
Preservation of Stability in Delay Equations under DelayPerturbations�
J. Math. Anal. Appl., 220 (1998) 290{312.

Istv�an Gy}ori and Feren
 HartungDepartment of Mathemati
s and ComputingUniversity of Veszpr�emH-8201 Veszpr�em, HungaryJanos TuriPrograms in Mathemati
al S
ien
esUniversity of Texas at DallasRi
hardson, TX 75083Abstra
tWe 
onsider a 
lass of linear delay equations with perturbed time lags and present
onditions whi
h guarantee that the asymptoti
 stability of the trivial solution of theequation at hand is preserved under these perturbations. As an example we show howour results 
an be used to obtain an estimate on the maximum allowable samplinginterval in the stabilization of a hybrid system with feedba
k delays. We also presentappli
ations of our perturbation theorem to obtain stability 
onditions for delay equa-tions with multiple delays.Key words: delay equations, asymptoti
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tionIn this paper we study the e�e
ts of perturbations of time delays to the stability of a 
lassof linear delay systems. Our goal is to obtain a \pra
ti
al" 
ondition, i.e., a norm boundon the perturbations 
orresponding to the parti
ular system under 
onsideration, whi
hguarantees the preservation of asymptoti
 stability under perturbations. It turns out thatsu
h 
ondition 
an be formulated assuming that we know the fundamental solution of theunperturbed system (see Theorem 2.3 below). Sin
e asymptoti
 stability of the unperturbedsystem implies that the 
omponents of its fundamental solution go to zero at in�nity, it ispossible to get \good" numeri
al estimates of these 
omponents, and 
onsequently obtainnorm bounds on the allowable perturbations.�This resear
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We present our main results in Se
tion 2, and in Se
tion 3 we 
onsider numeri
al exam-ples. Example 3.3 demonstrates how our results 
an be used to obtain an estimate on themaximum allowable sampling interval while preserving stability of a hybrid system withfeedba
k delay. Note that this study was motivated by [5℄ where stabilization of a hybridfeedba
k 
ontrol system was studied in the 
ase when the plant is des
ribed by an ordinarydi�erential equation. In Se
tion 4, as an appli
ation of our perturbation results, we derivesuÆ
ient 
onditions for asymptoti
 stability for 
lasses of linear s
alar and ve
tor delaydi�erential equations with multiple time-dependent delays.To put our 
urrent work into proper perspe
tive for the reader, in the remaining part ofthis se
tion, we re
all some relevant developments from [6℄. Theorems E and G in Chapter34 in [6℄ give general perturbations results for the preservation of asymptoti
 stability ofgeneral linear delay systems. More spe
i�
ally, Example 3 on page 397 in [6℄ addresses thequestion of the e�e
ts of delay perturbations on the stability of linear di�erential systems,and a suÆ
ient 
ondition guaranteeing the asymptoti
 stability of perturbed systems isstated (see also [10℄) as follows: The trivial (x(t) = 0) solution of the perturbed system_x(t) = A0(t)x(t) + mXi=1Ai(t)x(t� ri); t � 0is uniformly asymptoti
ally stable, if the trivial solution of the unperturbed system_y(t) = mXi=0Ai(t)y(t); t � 0is uniformly asymptoti
ally stable, i.e., there exist 
onstants M > 0 and 
 > 0 s.t. for t � 0we have ky(t; �)k �Mk�ke�
t; (1.1)where � is the given initial 
ondition, and if� supt�0 mXi=1 kAi(t)k � mXi=0 supt�0 kAi(t)k < 
M ; (1.2)where r1; r2; : : : ; rm represent 
onstant delay perturbations and � � maxfr1; r2; : : : ; rmg.Note that 
ondition (1.2) has a straightforward generalization for 
ontinuous time-delayperturbations, i.e., when ri = ri(t) are 
ontinuous fun
tions. In this 
ase in 
ondition (1.2)the 
onstant � is repla
ed by �� � maxi=1;:::;m supt�0 jri(t)j. It is somewhat in
onvenientthat in order to apply 
ondition (1.2), one has to assume: i) smallness of delays for allt � 0, ii) expli
it knowledge of the 
onstants M and 
.In Se
tion 2 below we derive a 
ondition for the preservation of stability for a large 
lassof equations assuming: i) smallness of perturbations only for suÆ
iently large times, (hen
ewe allow perturbation whi
h are not \small" initially), ii) the knowledge of the integral of theabsolute value of the fundamental solution over [0;1). Note that for asymptoti
ally stablesystems, it is relatively easy to obtain good estimates for the above integral, and thereforeour 
ondition may provide useful tool for appli
ations. Furthermore, in the spe
ial 
ase,when the fundamental solution is positive, the 
ondition for preservation of stability 
an beformulated in terms of the 
oeÆ
ient matri
es of the given system.1



Investigating stability properties of perturbed delay equations, un
ertain delay equa-tions, or robust stability of delay equations is a reasonably a
tive resear
h area. Without
laiming 
ompleteness we refer the reader to [1℄, [4℄, [6℄{[7℄, [13℄{[16℄, [21℄ and the referen
estherein for related arti
les on these topi
s.2 Main ResultsConsider the delay di�erential equation_x(t) = mXi=0Aix(t� ri � �i(t)); t � 0 (2.1)with initial 
ondition x(t) = '(t); �r � t � 0; (2.2)where Ai (i = 0; : : : ;m) denote 
onstant n � n matri
es, 0 � r0 � r1 � : : : � rm, ' :[�r; 0℄ ! Rn is a 
ontinuous fun
tion, and we shall assume that the pie
ewise 
ontinuousdelay perturbations, �i(�) (i = 0; : : : ;m), satisfyt� r � t� ri � �i(t) � t for t � 0 (i = 0; : : : ;m): (2.3)The solution of initial value problem (2.1)-(2.2) is an absolutely 
ontinuous fun
tion, whi
hsatis�es (2.2) for all t 2 [�r; 0℄, and satis�es (2.1) a.e. t � 0. Under our assumptions initialvalue problem (2.1)-(2.2) is a delay di�erential equation and has a unique solution, whi
his 
ontinuously di�erentiable at the points where �i(t) (i = 0; : : : ;m) are 
ontinuous.We 
onsider the 
orresponding unperturbed system with 
onstant delays, i.e.,_y(t) = mXi=0Aiy(t� ri); t � 0; (2.4)and we assume that(H) the trivial solution of (2.4) is asymptoti
ally stable.The fundamental solution of (2.4), V (t), is de�ned as the solution of the following system_V (t) = mXi=0AiV (t� ri); t � T (2.5)and V (t) = ( I; t = T;0; t < T; (2.6)where I; 0 2 Rn�n are the identity and the zero matrix, respe
tively, and T � 0.
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Remark 2.1 To emphasize the dependen
e of V (�) on T we use the notation V (t; T ). Notethat V (t; T ) = V (t�T ; 0) for t � T � 0 be
ause (2.4) is autonomous (see e.g. [11℄), hen
eZ 10 V (t; T ) dt = Z 10 V (t; 0) dt:We 
an rewrite (2.1) in the form_x(t) = mXi=0Aix(t� ri) + f(t); (2.7)where f(t) � mXi=0Ai�x(t� ri � �i(t))� x(t� ri)�: (2.8)In this setting (2.4) 
an be 
onsidered as the homogeneous equation 
orrespondingto (2.7). The variation-of-
onstants formula (see, e.g., [11℄, p. 145) gives the followingexpression for the solution of initial value problem (2.1)-(2.2):x(t) = y(t) + Z tT V (t� s)f(s) ds; t � T; (2.9)where T > 0, and y is the solution of (2.4) with initial fun
tion y(t) = x(t) for T�r � t � Tand V (�) = V (�;T ) is the fundamental solution of (2.4).For future 
onvenien
e, we introdu
e the ~ operation on ve
tors and on matri
es, whi
hmeans taking the absolute value of the ve
tor or matrix 
omponentwise, i.e., if x =(x1; x2; : : : ; xn)T , then by de�nition ~x � (jx1j; jx2j; : : : ; jxnj)T , and similarly if A = (aij)n�n,then ~A � (jaij j)n�n. The relation � between ve
tors means a 
omponentwise 
omparison,i.e., (x1; x2; : : : ; xn)T � (y1; y2; : : : ; yn)T if for all the 
omponents xi � yi.Remark 2.2 Hypothesis (H) implies (see e.g. [11℄) that the trivial solution of (2.4) isexponentially stable, and there exist 
onstants K > 0 and � > 0, su
h that kV (t)k � Ke��tfor t � 0, (where k � k is the matrix norm indu
ed by the ve
tor norm k(x1; x2; : : : ; xn)k �maxfjx1j; jx2j; : : : ; jxnjg), and then every element of the matrixZ 10 ~V (s) dsis �nite.The next theorem shows that if the perturbations of the delays in (2.1) are small enoughfor large t, then the equation remains asymptoti
ally stable.
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Theorem 2.3 Assume (H) and that the matrixM � Z 10 ~V (s) ds mXi=0 limt!1j�i(t)j � ~Ai! mXi=0 ~Ai! (2.10)has spe
tral radius less than 1, i.e., �(M) < 1. Then the trivial solution of (2.1) is asymp-toti
ally stable.Proof: We prove the theorem in three steps. First we give an estimate of ~f(t) for larget. Next we show that ~x(t) is bounded, i.e., limt!1~x(t) is �nite, and then we show thatlimt!1~x(t) = 0, whi
h proves the theorem.(i) We will need an estimate of f(t) for large t. Fix a 
onstant T > r, then (2.3) impliesthat t� ri � �i(t) � 0 for t > T; i = 0; : : : ;m: (2.11)It is easy to see that for t > r the solution of (2.1) is pie
ewise 
ontinuously di�erentiableand we 
an write f(t) = mXi=0Ai Z t�ri��i(t)t�ri _x(s) ds:Using (2.1) we get f(t) = mXi=0Ai Z t�ri��i(t)t�ri mXj=0Ajx(s� rj � �j(s)) ds: (2.12)This relation and the de�nition of the ~ operation imply the inequality~f(t) � mXi=0 ~Ai ������Z t�ri��i(t)t�ri mXj=0 ~Aj~x(s� rj � �j(s)) ds������ : (2.13)Introdu
e the simplifying notationmax0�s�t ~x(s) � �max0�s�t jx1(s)j; max0�s�t jx2(s)j; : : : ; max0�s�t jxn(s)j�T :In addition to (2.11), we 
hoose T large enough that all the arguments of ~x(�) in the integralsin (2.13) are positive. Then we 
an estimate all ~x(�) by max0�s�t ~x(s), therefore we obtainfrom (2.13) ~f(t) �  mXi=0 j�i(t)j ~Ai! mXi=0 ~Ai! max0�s�t ~x(s); t � T: (2.14)De�ne the matrix M0 � Z 10 ~V (s) ds mXi=0 ~Ai!2: (2.15)
4



(We note that a

ording to Remark 2.1, the matri
es M and M0 are independent of the
hoi
e of T .) It is easy to see that �(M) < 1 implies that there exists Æ > 0 su
h that�(M + ÆM0) < 1: (2.16)With this Æ we 
an 
hoose T su
h that (2.14) holds and furthermore, we have the followingrelations j�i(t)j < limu!1j�i(u)j + Æ; t � T; i = 0; : : : ;m: (2.17)Then (2.14) yields the following estimate~f(t) �  mXi=0( limu!1j�i(u)j+ Æ) ~Ai! mXi=0 ~Ai! max0�s�t ~x(s); t � T: (2.18)(ii) Next we prove that the solution of (2.1) is bounded for all initial fun
tions. ChooseT > 0 su
h that (2.18) holds. For su
h T , formula (2.9) and standard estimates yield theinequality ~x(t) � ~y(t) + Z tT ~V (t� s) ~f(s) ds; t � T: (2.19)Combining (2.18) and (2.19) we get~x(t) � ~y(t) + Z tT ~V (t� s) mXi=0( limu!1j�i(u)j+ Æ) ~Ai! mXi=0 ~Ai! max0�u�s ~x(u) ds� ~y(t) + Z tT ~V (t� s) ds mXi=0( limu!1j�i(u)j+ Æ) ~Ai! mXi=0 ~Ai! max0�u�t ~x(u):A 
hange of variables gives the inequality~x(t) � ~y(t) + Z t�T0 ~V (s) ds mXi=0( limu!1j�i(u)j + Æ) ~Ai! mXi=0 ~Ai! max0�u�t ~x(u)� ~y(t) + Z 10 ~V (s) ds mXi=0( limu!1j�i(u)j+ Æ) ~Ai! mXi=0 ~Ai! max0�u�t ~x(u):Using the de�nition of M and M0, we have~x(t) � ~y(t) + (M + ÆM0) max0�u�t ~x(u)� max0�u�t ~y(u) + (M + ÆM0) max0�u�t ~x(u): (2.20)The right hand side of inequality (2.20) is monotone in t, therefore (2.20) yields thatmax0�u�t ~x(u) � max0�u�t ~y(u) + (M + ÆM0) max0�u�t ~x(u): (2.21)Rearranging (2.21) and using that y(t) is bounded by hypothesis (H), we have that thereexists a 
onstant ve
tor z � 0 su
h that(I � (M + ÆM0)) max0�u�t ~x(u) � max0�u�t ~y(u) � z; t � T: (2.22)5



Inequality (2.16) and the fa
t that M + ÆM0 has nonnegative 
omponents imply that I �(M + ÆM0) is a nonsingular M-matrix, therefore an appli
ation of Theorem 6.2.3 in [3℄yields that I � (M + ÆM0) is a monotone matrix, hen
emax0�u�t ~x(u) � (I � (M + ÆM0))�1z; t � T;i.e., x(t) is bounded for t � 0.(iii) Next we show that x(t) tends to 0 as t ! 1, i.e., limt!1~x(t) = 0. Inequality (2.19)yields limt!1~x(t) � limt!1~y(t) + limt!1 Z tT ~V (t� s) ~f(s) ds:By (H) we have limt!1~y(t) = 0, hen
elimt!1~x(t) � limt!1 Z tT ~V (t� s) ~f(s) ds: (2.23)For any Æ > 0 we 
an 
hoose T su
h that (2.17) is satis�ed and moreover, in (2.13) allarguments of ~x(�) in the integrals are large enough, i.e., we 
an estimate ~x(�) by limt!1~x(t)+Æ1,where 1 = (1; 1; : : : ; 1)T , and 
onsequently, for t � T , relation (2.13) implies the inequality~f(t) �  mXi=0( limu!1j�i(u)j + Æ) ~Ai! mXi=0 ~Ai! ( limu!1~x(u) + Æ1): (2.24)Combining (2.23) and (2.24) we havelimt!1~x(t) � limt!1 Z tT ~V (t� s) ds mXi=0( limu!1j�i(u)j+ Æ) ~Ai! mXi=0 ~Ai! ( limu!1~x(u) + Æ1)� Z 10 ~V (s) ds mXi=0( limu!1j�i(u)j+ Æ) ~Ai! mXi=0 ~Ai! ( limt!1~x(t) + Æ1): (2.25)Sin
e (2.25) holds for arbitrary Æ, we havelimt!1~x(t) �M limt!1~x(t): (2.26)Hen
e (I �M) limt!1~x(t) � 0: (2.27)By assumption �(M) < 1, M has nonnegative 
omponents, and therefore I � M is anonsingular M-matrix, therefore by Theorem 6.2.3 in [3℄ I �M is monotone, hen
e (2.27)yields that limt!1~x(t) � 0. On the other hand limt!1~x(t) � 0, therefore limt!1~x(t) = 0.The proof of the theorem is 
omplete.The following 
orollary is an easy 
onsequen
e of the theorem.6



Corollary 2.4 Let M0 be de�ned by (2.15). Iflimt!1j�i(t)j < 1�(M0) ; i = 0; : : : ;m;then the trivial solution of (2.1) is asymptoti
ally stable.If the fundamental solution V (t) of (2.4) is nonnegative, (i.e., ea
h 
omponent vij(t) ofV (t) is nonnegative and therefore V (t) = ~V (t)), then it is easy to 
ompute the integral in(2.15). In parti
ular, we have the following result.Proposition 2.5 If the trivial solution of (2.4) is asymptoti
ally stable, then the funda-mental solution of (2.4) satis�es mXi=0Ai!Z 10 V (s) ds = �I;where I is the identity matrix.Proof: Let V (t) be the fundamental solution of (2.4) 
orresponding to T = 0. By integrat-ing (2.5) from 0 to t > 0 we getV (t)� V (0) = mXi=0Ai Z t0 V (s� ri) ds:A 
hange of variables in the integrals and the assumed initial 
ondition V (t) = 0 for t < 0yield V (t)� V (0) = mXi=0Ai Z t�ri�ri V (s) ds= mXi=0Ai Z t�ri0 V (s) ds:Using V (0) = I and the fa
t V (t)! 0 as t!1 we obtain the equality�I =  mXi=0Ai!Z 10 V (s) ds;whi
h proves the proposition.Remark 2.6 In the 
ase when V (t) is nonnegative, and Pmi=0Ai is nonsingular, Proposi-tion 2.5 implies that M0 = � mXi=0Ai!�1  mXi=0 ~Ai!2; (2.28)therefore our stability 
ondition in Corollary 2.4 is given in terms of the 
oeÆ
ient matri
es.7



To 
on
lude the se
tion in the next Proposition we give a suÆ
ient 
ondition for pos-itivity of the fundamental solution of (2.4). We shall need the following notations. LetAi = ha(i)jk i, V (t) = hvjk(t)i, �(i)jj � maxn�a(i)jj ; 0o, �(i)jj � maxna(i)jj ; 0o. Then we 
anrewrite initial value problem (2.5)-(2.6) in terms of the 
omponents:_vjk(t) = � mXi=0 �(i)jj vjk(t� ri) + mXi=0 nXl=1l6=j a(i)jl vlk(t� ri) + mXi=0 �(i)jj vjk(t� ri); t � 0; (2.29)vjk(t) = ( Æjk; t = 0;0; t < 0; (2.30)(where Æjk is the Krone
ker-delta), j; k = 1; 2; : : : ; n. Consider the following two initialvalue problems asso
iated to the negative parts of the 
omponents in the main diagonalsof Ai, i.e., to the \homogeneous part" of (2.29):_wjk(t) = � mXi=0 �(i)jj wjk(t� ri); t � 0; (2.31)wjk(t) = ( Æjk; t = 0;0; t < 0; (2.32)and _uj(t) = � mXi=0 �(i)jj uj(t� ri); t � 0; (2.33)uj(t) = ( 1; t = 0;0; t < 0; (2.34)j; k = 1; 2; : : : ; n. Clearly, we have that for all t � 0wjk(t) = ( 0; j 6= k;uj(t); j = k: (2.35)Proposition 2.7 Assume that(i) a(i)jk � 0 for all j; k = 1; 2; : : : ; n, j 6= k.(ii) Pmi=0 �(i)jj ri � 1e for all j = 1; 2; : : : ; n.Then vjk(t) � 0 for all t � 0 and j; k = 1; 2; : : : ; n.Proof: Let wjk(t) and uj(t) be the solutions of initial value problems (2.31)-(2.32) and(2.33)-(2.34), respe
tively, (j; k = 1; 2; : : : ; n). By Theorem 3.31 in [9℄ it follows thatuj(t) � 0 for all j = 1; 2; : : : ; n. (The above theorem applies for solutions 
orrespond-ing to 
ontinuous initial fun
tions. To use that result for IVP (2.33)-(2.34) we approximatethe initial fun
tion in (2.34) by appropriate 
ontinuous initial fun
tions, ulj(t), t � 0,8



l = 1; 2; : : :, and by arguing that the 
orresponding solutions ulj(t), t � 0 approximate uj(t)uniformly on 
ompa
t time intervals we get that the limit uj(t) = liml!1 ulj(t), is alsononnegative.) Nonnegativeness of uj(t) and relation (2.35) yield that wjk(t) � 0 for t � 0,j; k = 1; 2; : : : ; n as well. The variation-of-
onstant formula implies the relationvjk(t) = wjk(t) + mXi=0 nXl=1l6=j a(i)jl Z t0 uj(t� s)vlk(s� ri) ds+ mXi=0 �(i)jj Z t0 uj(t� s)vjk(s� ri) ds:Using the nonnegativeness of wjk(t), uj(t), �(i)jj , a(i)jl (l 6= j), and (2.30) it is easy to see thenonnegativeness of vjk(t).Note that in the ODE 
ase, i.e., when m = 0, r0 = 0, 
ondition (ii) of the previ-ous proposition is satis�ed automati
ally, and then 
ondition (i) is also ne
essary for thepositivity of vjk(t). (See Theorem 3 in Chapter 10 of [2℄.)3 Examples and Appli
ationsConsider the s
alar version of (2.1)._x(t) = mXi=0 aix(t� ri � �i(t)); t � 0 (3.1)with initial 
ondition x(t) = '(t); �r � t � 0; (3.2)where ' : [�r; 0℄ ! R is a 
ontinuous fun
tion. The 
orresponding equation with unper-turbed delays is _y(t) = mXi=0 aiy(t� ri); t � 0: (3.3)Let v(t) be the fundamental solution of (3.3), i.e._v(t) = mXi=0 aiv(t� ri); t � 0 (3.4)v(t) = ( 1; t = 0;0; t < 0: (3.5)The s
alar version of Theorem 2.3 is the following.Theorem 3.1 Assume that the trivial solution of (3.3) is asymptoti
ally stable and thefun
tions �i(�) (i = 0; : : : ;m) satisfymXi=0 jaij limt!1j�i(t)j < 1(Pmi=0 jaij) R10 jv(t)j dt : (3.6)Then the trivial solution of (3.1) is asymptoti
ally stable.9



Note that if the fundamental solution is nonnegative, then Remark 2.6 yields that
ondition (3.6) is equivalent tomXi=0 jaij limt!1j�i(t)j < �Pmi=0 aiPmi=0 jaij : (3.7)In the general 
ase we would need an upper estimate of R10 jv(t)j dt to get an easily veri�able
ondition on the allowable perturbation. Su
h an estimate at this time is known (see [8℄)only for the single-delay equation of the form_x(t) = �bx(t� �); (3.8)where b > 0 and b� < �=2 (hen
e the trivial solution is asymptoti
ally stable). For thisequation it 
an be shown (see [8℄) that there exists a unique 
hara
teristi
 root �0 =�0 + �0i of equation (3.8) , i.e., a solution of � = �be��� , satisfying �0 2 �0; �2� �. Then thefundamental solution of (3.8) satis�esZ 10 jv(t)j dt � 1b �20 + �20�20 : (3.9)In the general 
ase, the pra
ti
al importan
e of our result 
an be argued as follows:i) it is easy to obtain numeri
al approximation of the fundamental solution, ii) using thefa
t that the fundamental solution exponentially 
onverges to 0 if the trivial solution isasymptoti
ally stable, it is easy to obtain good numeri
al approximation of the integralR10 jv(t)j dt, and iii) using the numeri
al value of the integral and 
ondition (3.6) get ap-proximate bounds for the allowable perturbations.The following examples show appli
ations of this method.Example 3.2 Consider the s
alar equation_x(t) = �x(t� r0 � �(t)): (3.10)We know, (see e.g. [11℄), that the trivial solution of_y(t) = �y(t� r0) (3.11)is asymptoti
ally stable if and only if 0 � r0 < �=2. Also we know, (see e.g. [8℄), that thefundamental solution of (3.11) is positive if 0 � r0 � 1=e, and os
illates if 1=e < r0 < �=2.Therefore if we pi
k e.g. r0 = 0:3, (i.e., r0 < 1=e), then an appli
ation of Proposition2.5 yields that R10 jv(s)j ds = 1. Therefore by using our 
ondition in Theorem 3.1 we havethat if limt!1j�(t)j < 1, then the trivial solution of (3.10) is asymptoti
ally stable. On theother hand, if we pi
k, e.g., r0 = 1, then we obtain �0 + �0i = �0:3181 + 1:3372i as thenumeri
al value of the 
hara
teristi
 root of (3.11) satisfying �0 2 �0; �2 �. Inequality (3.9)yields the estimate R10 jv(s)j ds � 18:6687, and therefore if limt!1j�(t)j � 1=18:6687 = 0:0536,then the trivial solution of (3.10) is asymptoti
ally stable. By numeri
al integration we getR10 jv(s)j ds = 2:9302, hen
e the allowable perturbation is limt!1j�(t)j � 0:3413 by Theorem10



3.1, whi
h is mu
h better than that of obtained by using estimate (3.9). Figure 1 and2 
ontain the graph of the fundamental solution of (3.10) 
orresponding to r0 = 1, and�(t) = 0 and �(t) = 4t+1 + 0:3, respe
tively.
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Figure 2Example 3.3 Consider the one-dimensional 
ontrol system_x(t) = �0:1x(t) + 2x(t� 1) +Ku(t): (3.12)One 
an 
he
k that for K = 0 the trivial solution of (3.12) is unstable. Let K = �2 andu(t) = x(t � 1:3) in (3.12). Numeri
al approximation of the fundamental solution of the
orresponding equation _x(t) = �0:1x(t) + 2x(t� 1)� 2x(t� 1:3): (3.13)is shown on Figure 3. This pi
ture indi
ates that the fundamental solution exponentiallytends to zero, i.e., the trivial solution of (3.13) is asymptoti
ally stable. Therefore thefeedba
k law Ku(t) = �2x(t � 1:3) stabilizes (3.12). The term t � 1:3 represents a timedelay in the 
ontrol me
hanism. Suppose that we sample the system only at the pointsh; 2h; 3h; : : :, and use a pie
ewise 
onstant feedba
k 
ontrol u(t) = x([(t� 1:3)=h℄h) insteadof uh(t) = x(t�1:3). Here [�℄ denotes the greatest integer fun
tion and h > 0 is the samplingperiod. The question we are interested in is to �nd a bound on the sampling period h, whi
hguarantees that the trivial solution of the resulting hybrid feedba
k system_x(t) = �0:1x(t) + 2x(t� 1)� 2x�� t� 1:3h �h� : (3.14)remains asymptoti
ally stable. The pie
ewise 
onstant delay in the last term in (3.14) 
anbe 
onsidered as a perturbation of t� 1:3 in (3.13) with�(t) = t� 1:3 � � t� 1:3h �h:Then we have that j�(t)j � h for all t � 0. Numeri
al approximation gives that thefundamental solution of (3.13) satis�es R10 jv(t)j dt = 10:5914. Therefore by Theorem 3.111



we have as a suÆ
ient 
ondition that h < 110:5914�8:2 = 0:0115 guarantees that the trivialsolution of (3.14) is asymptoti
ally stable.Example 3.4 Consider system_x(t) = A0x(t) +A1x(t� 1� �1(t)) +A2x(t� 1:4 � �2(t)); (3.15)where A0 =  �0:1 0:20:0 �0:3 !; A1 =  0:0 0:10:0 �0:2 ! and A2 =  �0:2 0:00:2 0:0 !:The 
orresponding unperturbed equation is_x(t) = A0x(t) +A1x(t� 1) +A2x(t� 1:4): (3.16)On Figure 4 we display the 
omponents of the numeri
al solutions of the fundamentalmatrix solution of (3.16). By Proposition 2.7 the fundamental solution is nonnegative, andFigure 4 shows that ea
h 
omponents of it tends to zero exponentially as t ! 1, i.e., thetrivial solution of (3.16) is asymptoti
ally stable. Nonnegativeness of the 
omponents ofV (�) and Remark 2.6 yield that M0 =  0:778 1:1440:511 0:778 ! ;hen
e �(M0) = 1:543. By using Corollary 2.4, if the perturbations of the delays satisfylimt!1j�i(t)j < 0:648 (i = 1; 2), then the trivial solution of (3.15) is asymptoti
ally stable.
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Figure 4Example 3.5 Consider the following system_x(t) = A0x(t) +A1x(t� 1� �1(t)) +A2x(t� 1:5 � �2(t)); (3.17)where x(t) 2 R2,A0 =  �0:1 0:3�0:5 0:0 ! ; A1 =  0:7 �0:40:5 �0:8 ! and A2 =  �1:0 0:10:1 0:4 ! :12



The 
orresponding unperturbed equation is_x(t) = A0x(t) +A1x(t� 1) +A2x(t� 1:5): (3.18)On Figure 5 we display the 
omponents of the numeri
al solutions of the fundamental matrixsolution. This pi
ture indi
ates that every 
omponent fun
tion tends to zero exponentiallyas t ! 1, therefore the trivial solution of (3.18) is asymptoti
ally stable. Numeri
alapproximation of the 
omponents of R10 ~V (t) dt gives the following numeri
al values for thematrix M0 M0 =  18:699 10:80016:441 10:641 ! ;therefore �(M0) = 28:591. Corollary 2.4 implies that if the perturbations of the delayssatisfy limt!1j�i(t)j < 0:035 (i = 1; 2), then the trivial solution of (3.17) is asymptoti
allystable. On Figure 6 we present the 
omponents of the solution of (3.17) 
orresponding to�1(t) = 0 and �2(t) = 5t+1 + 0:03 and the initial 
ondition x(0) = I, and x(t) = 0, t < 0.
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Figure 64 Stability resultsIn this se
tion we show an appli
ation of our perturbation theorem to obtain stability
onditions for ve
tor and s
alar linear delay equations with multiple delays.Consider �rst a ve
tor equation of the form_x(t) = mXi=0Aix(t� �i(t)); t � 0; (4.1)and the 
orresponding ordinary di�erential equation_y(t) =  mXi=0Ai! y(t); t � 0; (4.2)where x(�); y(�) 2 Rn, and �i(t) � 0 are pie
ewise 
ontinuous, bounded fun
tions. We 
anthink of �i(t) (i = 0; 1; : : : ;m) in (4.1) as perturbations of the (zero) delays in (4.2). Re
all13



that if all the eigenvalues of the matrix Pmi=0Ai have negative real parts, then the trivialsolution of (4.2) is asymptoti
ally stable. Let Ai = �a(i)jk�. By Theorem 3 in Chapter 10 of[2℄ it follows that the fundamental solution of (4.2) is positive if and only if Pmi=0 a(i)jk � 0,for j; k = 1; 2; : : : ; n, j 6= k. Assuming the asymptoti
 stability and the positiveness of thefundamental solution of (4.2) we 
an apply Theorem 2.3 and Proposition 2.5 and get thatthe trivial solution of (4.1) is asymptoti
ally stable, if the matrixM � � mXi=0Ai!�1  mXi=0 limt!1�i(t) ~Ai! mXi=0 ~Ai!has spe
tral radius less than 1. In the sequel we shall give 
ondition yielding that kMk < 1,whi
h 
learly implies that �(M) < 1. Here k � k is the matrix norm generated by either thek � k1 or the k � k1 ve
tor norm. Note that 
ondition kMk < 1 is satis�ed if we require thatmXi=0 limt!1�i(t)kAik < 1k (Pmi=0Ai)�1 k � kPmi=0 ~Aikbe satis�ed. Here we used that kAik = k ~Aik, andkMk � 
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 ;and have proved the following proposition.Proposition 4.1 Assume that(i) the matrix mXi=0Ai has eigenvalues only with negative real parts,(ii) Pmi=0 a(i)jk � 0 for j; k = 1; 2; : : : ; n, j 6= k, and(iii) mXi=0 limt!1�i(t)kAik < 1k (Pmi=0Ai)�1 k � kPmi=0 ~Aik ,then the trivial solution of (4.1) is asymptoti
ally stable.Next we 
onsider the s
alar linear delay equations with multiple delays of the form_x(t) = � mXi=0 aix(t� �i(t)); t � 0; (4.3)14



and the 
orresponding equation_y(t) = � mXi=0 ai! y(t); t � 0: (4.4)The s
alar version of Proposition 4.1 
an be stated as follows:Proposition 4.2 Assume that(i) mXi=0 ai > 0, and(ii) mXi=0 jaij limt!1�i(t) < Pmi=0 aiPmi=0 jaij ,then the trivial solution of (4.3) is asymptoti
ally stable.For the 
ase when ea
h ai > 0 we have the following result.Corollary 4.3 Assume that ai > 0 for i = 0; 1; : : : ;m. Then, ifmXi=0 ai limt!1�i(t) < 1; (4.5)then the trivial solution of (4.3) is asymptoti
ally stable.In the rest of this se
tion we assume that ai > 0 for all i = 0; 1; : : : ;m. In this spe
ial
ase, by imposing additional assumptions, we 
an obtain larger bound for the \averagedelay" in (4.5) whi
h guarantees the asymptoti
 stability of the trivial solution of (4.3).Rewrite (4.3) in the form_x(t) = � mXi=0 aix(t� � � (�i(t)� �)); t � 0; (4.6)and 
onsider the equation _y(t) = � mXi=0 ai! y(t� �); t � 0: (4.7)Equation (4.7) is a single delay equation, whi
h is asymptoti
ally stable if and only ifPmi=0 ai > 0 and �Pmi=0 ai < �=2. We have assumed that ea
h ai � 0 therefore the �rst
ondition is satis�ed, and let � = �ePmi=0 ai ;where 0 � � � 1. With this 
hoi
e of � equation (4.7) is asymptoti
ally stable, andmoreover, the fundamental solution of (4.7) is positive. We 
onsider equation (4.6) as anequation obtained by perturbing the delay � in (4.7) with �i(t) = �i(t) � � . By Theorem15



3.1 and the dis
ussion after the theorem, the trivial solution of (4.6) (therefore the trivialsolution of (4.3) as well) is asymptoti
ally stable if (3.7) holds. Using the nonnegativenessof ea
h ai, and that (4.6) has the form (3.1) with ai repla
ed by �ai, we get that for ourequation this 
ondition is equivalent tomXi=0 ai limt!1 ������i(t)� �ePmj=0 aj ����� < 1: (4.8)To further simplify this 
ondition we 
onsider spe
ial 
ases. It is easy to see thatlimt!1 j�i(t)� � j = 8<: limt!1�i(t)� �; if �i(t) � � for t � T;� � limt!1�i(t); if �i(t) � � for t � T:First assume that we 
an sele
t 0 � � � 1 su
h that for some T � 0 the delays satisfy�i(t) � �ePmj=0 aj ; t � T; i = 0; 1; : : : ;m: (4.9)Then 
ondition (4.8) 
an be rewritten asmXi=0 ai limt!1�i(t) < 1 + �e : (4.10)Note that � = 0 satis�es (4.9), therefore we 
an always use 
ondition (4.10) with � = 0,and we get the same 
ondition as in Corollary 4.3. On the other hand, if limt!1�i(t) > 0 forall i = 0; 1; : : : ;m, then there exists a positive � satisfying (4.9), and we get a larger boundin (4.10) than that in Corollary 4.3.Next 
onsider the 
ase when there exists 0 < � � 1 su
h that for some T � 0�i(t) � �ePmj=0 aj ; t � T; i = 0; 1; : : : ;m:Then we also have that�i(t) � 1ePmj=0 aj ; t � T; i = 0; 1; : : : ;m;and it is easy to see that (4.8) is always satis�ed.We summarize our results in the next proposition.Proposition 4.4 Assume that ai � 0, i = 0; 1; : : : ;m. Then either one of the followingtwo 
onditions is suÆ
ient for the asymptoti
 stability of the trivial solution of (4.3).(i) There exist T � 0 and 0 � � � 1 su
h that(a) �i(t) � �ePmj=0 aj , t > T , i = 0; 1; : : : ;m, and16



(b) mXi=0 ai limt!1�i(t) < 1 + �e .(ii) There exists T � 0 su
h that �i(t) � 1ePmj=0 aj ; t > T; i = 0; 1; : : : ;m.To illustrate 
ondition (i) in the previous proposition, 
onsider the spe
ial 
ase whenlimt!1 �i(t) = �, for i = 0; 1; : : : ;m. In this 
ase 
ondition�e < � mXi=0 ai < 1 + �eimplies 
ondition (i).We refer to [12℄, [17℄, [18℄, [19℄, [20℄, and the referen
es therein for similar stability
onditions for linear delay equations with multiple delays. Finally, we note that in allthe above referen
es the supremums of the time-delays are used, while our 
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