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Abstract

We consider a class of linear delay equations with perturbed time lags and present
conditions which guarantee that the asymptotic stability of the trivial solution of the
equation at hand is preserved under these perturbations. As an example we show how
our results can be used to obtain an estimate on the maximum allowable sampling
interval in the stabilization of a hybrid system with feedback delays. We also present
applications of our perturbation theorem to obtain stability conditions for delay equa-
tions with multiple delays.
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1 Introduction

In this paper we study the effects of perturbations of time delays to the stability of a class
of linear delay systems. Our goal is to obtain a “practical” condition, i.e., a norm bound
on the perturbations corresponding to the particular system under consideration, which
guarantees the preservation of asymptotic stability under perturbations. It turns out that
such condition can be formulated assuming that we know the fundamental solution of the
unperturbed system (see Theorem 2.3 below). Since asymptotic stability of the unperturbed
system implies that the components of its fundamental solution go to zero at infinity, it is
possible to get “good” numerical estimates of these components, and consequently obtain
norm bounds on the allowable perturbations.
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We present our main results in Section 2, and in Section 3 we consider numerical exam-
ples. Example 3.3 demonstrates how our results can be used to obtain an estimate on the
maximum allowable sampling interval while preserving stability of a hybrid system with
feedback delay. Note that this study was motivated by [5] where stabilization of a hybrid
feedback control system was studied in the case when the plant is described by an ordinary
differential equation. In Section 4, as an application of our perturbation results, we derive
sufficient conditions for asymptotic stability for classes of linear scalar and vector delay
differential equations with multiple time-dependent delays.

To put our current work into proper perspective for the reader, in the remaining part of
this section, we recall some relevant developments from [6]. Theorems E and G in Chapter
34 in [6] give general perturbations results for the preservation of asymptotic stability of
general linear delay systems. More specifically, Example 3 on page 397 in [6] addresses the
question of the effects of delay perturbations on the stability of linear differential systems,
and a sufficient condition guaranteeing the asymptotic stability of perturbed systems is
stated (see also [10]) as follows: The trivial (z(¢) = 0) solution of the perturbed system

m

B(t) = Ao(t)z(t) + Y Ai()z(t —ri), >0
i=1

is uniformly asymptotically stable, if the trivial solution of the unperturbed system
m
i) =>_ Ait)y(t). >0
i=0

is uniformly asymptotically stable, i.e., there exist constants M > 0 and v > 0 s.t. for¢t > 0
we have

ly(t: )N < Ml (1.1)
where £ is the given initial condition, and if
m m ’)/
T sup A; (1) - sup | 4;(t)] < = 1.2
tZO;H i)l ;tzo lA @1 < 57 (1.2)
where 7,79, ..., 7, represent constant delay perturbations and 7 = max{ry,rs,...,rn}.

Note that condition (1.2) has a straightforward generalization for continuous time-delay
perturbations, i.e., when r; = r;(¢) are continuous functions. In this case in condition (1.2)
the constant 7 is replaced by 7% = max;=1,.. msup;sq |ri(t)|. It is somewhat inconvenient
that in order to apply condition (1.2), one has to assume: i) smallness of delays for all
t > 0, ii) explicit knowledge of the constants M and ~.

In Section 2 below we derive a condition for the preservation of stability for a large class
of equations assuming: i) smallness of perturbations only for sufficiently large times, (hence
we allow perturbation which are not “small” initially), ii) the knowledge of the integral of the
absolute value of the fundamental solution over [0, 00). Note that for asymptotically stable
systems, it is relatively easy to obtain good estimates for the above integral, and therefore
our condition may provide useful tool for applications. Furthermore, in the special case,
when the fundamental solution is positive, the condition for preservation of stability can be
formulated in terms of the coefficient matrices of the given system.



Investigating stability properties of perturbed delay equations, uncertain delay equa-
tions, or robust stability of delay equations is a reasonably active research area. Without
claiming completeness we refer the reader to [1], [4], [6]-[7], [13]-[16], [21] and the references
therein for related articles on these topics.

2 Main Results

Consider the delay differential equation

m
B(t) =Y At —ri — ni(t)), t>0 (2.1)
i=0
with initial condition
0(t) = plt),  —r<i<0, (2.2)
where A; (i = 0,...,m) denote constant n x n matrices, 0 < rog < r; < ... < 7, @

[—7,0] — R" is a continuous function, and we shall assume that the piecewise continuous
delay perturbations, n;(-) (i = 0,...,m), satisfy

t—r<t—r;—mnit) <t for t>0 (1=0,...,m). (2.3)

The solution of initial value problem (2.1)-(2.2) is an absolutely continuous function, which
satisfies (2.2) for all ¢ € [—r, 0], and satisfies (2.1) a.e. ¢ > 0. Under our assumptions initial
value problem (2.1)-(2.2) is a delay differential equation and has a unique solution, which
is continuously differentiable at the points where 7;(¢) (i =0,...,m) are continuous.

We consider the corresponding unperturbed system with constant delays, i.e.,

i =3 Aglt-r), 120, (2.4)
1=0

and we assume that
(H) the trivial solution of (2.4) is asymptotically stable.

The fundamental solution of (2.4), V'(¢), is defined as the solution of the following system

V(t) = iAZV(t -r), t>T (2.5)
i=0
and
V() = { é iz; (2.6)

where 1,0 € R™*" are the identity and the zero matrix, respectively, and T > 0.



Remark 2.1 To emphasize the dependence of V(-) on T we use the notation V (t; T'). Note
that V(t; T) =V (t—=T; 0) fort > T > 0 because (2.4) is autonomous (see e.g. [11]), hence

/UOO V(t; T)dt = /UOO V(#; 0) dt.

We can rewrite (2.1) in the form
B(t) =3 At - ) + 1), (27)
where .
fH =3 4 <x(t—fri () —x(t—rﬁ). (2.8)
i=0
In this setting (2.4) can be considered as the homogeneous equation corresponding

to (2.7). The variation-of-constants formula (see, e.g., [11], p. 145) gives the following
expression for the solution of initial value problem (2.1)-(2.2):

z(t) = y(t) + /Tt V(t—s)f(s)ds, t>T, (2.9)

where T' > 0, and y is the solution of (2.4) with initial function y(¢) = z(¢) for T—r <t < T
and V(-) = V(;T) is the fundamental solution of (2.4).

For future convenience, we introduce the ~ operation on vectors and on matrices, which
means taking the absolute value of the vector or matrix componentwise, i.e., if z =

(z1, 29, ... ,7) T, then by definition Z = (|21], [22], ..., |z,])T, and similarly if A = (a;)nxn,
then A = (|aij|)nxn. The relation < between vectors means a componentwise comparison,
ie., (x1,22,...,20)T < (W1,y2,...,yn)T if for all the components z; < ;.

Remark 2.2 Hypothesis (H) implies (see e.g. [11]) that the trivial solution of (2.4) is
ezponentially stable, and there exist constants K > 0 and a > 0, such that |V (t)| < Ke™
fort >0, (where || - || is the matriz norm induced by the vector norm ||(z1,Z2,...,2Tn)| =
maz{|r1|, |x2l, ..., |zn|}), and then every element of the matriz

/OOO V(s)ds

is finite.

The next theorem shows that if the perturbations of the delays in (2.1) are small enough
for large ¢, then the equation remains asymptotically stable.



Theorem 2.3 Assume (H) and that the matriz

Mz/ooof/ (Z hm|m ) (ZA) (2.10)

has spectral radius less than 1, i.e., p(M) < 1. Then the trivial solution of (2.1) is asymp-
totically stable.

Proof: We prove the theorem in three steps. First we give an estimate of f(t) for large
t. Next we show that Z(t) is bounded, i.e., tlim Z(t) is finite, and then we show that
—00

hm z(t) = 0, which proves the theorem.
t—00

(i) We will need an estimate of f(¢) for large ¢. Fix a constant T' > r, then (2.3) implies
that
t—r; —ni(t) >0 for t>T, i=0,...,m. (2.11)

It is easy to see that for ¢ > r the solution of (2.1) is piecewise continuously differentiable

and we can write
t—r;—n;i(t)

= ; Ai/ z(s)ds.

t—r;

Using (2.1) we get
m t—r;—
->a 2 #(s = 1j = 0y(s)) ds. (2.12)
i=0
This relation and the definition of the ~ operation imply the inequality

(2.13)

< Z A;
i=0

/tt e i —n;j(s))ds|.

-1

Introduce the simplifying notation

T
23, 70) = (goag, 1 0)) goag [o2 Ol i lan(O))

In addition to (2.11), we choose T large enough that all the arguments of Z(-) in the integrals
in (2.13) are positive. Then we can estimate all Z(:) by maxo<s<¢ Z(s), therefore we obtain
from (2.13)

(Z i (t) > (; flz> 0123%(::56(8)’ t>T. (2.14)

Define the matrix

m 2
My= [ V(s)ds (Z Ai> : (2.15)



(We note that according to Remark 2.1, the matrices M and M, are independent of the
choice of T'.) Tt is easy to see that p(M) < 1 implies that there exists § > 0 such that

p(M + M) < 1. (2.16)

With this 6 we can choose T such that (2.14) holds and furthermore, we have the following

relations
ni(t)] <uli_)ngo|m(u)|+6, t>T, i=0,...,m. (2.17)

Then (2.14) yields the following estimate

f(t) < (i(u@‘jlm )| +4d)A ) (i z) max I(s) t>T. (2.18)

=0 =0

(ii) Next we prove that the solution of (2.1) is bounded for all initial functions. Choose
T > 0 such that (2.18) holds. For such 7', formula (2.9) and standard estimates yield the
inequality

i(t) < g(t) +/th/(t—s) f(s)ds, t>T. (2.19)

Combining (2.18) and (2.19) we get

t _ m m _
0 < s [V (SO0 ) (3 4) e
t - m m .
< g(t) + /T V(t—s) (; ( lim |nZ )| +9) Z) (Z Ai> Orgggtx(u).
A change of variables gives the inequality

tT m . moo
B < g+ / ( (T (s )|+5)AZ> > 4| max i(u)

o . mo_
< g i : i (u).
< () +/0 V(s)ds (g(ulggom( )| +6) A (Z i Jé‘%x(“)
Using the definition of M and My, we have
(t) < g(t) + (M + M) max T(u)

< Orgagty( u) + (M + 6 My) maéctx(u) (2.20)

The right hand side of inequality (2.20) is monotone in ¢, therefore (2.20) yields that

P (u) < i M + 6 M, 2.21
Orgggtw(w_orgggty() (M + 0 M) magt:v(U) (2.21)

Rearranging (2.21) and using that y(¢) is bounded by hypothesis (H), we have that there
exists a constant vector z > 0 such that

(I — (M +dM,y)) mai(tx( u) < Orggicty( u) < z, t>T. (2.22)



Inequality (2.16) and the fact that M + §M, has nonnegative components imply that I —
(M + dMy) is a nonsingular M-matrix, therefore an application of Theorem 6.2.3 in [3]
yields that I — (M + 6Mj) is a monotone matrix, hence

i(u) < (I — -1 >
Oréll&}%ctx(u) < (I —=(M+6My)) =z, t>T,

i.e., z(t) is bounded for t > 0.

(iii) Next we show that z(t) tends to 0 as ¢ — oo, i.e., t@oi(t) = 0. Inequality (2.19)
yields
mi(t)gtl_i)my -I-hm/Vt—s s)ds.

t—o0
By (H) we have tli_m g(t) = 0, hence

Tim #(¢) < Tim tf/(t — 5) f(s)ds. (2.23)

t—o0 T t—=oo T

For any 0 > 0 we can choose T such that (2.17) is satisfied and moreover, 2(2.13) all
arguments of Z(-) in the integrals are large enough, i.e., we can estimate z(-) by tlim z(t)+01,
—00

where 1 = (1,1,...,1)T, and consequently, for + > T, relation (2.13) implies the inequality

F) < (i(u@mw ¥ 5>Ai> (i A) (T (u) + 1) (2.24)

Combining (2.23) and (2.24) we have

Tmi(r) < Iim / V(t—s)d (Z( Tim [ (u >|+a>fL> (zfli) (T (u) + 61)

=0
m
< [V (;(ugngomw + 5)Ai> (Z Az) (ma() +o1).  (225)
Since (2.25) holds for arbitrary ¢, we have
tllglox( ) < Mtl_l)rglox( ). (2.26)
Hence
(I — M)limz(t) <O0. (2.27)
t—o0

By assumption p(M) < 1, M has nonnegative components, and therefore I — M is a
nonsingular M-matrix, therefore by Theorem 6.2.3 in [3] I — M is monotone, hence (2.27)
yields that lim Z(¢) < 0. On the other hand lim Z(¢) > 0, therefore lim Z(¢) = 0.

t—o0 t—o0 t—o0

The proof of the theorem is complete.

The following corollary is an easy consequence of the theorem.



Corollary 2.4 Let My be defined by (2.15). If

— 1 .
tli}glo|nl(t)| < M7 1=0,...,m,

then the trivial solution of (2.1) is asymptotically stable.

If the fundamental solution V' (¢) of (2.4) is nonnegative, (i.e., each component v;;(t) of

V() is nonnegative and therefore V() = V(¢)), then it is easy to compute the integral in
(2.15). In particular, we have the following result.

Proposition 2.5 If the trivial solution of (2.4) is asymptotically stable, then the funda-
mental solution of (2.4) satisfies

(;Al)/o V(s)ds = —1I,

where I is the identity matriz.

Proof: Let V (¢) be the fundamental solution of (2.4) corresponding to T' = 0. By integrat-
ing (2.5) from 0 to t > 0 we get

Vi) -v0) =3 4 /UtV(s i) ds.
i=0

A change of variables in the integrals and the assumed initial condition V (¢) = 0 for ¢ < 0
yield

t—r;

V(t)-V(0) = ZAi/ V(s)ds
=0

-1

m t—r;
= ZAZ/ V(s)ds.
i=0 70
Using V(0) = I and the fact V(¢) — 0 as ¢ — oo we obtain the equality

-1 = (ZO AZ~> /OOO V(s)ds,

which proves the proposition.

Remark 2.6 In the case when V (t) is nonnegative, and Y ;% A; is nonsingular, Proposi-
tion 2.5 implies that

m -1 /'m 2
My = - <Z Ai> (Z /L) , (2.28)
1=0 1=0

therefore our stability condition in Corollary 2.4 is given in terms of the coefficient matrices.



To conclude the section in the next Proposition we give a sufficient condition for pos-

itivity of the fundamental solution of (2.4). We shall need the following notations. Let
A; = [ayk)], V(t) = [vjk(t)], aglj) = max{—ag?,O}, ,BJ(;) = max{agj),O}. Then we can
rewrite initial value problem (2.5)-(2.6) in terms of the components:

m ) m n
?')jk(t) = —Zaglj)vjk(t— ZZ 'Ulk t—rz —I—Zﬂ” ’U]k 7’2'), t>0, (2.29)
=0 =01 ; i=0
S, t=0,
vip(t) = {Jk P20 (2.30)

(where 0 is the Kronecker-delta), j,k = 1,2,...,n. Consider the following two initial
value problems associated to the negative parts of the components in the main diagonals
of A;, i.e., to the “homogeneous part” of (2.29):

m .

i) = =Y ot —r),  t>0, (2.31)
—0
i, t=0,

wi(t) = { Jk F 0 (2.32)

and

a(t) = =Y aluit—r), t>0, (2.33)
1, t=0,

ui(t) = {0 20 (2.34)

g,k =1,2,...,n. Clearly, we have that for all £ > 0

07 ' 7é ka
wjk(t) = { u]‘(t), ; - k. (2'35)

Proposition 2.7 Assume that

(i) al) > 0 for all j,k=1,2,...,n, j # k.

(11) it ayj)ri < % forallj=1,2,...,n

Then vji(t) > 0 for allt >0 and j,k =1,2,...,n

Proof: Let w;;(t) and u;(t) be the solutions of initial value problems (2.31)-(2.32) and
(2.33)-(2.34), respectively, (j,k = 1,2,...,n). By Theorem 3.31 in [9] it follows that
uj(t) > 0 for all j = 1,2,...,n. (The above theorem applies for solutions correspond-
ing to continuous initial functions. To use that result for IVP (2.33)-(2.34) we approximate
the initial function in (2.34) by appropriate continuous initial functions, ug(t), t <0,



I =1,2,..., and by arguing that the corresponding solutions uj(t) t > 0 approximate u;(t)
uniformly on compact time intervals we get that the limit u;(t) = lim;_ ué (t), is also
nonnegative.) Nonnegativeness of u;(¢) and relation (2.35) yield that w;;(¢) > 0 for ¢ > 0,

4,k =1,2,...,n as well. The variation-of-constant formula implies the relation
m n ¢
vk (t) = wjk(t Z Z aj / uj(t — s)ug(s — i) ds + ZB” /0 uj(t — s)vjp(s — 1) ds.
Using the nonnegativeness of w;(t), u;(t), ,BJ(] , (l # 7), and (2.30) it is easy to see the

nonnegativeness of v, ().

Note that in the ODE case, i.e., when m = 0, rg = 0, condition (ii) of the previ-
ous proposition is satisfied automatically, and then condition (i) is also necessary for the
positivity of v;(¢). (See Theorem 3 in Chapter 10 of [2].)

3 Examples and Applications

Consider the scalar version of (2.1).

m
z(t) = Zaix(t —ri —ni(t)), t>0 (3.1)
i=0
with initial condition
z(t) = p(t), —r<t<0, (3.2)
where ¢ : [-r,0] — R is a continuous function. The corresponding equation with unper-
turbed delays is
m
t) = Z a;y(t —r;), t>0. (3.3)

Let v(t) be the fundamental solution of (3.3), i.e
m
o(t) = Zaiv(t —7i)s t>0 (3.4)
i

=0
1, t=0,
() = { 0, t<0. (3:5)

The scalar version of Theorem 2.3 is the following.

Theorem 3.1 Assume that the trivial solution of (3.3) is asymptotically stable and the
functions n;(+) (1 =0,...,m) satisfy

glai\t%\m(m < e T (3.6)

Then the trivial solution of (3.1) is asymptotically stable.



Note that if the fundamental solution is nonnegative, then Remark 2.6 yields that
condition (3.6) is equivalent to

m
T — 2z ai
;:0: |az‘ti>oo‘nl( )‘ ;7;0 ‘ai

(3.7)

In the general case we would need an upper estimate of [;° |v(t)| d¢ to get an easily verifiable
condition on the allowable perturbation. Such an estimate at this time is known (see [8])
only for the single-delay equation of the form

#(t) = —ba(t — 1), (3.8)

where b > 0 and b7 < 7/2 (hence the trivial solution is asymptotically stable). For this
equation it can be shown (see [8]) that there exists a unique characteristic root Ay =
g + Boi of equation (3.8) , i.e., a solution of A\ = —be 7, satisfying By € [0, 7=). Then the
fundamental solution of (3.8) satisfies

o0 1ag + 55
A\MM&SZ 'S (3.9)

In the general case, the practical importance of our result can be argued as follows:
i) it is easy to obtain numerical approximation of the fundamental solution, ii) using the
fact that the fundamental solution exponentially converges to 0 if the trivial solution is
asymptotically stable, it is easy to obtain good numerical approximation of the integral
Jo7 lv(t)] dt, and iii) using the numerical value of the integral and condition (3.6) get ap-
proximate bounds for the allowable perturbations.

The following examples show applications of this method.

Example 3.2 Consider the scalar equation
z(t) = —z(t — ro — n(t)). (3.10)
We know, (see e.g. [11]), that the trivial solution of

y(t) = —y(t —ro) (3.11)

is asymptotically stable if and only if 0 < ry < 7/2. Also we know, (see e.g. [8]), that the
fundamental solution of (3.11) is positive if 0 < rg < 1/e, and oscillates if 1/e < 1o < /2.
Therefore if we pick e.g. 79 = 0.3, (i.e., g < 1/e), then an application of Proposition
2.5 yields that [ |v(s)|ds = 1. Therefore by using our condition in Theorem 3.1 we have
that if tll)rgo\n(t)\ < 1, then the trivial solution of (3.10) is asymptotically stable. On the

other hand, if we pick, e.g., rg = 1, then we obtain ag + Bt = —0.3181 + 1.3372: as the

numerical value of the characteristic root of (3.11) satisfying fy € [0, %). Inequality (3.9)

yields the estimate [;° |v(s)|ds < 18.6687, and therefore if 1tlim n(t)] < 1/18.6687 = 0.0536,
—00

then the trivial solution of (3.10) is asymptotically stable. By numerical integration we get

Jo7 [v(s)] ds = 2.9302, hence the allowable perturbation is t@o\n(t)\ < 0.3413 by Theorem

10



3.1, which is much better than that of obtained by using estimate (3.9). Figure 1 and
2 contain the graph of the fundamental solution of (3.10) corresponding to ro = 1, and
n(t) = 0 and 75(t) = = + 0.3, respectively.

1

1.25 2

1 1.5

0.75 1

0.5 0.5
0.25 /\ 0 0 4 0 80 100

0 e -0.5

5 \_10 15 20 25 30

-0.25 -1

-0.5 -1.5

0.75 -2

Figure 1 Figure 2

Example 3.3 Consider the one-dimensional control system
z(t) = =0.1z(t) + 2z(t — 1) + Ku(t). (3.12)

One can check that for K = 0 the trivial solution of (3.12) is unstable. Let K = —2 and
u(t) = z(t — 1.3) in (3.12). Numerical approximation of the fundamental solution of the
corresponding equation

#(t) = —0.12(t) + 2z(t — 1) — 2a(t — 1.3). (3.13)

is shown on Figure 3. This picture indicates that the fundamental solution exponentially
tends to zero, i.e., the trivial solution of (3.13) is asymptotically stable. Therefore the
feedback law Ku(t) = —2z(t — 1.3) stabilizes (3.12). The term ¢ — 1.3 represents a time
delay in the control mechanism. Suppose that we sample the system only at the points
h,2h,3h, ..., and use a piecewise constant feedback control u(t) = z([(t — 1.3)/h]h) instead
of up(t) = z(t—1.3). Here [-] denotes the greatest integer function and A > 0 is the sampling
period. The question we are interested in is to find a bound on the sampling period h, which
guarantees that the trivial solution of the resulting hybrid feedback system

@(t) = —0.1z(t) + 2x(t — 1) — 2z <[t —h1.3} h) . (3.14)

remains asymptotically stable. The piecewise constant delay in the last term in (3.14) can
be considered as a perturbation of ¢ — 1.3 in (3.13) with

n(t) =t—1.3 - [t —h1.3} h.

Then we have that |n(t)] < h for all ¢ > 0. Numerical approximation gives that the
fundamental solution of (3.13) satisfies [;* |v(t)|dt = 10.5914. Therefore by Theorem 3.1

11



we have as a sufficient condition that h < m = 0.0115 guarantees that the trivial
solution of (3.14) is asymptotically stable.

Example 3.4 Consider system

ZL'(t) = Agx(t) + Alx(t —1- 7]1(25)) + AQZL‘(t - 14— ng(t)), (3.15)

—0.1 02 00 0.1 0.2 0.0
AU_( 0.0 —0.3)’ Al_(o.o —0.2) and AQ‘( 0.2 0.0)'

The corresponding unperturbed equation is

where

:E(t) = on(t) =+ Alx(t — 1) + AQZL‘(t — 1.4). (3.16)

On Figure 4 we display the components of the numerical solutions of the fundamental
matrix solution of (3.16). By Proposition 2.7 the fundamental solution is nonnegative, and
Figure 4 shows that each components of it tends to zero exponentially as t — oo, i.e., the
trivial solution of (3.16) is asymptotically stable. Nonnegativeness of the components of
V(-) and Remark 2.6 yield that

0.778 1.144
Mo = ( 0.511 0.778 ) ’

hence p(Mj) = 1.543. By using Corollary 2.4, if the perturbations of the delays satisfy
tm mi(t)| < 0.648 (i = 1,2), then the trivial solution of (3.15) is asymptotically stable.
— 00

1.5 1
1.25
0.8
1
0.6
0.75
0.4
0.5
0.2
0.25
0 5 10 15 20 25 30 35 40
10 —20 30 40 50 60
Figure 3 Figure 4

Example 3.5 Consider the following system
z(t) = Aoz (t) + Arz(t — 1 — 1 (t)) + Aoz (t — 1.5 — n2(t)), (3.17)

where z(t) € R,
0.1 03 0.7 —0.4 1.0 0.1
Ao = ( 0.5 0.0 ) A= ( 0.5 —0.8 ) and Ay = ( 0.1 0.4 )

12



The corresponding unperturbed equation is
z(t) = Agz(t) + A1z(t — 1) + Asx(t — 1.5). (3.18)

On Figure 5 we display the components of the numerical solutions of the fundamental matrix
solution. This picture indicates that every component function tends to zero exponentially
as t — oo, therefore the trivial solution of (3.18) is asymptotically stable. Numerical
approximation of the components of [;* f/(t) dt gives the following numerical values for the

matrix M
18.699 10.800
Mo = ( 16.441 10.641 >

thereforw(Mg) = 28.591. Corollary 2.4 implies that if the perturbations of the delays
satisfy tlim|m(t)| < 0.035 ( = 1,2), then the trivial solution of (3.17) is asymptotically
— 00

stable. On Figure 6 we present the components of the solution of (3.17) corresponding to
() = 0 and n9(t) = t% + 0.03 and the initial condition z(0) = I, and z(¢) = 0, ¢ < 0.

O.ZSA
0

-0.25

Figure 5 Figure 6

4 Stability results

In this section we show an application of our perturbation theorem to obtain stability
conditions for vector and scalar linear delay equations with multiple delays.
Consider first a vector equation of the form

(1) = iAix(t — o), >0, (4.1)
=0

and the corresponding ordinary differential equation

(1) = (i Ai> g1, 20, (42)
1=0

where z(-),y(-) € R", and o;(t) > 0 are piecewise continuous, bounded functions. We can
think of o;(¢) (¢ =0,1,...,m) in (4.1) as perturbations of the (zero) delays in (4.2). Recall
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that if all the eigenvalues of the matrix Y /", A; have negative real parts, then the trivial
solution of (4.2) is asymptotically stable. Let A; = ( (1)) By Theorem 3 in Chapter 10 of

[2] it follows that the fundamental solution of (4.2) is positive if and only if Y%, a]k) >0,
for j,k =1,2,...,n, j # k. Assuming the asymptotic stability and the positiveness of the
fundamental solution of (4.2) we can apply Theorem 2.3 and Proposition 2.5 and get that
the trivial solution of (4.1) is asymptotically stable, if the matrix

m -1 m m
M= — (Z Ai) (Z t@“l’(t)fii> (Z AZ)
i=0 i=0 i=0

has spectral radius less than 1. In the sequel we shall give condition yielding that || M| < 1,
which clearly implies that p(M) < 1. Here || - || is the matrix norm generated by either the
| -|l1 or the || - ||sc vector norm. Note that condition ||M]| < 1 is satisfied if we require that

1
(2 A) - I S Al

be satisfied. Here we used that || 4;]| = ||4;], and

Z hm O’Z A <

m -1 m m
M| < —(ZAl) S o)A | A
=0 =0 =0
m -1 m m
< |(2a) | (Smeman) sS4,
=0 =0 =0

and have proved the following proposition.

Proposition 4.1 Assume that

m
(i) the matriz ZAi has eigenvalues only with negative real parts,
i=0

(ii) i Oajk>0f0r],k—12 .,n, §#k, and

1
(2T A~ - [ 22 Asl
then the trivial solution of (4.1) is asymptotically stable.

(111) Z hmaz (t)]|A4;] <

Next we consider the scalar linear delay equations with multiple delays of the form

B(t) = = aix(t — oi(t)), t>0, (4.3)
=0

14



and the corresponding equation

() = - (i ) yt), 0. (4.4
7=0

The scalar version of Proposition 4.1 can be stated as follows:

Proposition 4.2 Assume that
m
(i) Zai >0, and
i=0

2;10 aj;

o lail”

m

(ii) Z'ai‘tli%loai(t) <
1=0

then the trivial solution of (4.3) is asymptotically stable.

For the case when each a; > 0 we have the following result.

Corollary 4.3 Assume that a; > 0 fori=0,1,...,m. Then, if
m —_—
;aitliléloai(t) <1, (4.5)
1=

then the trivial solution of (4.3) is asymptotically stable.

In the rest of this section we assume that a; > 0 for all 7 = 0,1,...,m. In this special
case, by imposing additional assumptions, we can obtain larger bound for the “average
delay” in (4.5) which guarantees the asymptotic stability of the trivial solution of (4.3).

Rewrite (4.3) in the form

B(t) ==Y aiz(t—7—(0i(t) = 7)), t>0, (4.6)
and consider the equation

g(t) = - (i) ylt—1),  t>0, (4.7)
1=0

Equation (4.7) is a single delay equation, which is asymptotically stable if and only if
Yitpa; > 0 and 7Y% a; < w/2. We have assumed that each a; > 0 therefore the first

condition is satisfied, and let
«

e Soimo i’
where 0 < o < 1. With this choice of 7 equation (4.7) is asymptotically stable, and

moreover, the fundamental solution of (4.7) is positive. We consider equation (4.6) as an
equation obtained by perturbing the delay 7 in (4.7) with n;(¢) = o;(¢) — 7. By Theorem

T
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3.1 and the discussion after the theorem, the trivial solution of (4.6) (therefore the trivial
solution of (4.3) as well) is asymptotically stable if (3.7) holds. Using the nonnegativeness
of each a;, and that (4.6) has the form (3.1) with a; replaced by —a;, we get that for our
equation this condition is equivalent to

m

E a; lim
. t—o00
=0

To further simplify this condition we consider special cases. It is easy to see that

(&%

- — <L 4.8
eZ?Loaj (48)

oi(t)

lim o;(t) — 7, ifo;(t) > 7 fort > T,

T () | — ) t=oo
t1_1>r£10|al(t) T|_{ 7 — lim 04(t), if o;(t) <7 fort>T.

t—o00 o

First assume that we can select 0 < a < 1 such that for some T' > 0 the delays satisfy

«
o; t>T, +1=0,1,...,m. 4.9
02 s 12 (49)

Then condition (4.8) can be rewritten as
Z ai, hm O’Z ) <1 -I— — (4.10)

Note that o = 0 satisfies (4.9), therefore we can always use condition (4.10) with a = 0,
and we get the same condition as in Corollary 4.3. On the other hand, if 1tlim oi(t) > 0 for
—00

alli =0,1,...,m, then there exists a positive « satisfying (4.9), and we get a larger bound
in (4.10) than that in Corollary 4.3.
Next consider the case when there exists 0 < a < 1 such that for some T > 0

o
(1) < ———, t>T, i=0,1,...,
o;i(t) < GZT:U%‘ > 1 m
Then we also have that
(1) < —1 £>T, i=0,1
0 — - b) Z: ) 7"'7m7
ez Uag

and it is easy to see that (4.8) is always satisfied.
We summarize our results in the next proposition.

Proposition 4.4 Assume that a; > 0, i =0,1,...,m. Then either one of the following
two conditions is sufficient for the asymptotic stability of the trivial solution of (4.3).
(i) There exist T >0 and 0 < «a < 1 such that

(a) oi(t) > a , t>T, ¢=0,1,...,m, and
Zg 0@
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m
S «
(b) ;aitlgglooi(t) <1+ ;

1
(11) There ezists T > 0 such that 0;(t) < —7—, t>T, ¢=0,1,...,m.
62320 (lj

To illustrate condition (i) in the previous proposition, consider the special case when
limy 00 05(t) = o, for i = 0,1,...,m. In this case condition

m
o «
—<o0o a; <1+ —

implies condition (i).

We refer to [12], [17], [18], [19], [20], and the references therein for similar stability
conditions for linear delay equations with multiple delays. Finally, we note that in all
the above references the supremums of the time-delays are used, while our conditions are
formulated in terms of the limit superiors of the time-delays.
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