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AbstratIn this paper we investigate the exponential stability of the trivial solution of thestate-dependent delay di�erential equation _x(t) = a(t)x(t � �(t; x(t))). It is shownthat, under some onditions, this state-dependent equation is exponentially stable, ifthe trivial solution of _y(t) = a(t)y(t � �(t; 0)) is exponentially stable. Assuming theexistene of bounded partial derivatives of the delay funtion, the reverse statementwill also be proved.AMS(MOS) subjet lassi�ation: 34K, 34D1 IntrodutionIn this paper we study the asymptoti behavior of the state-dependent delay equation_x(t) = a(t)x(t� �(t; x(t))): (1.1)Similar questions have been studied in [5℄{[7℄, [13℄{[22℄ for various lasses of state-dependentequations. [5℄ and [6℄ show that the asymptoti behavior of the autonomous version of(1.1) for a(t) = a < 0 is equivalent to that of the orresponding ODE _x(t) = ax(t), i.e.,the trivial solution of both equations are exponentially stable. [14℄ proves that equation(1.1) with a(t) = a > 0 and �(t; u) = juj is unstable, but the speed of the onvergeneof the solution to 1 is not neessary exponential. [22℄ relates the asymptoti behaviorof (1.1) to the ODE _x(t) = a(t)x(t), assuming a(t) � 0, 0 � �(t; u) � Kjuj. [7℄ and[13℄ ompares the asymptotis of some lasses of autonomous state-dependent equationswith distributed delays to ertain onstant delay equations (to the so-alled \linearized"equations). [12℄ shows that, under ertain onditions, the trivial solution of a time-, but1



not state-dependent delay equation is exponentially stable if and only if the trivial solutionof a ertain onstant delay equation is exponentially stable.Motivated by [12℄, and based on a tehnique applied for the investigation of the asymp-toti stability problem in delay perturbed equations in [10℄, we investigate the exponentialstability of (1.1) through that of the linear equation_y(t) = a(t)y(t� �(t; 0)): (1.2)We will show (see Theorem 2.2 below) that if the trivial solution of the \linearized" equation(1.2) is exponentially stable, then so is the trivial solution of (1.1). For equations with someextra smoothness on the delay we will prove that the statement an be reversed, i.e., (1.1) isexponentially stable if and only if (1.2) is exponentially stable (see Theorem 2.3 below). Asa onsequene of our theorems, we an give expliit suÆient onditions for the exponentialstability of (2.1) (see Corollary 2.4 below), and neessary and suÆient onditions in theases the equations are autonomous (see Corollary 2.5 below) or the linearized equation(1.2) is an ordinary di�erential equation (see Corollary 2.6 below).Finally, we refer the interested reader (without ompleteness) to [1℄{[4℄, [15℄{[19℄, [23℄for some reent appliations and general theory of state-dependent di�erential equationsfrom the reent mathematial literature.2 Main resultsConsider the salar state-dependent delay equation_x(t) = a(t)x(t� �(t; x(t))); t � t0; (2.1)with initial ondition x(t) = '(t); t 2 [t0 � r; t0℄: (2.2)We assume that t0 � 0 and r > 0 are �xed, and(H1) a : [t0;1)! R is ontinuous, and ja(t)j � a0, t 2 [t0;1) for some onstant a0;(H2) the delay funtion � : [t0;1)� R ! [0; r℄ is ontinuous;(H3) there exist a onstant  > 0 and a ontinuous funtion ! : (�; ) ! [0;1), suhthat j�(t; u)� �(t; 0)j � !(u); t 2 [t0;1); u 2 (�; );and !(0) = 0.Note that for autonomous equations (H1) and (H3) are automatially satis�ed, assuming� : R ! [0; r℄ is ontinuous.Throughout this paper we use the notation k'k � maxfj'(s)j : t0 � r � s � t0g. Thisnotation does not emphasize the dependene of k'k on t0, beause we an onsider t0 tobe �xed. 2



Lemma 2.1 Assume (H1){(H2), and let ' be ontinuous on [t0 � r; t0℄. Then the initialvalue problem (2.1)-(2.2) has a solution, x, whih is de�ned for all t � t0, and satis�esjx(t)j � ea0(t�t0)k'k (2.3)for all t � t0.Proof The existene of solution of (2.1)-(2.2) on an interval [t0 � r; T ) for some T > t0follows, e.g., from [8℄ or [9℄. Here we prove that (2.3) is satis�ed for t 2 [t0; T ), whih easilyyields that the solution an be extended for all t � t0. Integrating (2.1) from t0 to t > t0we get x(t) = '(t0) + Z tt0 a(s)x(s� �(s; x(s))) ds;therefore for t 2 [t0; T ) jx(t)j � k'k+ a0 Z tt0 maxt0�r�u�s jx(u)j ds:The right-hand-side is monotone in t and jx(t)j � k'k for t 2 [t0 � r; t0℄, thereforemaxt0�r�u�t jx(u)j � k'k+ a0 Z tt0 maxt0�r�u�s jx(u)j ds; t 2 [t0; T );whih proves the statement, using Gronwall's inequality. 2Note that the uniqueness of the solution of initial value problem (2.1)-(2.2) (whih isnot neessary to have to disuss stability) does not follow from our assumptions (H1){(H3).See [13℄ for a ounterexample, and [8℄, [9℄ or [13℄ for onditions implying existene anduniqueness of solutions for more general state-dependent delay equations.We assoiate the linear delay equation_y(t) = a(t)y(t� �(t; 0)); t � t0 (2.4)to (2.1). This equation an be onsidered as the \linearization" of (2.1), sine, as The-orem 2.2 shows, the exponential stability of the trivial solution of (2.4) implies that ofequation (2.1).The trivial solution of the linear equation (2.4) is exponentially stable, if there existonstants � > 0 and K > 0 suh that any solution of (2.4) orresponding to initial time t0satis�es jx(t)j � Ke��(t�t0)k'k; t � t0: (2.5)It is known (see, e.g., [11℄) that, under our assumptions, the exponential stability of thetrivial solution of (2.4) is equivalent to the uniform asymptoti stability of the trivial so-lution. The trivial solution of the nonlinear equation (2.1) is alled exponentially stable, ifthere exist positive onstants K, � and �, suh that (2.5) holds for any solution x of (2.1)orresponding to any initial time t0 � 0 and initial funtion satisfying k'k < �.3



Theorem 2.2 Suppose (H1){(H3). If the trivial solution of (2.4) is exponentially stable,then the trivial solution of (2.1) is exponentially stable, as well.Proof We an rewrite (2.1) in the form_x(t) = a(t)x(t� �(t; 0)) + f(t);where f(t) � a(t)�x(t� �(t; x(t))) � x(t� �(t; 0))�:This equation an be onsidered as a perturbation of (2.4) by the foring term f(t), thereforethe variation-of-onstants formula (see, e.g., [11℄) yieldsx(t) = y(t) + Z tt0 v(t; s)f(s) ds; t � t0; (2.6)where y is the solution of (2.4) assoiated to the initial ondition (2.2), and v is the funda-mental solution of (2.4), i.e., the solution of the initial value problem�v�t (t; s) = a(t)v(t� �(t; 0); s); t � s; (2.7)v(t; s) = � 1; t = s;0; t < s: (2.8)It is known (see, e.g., [11℄) that the assumed exponential stability of (2.4) is equivalent tothat there exist onstants K1;K2 � 1 and � > 0 that the solution y and the fundamentalsolution v of (2.4) satisfy the exponential estimatesjy(t)j � K1e��(t�t0)k'k; t � t0; and jv(t; s)j � K2e��(t�s); t � s:Therefore it follows from (2.6) thatjx(t)j � K1e��(t�t0)k'k +K2 Z tt0 e��(t�s)jf(s)j ds: (2.9)Let t1 � minft � �(t; x(t)); t � �(t; 0)g and t2 � maxft � �(t; x(t)); t � �(t; 0)g. Thenjf(t)j = ja(t)jjx(t2) � x(t1)j. We onsider three ases: (i) t2 � 0, (ii) t1 � 0 and (iii)t1 < 0 < t2. In ase (i) we have the estimate jf(t)j � 2a0k'k. In ase (ii) equation (2.1)implies thatjf(t)j = ja(t)j ����Z t2t1 x(s� �(s; x(s))) ds���� � a0j�(t; x(t)) � �(t; 0)j�k'k + maxt0�u�t jx(u)j�:In ase of (iii) we have by ases (i) and (ii) thatjf(t)j � a0jx(t2)� x(0)j+ a0jx(0)� x(t1)j � a0t2�k'k + maxt0�u�t jx(u)j� + 2a0k'k:4



Therefore, using (H3), for all t � 0jf(t)j � 2a0k'k+ a0!(x(t))�k'k + maxt0�u�t jx(u)j� (2.10)holds. It follows from (2.9) and (2.10) thatjx(t)j � K1e��(t�t0)k'k+K2a0e��t(k'k+ maxt0�u�t jx(u)j)Z tt0 e�s�2k'k+!(x(s))� ds: (2.11)Assumption (H3) implies that there exists 0 < "0 <  suh thatK2a0� maxjuj�"0 !(u) � 14 : (2.12)Let 0 < " � "0 be arbitrary, and de�neÆ � min( "3(K1 + 12) ; �8K2a0) : (2.13)Fix an initial funtion satisfying k'k � Æ, and let x be any solution of (2.1) orresponding tothis initial funtion. Then j'(0)j � Æ < ", therefore there exists T > t0 suh that jx(t)j < "for t 2 [t0; T ). Suppose jx(T )j = ". Then (2.11), (2.12) and (2.13) imply that" � K1e��(T�t0)Æ +K2a0e��T (Æ + ")(2Æ +maxjuj�"!(u))Z Tt0 e�s ds� K1Æ + K2a0� (Æ + ")(2Æ +maxjuj�"!(u))= K1Æ + K2a0� 2Æ2 + K2a0� maxjuj�"!(u)Æ + K2a0� 2Æ" + K2a0� maxjuj�"!(u)"� K1Æ + Æ4 + Æ4 + "4 + "4 ;whih, together with (2.13), yields "2 � K1Æ + Æ2 � "3 :This ontradition means that jx(t)j < " is satis�ed for all t > 0, i.e., the trivial solution of(2.1) is (uniformly) stable.Next we show that the trivial solution of (2.1) is exponentially stable, as well. Let0 < � < � be arbitrary, and 0 < " <  be suh thatK2a20e2�r�� � maxjuj�"!(u) < 1; (2.14)and 0 < � � " be suh that jx(t)j < " for t � t0 and for k'k < �. Fix any initial funtionsatisfying k'k < �, and let x be any orresponding solution of (2.1). Multiplying both sides5



of (2.9) by e�(t�t0) we gete�(t�t0)jx(t)j � K1e�(���)(t�t0)k'k +K2e�(t�t0) Z tt0 e��(t�s)jf(s)j ds� K1e�(���)(t�t0)k'k+K2a0e�(t�t0)��t Z t0+rt0 e�sjx(s� �(s; x(s)))� x(s� �(s; 0))j ds+K2a0e�(t�t0)��tZ tt0+re�s �����Z s��(s;x(s))s��(s;0) a(u)x(u� �(u; x(u)))du�����ds: (2.15)It follows from (2.3) that jx(t)j � ea0rk'k; t 2 [t0 � r; t0 + r℄: (2.16)Introdue the funtion z(t) � e�(t�t0)jx(t)j. With this notation we have from (2.15), (2.16),the assumptions and the Mean Value Theorem thatz(t) � K1k'k+K2a0e�(t�t0)��t2ea0rk'kZ t0+rt0 e�s ds+K2a20e�(t�t0)��t Z tt0+r e�s �����Z s��(s;x(s))s��(s;0) e��(u��(u;x(u))�t0)z(u� �(u; x(u))) du����� ds� K1k'k+K2a0e�(t�t0)��t2ea0rk'ke�(t0+r) � e�t0�+K2a20e�(t�t0)��te�r maxt0�r�u�t z(u)Z tt0+r e�s �����Z s��(s;x(s))s��(s;0) e��(u�t0) du����� ds� K1k'k+ 2K2a0� e�(���)(t�t0)e(a0+�)rk'k+K2a20� e�(t�t0)��t+�r maxt0�r�u�t z(u)Z tt0+re�s���e��(s��(s;x(s))�t0) � e��(s��(s;0)�t0)��� ds� K1k'k+ 2K2a0� e(a0+�)rk'k+K2a20� e�(t�t0)��t+�r maxt0�r�u�t z(u)Z tt0+r e(���)se�(r+t0)�j�(s; x(s)) � �(s; 0)j ds� K1k'k+ 2K2a0� e(a0+�)rk'k + K2a20�� � e2�r maxjuj�"!(u) maxt0�r�u�t z(u): (2.17)The right-hand-side of (2.17) is monotone in t, and z(t) � j'(t)j � k'k for t 2 [t0 � r; t0℄,therefore (2.17) yields�1� K2a20�� � e2�r maxjuj�"!(u)� maxt0�r�u�t z(u) � K1k'k + 2K2a0� e(a0+�)rk'k: (2.18)6



Inequality (2.14) implies that the onstantK � K1 + 2K2a0� e(a0+�)r1� K2a20��� e2�r maxjuj�" !(u)is positive. Hene it follows from (2.18) that z(t) � Kk'k, and so jx(t)j � Ke��(t�t0)k'kfor t � t0 and for k'k < �. 2Next we show that, assuming some extra onditions on the delay funtion, Theorem 2.2an be reversed. In addition to (H1){(H3) we assume(H4) there exists Æ0 > 0 suh that the delay funtion � is ontinuously di�erentiable on[t0;1)� [�Æ0; Æ0℄;(H5) there exist onstants 0 �  < 1 and 0 � d suh that�������t (t; u)���� �  and �������u(t; u)���� � d for t 2 [t0;1); juj � Æ0:Theorem 2.3 Suppose (H1){(H5). Then the trivial solution of (2.1) is exponentially stableif and only if the trivial solution of (2.4) is exponentially stable.Proof It was shown in Theorem 2.2 that the exponential stability of the trivial solutionof (2.4) is suÆient for that of (2.1). We have to show that this is also neessary. It isknown (see, e.g., [11℄) that the trivial solution of (2.4) is exponentially stable if and only ifthe fundamental solution of (2.4) (i.e., the solution of the initial value problem (2.7)-(2.8))satis�es an estimate of the form jv(t; s)j � K0e��0(t�s) for some positive onstants K0 and�0. The exponential stability of (2.1) yields that there exist K;�; � > 0 suh that anysolution of (2.1) satis�es jx(t)j � Ke��(t�t0)k'k for t � t0, assuming k'k < �.Fix a ontinuous initial funtion ' de�ned on [t0 � r; t0℄ suh that0 < k'k < min� (1� )�3a0dK2(2� + (1� )a0) ; 1� 2a0dK ; Æ0K ; K ; �� ; (2.19)and '(t0) = k'k; and 4a0(1� )k'k Z t0t0�r j'(u)j du � 13 : (2.20)Let x and y be a solution of (2.1) and (2.4), respetively, both orresponding to this initialfuntion, '. Then the variation-of-onstants formula (see [11℄) yieldsx(t) = y(t) + Z tt0 v(t; s)g(s) ds; t � t0; (2.21)where g(t) � a(t)�x(t� �(t; x(t))) � x(t� �(t; 0))�; t � t0:7



Assumptions (H4) and (H5) implyddt�t� �(t; 0)� = 1� ���t (t; 0) � 1�  > 0: (2.22)It follows from (2.22) that there exists t1 � t0 suh thatt� �(t; 0)8<: < t0; t 2 [t0; t1);= t0; t = t1;> t0; t > t1:Then Theorem 1.2 from Setion 6.1 of [11℄ yields the following relation (whih an beheked by diret alulation, as well)y(t) = v(t; t0)'(t0) + Z t1t0 v(t; u)a(u)'(u � �(u; 0)) du; t � t0: (2.23)We have from (2.21) and (2.23) thatv(t; t0) = 1'(t0)x(t)� 1'(t0) Z t1t0 v(t; u)a(u)'(u � �(u; 0)) du � 1'(t0) Z tt0 v(t; s)g(s) ds;and so for t � t0jv(t; t0)j � 1k'k jx(t)j+ a0k'k Z t1t0 jv(t; u)jj'(u � �(u; 0))j du + 1k'k Z tt0 jv(t; s)jjg(s)j ds� Ke��(t�t0) + maxt0�s�t jv(t; s)j� a0k'k Z t1t0 j'(u� �(u; 0))j du + 1k'k Z tt0 jg(s)j ds�;(2.24)where in the seond estimate we used that v(t; u) = 0 for u > t. Using (2.22) and thede�nition of t1 we haveZ t1t0 j'(u� �(u; 0))j ddu (u� �(u; 0))ddu (u� �(u; 0)) du � 11�  Z t0t0�r j'(s)j ds; (2.25)therefore (2.24) yieldsjv(t; t0)j �Ke��(t�t0) + maxt0�s�t jv(t; s)j� a0k'k(1 � ) Z t0t0�rj'(u)j du + 1k'k Z tt0 jg(s)j ds� :(2.26)Assumptions (H4), (H5), inequality jx(t)j � Kk'k, and (2.19) imply that the time-lagfuntion, t� �(t; x(t)), is monotone inreasing in t, more preisely,ddt�t� �(t; x(t))� = 1� ���t (t; x(t)) � ���u(t; x(t))a(t)x(t � �(t; x(t)))� 1� � a0dKk'k> 1� 2 : (2.27)8



Therefore there exists t2 � t0 suh thatt� �(t; x(t))8<: < t0; t 2 [t0; t2);= t0; t = t2;> t0; t > t2:It follows from (H4) and (H5), the de�nitions of t1 and t2, and from the Mean ValueTheorem thatjt2 � t1j = j�(t2; x(t2))� �(t1; 0)j � jt2 � t1j+ djx(t2)j � jt2 � t1j+ dKk'k;hene jt2 � t1j � dK1� k'k: (2.28)Suppose t > max(t1; t2), and onsiderZ t0 jg(s)j ds = Z min(t1;t2)t0 jg(s)j ds + Z max(t1;t2)min(t1;t2) jg(s)j ds+ Z tmax(t1;t2) jg(s)j ds� a0 Z min(t1;t2)t0 jx(s� �(s; x(s)))j ds + a0 Z min(t1;t2)t0 jx(s� �(s; 0))j ds+2a0jt2 � t1jKk'k+ a0 Z tmax(t1;t2) �����Z s��(s;x(s))s��(s;0) _x(u) du����� ds� a0 Z min(t1;t2)t0 j'(s� �(s; x(s)))j ds + a0 Z min(t1;t2)t0 j'(s� �(s; 0))j ds+2a0dK21�  k'k2 + a20 Z tmax(t1;t2) �����Z s��(s;x(s))s��(s;0) jx(u� �(u; x(u)))j du����� ds:(2.29)Relation (2.27) and the de�nition of t2 yieldZ t2t0 j'(s� �(s; x(s)))j dds(s� �(s; x(s)))dds (s� �(s; x(s))) ds � 21�  Z t0t0�r j'(s)j ds;hene it follows from (2.25) and (2.29) thatZ tt0 jg(s)j ds � 3a01�  Z t0t0�r j'(s)j ds+ 2a0dK21�  k'k2+ a20Kk'kZ tmax(t1;t2) j�(s; x(s))� �(s; 0)j ds� 3a01�  Z t0t0�r j'(s)j ds+ 2a0dK21�  k'k2 + a20dKk'kZ tmax(t1;t2) jx(s)jds� 3a01�  Z t0t0�r j'(s)j ds+ 2a0dK21�  k'k2 + a20dK2� k'k2: (2.30)9



Combining (2.19), (2.20), (2.24) and (2.30) we getjv(t; t0)j � Ke��(t�t0)+ maxt0�s�t jv(t; s)j� 4a0(1� )k'k Z t0t0�rj'(s)j ds+� 21�  + a0��a0dK2k'k�(2.31)� K + 23 maxt0�s�t jv(t; s)j: (2.32)Let t0 � �s � t. Then (2.32) impliesjv(t; �s)j � K + 23 max�s�s�t jv(t; s)j � K + 23 maxt0�s�t jv(t; s)j:Therefore maxt0�s�t jv(t; s)j � 3K:Substituting this bak to (2.31) we getjv(t; t0)j � Ke��(t�t0) + 3K � 4a0(1� )k'k Z t0t0�rj'(s)j ds +� 21�  + a0��a0dK2k'k� :Sine the seond term on the right-hand-side an be made arbitrary small by seleting anappropriate initial funtion whih satis�es (2.19) and (2.20) as well, we get that jv(t; t0)j �Ke��(t�t0) holds for t � t0, whih proves the theorem. 2Note that Theorems 2.2 and 2.3 are straightforward to extend for the multiple delayase, i.e., for equations of the form_x(t) = mXi=0 ai(t)x(t� �i(t; x(t))):Sine suÆient onditions are known for the uniform asymptoti stability, and so forthe exponential stability of the linear equation (2.4) (see, e.g., [20℄), and a neessary andsuÆient ondition is known for the exponential stability in the ase when (2.4) is anautonomous delay equation (see, e.g., [11℄), and when it is an ODE, therefore Theorem 2.3has the following orollaries.Corollary 2.4 Suppose (H1){(H3), and let q0 � supt�t0 �(t; 0). Then the trivial solutionof (2.1) is exponentially stable, if a(t) � 0, t � t0, andinft�t0 Z t+q0t (�a(s)) ds > 0; and supt�t0 Z t+q0t (�a(s)) ds < 32 : (2.33)
10



Lemma 2.2 of [21℄ proves that a ondition of the form (2.33) where q0 is replaed byr implies the uniform asymptoti stability of the trivial solution of (2.1). Corollary 2.4improves the above result of Yoneyama, sine q0 < r, in general, and in our result theexponential stability of (2.1) is obtained.Corollary 2.5 Suppose a(t) � �a0 < 0 and � : R ! [0; r℄ is ontinuously di�erentiable ina neighborhood of 0. Then the trivial solution of (2.1) is exponentially stable if and only if0 � a0�(0) < �=2.Corollary 2.6 Suppose (H1){(H5), and �(t; 0) = 0 for all t � t0. Then the trivial solutionof (2.1) is exponentially stable if and only if there exists � > 0 suh that1t� t0 Z tt0 a(s) ds � ��; t > t0:Referenes[1℄ W. G. Aiello, H. I. Freedman and J. Wu, Analysis of a model representing stage-strutured population growth with state-dependent time delay, SIAM J. Appl. Math,52 (1992) 855{869.[2℄ O. Arino, K. P. Hadeler and M. L. Hbid, Existene of periodi olutions for delaydi�erential equations with state-dependent delay, J. Di�. Eqns, 144:2 (1998) 263{301.[3℄ M. Bartha, On stability properties for neutral di�erential equations with state-dependent delays, to appear in Di�. Eqns. Dyn. Systems.[4℄ J. B�elair, Population models with state-dependent delays, in Mathematial PopulationDynamis, (O. Arino, D. E. Axelrod and M. Kimmel eds.), Marel Dekker, (1991) 165{176.[5℄ K. L. Cooke, Asymptoti theory for the delay-di�erential equation u0(t) = �au(t �r(u(t))), J. Math. Anal. Appl., 19 (1967) 160{173.[6℄ K. L. Cooke, Asymptoti equivalene of an ordinary and a funtional di�erential equa-tion, J. Math. Anal. Appl., 51:1 (1975) 187{207.[7℄ K. L. Cooke and W. Huang, On the problem of linearization for state-dependent delaydi�erential equations, Pro. Amer. Math. So., 124:5 (1996) 1417{1426.[8℄ R. D. Driver, Existene theory for a delay-di�erential system, Contributions to Di�er-ential Equations, 1 (1961) 317{336.[9℄ I. Gy}ori, F. Hartung and J. Turi, Numerial approximations for a lass of di�erentialequations with time- and state-dependent delays, Appl. Math. Lett., 8:6 (1995) 19{24.11
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