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Abstract

We consider a parameter identification algorithm and establish its theoretical conver-
gence on initial value problems governed by neutral functional differential equations with
state-dependent delays. In the discretization process we use an Euler-type approximation
method based on equations with piecewise constant arguments. Numerical examples are
included.
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1 Introduction

In this paper, making use of a general framework for parameter identification in distributed
parameter systems (see e.g., [1], [2], [3], [17], and the references therein), we study convergence
properties of numerical schemes producing approximate solutions of parameter estimation
problems for a class of neutral functional differential equations (NFDEs) with state-dependent
delays. Following the work in [14] (state-dependent delay equations), and in [11]-[13] (NFDEs
with constant and time-dependent delays), in this paper we consider NFDEs of the form:

d

—(2(t) + qW)z(t — 7(t, (1)) = f(t2(8), 2(t - o(t, (1)),

dt

and establish theoretical convergence of an Euler-type approximation scheme, based on equa-
tions with piecewise constant arguments (EPCAs), for approximate solutions of corresponding

parameter identification problems.
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The remaining part of the paper is organized as follows:

In Section 2 we recall our existence and uniqueness results from [15], and introduce a
simple EPCA-based numerical approximation scheme. Section 3 contains a brief description
of the general identification method we follow. In Section 4 we define a modification of our
approximation scheme, which is more appropriate for identification purposes, and prove the
key steps of the general identification method, namely, the convergence of the approximate
problem under a certain double limiting process, and the continuous dependence of the so-
lution of the discretized initial value problem (IVP) on parameters. Section 5 contains a few
numerical examples.

Note that EPCAs were used first in [8] to obtain numerical approximation schemes and to
prove the convergence of the approximation method for linear delay and neutral differential
equations with constant delays, and later in [9] for nonlinear delay equations with state-
dependent delays. Finally, we note that existence and uniqueness questions for other classes
of NFDEs with state-dependent delays have been studied in [6], [7], [10], and [16].

2 Existence and Uniqueness of Solutions

Consider the vector NFDE

%(zp(t) +qt)a(t - 7(t,5(1)) = f(La®), 5t — ot 2(1)),  te[0,T] (2.1)

with initial condition

z(t) = ¢(t), te[-r0] (2.2)
We make the following assumptions:

(H1) f € C([0,T] x R™ x R™; R") is locally Lipschitz-continuous in its second and third
arguments, i.e., for every M > 0 there exists Ly = Li(M) > 0 such that

|f(taxay) _f(tai'ag)‘ < Ll(‘x_:ﬁ‘ + ‘y_g‘)a

fort € (0,7, z,z,y,5 € R", |z, [7], |y|, || < M,
(H2) g € C([0,T]; R) is Lipschitz-continuous, i.e., there exists Ly > 0 such that

lq(t) —q(t)| < Loft — ¢, for t € (0,7},
(H3) 7,0 € C(]0,T] x R™; R) are such that
(i) there exist r > 0 and r¢p > 0 such that
—r <t—7(t,z) < t—rg and —r <t—o(t,z) <t, fort € [0,T], z € R",

(ii) 7 is locally Lipschitz-continuous in its first and second arguments, i.e., for every
M > 0 there exists constants Ls = L3(M) > 0 and Ly = Lg(M) > 0 such that

|7(t,x) — 7(t,z)| < Ls|t — t| + Ly4|z — 7|,

for t,t € [0,T), z,z € R", |z|, |7] < M,



(iii) o is locally Lipschitz-continuous in its second argument, i.e., for every M > 0
there exists Ly = L5(M) > 0 such that

|U(t,£L‘) - U(tai’” < L5|£E - i'|
for t € [0,T], z,z € R", |z|, |Z| < M,
(H4) ¢ € C([—r,0]; R™) is Lipschitz-continuous on [—r, 0], i.e., there exists Lg > 0 such that

t) = (B)] < Lot — 1, for ¢ € [0, 7]

Here, and throughout this paper, | - | denotes a vector norm on R".

For h > 0 we introduce the “greatest integer function with respect to h”, [t], = [t/h]h,
where [-] is the greatest integer function. It is a piecewise constant, right continuous function
satisfying

t—h <[t <t (2.3)

Following the ideas of [8] and [13], we discretize (2.1) by changing the time variable ¢ to
the piecewise constant function, [¢],. Consider

< (on0) + a0)un (e ~ [ (2~ )I0)
= F ([ yn (1) w81 = [ ([ (1)) (24)

for t € [0, T], with the initial condition

yn(t) = @(t),  te[-r0] (2.5)

It is easy to see that IVP (2.4)-(2.5) has a unique solution on [0,T] for 0 < h < rg, and the
values of the solution at mesh points can be computed by a simple recursive formula using
past values of the solution at mesh points only. (For details, see [15].)

We recall the following results concerning the local existence and uniqueness of solutions
of IVP (2.1)-(2.2) from [15].

Lemma 2.1 Assume (H1)-(Hj). Let hg = ro/2. Then there exist constants My > 0 and
a = a(My), My = My(My) such that 0 < a < 19/2, |lyn(t)] < My and |yn(t)] < My for
te[-ral, 0 <h< hg.

Lemma 2.2 Assume (H1)-(H}). Let hy, o, My and My be defined by Lemma 2.1, Ly =
L4(My) be the constant from (HS3) (ii), and assume that |q|cLsLg < 1. Then there exists a
constant M3 > 0 such that |ap(k) — by (k)| < Msh for 0 < h < hg, k=1,2,...,[a/h].

Theorem 2.3 Assume (H1)-(HJ). Let hg, o, My, My and M3 be defined by Lemma 2.1
and 2.2, Ly = L4(M;) be the constant from (H3) (ii), and assume that |q|cLsLe¢ < 1. Then
IVP (2.1)-(2.2) has a Lipschitz-continuous solution, x(t), on [—r,a].



Theorem 2.4 Assume (H1)-(H}), and let z(t) be a Lipschitz-continuous solution of IVP
(2.1)-(2.2) on [—r,a]. Let M{ = max{|z(t)| : t € [-r,a]} + ¢ for some e >0, Ly = Ly(M)
be the corresponding constant from (H3) (ii), and M5 = esssup{|z(t)| : ¢t € [-r,a]}. If
lglcLaM5 < 1, then x(t) is the unique solution of IVP (2.1)-(2.2) on [—r,a], and

lim sup |z(t) —yu(t) =0,
Jim sup [2(6) i (t)

where yy, is the solution of IVP (2.4)-(2.5).

We remark that the conditions |¢|¢cLsLs < 1 and [g¢|cLsM3 < 1 in Theorem 2.3 and
2.4 are essential. Examples were given in [15] to show that without these conditions IVP
(2.1)-(2.2) may not have a solution or unique solution, and the scheme (2.4)-(2.5) may not
be convergent.

Next we recall Lemma 3.2 from [8]. The proof of Theorem 2.4 in [15] was based on a
slightly modified version of this inequality. We shall use this “Gronwall type” inequality in
Section 4 as well.

Lemma 2.5 Leta > 0, b >0, « >0, f > 0, v = max{e,8}, and g : [0,T] — [0, 00)

be continuous and nondecreasing. Let u : [—v,T] — [0,00) be continuous, and satisfy the
inequality
t
ult) < g(t) + bu(t — B) + a/ u(s —a)ds,  1€[0,T).
0
Then u(t) < d(t)e fort € [0,T), where ¢ is the unique positive solution of che™ +ae™ = ¢,
and
d(t) = max{& max e_csu(s)} t€0,T].
1 — be=cB’ —7<s<0 ' ’

3 A General Identification Method

In this section we briefly recall a general method frequently used to identify parameters in
various classes of differential equations (see, e.g., [1], [3], [17], and also [11]-[14]). We present
the method for our IVP (2.1)-(2.2).

Assume that (2.1)-(2.2) contains some “unknown” parameters, . In this paper we con-
centrate on identifying the initial function, ¢, and the parameters, ¢ and 7 in the neutral term
of the equation, i.e., ¥ = (¢,q, 7). Other parameters on the right-hand side of the equation
can be treated similarly (see [14]).

We assume that some information is available via measurements (Xg, X1,...,X;) of the
solution, z(t), at discrete time values (tg,t1,...,%;). The goal is to find the parameter value,
which minimizes the least squares fit-to-data criterion

l

T(y) =Y latiy) = Xif?,
1=0

where v belongs to an admissible set A contained in the parameter space I'. (Denote this
problem by P). The general method consists of the following steps:



Step 1) First take finite dimensional approximations of the parameters, vV, (i.e., vV €
AN cTN T, dimI'V < o0, YV — y as N — o).

Step 2) Consider a sequence of approximate IVPs corresponding to a discretization of TVP
(2.1)-(2.2) for some fixed parameter vV € I'V with solutions y™ (-; ¥V) satisfying y™ (t,7") —
z(t,y) as N, M — oo, uniformly on compact time intervals, and vV € AN,

Step 3) Define the least square minimization problems (P™:™): for each N, M =1,2,...,
ie., find VM ¢ AN ¢ TV, which minimizes the least squares fit-to-data criterion

I
JVMGNY =Sy M (it 4N) = X%, AN e AN,
i=0

Often A" is the projection of A to TV, and we restrict our discussion to this case.

Step 4) Assuming that A is a compact subset of I', and the approximate solution,
yM(t;4N), depends continuously on the parameter, vV, we get, that JY(.) is continuous
for each M, N. Hence the finite dimensional minimization problems, PV*™ have a solution,
FNVM - Since #VM € A, the sequence VM (N, M = 1,2,...) has a convergent subsequence,
say 7Vi-Mi | with limit 4 € T

Step 5) It follows from Step 2 that JNi-Mi(yNi:Mj) — J(5) as j — oo. Let v € A be
fixed, and let vV — + satisfying Step 1. Then, in particular, ¥¥i — v as j — co. Using that

A4NisMj is a solution of PNi*Mi_ Step 2 implies

J(y) = lim JY (50 < lim TV (yN) = T (),

j—oo j—o0
therefore 7 is the solution of the minimization problem P.

In practice we take “large enough” N and M, and use the solution of PV:M as an approxi-
mate solution of P. Note that Step 4 and 5 yield that the limit of any convergent subsequence
of yM>M is a solution of P (with the same cost). It is possible that the minimizer of .J(y)
is not unique (see Example 5.4 below). Identifyability of parameters, i.e., the uniqueness of
the parameter minimizing the cost function J(v), is an important research topic. However,
except for some comments in Section 4, we do not address this question here. For related
works we refer to [2] and [18].

In our examples, we will use linear spline approximation to discretize the parameters ¢,
g and 7, in the case of nonconstant functions, in Step 1. In the next section we introduce
a set of approximate IVPs corresponding to IVP (2.1)-(2.2) we use in Step 2, and show
uniform convergence of the scheme, and continuous dependence of the approximate solution
on parameters, as required in Step 2 and Step 4, respectively.

4 Main Results

In this section we assume that T" > 0 is such that IVP (2.1)-(2.2) has a unique solution on
[0,T]. Our goal is to identify the parameters v = (g, ¢, 7). We introduce the parameter space
' = C([-r,0]; R") x C([0,T]; R) x BC([0,T] x R™"; R"), where BC([0,T] x R™; R") denotes
the Banach-space of bounded and continuous functions from [0,7] x R" to [0, 00) with the



norm |7|c = sup{7(t,z) : t € [0,T], x € R"}. We denote the usual supremum norms on
C([-r,0]; R") and C([0,T]; R) by |¢|c and |¢|c, respectively. (We will always use the symbols
v, g and 7 to denote elements of these spaces, so there should be no confusion with this
simplified notation of the norms.) The norm on I is defined by |(, ¢, 7)|r = |¢|c+|qlc+|7lc-

Consider a sequence of parameters, vV = (¢V,¢",7V) € T, such that |y — vV|r — 0 as
N — oo. For large enough N such that |7 — 77| < r¢/2, assumption (H2) (i) implies that

ro/2 < TN (t, ), for t € [0,T], z € R™. (4.1)

Define
—ry = min{min{t —N(t,z) : t€[0,T), = € R"}, —r}. (4.2)

Note that (H2) (i) yields that —r — |7 — 7V |¢ < —ry < —7.
Let h be a positive number. Using the approximation scheme (2.4)-(2.5), we associate the

following NFDE with piecewise constant arguments to (2.1) with parameters ¢, ¢V, 7V:

(o (0) + 0V (0w (¢~ I oy (2 - )10)
= F ([ ynn () e ([ = [ ([ v ([10))]n)) (4.3)

for t € [0, T], with the initial condition

ynn(t) = oN(t),  te[-rn,0], (4.4)

where Eﬁ is the extension of ¢ to [~ry, 0] defined by

_ N .
o) = { (PNE?;“), ig {—r’z\?,]’—r]. (4.5)

The subscript h and N of y, n(t) emphasizes that y n(t) is the solution of IVP (4.3)-(4.4)
corresponding to the discretization parameter h and parameter values ¢, ¢V and 77.
Lemma 2.5 implies that IVP (4.3)-(4.4) has a unique solution on [—r,T], and one can

modify the proof of Theorem 2.4 to show that

Jim - max [a(t) = yn.n(8)] = 0.

N— oo
Consequently, this scheme satisfies Step 2 of the general identification method. It was used
successfully in some examples in [12] for identifying parameters in (state-independent) neutral
equations, but in other cases (e.g., when we tried to identify 7) our secant-type numerical
minimization routine failed. The problem is that the solution of (4.3)-(4.4), and therefore the
corresponding cost function, JN-*, is piecewise-constant with respect to 7V because of taking
the integer part [7V(-,-)], in (4.3). The advantage of using scheme (4.3)-(4.4) is that it is
very simple to compute the solution at mesh points, but it has some serious disadvantages
as well:

1. The approximate solution is not linear between mesh points, therefore it is not easy to
evaluate it between mesh points. Moreover, the solution is not continuous at positive
mesh points.



2. The approximate solution does not depend continuously on the parameters because of
using integer parts [7V(-,-)], and [o(-, )] in (4.3).

To overcome these problems, we modify the approximate scheme (see also [12], [13]):

d

7 (yh n(t) + ﬂh{qN(t)yh,N(t — 7Nt yn N (t — h)))})

= F ([ ynn (), ynn ([n = o (W wnn (). t€10,T], (4.6)

with the initial condition

ynn(t) = oN(t),  te[-rn,0], (4.7)

where aﬁ is defined by (4.5). Here ﬂh{qN(t)yh’N(t — Nt yp N (t - h)))} denotes the linear
interpolate of the function t = ¢~ (t)yn n(t — 7V (¢, yn N (t — h))) using mesh points kh, i.e.,

In{a™ O (t = 7 (g (t = )}

= V() ([n — 7 [ vy ([ — h)))[t]ﬁ#
40 @D+ Wy (b= 7 [+ v ([0) 00

By a solution of IVP (4.6)-(4.7) we mean a function y, n : [-rn,T]| = R”, which is defined
on [—ry,0] by (4.7), such that

(i) the function ¢ - yn, v (£) + 95 { ™ (£)yn,n (t =7 (£, yn,n (£~ 1)) } is continuous on [0, T,

(ii) its derivative exists at each point ¢ € [0,T), with the possible exception of the points
kh (k=0,1,2,...) where finite one-sided derivatives exist, and

(iii) the function yj n satisfies (4.6) on each interval [kh, (k + 1)h) N[0,T] (k =0,1,2,...).

It follows from the definition that (4.6) is equivalent to the integral equation

v (1) + ﬂh{qN(t)yh Nt =Nty (t - 0)
= @"(0) + gV (0)N (=7 (0, 6" (1))
4 [ £ (1wl m sl = o (sl v (510)) ds. (48)

We will show that the scheme (4.6)-(4.7) preserves the convergence properties of (2.4)-
(2.5) given by Theorem 2.4, and in addition, the approximate solution is continuous, piecewise
linear, and we avoid taking integer part of 7V and o in (4.6).

Lemma 4.1 Let (¢, q¢",7V) € T, and assume (4.1). Then IVP (4.6)-(4.7) has a unique
continuous solution on [—rn,T)| for all 0 < h < ro/2. Moreover, the solution is linear on the
intervals [kh, (k + 1)h].



Proof Assumption (4.1), and inequality (2.3) imply that
[tlh = 7 (Ens yn v ([t — B)) <t —ro/2, ¢t €[0,T], (4.9)
and

[tn +h = ([t + hoyn v ([tn) St +h—ro/2 <t —mo/d,  t€[0,T], 0<h<ro/4
(4.10)
Therefore 19h{qN(t)yh,N(t—TN(t, yh,N(t—h)))} in (4.8) always uses past values of the solution,

hence the existence and uniqueness of the solution follows from (4.8) using the method of steps
on the intervals [kh, (k+1)h]. The solution is continuous, since, clearly, t — 9,{g" (t)yn n(t—
™ (t,yn.n(t — h)))} is a continuous function. Equation (4.6) yields for ¢ € (kh, (k + 1)h):

unN(t) = _i'ﬂh{qN(t)yh,N(t — 7V (t, yn N (t - h)))}

+ f (s yn,n (kh), yn,x (kb = o (kb o (k))) ).

Therefore yj, n(t) is constant on (kh, (k + 1)h), and the solution is linear on [kh, (kK + 1)h]. m

Integrating both sides of (4.6) from kh to (k + 1)h, and using the notation ap n(k)
yn,n(kh), we get the recursive formula

ann(k+1) = ann(k) + " (kh)ynn (kb — 7 (kh,ap N (k — 1))

— ¢" ((k + D)y n ((k + 1h = 7V((k + 1)k, apn (k) (4.11)
+ hf(kha ah,N(k)ayh,N(kh - U(kha ah,N(k))))ﬂ for k = Oa 17 2a ey
ann(k) = " (kh), —r<kh<0, k=0,-1,-2,..., (4.12)

which is simple to compute, using that y; x(t) is linear between mesh points. Equation (4.11)
immediately implies the explicit formula

ann(E+1) = o™ (0) + ¥ (0)pN (=Y (0,07 (0)))

k
+ by f(ihyan N (i), yn,n (i — o(ih, an N (9)))).
i=0

If h is small, this is better to use in numerical computations, since in (4.11) the difference

g™ (kh)yn M(kh — 7N (kh, ap,n (k = 1)) = ¢V ((k + Dh)yn 5((k + 1)k = 7V ((k + 1)h, ap,n ()))
is close to 0, therefore some accuracy can be lost by using that formula.

Theorem 4.2 Assume (H1)-(H4), and that IVP (2.1)-(2.2) has a unique Lipschitz-conti-
nuous solution, z(t), on [—r,T]. Let vV = (o™, ¢",7V) € T be such that |y —yN|p — 0 as
N — oo. Define My = max{|z(t)| : t € [-r,T]} + ¢ and My = esssup{|z(t)| : t € [-r,T]}
for some € > 0, and let Ly = Ly(My) be the constant from (H3) (ii). If

\qlcLaMy < 1, (4.13)



then the solution, yn n, of IVP (4.6)-(4.7) converges uniformly on [0,T] to the solution, x,
of IVP (2.1)-(2.2) as h — 0" and N — oo, i.e.,

I ~ =0. 4.14
Jim - max () = ynx (1) =0 (4.14)
N —o0

Proof We assume, without loss of generality, that ¢ is such that (|g|c +&)LsMs < 1, and
N is large enough that |¢V —qlc < ¢, | —¢|c < ¢, and |7V — 7| < r9/2. The last relation
and (H2) (i) imply (4.1). Let 0 < aj n < T be the largest number such that |y, y(t)| < M
for t € [0,apn). (apn is well-defined since [¢™(0)] < M; by our assumptions.) Using
the integrated form of (2.1) and (4.8), and applying elementary estimates and (H1) with
Ly = L(M), we get for t € [0, o N]:
|(t) = yn,n (t)]
< Jp(0) = 9™ (0)] + [g(0)p(=7(0,9(0))) = g™ (0)™ (=77 (0, o™ (=h)))|
+la(®)a(t =t 2(1) — In{a” Oy n = 7V (G ynn (= 0) }

+ / \f s,2(s), (s — o(s,2(s))))

sl (51, v (sl — o (sl ([51a)))) s

9(0) - ¢ (>\+|q(0) (=7(0,9(0))) — g (oﬂﬁ(—r (0™ (=)
+la®)(t = 7(t,2(1) - ﬂh{ N (@ynn (6 =7V (L g (t — b))}

+ / ‘f(s,x o(s, m(s)))) - f([S}h,m(S),x(s - a(s,x(s)))) ‘ ds (4.15)
-I-L1/0 (|$(S) —yn,n([s]n)] + ‘w(s —o(s,z(s))) — yn,n([s]h — 0([S]h,yh,N([5]h)))Dd5-

/\

IN

For convenience, we extend z(t) to t € [-rx,—7] by x(t) = ¢(—r), and denote the extended
initial function by ¢(t). Clearly, ¢ is Lipschitz-continuous with Lipschitz-constant Lg. Next
we will estimate the terms on the right-hand side of (4.15) separately. Assumption (H4) and
lg— ¢"|c < e yield

9(0)p(—=7(0,9(0))) — ¢ (0)N (=N (0

" (=h)))|
< a(0) = " (0) (=7 (0, o |
€

(0,
o>>)|+|q (0)llp(=7(0,(0))) = ™ (=7 (0, ™ (=h)))|
< lg—q" \c|<P|0+ alo + &) (le(=7(0,0(0))) = G~V (0, " (~h)))

+1B(=mV (0, 6™ (=) = N (=7V (0, Y (=h)))] )
g = d¥lelele + (gle +¢) (L6\r<o,so(0)> =0, (=m) + g = ¢V]c). (4.16)

IN

Let z,y € R", |z|, |y| < My, then it follows from (H3) with L3 = L3(M;) and L4 = L4(M))

r(t,z) = TN ()| < |r(ta) = T(uz)| 4 |7 (u, ) — 7(u,y)| + |7 (uy) = TN (u,y))|
< Lg\t—u|+L4|$—y|+|T—7N|C. (4.17)



Consequently, we have that

70, 0(0)) = 7V (0,0™ (=) < La(lp(0) = @(=h)| + lp(~h) = ¥ (=h)]) + |7 — 7V

<
< Ly(Lgh + o — ¢N|c) + |7 — Ve (4.18)

Define the function wy, y(t) = max_,<s<;|z(s) — yn,n(s)|, and let v = v(t,h) = (t — [t]4)/h.
Then 1 — v = ([t]n + h — t)/h, and the definition of 9, implies
la()a(t = 7(t,2(0)) = dn{a" Ot = 7V (L ynn (=)}
7(t,2(1) = In{ " (D2t — 7V (L ynn(t = b))}
+|on{a a(t = Ny (= W)} = On{a” Ounn(t = 7 (Eynn (= 0)}
([t —

(
a2 (t — (¢, 2(1))) = ¢ (En)2([En — 7 ([{ns yn ([Hh — W)L~ v)

‘q z(t —
( N

+lg®)z(t — 7(t,2(t)) — ¢~ ([th + h)z([tln + b — 7 ([t + by yn,n ([E4)) v
(
(

IN

+ g™ ([t]n) [ wn,n ([ — TN([ s yn, N ([tln — 7)) (1 = v)
+ g™ ([tln + h)lwa, N ([En + k= 7V ([Eln + hyynn ([E0)))v- (4.19)

Assumption (H2), the definition of Ms, (4.17), an estimate similar to (4.18), and the mono-
tonicity of wy, n yield
la@)a(t = 7(t,2(t)) = " ([Wn)e ([t — 7 ([ns yn,n ([ — b))
(I(®) = @] + laie) = " ()] (¢ — 7t 2(6)
+ gV ([t = 7t 2(2)) — z([thh — 7 (], yn, v ([E]n — )]

)
) -

IN

< (Loh+lg = ¢o) My + (gl + ) Ma(h + [7(t,2(t)) — 7 ([ths yn.n ([En — h)])
< (Loh +|q = q"|c)Mi + (|glc + €)Ma(h + Lsh + La(2Mah + wy n(2)) + |7 — 7V c)-
(4.20)
In the same fashion we get
la(®)x(t = 7(t,2(1))) = ¢V ([t + Bz ([t]n + b = 7 ([tln + By yn, 5 ([1]4))))] (4.21)

< (Loh+ g =" |e)Mi + (lale + &) Ma(h + Lzh + La(2Mzh + wy, n (1) + [ = 77V |0).
Therefore (4.19), (4.20) and (4.21), together with (4.9) and (4.10), imply
@zt = 7(t,2(1))) = In{a" Oynn (= 7V ynn (= b))}

< (Leh+ g —qN|c) My + (lglc + €)Ma(h + Lsh + Ly(2Mh) + |7 — V|¢)
+ (lglc + €)(LaMowp, N (t) + wp N (t — 10/4)), 0<h<rg/d (4.22)

Finally, consider the terms in the last integral of (4.15). We have

2 (8) — 2([t]n)] + [z([t]n) — yn,n ([t]n)]
Msh —i—wh,N(t). (4.23)

lz(t) — yn,n([t]n)]

I IN
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Assumption (H2) (iii) with Ls = L5(M;), and (4.23) yield

z(t —o(t,2(t)) — yn,N ([t — o([tln, yn,n ([E])))]
< z(t—o(t,z(?) — z([tlh — o([t]h, yn,n ([E])))]
(1)) — yn.n([t]n — o ([t]ns yrv ([2])))]
s yn N ([E)]) + wn N ([tn — o ([Ln, ynn ([E])))
tln, ()] + Ls|z(t) — yn, N ([t]n)]) + wn,n (2)
tlhyz(t))] + Ls Mah 4 Lswp n (1)) +wpn(t).  (4.24)

INIA A

s

=

+

S
H\_@k ™~
2B A

Combining (4.15), (4.16), (4.18), (4.22), (4.23) and (4.24), we get for ¢ € [0, n] and
0<h<ry/d:

lz(t) = ynn(t) < gnn(t) + (lgle + ) LaMawp N ()
t
+ (lglc +e)wn,n(t —ro/4) + L1 (2 + LsM>) /0 wp,n(s)ds,  (4.25)
where

(1+1lgle + €+ (lglo + €)LaLe)lp — " | + 2Milq — ¢V ¢
+ (lglc + €)(Le + My) |7 — 7V |c + LaMih
|q‘c + 8)(L4(L6) + My + L3 My + 2L4M2)h + L1(2M2 + L5M2)Th

+ / ‘f s, z( a(s,x(s)))) — f([s}h,a:(s),x(s —a(s,x(s))))‘ds
+L1M2/0 (s, 2(5)) = o([s]n, (s))| ds.

gn,n (1)

Note that g, n(t) is defined on [0,T]. The monotonicity of wy n(t), the inequality wp n(t) <
lo — N|c < gn.n(0) for ¢ € [—r,0], (4.13) and (4.22) imply

(1= (lglc+e)LaMa)wp N (t) < gh,N(t)-l'(q|c+8)wh,N(t—7“o/4)+L1(2+L5M2)/0twh,N(S) ds
t € [0,ap,n], 0 < h < rg/4. Therefore an application of Lemma 2.5 yields

wp N (1) < dpn(T)eM,  forte€[0,apn], 0<h<re/4, (4.26)
where X is the unique positive solution of

Mgle +€)e ™ /4 £ L1(2 4 LsMy) = (1 — (|glc + €)LaMy),

and

gn,n(t) Arg /4 N }
dpn(t) =m : , e — .
h’N( ) ax { 1-— (|q‘c + 6)L4M2 — (|q‘c + 6)6*)\7‘0/4 € |(P 14 |C

Since [s], — s as h — 0+, the Lebesgue Dominant Convergence Theorem implies that the
two intergals in g, n(f) go to 0 as h — 04. Hence gj n(t) — 0 uniformly in ¢ € [0,7T], as
h — 04, N — oo, and therefore maxo<s<a, v [7(5) — yn,n(s)] = 0 as h — 0+, N — ooc.
Consequently aj; y = T for small enough A and large enough IV, and the statement of the

11



theorem follows. [ ]

It is easy to obtain the following result for the rate of convergence in (4.14) from the
definition of g, nx and (4.26):

Corollary 4.3 Assume that the conditions of Theorem 4.2 are satisfied, and in addition, f
and o are locally Lipschitz-continuous in their first arguments. Then there exists a constant
K > 0 such that

z(t) =y ()] < K(lo — oo+ lg = Ve + |7 = 7] + h),

for t € [=r,T] and for small enough h > 0.

In the remaining part of this section we study continuous dependence of the solution of
IVP (4.6)-(4.7) on the parameters ¢V, ¢" and 7. To simplify the notation, we omit the
upper index, N, and denote the solution of IVP (4.6)-(4.7) corresponding to v = (¢,q,7) € T
and ¥ = (¢,4,7) € I by yn,(t) and yp, 5(t), respectively. Define —r, and —r; by (4.2)
for 7V = 7 and 7V = 7, respectively. Since in our examples ¥ = (¢,q,7) = (¢V,q¢"V,7V)
are obtained by linear spline approximation from (¢, q,7), we can assume that ¢ and 7 are
Lipschitz-continuous functions with Lipschitz-constants equal to those of ¢ and 7, i.e., ¢ and
7 satisfy (H4) and (H3) (ii), respectively. We can assume that 7 = 7V satisfies (4.1) as well.
Then, for small enough h, the solution, yy, (), depends continuously on .

Theorem 4.4 Assume that f and o satisfy (H1) and (H3), respectively. Let 0 < h < rq/6,
and ¥ = (¢,q,7) € ' be such that T and ¢ satisfy (4.1), (H3) (ii) and (H4), respectively.
Then

s hay(t) —yns(t)] =0,  asy—%, ~veL. (4.27)

Proof The proof is similar to that of Theorem 4.2, therefore we show only the main steps,
and leave the details to the reader.

Fix € > 0, and let M7 = sup{|yp~(t)| : t € [0,T]} + . We assume that v = (¢, q,7) is
such that [¢ — @¢|c < € and |7 — 7|c < r9/4. Then for such vy € T, let 0 < oy, < T be the
largest number such that |y, ,(t)] < M{ for ¢t € [0, ). Applying (4.8) for v and 7, and
taking the difference of the two equations, we get

[Yny (1) — yn5(2)]
< 1p(0) = 9(0)] + g(0)p(=7(0, o(=h))) — a(0)(=7(0, 5(~h)))
+ [9n{a(unsy (t = 7 yny (= DD} = 9n{a(yns (t = 7 yns(t = D)}
(Is

[ 17 (b la) o Ushe = sl (5100)
= £([5hns i (3I0): s (5T = o ([sTn.3n(51)) )  ds. (4.28)
Linearity of 9, assumption (H1) with L, = L;(M}), and (4.28) imply for ¢ € [0, v, ]:
OESYI0]
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< o= glo + 1a0)p(~7(0,9(~h)) - 4(0)p(~7
+ |0n{ (a(t) = a(®)ynny (t = Tt yny(t = B)) ]
|0 {@®) (ynr (¢ = 7(E g (E = 1)) = gy (= T(Eynsy (= B)))) }]
|90 {@®) (yn (t = 7(t g (E = 1)) = gy (= F(tynsy (= B)))) }
+ 1 [ () = s o)

Ly (sln = ol yns (810))) = s ([sln = o[l yn 5 ([s1a)))] ) ds. (4.29)

(t—
(t —

t

Introduce the notation wy, , = max_,<y<¢ |Yny(v) — yn5(w)|. The assumed inequalities 0 <
h <ry/6, |1 —T|c <19/6 and (4.1) imply that

In{@(t) (o (E = 7 (8 yny (8 = B))) = wns(t = 7(t gy (6 = ) }| < [@lctwny (t = 1o /6).

Since yp, 5(t) is equal to ¢(t) for ¢ € [—r, 0], and it is piecewise linear for ¢ € [0, T, and by our
assumption, @ is Lipschitz-continuous, it follows that My = esssup{|yn5(t)| : t € [-r,T]} is
finite. Let Ly = L4(M7) be the Lipschitz-constant of 7 from (H3) (ii), then

(954 @(t) (5t =7t yny (= 1)) =yn 5 (E=7(t g5 (t=R)) )} <13]e M5 (177 |+ Lawn o ([t]n)-

Therefore one can obtain from (4.29) the following estimates for ¢ € [0, oy, 5 ):

t
Wh () < ghy + Gl cLaMywp 5 ([t]n) + |Gl cwny (t = 10/6) + L1(2 4+ Ls My) /0 w4 (s) ds,
(4.30)

where

ghy =l =0l +19(0)p(=7(0, o(=h))) = 7(0)(=7(0,¢(=h)))[ + g — adle M7 + |Gl My |T —7|c-

Clearly, g5, — 0 as v — 7. Consider first the interval [0, h]. For t € [0,h] N[0, oy, 5], (4.30)
is equivalent to

t
Why () < ghy + lGle LaMywp 5 (0) + [Glewn (t = r0/6) + L1 (2 + Lst*)/U Why(s) ds.
(4.31)
Let A > 0 be the unique positive solution of \|g|ce /6 + Li(2 + LsMj) = X\. Then
Lemma 2.5 yields that wp, ,(t) < d2e* for ¢ € [0,h] N[0, ap 4], where

h_ gy +AlcLaMiwn 5 (0) 56 ~
dy = max{ 1 — |g|ce Aro/6 L% — gl

Since wy ,(0) = |¢ — @l d,}; — 0 as v — 7, we have h < ay, if 7 is close enough to 7, and
why(h) = 0asy— 7.
We now consider the interval [h, 2h]. For ¢ € [0,2h] N[0, o, 5], (4.30) is equivalent to

t
Why () < ghy +1aleLaMywpy (h) + |qlcwny (E—10/6) + L1 (24 Ls My) /0 why(s) ds. (4.32)

13



Lemma 2.5 implies that wy, ,(t) < d,theAT for t € [0,2h] N [0, ap ], where

2h _ gy tldlcLaMiwp,(h)  3ros6 -
dy' = max{ 1 — |g|ceAro/6 Ll —glo

Therefore, as before, we obtain that ay,, > 2h, and wy,,(2h) — 0 as v — 7. By extending
the interval step-by-step, we get that ay , = T', and wy, ,(T') — 0 as v — ¥, which proves the
theorem. [ |

We studied the single delay equation, (2.1), for simplicity of the presentation. Our results
have a straightforward generalization to the multiple delay case, i.e., to NFDEs of the form

%(az(t) + 3 Gt — it 2(1))) = £ (820, 2(t = 01 (8, 2(1)), ..., 2(t = a(t,5(1))).
i=1

5 Numerical Examples

In this section we present some numerical examples to illustrate our identification method.
The general method is the following: consider an IVP with unknown parameters. If the pa-
rameters are infinite dimensional, use linear spline approximation of the parameters. Then,
for a fixed small h > 0, consider IVP (4.6)-(4.7), and solve the corresponding finite dimen-
sional least-square minimization problem, Py j, (see Step 3 in Section 3). If A is small and N
is large, use the solution of Py ; as an approximate solution of the identification method.

To solve Py, we used a nonlinear least square minimization code, based on a secant
method with Dennis-Gay-Welsch update, combined with a trust region technique. See Section
10.3 in [5] for detailed description of this method.

Example 5.1 Consider the state-dependent NFDE
d
7 (@) + a2t = 7 (t,2(1))

= 0.0003tx(t) — 0.0255z(t — |x(t)]) + (0.5088t — 1.4895)x(¢) + 2.99¢, ¢ > 0,
z(t) = t% t € [-50,0],

where
7(t,2) = min{0.5 + 0.5 + 0.01/z], 50}. (5.1)

It is easy to check that z(¢) = t? is a solution of this IVP (for 0.5 + 0.5t + 0.01¢? < 50, e.g.,
on [0, 49]) corresponding to the parameter q(t) = 0.5t — ¢ — 0.5. In this example we identify
g on [0,3].

One of the difficulties of working with state-dependent equations is that the exact initial
interval, i.e., —r = min{t — 7(¢,z(¢)) : 0 <t < T}, depends on the actual solution. In our
example t — 7(¢,z(t)) = 0.5¢ — 0.5 — 0.01|z(¢)| (for 7(¢,2(¢))| < 50). For the true solution,
x(t) = t2, we have that ¢t — 7(¢,z(t)) is monotone increasing on [0, 3], its minimum on this
interval is —0.5, and it is positive at, e.g., t = 1.5. Therefore the solution uses all values of
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the initial function on [—0.5,0], but not the function values for ¢ < —0.5. The true solution
satisfies My = esssup{|Z(¢)| : ¢t € [-0.5,3]} = 6. Clearly, Ly = 0.01, and the true parameter,
q, satisfies |glc = |q|cjo,3) = 1. Therefore, for the true parameter, |g|cLsMy < 1, and the
conditions of Theorem 4.2 are satisfied.

We generate measurements, X;, using the true solution, z(t) = ¢, and t; = 0.2, i =
0,...,15. We use N-dimensional linear splines with equidistant mesh points to approximate
g on [0,3]. Consider the minimization problem

15
min JV" () =Y |yn v (8) — X2 (5.2)
i—0

We can use (4.13) to obtain an a priori estimate of |¢"|c. Using Ly = 0.01, M = 6,
(4.13) implies that the possible parameters for which we expect convergence of the numerical
method satisfy |¢/c < 100/6. Therefore, we can assume, e.g., that |¢"¥|c < 16, and solve
(5.2) subject to this constraint. Table 1 and 2 contain the value of the cost function and
the maximal error of the numerical solution, respectively, for different h and N. Figure 1
shows the approximate solution for N = 3, 5 and 7. In these runs we used the initial guess
¢ (t) = 0. We observe good recovery of the coefficient, q.

Table 1: JN:(gh)

h N=3 N=5 N=7 N=9 N=11 N=13
0.10000 5.0596e-03 1.9198e-03 9.8530e-04 1.7070e-04 1.6238e-05 9.2322e-05
0.01000 3.5235e-03 1.0431e-03 1.7979e-04 8.4079e-05 8.1028e-07 2.2984e-06
0.00100 3.5753e-03 1.0140e-03 1.6455e-04 7.9288e-05 2.8211e-07 5.0901e-07
0.00010 3.5818e-03 1.0117e-03 1.6349e-04 7.8894e-05 2.4407e-07 3.9908e-07

Table 2: Maximal error, i.e., max;—1_. n-1|¢" (&) —q(&)], & =3i/(N —1)

h N=3 N=5 N=7 N=9 N=11 N=13
0.10000 1.0632e+00 5.3507e-01 6.8827e-01 1.9085e+00 1.8369e+00 1.1990e+00
0.01000 6.6414e-01 1.3126e-01 1.5645e-01 3.5141e-01 2.2176e-01 1.7703e-01
0.00100 6.2379e-01 1.8571e-01 6.6345e-02 1.5572e-01 8.2484e-02 6.8315e-02
0.00010 6.1638e-01 1.9258e-01 4.6795e-02 1.4026e-01 6.9176e-02 8.2794e-02

Example 5.2 Consider again the previous equation
d 2
= (m(t) + (0.5t —t — 0.5)2(t — T(t,x(t))))
= 0.0003tx(t) — 0.0255z(t — |z(t)|) + (0.5088t — 1.4895)x(t) + 2.99¢, ¢ >0,

z(t) = o(t),  tel-r0]

where 7 is defined by (5.1). We have that z(¢) = 2 is the solution of this IVP (for 7(¢, z(t)) <
50) corresponding to the initial function (t) = t2. We generate measurements at ¢; = 0.05i,
i =0,...,30 using the function z(t) = #2.
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The knowledge of the exact initial interval is more essential in this example than in the
previous one. It follows from (5.1) that the “true” initial interval is a subset of [—50,0]. But
one does not want to define the approximate initial functions, ¢, on a larger interval than
necessary, because that would introduce unnecessary variables to the minimization problem.
Moreover, the solution, and therefore the cost function, JY" would be independent of those
variables. One possible approach is the following: define —r* = min{t; — 7(¢;, X;) : ¢ =

0,...,30}, and make the assumption that » = r*. (Which is, in fact, true for our solution,
x(t) = t2) Since max{t; — 7(t;, X;) : i = 0,...,30} > 0, we can see that all values of the
initial function between ¢t = —0.5 and ¢ = 0 are used in the equation. If, during the run, initial

function values for ¢ < —r* are requested, then one could restart the process by selecting a
value —r < —r*, or, if possible, taking more measurements, and recomputing —r* to get a
better guess of —r.

Our goal is then to identify ¢ on the interval [—0.5,0]. Let 7V be the minimizer of

30
min JV(7N) =3 "y, v (t) = X,
=0

where we take the minimum over the N-dimensional linear spline functions with equidistant
mesh points in [-0.5,0]. One can obtain a priori estimates for esssup|¢(¢)| and then for |¢|c
from (4.13), and use them as a constraint in this minimization, but here, for simplicity, we
solved the unconstrained minimization problem.

Table 3 and 4 show the value of the cost function and the maximal error of the approximate
solution for several h and N. Figure 2 shows the approximate solution for N = 3, 5 and 7.
We used the initial guess 7V () = 0.5.

Trying to identify ¢ on an interval larger than [—0.5, 0] introduces unnecessary parameters
to the equation. On the other hand, our experience with our minimization routine is that the
solution remains equal to the initial guess between those mesh points which do not belong to
the “true” initial interval. That is, if —r"V denotes the first mesh point, where the approximate
solution is not equal to the initial guess, then —rV — —r, i.e., one can recover the beginning
of the “true” initial interval. See [14] for a more detailed example.

Example 5.3 Consider again the IVP of Example 5.1:

L (2t) + (0522 = t = 0.5)a(t - (2, 2(1)))

dt
= 0.0003tz(t) — 0.02552(t — |z(£)]) + (0.5088¢ — 1.4895)z () + 2.99¢, ¢ > 0,
w(t) = 2,  te[-n0],
T(t,x) = min{a + bt + clz|, 50},

where a, b and ¢ are parameters, satisfying min{a, b, c} > 0.001. The solution of the IVP is
z(t) = t? corresponding to parameter values a = 0.5, b = 0.5 and ¢ = 0.01. In this example
we identify these parameters. We use the measurements of Example 5.2, and the initial
parameter values a = 0.25, b = 0.25 and ¢ = 0.25. The numerical results are presented in
Table 5.

The main problem in identifying 7 (¢, z) is that there is no hope to recover 7 as a function
of z using only one set of measurements, since the approximation uses values of 7 along the
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Table 3: JV! (")

h N=3 N=5 N=7 N=9 N=11 N=13
0.10000 6.8331e-03 1.1835e-03 7.3757e-04 7.7210e-04 7.1118e-04 4.3269e-01
0.01000 4.6050e-04 3.6782e-05 1.1412e-05 7.2736e-06 6.0434e-06 5.3722e-06
0.00100 4.5456e-04 2.7043e-05 5.7129e-06 1.5963e-06 9.4420e-07 4.0088e-07
0.00010 4.5985e-04 2.7181e-05 5.7585e-06 1.6632e-06 9.8119e-07 4.6465e-07

Table 4: Maximal error, i.e., max;—1.._ n-1|¢" (&) — @(&)], & = —0.5i/(N — 1)

h N=3 N=5 N=7 N=9 N=11 N=13
0.10000 2.2714e-01 2.6463e-01 2.6520e-01 2.6636e-01 2.6273e-01 2.3274e+01
0.01000 2.9694e-02 2.8321e-02 2.7231e-02 2.6925e-02 2.6533e-02 2.6347e-02
0.00100 1.0787e-02 4.5946e-03 3.3874e-03 2.7903e-03 2.6643e-03 2.5311e-03
0.00010 1.0274e-02 2.5566e-03 1.2419e-03 6.2784e-04 3.6297e-04 3.4763e-04

solution only. Therefore one has to assume a certain form of the dependence of 7 on ¢ and =,
and identify unknown parameters of the formula (like we did in this example), or assuming,
e.g., that 7(t,z) = 71(t) + m2(x), where 75 is known, identify only the time dependent part,
T1-

Table 5:

h a error b error c error Jh(a,b,c)
0.1000 | 0.001000 0.499000 | 0.323625 0.176375 | 0.240148 0.230148 | 2.5368e-04
0.0100 | 0.201232 0.298768 | 0.723703 0.223703 | 0.001000 0.009900 | 2.0015e-06
0.0010 | 0.521671 0.021671 | 0.481883 0.018117 | 0.072947 0.062947 | 3.3664e-11
0.0001 | 0.500604 0.000604 | 0.499510 0.000490 | 0.014029 0.004029 | 2.5390e-11

Example 5.4 We close this paper by an example where identifyability fails. Consider

cos t, t €0,2],

te[-1,0]

(=) + altyze - 1) =
z(t) = 1,

Clearly, z(t) = 1 is the solution of this IVP
is an arbitrary constant.

corresponding to ¢(t) = sin(t) + ¢, where ¢
Therefore, in this example, the inverse problem has no unique
solution. We generated measurements X; = 1 for ¢; = 0.054, 1 = 0,1,...,40, and considered
N-dimensional linear spline approximations of ¢ on [0,2]. Figure 3 contains the numerical
solution of the corresponding finite dimensional minimization problems for N = 3, 5, 7, 9,
and 11 and h = 0.001 (the solid line is the function sint). In all runs we used ¢ = 0 as the
initial condition. Interestingly, the numerical results are approximately a shifted sin function,
i.e., a possible “true parameter”, where the magnitude of the shift depends on IV, h and the
initial guess.

17



References

1]
2]
3]

[10]

[11]

[15]
[16]

[17]

H. T. Banks, J. A. Burns and E. M. Cliff, Parameter estimation and identification for
systems with delays, STAM J. Control and Optimization, 19(6):791-828 (1981).

H. T. Banks and K. Kunisch, Estimation Techniques for Distributed Parameter Systems,
Birkhauser, 1989.

H. T. Banks and P. K. Daniel Lamm, Estimation of delays and other parameters in non-
linear functional differential equations, SIAM J. Control and Optimization, 21(6):895—
915 (1983).

J. A. Burns and P. D. Hirsch, A difference equation approach to parameter estimation for
differential-delay equations, Applied Mathematics and Computation, 7:281-311 (1980).

J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization
and Nonlinear Equations, Prentice-Hall, 1983.

R. D. Driver, A neutral system with state-dependent delay, J. Diff. Eqns., 54:73-86 (1984).

L. J. Grimm, Euxistence and continuous dependence for a class of nonlinear neutral-
differential equations, Proc. Amer. Math. Soc., 29(3):467-473 (1971).

I. Gyéri, On approximation of the solutions of delay differential equations by using
piecewise constant arguments, Internat. J. of Math. €& Math. Sci., 14(1):111-126 (1991).

I. Gyéri, F. Hartung and J. Turi, On numerical approximations for a class of differen-
tial equations with time- and state-dependent delays, Applied Math. Letters, 8(6):19-24
(1995).

J. K. Hale and M. A. Cruz, Existence, uniqueness and continuous dependence for hered-
itary systems, Ann. Mat. Pura Appl., 85:63-81 (1970).

F. Hartung, T. L. Herdman and J. Turi, Identifications of parameters in hereditary
systems, Proceedings of ASME Fifteenth Biennial Conference on Mechanical Vibration
and Noise, Boston, Massachusetts, September 1995, DE-Vol 84-3, Vol.3, Part C, 1061-
1066.

F. Hartung, T. L. Herdman and J. Turi, Identifications of parameters in hereditary
systems: a numerical study, Proceedings of the 3rd IEEE Mediterranean Symposium on
New Directions in Control and Automation, Cyprus, July 1995, 291-298.

F. Hartung, T. L. Herdman, and J. Turi, Parameter identification in classes of hereditary
systems of neutral type, to appear in Appl. Math. and Comp.

F. Hartung and J. Turi, Identification of Parameters in Delay Equations with State-
Dependent Delays, to appear in J. Nonlinear Analysis: Theory, Methods and Applica-
tions.

F. Hartung, T. L. Herdman, and J. Turi, On existence, uniqueness and numerical ap-
proximation for neutral equations with state-dependent delays, preprint.

7. Jackiewicz, Existence and uniqueness of neutral delay-differential equations with state
dependent delays, Funkcialaj Ekvacioj, 30:9-17 (1987).

K. A. Murphy, Estimation of time- and state-dependent delays and other parameters in
functional differential equations, SIAM J. Appl. Math., 50(4):972-1000 (1990).

18



[18] S. Nakagiri and M. Yamamoto, Identifiability of linear retarded systems in Banach s-
paces, Funkcialaj Ekvacioj 31:315-329 (1988).

Figure 1:

0.5 0.4 70.3 702 -0, 1

19



-
-
-

~~

20



