma 3.1. Assume (H1){(H3), and let �x be a 
onstant fun
tion satisfying (3.2). Let T > 0 begiven, and let x be a solution of (3.1) satisfyingjx(t)� �xj � %3 for t 2 [�r; T ℄: (3.10)Then there exists a 
onstant N1 > 0 independent of T su
h thatj _x(t)j � N1kxt � �xk; t 2 [0; T ℄ (3.11)and kxt � �xk � eN1tk'� �xk; t 2 [0; T ℄: (3.12)Proof. Le L1 be the 
onstant from (H2) (i), and suppose (3.10). Then, by Corollary 2.4,j�(xt)� �(�x)j � L1kxt � �xk � L1%3;and therefore x(t) 2 BRn(�x; %3) and �(xt) 2 BRn(�(�x); L1%3) for t 2 [0; T ℄. Hen
e assumption (H1)yields that there exists a 
onstant L0 � 0 su
h thatj _x(t)j = jf(x(t);�(xt))� f(�x;�(�x))j � L0�jx(t)� �xj+ j�(xt)� �(�x)j�:Then Lemma 2.3 implies (3.11) with N1 = L0(1 + L1).To prove (3.12), 
onsider the inequalitiesjx(t) � �xj � j'(0)� �xj+ Z t0 j _x(s)j ds � k'� �xk+N1 Z t0 kxs � �xk ds:Let v(t) � maxfjx(s)� �xj : �r � s � tg. Thenjx(t) � �xj � k'� �xk+N1 Z t0 v(s) ds; t 2 [0; T ℄;and sin
e the right-hand-side is monotone in
reasing in t, it impliesv(t) � k'� �xk+N1 Z t0 v(s) ds; t 2 [0; T ℄:Therefore Gronwall's inequality proves (3.12), sin
e kxt � �xk � v(t).



6 F. HARTUNG AND J. TURIWe will need the following estimate of g.Lemma 3.2. Assume (H1){(H3), and let �x be a 
onstant fun
tion satisfying (3.2). Then thereexists a 
onstant N2 � 1 su
h that for every � > 0 there exists a 
onstant � = �(�) > 0 su
h that� � %3, and jg(xt)� g(�x)j � N2(� + 1)kxt � �xk; t 2 [0; r℄; (3.13)and jg(xt)� g(�x)j � N2�� + k _xtk�kxt � �xk; t � r; (3.14)for all solution x of (3.1) satisfyingjx(t)� �xj < � for t � �r: (3.15)Proof. The de�nition of g and F , and the linearity of � in its se
ond argument implyjg(xt)� g(�x)j= ���f(x(t);�(xt))� f(�x;�(�x))� D1f(�x;�(�x))(x(t) � �x)�D2f(�x;�(�x))(�(�x; xt)� �(�x; �x))���� ���f(x(t);�(xt))� f(�x;�(�x))� D1f(�x;�(�x))(x(t) � �x)�D2f(�x;�(�x))(�(xt)� �(�x))���+���D2f(�x;�(�x))(�(xt; xt)� �(�x; xt))���� sup0<�<1���D1f��x+ �(x(t) � �x);�(�x) + �(�(xt)� �(�x))��D1f(�x;�(�x))���jx(t) � �xj+ sup0<�<1���D2f��x+ �(x(t) � �x);�(�x) + �(�(xt)� �(�x))��D2f(�x;�(�x))���� j�(xt)� �(�x)j+ ���D2f(�x;�(�x))(�(xt; xt)� �(�x; xt))���: (3.16)Fix any � > 0. By the 
ontinuous di�erentiability of f guaranteed by (H1), there exists �1 > 0 su
hthat if ju� ~uj; jv � ~vj � �1, u; ~u 2 BRn(�x; %1) and v; ~v 2 BRn(�(�x); %2), thenjD1f(u; v)�D1f(~u; ~v)j < � and jD2f(u; v)�D2f(~u; ~v)j < �: (3.17)Let L1 be the 
onstant from (H2) (i). Corollary 2.4 yieldsj�(xt)� �(�x)j � L1kxt � �xk; t � 0for all solution x of (3.1). Let � � min(�1; %1; �1=L1; %2=L1). Thenj�(xt)� �(�x)j � min(�1; %2); t � 0;for all solution x satisfying (3.15).Therefore, for su
h x, inequality���Dif��x+ �(x(t) � �x);�(�x) + �(�(xt)� �(�x))�� Dif(�x;�(�x))��� < � (3.18)holds for all t � 0, 0 � � � 1 and i = 1; 2. It follows from (H2) (ii) that �(xt; �x) = �(�x; �x) for t � 0,therefore the linearity of � in its se
ond argument yields�(xt; xt)� �(�x; xt) = �(xt; xt � �x)� �(�x; xt � �x); t � 0: (3.19)



LINEARIZED STABILITY IN FDES WITH STATE-DEPENDENT DELAYS 7Then 
ombining (3.16), (3.18) and (3.19) we getjg(xt)� g(�x)j � �jx(t) � �xj+ �j�(xt)� �(�x)j+ jD2f(�x;�(�x))jj�(xt; xt � �x)� �(�x; xt � �x)j (3.20)for any x satisfying (3.15).For t 2 [0; r℄, using (H2) (i), we havej�(xt; xt � �x)� �(�x; xt � �x)j � 2L1kxt � �xk:Sin
e _x(t) = f(x(t);�(xt)) for t � 0, and f is 
ontinuous on BRn(�x; %1) � BRn(�(�x); %2), thereexistsm > 0 su
h that j _xtjL1 � m for any x satisfying (3.15) and t � r. Moreover, _x(t) is 
ontinuousfor t � 0. Let M be the 
losure of the set BC(�x; �)\fy 2W 1;1 : j _yjL1 � mg in C. Then M � 
3,and by the Arsela-As
oli Lemma, it is a 
ompa
t subset of C. Let L2 be the 
onstant 
orrespondingto M from (H2) (ii). Then we getj�(xt; xt � �x)� �(�x; xt � �x)j � L2k _xtkkxt � �xk; t � r:Let N2 � max(1 + L1; jD2f(�x;�(�x))jL2; jD2f(�x;�(�x))j2L1), then (3.13) and (3.14) follow from(3.20).We show that the exponential stability of the 
onstant steady-state solution �x of the nonlinearstate-dependent autonomous FDE (3.1) 
an be obtained by that of the linear autonomous FDE(3.6).Theorem 3.3. Assume (H1){(H3), and let �x be a 
onstant fun
tion satisfying (3.2). Let F be thelinear operator de�ned by (3.3). Suppose the trivial solution of (3.6) is exponentially stable, i.e.,there exist K0 � 1 and �0 > 0 su
h that (3.9) holds. Then for every 0 < � < �0 there exists Æ > 0and K � 1 su
h that if k'� �xk < Æ, then any 
orresponding solution x(t) = x(t;') of (3.1) satis�esjx(t)� �xj � Ke��tk'� �xk; t � 0;i.e., �x is an exponentially stable steady-state of (3.1).Proof. Fix "0 > 0 and let 0 < " < "0, and let 0 < � < �0 be �xed. Let N2 � 1 be the 
onstant fromLemma 3.2, and let � � "(�0 � �)2(1 + ")K0N2 :De�ne � = �(�) by Lemma 3.2. Let N1 be the 
onstant de�ned by Lemma 3.1, and letÆ1 � min�%1; %3; �; �N1� and K � K0 �1 + r�N2e(�0+N1)r� ;and �nally, let Æ � Æ1(1 + "0)K :Let ' 2 C be su
h that k' � �xk < Æ. Sin
e Æ < Æ1, there exists a neighborhood of 0 su
h thatjx(t) � �xj < Æ1 for t within this neighborhood. Suppose there exists T > 0 su
h thatjx(t)� �xj < Æ1; for t 2 [0; T ); and jx(T )� �xj = Æ1: (3.21)The de�nition of Æ1, (3.21) and Lemma 3.1 imply thatj _x(t)j � N1kxt � �xk � N1Æ1 � �; for t 2 [0; T ℄: (3.22)The variation-of-
onstants formula (see, e.g., [9℄) impliesx(t) = U(t)'(0) + Z t0 U(t� s)g(xs) ds; t � 0:



8 F. HARTUNG AND J. TURISimilarly, �x = U(t)�x+ Z t0 U(t� s)g(�x) ds; t � 0:Therefore jx(t) � �xj � jU(t)jj'(0)� �xj+ Z t0 jU(t� s)jjg(xs)� g(�x)j ds; t � 0: (3.23)Suppose T > r. Relations Æ1 � �, (3.9), (3.21), (3.23) and Lemma 3.2 imply for t 2 [r; T ℄jx(t) � �xj � K0e��0tk'� �xk+K0 Z t0 e��0(t�s)N2�kxs � �xk ds+ K0 Z r0 e��0(t�s)N2kxs � �xk ds+K0 Z tr e��0(t�s)N2k _xskkxs � �xk ds:Multiplying both sides of this inequality by e�t, and using the de�nition of K and estimates (3.12)and (3.22), we gete�tjx(t) � �xj � K0e(���0)tk'� �xk+K0e(���0)t Z r0 e�0sN2�eN1rk'� �xk ds+ K0e(���0)t Z t0 e�0sN22�kxs � �xk ds� Kk'� �xk+K0N22�e(���0)t Z t0 e�0skxs � �xk ds:Note that the last inequality holds for t 2 [0; r℄ and for T � r, as well. Let v(t) = maxfe�sjx(s)� �xj :�r � s � tg. Then we havee�tjx(t) � �xj � Kk'� �xk+K0N22�e(���0)tv(t) Z t0 e(�0��)s ds= Kk'� �xk+K0N22�v(t) Z t0 e(���0)s ds; t 2 [0; T ℄:Sin
e the right-hand-side is monotone in
reasing in t, it impliesv(t) � Kk'� �xk+K0N22�v(t) Z t0 e(���0)s ds� Kk'� �xk+ K0N22��0 � � v(t); t 2 [0; T ℄:Then, using the de�nition of �, we getv(t) � Kk'� �xk+ "1 + "v(t); for t 2 [0; T ℄;and hen
e jx(t)� �xj � e��tv(t) � (1 + ")Ke��tk'� �xk; t 2 [0; T ℄:But this yields Æ1 = jx(T )� �xj < (1 + "0)KÆ = Æ1;whi
h 
ontradi
ts to the de�nition of T . Therefore T =1, andjx(t) � �xj � (1 + ")Ke��tk'� �xkholds for all t � 0. This implies the statement of the theorem, sin
e " was arbitrary small positivenumber.
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