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Abstract. In this paper we prove that a constant steady-state of an autonomous state-dependent delay
equation is exponentially stable if a zero solution of a corresponding linear autonomous equation is
exponentially stable.

1. Introduction and notations. Functional differential equations (FDEs) with state-dependent
delays appear frequently in applications as model equations (see, e.g., [1]-[3], [17]), and the study
of such equations is an active research area (see, e.g., [4]-[7], [10]-[16], [18]—[21]). Stability of the
solution is one of the most important qualitative property of a model. There are many papers which
give sufficient conditions for the stability of the trivial (z = 0) solution in state-dependent FDEs
(see, e.g., [7], [8], [20], [21]).

In [4] and [12] linearized stability results were proved for certain classes of state-dependent FDEs
concerning the asymptotic stability of the trivial solution. It was shown that the asymptotic stability
of the trivial solution of the equation is implied by that of the trivial solution of an associated linear
delay equation, the so-called linearized equation. Note the results of [4] and [12] are equivalent in
the sense that they both provide the same associated linear equation for nonlinear equations which
can be rewritten in both forms, but the classes of the equations studied were different. Cooke and
Huang [4] investigated the nonlinear FDE with state-dependent delays of the form

s =0 (s [ dnolg(att +5 - (a)). (1)

where 7 : C' — [0,r1], n is a matrix valued function of bounded variation, ro > 0, and r is such
that r > rg + r;. Motivated by the form of the delayed term in (1.1), the nonlinear FDE with
state-dependent distributed delays

z(t)=f (t,a:(t),/o dsp(s, t, ) x(t + s)) ; t>0, (1.2)

—-r

—rg

was investigated in [10]. The term

/ dsp(s, t, ze)x(t + 5) (1.3)

—-r
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describing the delay dependence is a Stieltjes-integral of the solution segment z(t + -) with respect
to u(-,t,z+), which is a matrix valued function of bounded variations depending on time ¢ and the
state of the equation z;. Here and throughout this paper r > 0 is fixed and z; : [-r,0] = R" is
defined by x:(s) = x(t + s). For well-posedness results for (1.2) we refer to [10], the appendix of
[12], and see also Theorem 2.2 below.

Consider the linear time-dependent FDE of the form #(t) = L(t)z;, where L(t) is a bounded
linear operator on the space of continuous functions. Then the Riesz Representation Theorem
yields that L(t)z; has the form (1.3) with u = p(s,t). Therefore it seems like a natural extension
to assume the structure described by (1.3) for the state-dependent case. Moreover, representation
(1.3) includes discrete and distributed constant and time-dependent delays, and the “usual” state-
dependent delays, z(t — 7(t, z(t)) or x(t — (¢, z+)) as well. A nice feature of this form is that it also
allows delayed terms of the form

Z Ai(t,z)z(t — 75t 2)) + G(s, t,z)z(t + s) ds. (1.4)

—T0

In [12] a linearization result was obtained for the autonomous version of (1.2). In this paper
we extend the results of [12], and, under slightly more restrictive conditions, we prove stability
theorems using linearization about any non-zero constant solution, not only the trivial solution.
This generalization was motivated by the paper [15], where numerical experiments showed that the
asymptotic stability of the trivial solution of the linearized equation implies the asymptotic stability
of the constant or periodic steady-state of the state-dependent FDE. We also note that the result
does not follow immediately by translating the constant solution to the origin, in this case we need
stronger conditions that those for the trivial solution. The technique of the proof we present here
is also a slightly different from that of [12].

The main problem to obtain linearization results for state-dependent FDEs is that it is difficult to
differentiate the delayed term in the presence of state-dependent delays (see a detailed discussion of
linearization and differentiability of solutions with respect to parameters for state-dependent delay
equations in [5], [18], [11] and [12]). We shall define a bounded linear operator, F' : C — R", and
propose &(t) = Fz; as a candidate for the linearized equation about the trivial solution. This is not
the “true” linearization at zero, since the delayed term is not necessarily differentiable at zero (in
the space C'), but using assumption (H2) (ii) below, we can get an estimate on the error replacing
the right hand side of the equation by Fz; (see Lemma 3.2 below), which turns out to be sufficient
to prove that the asymptotic stability of the corresponding linearized equation implies that of the
nonlinear equation.

The class of autonomous FDEs with state-dependent delays we investigate is described in detailes
in Section 2, and Section 3 contains our main theorem concerning linearized stability about a
constant steady-state (see Theorem 3.3 below).

We close this section by introducing some notations which will be used throughout this paper.
Let | - | denote a fixed vector norm on R”, and the corresponding induced matrix norm on R**" is
denoted by | - |, as well. The partial derivatives of a function f of two variables with respect to its
first and second variables is denoted by D, f and D, f, respectively.

We denote the space of continuous functions ¢: [—r,0] — R™ equipped with the supremum norm
||| = max{|¢(s)|: s € [-r,0]} by C. Let L> denote the Banach-space of Lebesgue-measurable,
essentially bounded functions ¢ : [-r,0] = R with norm |¢)|p~ = esssup{|¥(s)|: s € [-r,0]}.
W is the Sobolev space of absolutely continuous functions ¢ : [-r,0] — R" with essentially
bounded derivatives. The norm in this Banach-space is defined by [¢)|y1.0c = max(||¢b|], [¢)]r).

Let X be any normed linear space. We denote the closed ball with radius g centered at the point
a € X by Bx(a; ), i.e.,, Bx(a; 0) ={z € X: |a — z|x < o}
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2. A Class of State-Dependent Delay Equations. Consider the nonlinear state-dependent
delay system
i(t) = fla(t), Az, 20)), t>0 (2.1)
with initial condition
z(t) = p(t), t € [-r,0]. (2.2)
We assume the following conditions throughout the paper:

(H1) f : Qi x Q9 — R is continuously differentiable, where ©; and Qs are open subsets of R",
(H2) A: Q3 x C — R™, where Q3 is an open subset of C, and
(i) Ais linear in its second argument, and there exists L; > 0 such that

AW, Ol < Laligll,  $ed,

(ii) A is locally Lipschitz-continuous in its first argument, i.e., for every M C 3 compact
subset, of C' there exists a constant Ly = Lo(M) such that

IA@, &) = A3, €)| < Lal€|pe< ||t — 9| (2.3)

for all £ € W, o, ¢p € M,
(H3) ¢ € C.

It follows from property (H2) (i) and the Riesz Representation Theorem that the function A has
the representation
0
7,9 = [ dunls, 0)els),
-r
where u(-,1)) is a matrix valued function of bounded variation. Therefore (2.1) is an autonomous
version of (1.2).

Remark 2.1. We note that in [10] and [12] assumption (H2) (ii) was replaced by (H2) (ii’), where
(2.3) was changed to

AW, &) = AW, O] < Lal€lwree [l — 9.
The difference between the two conditions is that this latter condition allows a larger class of delayed
terms, including the autonomous version of (1.4). But if we assume the stronger condition (2.3),
that excludes the “distributed” delay terms of (1.4), and includes only point state-dependent terms
of the form

AW@=Zm&wwx (2.4)

where it is easy to formulate conditions on A; and 7; which imply (H2) (ii). Note that the class
of state-dependent terms satisfying this condition still includes the “usual” point state-dependent
delays

AW, §) =&(=7(®))  or  A,&) = &(=7(4(0))),

where (2.3) can be satisfied naturally assuming Lipschitz-continuity of 7.

We introduce the simplifying notation

A(W) =A@, ).
Then the right-hand-side of (2.1) can be written shortly as f(x(¢), A(z)).

It is easy to see that in order have a well-posed problem, the initial function ¢ has to satisfy
w(0) € Q1, A(p) € Q2 and ¢ € Qs. (2.5)

We recall the following result from [10] concerning the well-posedness of IVP (2.1)-(2.2). Note
again that this result was proved in [10] under the weaker condition (H2) (ii’) instead of (H2) (ii).
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Theorem 2.2. Assume (H1)-(H3), and (2.5) holds for ¢. Then there exist o > 0 and 6 > 0 such
that IVP (2.1)-(2.2) has a solution z(t;p) on [0,a] for all ¢ € Be(@; 0). Moreover, if we assume
that @ € W1 j.e., @ is Lipschitz-continuous, then the solution is unique, and there exists L > 0
such that |z(-;0)r — (@) tlwre < Lip — @lwr= for all t € 0, a).

Note that uniqueness is not required when we study stability, therefore we will assume (H3)
instead of ¢ € W1,
We shall need the following estimate of A.

Lemma 2.3. Assume (H2). Let M be a compact subset of Q3, Ly be the constant from (H2) (i),
and Ly be the constant corresponding to M from (H2) (ii). Then
[A@W) = A@)| < (L1 + La|d|=)lv — 4|
for i, € M and p € W,
Proof. The statement follows immediately from the relation
A(W) = A@) =A@, 9 = ) + A1, ¥0) = A, )
and assumption (H2) (i) and (ii). O

The above lemma has immediately the following corollary.

Corollary 2.4. Assume (H2). Let Ly be the constant from (H2) (i), and ¢ € C be a constant
function. Then

[A(Y) = Ale)| < Laf[y — ]
for any ¢ € Q3.

3. Linearized Stability. Consider again the state-dependent delay equation
i(t) = f@(t), Aw), >0, (3.1)
Let Z be a constant function defined on [—r, 00). For simplicity, both its value Z(t) and its segment
function Z; at any ¢ will be denoted as Z. Therefore we will write f(Z, A(Z)) for substituting it to the
right-hand-side of (3.1). It should always be clear from the context whether Z denotes a constant

vector or a constant function.
We assume that Z is a solution of (3.1), i.e.,

F(@,A()) = 0. (3.2)

The sets Qq, Q5 and 3 are opens subsets of the respective space, therefore there exist positive
constants g1, 02 and g3 such that

Bgn(%; 01) C 1, Brn(A(Z); 02) C Q2 and Be(T; 03) C Qs.
We define the linear operator F': C' — R™ associated to Z by
Fo = Dy f(3, A(®))$(0) + Daf (7, AF) A, ) (3.3)
and the function
g: CoR,  g(¥) = f@(0),AW)) - Fy. (3.4)
Note that the linear operator F' is a bounded operator, since by (H2) (i) it satisfies

Pyl < (ID1f (@, A@)| + Do (@ A@)| L )[4



LINEARIZED STABILITY IN FDES WITH STATE-DEPENDENT DELAYS 5

By this notation we can rewrite (2.1) as

i(t) = Fre+g(x),  t20, (3.5)
and therefore we can consider it as a perturbation of the autonomous linear delay equation
z(t) = Fay, t > 0. (3.6)

We denote the fundamental solution of (3.6) by U(#), i.e., it is a matrix valued solution of the
initial value problem

Uty = FU, t>0, (3.7)
ve = {q 120 9)

It is known (see, e.g., [9]) that the trivial solution of (3.6) is exponentially stable, if and only if there
exist constants Ko > 1 and ag > 0 such that

|U(t)| < Koe >, t>0. (3.9)
We also recall (see, e.g., [9]) that the trivial solution of (3.6) is asymptotically stable, if and only if
it is exponentially stable.

The proof of our main theorem will be based on the following two lemmas.

Lemma 3.1. Assume (H1)-(H3), and let T be a constant function satisfying (3.2). Let T > 0 be
given, and let x be a solution of (3.1) satisfying

lz(t) — Z| < o3 fort € [-r,T]. (3.10)
Then there exists a constant N1 > 0 independent of T such that
|2(t)| < Nyl|lze — Z||, t€[0,T] (3.11)
and
oy — 7l < Mo -l te[o,T]. (3.12)

Proof. Le L; be the constant from (H2) (i), and suppose (3.10). Then, by Corollary 2.4,
|A(z) — A(Z)| < Lal|z — Z|| < Laos,

and therefore x(t) € Br=(Z; 03) and A(z;) € Bra(A(Z); Lyo3) for t € [0,T]. Hence assumption (H1)
yields that there exists a constant Lg > 0 such that

()] = | £@(t), Alw)) = £(@,A@)] < Lo (o) = 7] + |Az) - A@)]).

Then Lemma 2.3 implies (3.11) with Ny = Lo(1 + Ly).
To prove (3.12), consider the inequalities

[2(t) — 2] < |$(0) — | + / #(s)|ds < g — 3l + Ny / oy — &l ds.
Let v(t) = max{|z(s) — Z[: —r < s <t}. Then
2(t) — 71 < lp — &l + My /Otv<s> ds,  te0,T].
and since the right-hand-side is monotone increasing in ¢, it implies
o) < |l = 7l + M /Ot o(s)ds,  te[0,T].

Therefore Gronwall’s inequality proves (3.12), since ||z — Z|| < v(#). O
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We will need the following estimate of g.

Lemma 3.2. Assume (H1)-(H3), and let T be a constant function satisfying (3.2). Then there
exists a constant No > 1 such that for every n > 0 there exists a constant § = 6(n) > 0 such that
6 < o3, and

l9(a) = 9(8) < Naln + Dl = 7ll, ¢ € [0,1], (3.13)
and

l9@0) = 9@ < No (1 + Nl )lloe =2l ¢ >, (3.14)
for all solution x of (3.1) satisfying

z(t) —Z| <6  fort> —r. (3.15)
Proof. The definition of g and F, and the linearity of \ in its second argument imply
l9(a) - 9(2)
= |f@(®).A@) - £3.A@)
— Dif(#,A@)((t) - ) = Do f (3, A@) (A@,20) A3, 2))|

< |f@®.A@) - 1@, A@)
= Dif(2,A(2))(2(t) = 7) — Do f (7, A(7)) (A1) — A(i’))‘
+| D2 @, A@) Awr, 70) = A 20))|
< sup [Dif(a+vlat) =) M&) + v(A@r) = A@) = D1 f(@ Aa)|[2(t) ~ 7
+ Oiligl‘Dﬁ(i +v(a(t) = ), A@) + v(A(w) = A@))) - Daf (7, @)
JA@) = A@)| + |D2f (@ A@) Nar 20) = A&, 20))| (3.16)

Fix any > 0. By the continuous differentiability of f guaranteed by (H1), there exists 6; > 0 such
that if ju — @, v — 0| < 61, u,@ € Bra(Z; 01) and v, 0 € Bra(A(Z); 02), then

|D1f(u,v)—D1f(ﬂ,17)| <n and |D2f(uav)_D2f(ﬂ:ﬁ)‘ <n. (317)
Let Ly be the constant from (H2) (i). Corollary 2.4 yields
[Az) = A@)] < Lafjzg —2f,  t2>0

for all solution  of (3.1). Let § = min(6:, o1, 1/L1, 02/L1). Then
|A(£Ut) - A(ZE)‘ S min(el: 92)7 t 2 07

for all solution z satisfying (3.15).
Therefore, for such x, inequality

Dif (5 +v(@(t) = 2),A@) + v(A(@) = A@)) = Dif (#,A@)| <7 (3.18)
holds for all ¢ > 0,0 <v <1 andi=1,2. It follows from (H2) (ii) that A(z:, %) = \(Z, Z) for ¢ > 0,
therefore the linearity of A in its second argument yields

)\(iEt,CUt) - /\(:E,a:t) = )\(iEt,ZEt — ZE) — A(CE,ZEt — ZE) t 2 0. (319)
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Then combining (3.16), (3.18) and (3.19) we get
9(ze) —g(@)] < nlz(t) = 2| + nlAz:) — A(Z))|
+ D2 f (2, M)A (@1, 20 — T) = (T, 2 — 7)) (3.20)
for any x satisfying (3.15).
For ¢ € [0, 7], using (H2) (i), we have
|>\(£Et,$t — CE) — )\(a?,xt — j)‘ S 2L1||£Et — j”

Since #(t) = f(x(t), A(x¢)) for t > 0, and f is continuous on Bgn(Z; 01) X Brn(A(Z); 02), there
exists m > 0 such that || < m for any z satisfying (3.15) and ¢t > r. Moreover, &(t) is continuous
for t > 0. Let M be the closure of the set B (7; 0) N {y € W1>°: |y|p~ < m} in C. Then M C Q3,
and by the Arsela-Ascoli Lemma, it is a compact subset of C. Let Ly be the constant corresponding
to M from (H2) (ii). Then we get

[Mzg, z — &) — A&, 2 — T)| < Lol|dl| ||z — Z]|, t>r.

Let Ny = max(1 + Ly, |D2f(Z,A(Z))|L2, |Daf(Z,A(Z))|2Ly), then (3.13) and (3.14) follow from
(3.20). O

We show that the exponential stability of the constant steady-state solution Z of the nonlinear
state-dependent autonomous FDE (3.1) can be obtained by that of the linear autonomous FDE
(3.6).

Theorem 3.3. Assume (H1)-(H3), and let T be a constant function satisfying (3.2). Let F' be the

linear operator defined by (3.3). Suppose the trivial solution of (3.6) is exponentially stable, i.e.,

there exist Ko > 1 and ag > 0 such that (3.9) holds. Then for every 0 < a < ag there exists § > 0

and K > 1 such that if || — Z|| < §, then any corresponding solution z(t) = z(t; p) of (3.1) satisfies
2(t) - 7l < Keotllg =3, >0,

i.e., T is an exponentially stable steady-state of (3.1).

Proof. Fixeg > 0and let 0 < € < g9, and let 0 < a < ag be fixed. Let Ny > 1 be the constant from
Lemma 3.2, and let

_ flag—a)

- 2(1 + E)KON2 '

Define § = 6(n) by Lemma 3.2. Let N; be the constant defined by Lemma 3.1, and let

U]

61 = min <Qla 03, 0: i) and K = Ky (1 + TnN2€(a0+N1)T) )

Ny
and finally, let
o1
(1 + Eo)K.
Let ¢ € C be such that ||¢ — Z|| < 4. Since § < 01, there exists a neighborhood of 0 such that
|z(t) — Z| < 01 for t within this neighborhood. Suppose there exists T' > 0 such that

)

|z(t) — Z| < 01, fort €10,7), and |z(T) - Z| = d;. (3.21)
The definition of 41, (3.21) and Lemma 3.1 imply that
6(0)] < Nilley — 7] < Nidy <7, fort€ [0.7]. (3.22)

The variation-of-constants formula (see, e.g., [9]) implies

o) = Ue(0) + [ Ult=s)g@)ds, 120
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Similarly,

F=U(t)i+ /t Ult — $)g(z)ds, £ 30,
Therefore
|lz(t) — @] < [U(t)|l¢(0) — Z| +/0 Ut - s)llg(zs) —g(z)|ds,  t>0. (3.23)

Suppose T > r. Relations é; < 6, (3.9), (3.21), (3.23) and Lemma 3.2 imply for ¢ € [r, T

t
z(t) — 2] < Koe’“°t||so—sﬁll+Ko/ e Nonlzs — 2| ds
0

r t
+ Ko/ e~ (=9 N, ||z, —5:||ds-|—K0/ e~ =) N, ||, |||z — Z|| ds.
0 r

Multiplying both sides of this inequality by e®!, and using the definition of K and estimates (3.12)
and (3.22), we get

r
ela(t) — 2| < Koe("““")tllw—fill+Koe(°““°)t/ e*** None™'" || — || ds
0

t
+ ng(afao)t/ €’ No2n||zs — Z|| ds
0

t
< K||<p—:E||+K0N22ne(a_°‘°)t/ ||z — Z|| ds.
0

Note that the last inequality holds for ¢ € [0, 7] and for T' < r, as well. Let v(t) = max{e®®|z(s)—Z|:
—r < s < t}. Then we have

™|z (t) — 7

IN

t
K|lp — Z|| + KoNo2ne@=0)ty (1) / el@0=a)s g
0

t
K||<p—§:||+K0N22nv(t)/ elema0)sqs e 0,T).
0

Since the right-hand-side is monotone increasing in ¢, it implies

t
(t) < KIItp—J‘:II-I—KoNanv(t)/ p(a=a0)s g
0
KoN52
< Kllso—:ﬁ||+a°7”v(t), te[0,T].
-

Then, using the definition of 7, we get

c v(t), for ¢t € [0,T7,

t) < Kl|lp—z|| +
o(t) < Kllp = all + 1

and hence
lz(t) — 2| < e ™wv(t) < (1 +¢e)Ke *p -z, t €10,T].
But this yields
0 =1z(T) —%| < (1+¢€9)Kd = 4y,
which contradicts to the definition of T'. Therefore T' = oo, and
|z(t) — 2] < (1 +e)Ke™*||p — 7|

holds for all ¢ > 0. This implies the statement of the theorem, since € was arbitrary small positive
number. |
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