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Abstract

In this paper we study parameter identification problems for a class of nonlinear
delay equations with distributed state-dependent delays. We describe a numerical iden-
tification technique using an Euler-type approximation scheme and show its theoretical
convergence. Illustrative numerical examples are also included.

1 Introduction

In this paper we study parameter identification problems for the nonlinear delay system with
state dependent delays

0
50 = £ (o). [ danlstoono)at+5),6),  te(0.1) (1.1)
—-r
with initial condition
z(t) = (1), te[-r0] (1.2)
The term 0
A(t,z,0) = dsp(s,t, 2y, 0)x(t + ) (1.3)

describing the delay dependence is a Stieltjes-integral of the solution segment z(t + -) with
respect to u(-, t, x4, o), which is a matrix valued function of bounded variations depending on
time, ¢, the state of the equation, x;, and a parameter 0 € 3. Here 0 < T < oo and r > 0 are
fixed, and z; : [-r,0] = R", z;(s) = z(t + s). For simplicity of the presentation we assume
that only part of the delay term and the function f, represented by the parameters o € X



and 6 € O, respectively, and the initial function, ¢, are unknowns in the equation. ¥ and ©
are normed linear spaces with norms | - |y and | - |g, respectively.

To give some motivation and/or justification on the particular form selected by (1.3) for
the delay term, assume for example that the delayed term depends linearly on the state, i.e.,
has the form Lz;, where L is a bounded linear operator on C' = C([—r,0],R"). In this case
the Riesz Representation Theorem yields (1.3) with g = u(s). If L = L(¢,0) depends on
t and a parameter o, then by the same result we get that there exists pu = u(s,t,0) such
that (1.3) holds. Therefore it seems like a natural extension of the above cases to assume
the structure described by (1.3) for the state-dependent case. Moreover, representation (1.3)
includes discrete and distributed, constant and time-dependent delays, and the “usual” state-
dependent delays, z(t — 7(t,z(t),0)) or z(t — 7(t,z;,0)) as well. A nice feature of this form
is that it also allows delayed terms of the form

o0 0

A(t,z4,0) = ZAi(t,xt, o)x(t — 7;(t,24,0)) + G(s,t,z¢,0)z(t + s) ds.

i=1 —To

We assume that some parameters (y € I') of the initial value problem (IVP) (1.1)-(1.2) are
unknown, but we have measurements (Xg, X1,...,X;) at discrete time values (tg,t1,...,%)
for the solution of the TVP. The goal is to find the parameter value, which minimizes the
least squares fit-to-data criterion

l

J() = lzltiy) - Xi|% v €A,
=0

i.e., which is the best-fit parameter for the measurements. (Denote this problem by P). Here
A C T is the admissible set of parameters, I" is the parameter space. Problem P has been
studied by many authors, for different classes of differential equations (see e.g. [1] and the
references therein), including delay equations as well (]2, 3, 4]).

All the above cited papers use the same idea to find the solution of the optimization
problem P:

Step 1) First take finite dimensional approximations of the parameters, vV, (i.e., vV €
'V cr, dimI'N <00, ¥V = v as N = o0).

Step 2) Consider a sequence of approximate initial value problems (IVP s ) correspond-
ing to a discretization of TVP (1.1)-(1.2) for some fixed parameter 4V € T'V with solutions
yM(;yN) satisfying that y™ (t,7V) — z(t,) as N,M — oc, uniformly on compact time
intervals.

Step 3) Define the least square minimization problems (PN™) for each N, M =1,2,...,
i.e., find V"M ¢ 'V, which minimizes the least squares fit-to-data criterion

!
TNM Ny =S 1yM (Y = Xl AN e AN,
i=0
where AN ¢ T'V is the projection of A to 'V,
Step 4) Assuming that A is a compact subset of I', argue, that the sequence of solu-
tions, yYMM (N, M = 1,2,...), of the finite dimensional minimization problems PY-™ has a
convergent subsequence with limit v € T'.



Step 5) Show that 7 is the solution of the minimization problem P.
Note that Step 4) and 5) can be argued without using the particular approximation
method of the initial value problem, using only compactness arguments and Step 2) (see e.g.

[4])-

In Section 2 we define an Euler-type approximation scheme for IVP (1.1)-(1.2) using
equations with piecewise constant arguments. The theoretical convergence of this scheme
was shown in [5] assuming conditions (H1)-(H3) (see below). Note that the theoretical
convergence of this scheme follows from Theorem 3 below as well. In Section 3 we show
that this approximation scheme has the property required in Step 2), and in Section 4 we
present numerical examples for estimating parameters of IVP (1.1)-(1.2) by applying our
approximation scheme and the method described above.

For numerical approximation methods using equations with piecewise constant arguments
we refer to [6, 7]. Related numerical identification schemes for neutral delay differential
equations were studied in [8, 9, 10]. See also [11], where identification methods based on
difference equations were studied.

We close this section by noting that in this paper we focus on the convergence of our
numerical scheme to minimize the least square cost function. The underlying identifiability
issues (i.e., uniqueness of the solution of problem P) are not addressed here. (See [1, 12] on
related developments for FDEs without state-dependent delays.) Although in case of certain
equations identifiability or the lack of it can be argued, to the best of our knowledge, there
is no comprehensive theory for identifiability in general state-dependent delay equations.

2 Notations, preliminaries

Throughout this paper |- | denotes a vector norm on R™. We denote the open and closed ball
about z¢ with radius R in a Banach space X by Gx(z¢; R) and G x(z¢; R), respectively. If
the ball is centered at the origin, we use simply Gx(R) and Gx (R). Similarly, the open and
closed neighborhood of a set A C X is denoted by Gx (A4; R) and Gx (A; R), respectively. The
supremum norm on C' = C([—r, 0], R") is denoted by |-|c. We denote the space of absolutely

continuous functions, ¢ : [—r,0] - R", with essentially bounded derivatives by W1, The
norm in this Banach-space is defined by [9|1. = max{ sup [9(s)|, esssup|y(s)|}.
s€[—r,0] s€[-7,0

Introduce the simplifying notation

0
A(t’ llﬁ’ 0-’ é.) = B dsu(s’t7¢7a)§(s)' (2'4)
With this notation we have that A(t, 1, 0) = A(t, 9, 0,).

Next we summarize conditions guaranteeing well-posedness of IVP (1.1)-(1.2) (see [5] and
Theorem 3 below):

(H1) (1) f : [0,T] x 21 x Q9 x Q3 — R™ is continuous, where ; and Q9 are open subsets
of R™, and (23 is an open subset of O,



(ii) for every My > 0 and My > 0 there exists a constant L = Ll(My Ms) such that
forallt € [0,T], =,z € ERW(Ml)mQh Y,y € ERn(Ml)mQQ, and 0,6 € EQ(MQ)QQ;),

‘f(t,fl?,y,e)—f(t,f,g,é)‘ §L1<‘$_i‘+|y_g|+|0_é‘®)a

(H2) w(-,t,1,0) is a matrix valued function of bounded variation for every t € [0,7T], 1 € Qq,
and o € 5, where Q4 C C' is open, and Q5 C X is open such that

(1) |lpl|l = sup{|A(t,,0,8)| : t€[0,T], 9 € Q, 0 € Qs5, & € Ge(1)} < o0,
(ii) for each & € C the function [0,7] x Q4 X Q5 — R", (t,9,0) — A, ¢,0,¢) is
continuous,

(iii) for every My > 0 and My > 0 there exists a constant Ly = Lo(My, M) such that
for all ¢ € Whe° ¢t €[0,T], ¥,¢ € Go(M;) N Qy, and 0,5 € Gx (M) N Qs,

AL 4,0,6) = M1,$,5,8)| < Lolélwre (|8 = Plo + o - als),

(H3) ¢ € Wh™, i.e., ¢ is Lipschitz-continuous.

It is easy to see that in order to have a properly posed problem, the initial function ¢,
the parameter o, and the function p have to satisfy

0
0(0) € Q1, p €Qq, and dspi(s,0,0,0) p(s) € Qo. (2.5)
—r

The respective definitions of A(¢,4,0) and ||| and assumption (H2) immediately imply
the following lemmas, which we shall need later.

Lemma 1 Assume (H2). Then
|A(t7¢70) - A(tﬂ;a&”
< (llull + Lo(My, Mol ) (19 = e + |o = o1s),
where t € [0,T], ¢, € Go(My) NQy, b € W and 0,6 € Gz (M) N Qs.

Proof Let My and Ms be fixed, and Ly = Lo(M7, Ms) be the corresponding constant from
assumption (H2). Let ¢, v, ¢, o and & satisfy the assumptions of the lemma. Assumption
(H2), the definition of ||u||, and elementary estimates imply the inequalities

|A(t,’(/),0’) - A(tadja&”
< |)‘(t7¢707¢) - )\(t,w,a,@ﬂ + P‘(ta/lﬁao-a/&) - A(ta@ﬁad)”

0 _ _ —
< |/ dspa(s, 19,0 [1(s) = (s)] | + Lalib e ([ = e + o = 31
< Nl = ble + Leldlwr (11 = bl + 1o = al5).
which proves the lemma. N



Lemma 2 Assume (H2). Then A(t,v,0) is continuous on [0,T] x Q4 x Q5.

Proof Definition of ||| and assumption (H2) (ii) together with inequalities

|A(t,’(/),0’) - A(‘Ea/lzaa-”
< ‘A(ta¢aaa /@b) - A(ta¢a0a 7)‘ + |)‘(t7¢707,([;) - )‘(t_a’([;aaa,([;”
< ||/J‘|||¢_J)|C+|)‘(tv¢ao-a,¢;) _}‘(t_v,([;aaa,([;)|
yield the lemma. []

Let h > 0. Throughout this paper we shall use the notation [t];, = [t/h]h, where [-] is
the greatest integer function. For later reference we mention an elementary property of this

function, namely that:
t—h <[t <t. (2.6)

3 Convergence Results
Consider the delay differential equation
i(t) = f(to(1), At 21,0),0), €[0T, (3.7)
and the corresponding initial condition
z(t) = (1), t € [-r0], (3.8)

where 6 € Q3, 0 € Q5, Q3 and Q5 are open subsets of ® and X, respectively, the delayed
term A is defined by (1.3). We assume that f and A (i.e., u) are given in the equation,
but the parts of f and A represented by 6 and o, and the initial function are unknown,
i.e., considered as parameters. Define the parameter space by I' = C x ¥ x ©, with norm
|(p,0,0)|r = |¢lc + |o|s + |0le, and the set of admissible parameters by IT = {((p,o, 0) €

W x Qs x Q3 : ¢(0) € Qy, ¢ € Qy, f?r dsp(s,0,0,0)p(s) € QQ}. (See also (2.5).)

We assume that f, ¢ and u satisfy (H1)-(H3) and (¢, 0,0) € TI. We recall the following
result concerning the well-posedness of IVP (3.7)-(3.8) from [5].

3.2 Assume that f, p and (p,0,60) € II satisfy (H1)-(H3). Then there exist constants
0<T*<T,§>0and Ly = L3(T*, ¢,0,0,5) > 0, such that Gr((p,o,0); §) C II, and IVP
(3.7)-(3.8) has a unique solution on [0,7*] for all (3,5,0) € Gr((p,0,0); §), the solution,
z(+; ¢, 0,0), is absolutely continuous on [—r, T*] with essentially bounded derivative, and

|$(’ ®,0, e)t - x(, @,5’,@)“0
< Ly(lp-Fle+lo—als+10-dlo), te[0,T] (3.9)



We note that this result was shown in [5] for the case ¥ = © = R™, (as a part of the proof
of the stronger statement, where the | - |¢ norms in (3.9) are replaced by | - |jy1,0 norms).
The proof for the case when the parameters o and 6 are infinite dimensional is an obvious
modification of that of the finite dimensional case, and it is omitted here.

We make the assumption for the rest of this paper that 7= T*, i.e., IVP (3.7)-(3.8) has
a unique solution on [0, 7.

To follow the general identification procedure described in the introduction, we take finite
dimensional approximations, I'V = &N x &N x OV, of the parameter space, I': Let ®V C C,
YN c ¥ and OV C O be sequences of finite dimensional spaces, such that for each ¢ € C,
o €3, and 6 € O, the corresponding projections, oV € &V, oV € N, and 6V € OF satisfy
that [ — ¢lc = 0, |oN —a|s — 0, and |#" — 0l — 0, as N — oo. Let IIV =TINTV.

Next we define approximate IVPs corresponding to parameters (o, o, 0) € IV, using
Euler’s method. Let h be a positive constant, and define the following delay equation with
piecewise constant arguments

i (®) = £ (s v v ([8): AEn, (W), o™),0N), tE (0.7, (3.10)

with initial condition
ynn(t) =N (1),  te[-r0]. (3.11)
Here, to emphasize that the solution corresponds to a given h > 0 and (pV,o™,0V), we
denote the solution and the solution segment function of IVP (3.10)-(3.11) by yp, n(t) and
(yn,n)¢, respectively.
By a solution of IVP (3.10)-(3.11) we mean a function y, v : [—r,T] = R", which is
defined on [—r,0] by (3.11) and satisfies the following properties on [0, T:

(i) the function yj n is continuous on [0, 7T,

(ii) the derivative yj, n(t) exists at each point ¢ € [0,T") with the possible exception of the
points ih (i = 0,1,2,...) where finite one-sided derivatives exist,

(iii) the function y, n satisfies (3.10) on each interval [ih, (i + 1)h) N[0,T] for i = 0,1,2,...

It is easy to see, using the method of steps, that for each fixed h > 0 and (¢",oV,6V) €
IV, IVP (3.10)-(3.11) has a unique solution. For a fixed h > 0 and N > 0 let [0, n)
(or [0,T] if ap v = T) be the maximal interval where the solution can be continued. Then
ap, N > 0 is the largest possible number such that

yh,N(t) S Ql, (yh,N)t S 94, and A(t, (yh’N)t,O'N) € QQ for t € [0, Oéh’N).

The following theorem guarantees Step 2) of the identification method described in the
introduction using the approximation scheme (3.10)-(3.11).

3.2 Assume that f, pu and (p,0,0) € TI satisfy (H1)-(H3). Fix sequences ¢V € &V,

oV € Qs, and OV € Q3 such that [V — p|c — 0, |[oV —o|g = 0, and |8V — 0lg — 0 as
N — oc. Then



(i) there exist hy > 0 and Ny > 0 such that for all 0 < h < hy and N > Ng, IVP
(3.10)-(3.11) has unique solution defined on [0,77], i.e., ap,y = T for 0 < h < hg and
N > Ny,

(ii) the solution, yp n, of IVP (3.10)-(3.11) converges uniformly on [0, 7] to the solution, ,
of IVP (3.7)-(3.8) as h — 07 and N — o0, i.e.,

li - t))=0.
Jim - max |z(t) — yn,n(t)] =0
N—o00

Proof Fix (¢,0,0) € T, and let § > 0 be the constant from Theorem 3, i.e., such that
Gr((¢,0,0); 6) C II. We can (and do) assume that (¢, o™, 0V) € Gr((p, 0,6); 6) for all N.
Theorem 3 yields that the solution of IVP (3.7)-(3.8), z(t), is absolutely continuous on [0, 7]
with essentially bounded derivative, therefore the constant

M, = max{ sup |z(u)l, esssup |$(u)\} +4
—r<u<T —r<u<T

is finite. Let M = max{||p|| Mo, My}. Then the definitions of M and M, and inequality
|A(t,9,0)| < ||pll|¢|c imply that z; and A(t,z;,0) remain in Gra (M) for t € [0,T]. Let
L1 = L1(M,|o|s + 6) be the constant given by (H1) (ii). Since ¢ (0) € Grn (M), continuity
argument gives that for each h > 0 and N > 0 there exists 0 < a} y < ap,y such that

lynn(t)| < Mo for ¢ € [0,aj y]. But then also y, n(t), A(Z, (yn.N)t,oN) € Grn(M) for
t € [0, e, y]. Therefore (3.7), (3.10), assumption (H1) (ii), and standard estimates yield the
following inequalities for ¢ € [0, o, y]:

|lz(t) — yh N( )|
< N(O)\

+ / ‘f u, z(u), Au, Ty, 0 )19) —f([U]h,.’L'(u),A(u,q;u’g)’g)‘du
+/me A 24,0),0)

—-fammyqumthuun,@hNnﬂwaNxaNNdu
< - <PN\0+L1|9 0N ot

+ / ‘f u, z(u), Au, Ty, 0 ),0) —f([u]h,x(u),A(u,xu,a),e)‘ du (3.12)

+L1/0 (|x( ) — . ([uln \+\A U, Ty, O )—A([u]h,(yh,N)[uh,aN)Ddu.

Introduce the function

vp,N(t) = max |z(u) —ynn(u)l,  tE€[0,a N]
—r<u<t

The definition and the monotonicity of v, x and M, (2.6), and the Mean Value Theorem
imply that

< |2 ([uln) = ynw ([uln)] + 2 (u) = 2([u]a)]

< v ([uln) + Moh

< opn(u) + Moh, u € [~7, o ], (3.13)

2 (u) = yn,~([u]n)]



and similarly

|20 — (Yn,N) )yl < vpn (w) + Moh, u € [0, a, y]. (3.14)
Using (3.14), Lemma 1 with Ly = Lo(My,|o|x + ), we have the following estimate for
u € [0,ap vl

3

‘A(Uaxuﬂ) — A([ulp, (yh,N)[u}haUN)‘

< A, 0) = Al 2y )|+ [ Al[ulns 2y 0) = Allulns (a1, o))
< A(u,zy,0) — A[ulp, 4y, 0)|
+ (lll + Lolzulwroo) (Jow = (w3, o + o = o™ |s)
A0, 0) = Al[ulns 2y )| + (2]l + Lo Mo)on, v (u)
+ (Il + LaMo) (Moh + |o — o). (3.15)

IA

Combining (3.12), (3.13) and (3.15) we get

o) = ()] < nas(6) + [ D10+l + T Moo v () (3.16)

t € [0, a}, y], where

gn,n (1) /Ot ‘f(u,x(u),A(u,xu,a),G) - f([u]h,fp(u),A(u,xu,a),H) ‘ du

t
+ L [ 1A 20,0) = Al 50, 0)] du

0
+ Li(1 + |||l + Lo Mo) Moht (3.17)
+ Lo ((lull + L2 Moo — o1 +10 = 0V]6 )t + [0 — o™

Note that gj n(t) can be defined for ¢ € [0,T]. Using the monotonicity of g , (3.16) yields

t
vp,N(t) < gn,n(T) +/0 Li(1+ [|pll + LeMo)vp n (u) du, t € [0, ap, n],
which, by Gronwall-Bellman’s inequality, implies that

2(t) —ynn(@)] < wvnn(P)
< gnw(T) exp(Li(1+ LM + [lu])t)
< g (D) exp(Li(l+ LM + |ul)T), t€0.055]  (3.18)

A

Using Lebesgue’s Dominated Convergence Theorem for the first two integrals in (3.17), (2.6),
the continuity of f and A guaranteed by (H1) (i) and Lemma 2, respectively, and the as-
sumptions that ¢V — ¢, 0¥ — o, and ¥ — § as N — oo, we get that

an,n(T) =0, ash— 0" and N — oco. (3.19)

In particular, we get that there exist Ay > 0 and N; > 0 such that for all 0 < h < h; and
N > N, it follows that |z(t) — yp n(t)| < 0, whenever y; (%) is defined. But then we have

8



that |yn,n(t)| < Mo, and A(t, (yp,n)i,0™) € Grn(M), for all ¢ € [0,T)] for which yp, n(t) is
defined, i.e.,
QpN = QN for 0 <h < hy, N > Nj. (3.20)

Let define A; = {z(t) : ¢t € [0,T]} C Q, Ay = {A(t,xt,0) : ¢t € [0,T]} C Qo
and Ay = {z; : t € [0,T]} C Q4. The continuity of the maps [0,7] — R", t — z(t),
t— A(t,%,0), and [0,T] — C, t+ x; implies that A;, Ay and A4 are compact subsets of
their respective spaces, therefore there exist € > 0, such that Grn(A4;; €) C Q; (i = 1,2) and
Go(Ay; €) C Q4. Relation (3.18) and (3.19) yield that there exist 0 < hy < hy and Ny > Ny
such that |z(t) — yn n(t)] < e for t € [0, n], 0 < h < hy and N > Nj, hence

yh,N(ah,N) S Ql, (yh,N)ah,N € Q4, for0 < h < h2, N > Ns. (3.21)

Inequality (3.15), together with the continuity of A, (2.6), (3.18) and (3.19), and that oV — o
as N — oo imply that there exist 0 < hg < hg and Ny > Ny such that |[A(t,z;,0) —
A([t]h, (yh,N)[t}h,aN)\ <eforte0,apn], 0 <h<hgand N > Ny, therefore

Allen,nIhs (YN jan wins 0 ) € 2, for 0 <h < hg, N > Nj. (3.22)

Combining (3.21) and (3.22) we get that the solution of IVP (3.10)-(3.11) can be extended
to [0,T7, i.e.,

ap,N = O‘Z,N =T, for 0 < h < hg, N > Ny, (3.23)
which proves (i) of the statement. Part (ii) follows from (3.23), and from (3.18) and (3.19).
[

4 Numerical examples

In this section we present applications of the identification method described in the introduc-
tion and in Section 3. Consider an identification problem corresponding to IVP (3.7)-(3.8),
then we define the approximating IVPs by (3.10)-(3.11). Define the corresponding finite di-
mensional minimization problems, and find the solutions of them. Choose small enough h
and large enough N, and use the solution of the minimization problem corresponding to this
h and N as an approximation of the solution of the original identification problem.

In each example we used a nonlinear least square minimization code, based on a secant
method with Dennis-Gay-Welsch update, combined with a trust region technique. See Section
10.3 in [13] for detailed description of this method.

Example 3 Consider first the scalar linear delay equation
i(t) =0(t)z(t —o(t), tel0,T), (4.24)
with initial condition
.CL'(t) = (P(t), te [—’I", 0]7 (425)

where 0 < o(t) <r for ¢t € [0,T], and 0, o and ¢ are continuous functions. IVP (4.24)-(4.25)
can be written in the form IVP (3.7)-(3.8) in the following way: Define ¥ = C([0,T]; R) and



0= C([OaT]a R) Let f(ta$ay59) = G(t)y, and }L(S,t,@b,O’) = X[fa(t),(]}(s)a where X[fa(t),O}(s)
is the characteristic function of the interval [—o(%),0]. It is easy to see that A(t,¢,0) =
P(—o(t)), and A(t,9,0,&) = £(—o(t)). Clearly, f satisfies (H1)(i), and it is easy to check
that L; = max{M;, My} is good in (H1) (ii). The function u clearly satisfies (H2) (i) and
(ii). To show (H2) (iii), consider

p‘(ta 1/)7 g, 5) - )\(t, 1/_)7 o, £)|

£(=a(t)) = &(=a(1))]
Elwrelo(t) — a(t)]

‘£|W1’°° ‘U - 6‘07

I IN

hence (H2) (iii) follows with Ly =1 for all M; and M.
Consider a particular case of IVP (4.24)-(4.25): Let T =3, r =3, ¢(t) =t + 1, and

o(t) =

12
{ 242t+2, telo2], (4.26)

2, t€[2,3].

The solution of this IVP corresponding to 6(t) = (t — 1)? is

2 268 31t |
PR e SR
o= B _1()‘? +611?£g _9t7 % t8+ ’
- 4 e e+ L t€[2,3].
We use this function with ¢; = 0.1¢ (i = 0,...,30) to generate the measurements, X;.

The parameter space is I' = © = C([0, 3]; R), (since 6 is the only parameter in the IVP).
To follow the general identification procedure, we have to assume that 6 lies in a compact
subset of the parameter space, which we can do by assuming some a priori estimates on 6,
eg,0 e A={0ecO : |0lo <ci, esssupyeses |0(t)) < e} for some ¢; > 0 and ¢ > 0.
In practice, if the parameter space is infinite dimensional and there is no natural constraint
for the parameters in the equation, like in this example, we solve unconstraint minimization
problems to simplify the numerical minimization process. (In our examples, of course, global
minimum exists.)

We discretize the parameter space using linear splines, i.e., piecewise linear continuous
functions, which are linear on the intervals [(i — 1)T/(N —1),iT/(N —-1)] (i=1,...,N —1).
It is known (see e.g. [14]) that linear splines can be used to approximate continuous functions
uniformly on compact time intervals. We can identify IV by RV, as v = (a1, ...,an), where
a; is the value of the spline function at the ith mesh point, (i — 1)T/(N — 1).

Let h > 0 and define the approximating IVP according to IVP (3.10)-(3.11)

In(t) = O ([Hn)yn([tlh — o([tln),  t€[0,3], (4.27)

with initial condition
yp(t) =t +1, t € [-3,0]. (4.28)

It is easy to obtain by integrating (4.27) from nh to (n + 1)h that

yn((n+ 1)h) = yp(nh) + GN(nh)yh(nh — o(nh))h, n=0,12,...,

10



where, using (4.28), yp(nh—o(nh)) = nh—o(nh)+1if nh—o(nh) < 0, otherwise we evaluate
it by interpolating between already computed solution values at mesh points.
Consider the minimization problem

30
min J, (0V) =Y (ya(t:; 0V) — Xi).
i=0

We solved this problem numerically for several N values, using 8 = 0 as the initial guess.
In Figure 1 we plotted out the true 6 function (solid graph) and the numerical solutions of
the minimization problem corresponding to N =3, 5 and 7 and h = 0.0001 (dashed graphs).
The numerical results show good recovery of the coefficient, even for such small dimensions.
In Table 1 and 2 we list the value of the cost function, .J,(6"), and the maximal error,
i.e., max;—q_. 30 [yn(ti; V) — Xi|), respectively, for N = 3, 11, 19 and 27. Both values show
decreasing pattern as we increase N and decrease h, which illustrate the convergence of the
numerical identification method.

Table 1: .J, (6V)

h N=3 N=11 N=19 N=27
0.1000 2.189e-02 1.132e-04 2.638e-05 2.678e-05
0.0100 2.065e-02 1.827e-06 3.123e-07 1.030e-07
0.0010 2.105e-02 1.561e-06 6.204e-08 8.192e-10
0.0001 2.109e-02 1.578e-06 5.928e-08 2.591e-11

Table 2: Maximal error

h N=3 N=11 N=19 N=27
0.1000 0.603619 0.373733 0.496216 0.571648
0.0100 0.570814 0.023817 0.034678 0.040783
0.0010 0.568044 0.016307 0.006010 0.004769
0.0001 0.567774 0.016116 0.006304 0.002605

Example 4 In this example we consider IVP (4.24)-(4.25) again with T'= 3, r = 3, ¢(t) =
t+1, 0(t) = (t — 1)2, and using the measurements of Example 3, we identify the delay
function, (4.26). We proceed as before, we approximate o by linear spline function o”,
define the approximate IVP (4.27)-(4.28) (where we replace o by o and 6V by 6), and
minimize the corresponding cost function, Jj,(0V). Note that in this example we had to use
constrained minimization to guarantee that ¢V remains nonnegative, i.e., to have a delay
equation in (4.27). We present the corresponding numerical results on Figure 2 (N = 3,
5, 7 and h = 0.0001), and on Tables 3 and 4 (N = 3, 11, 19 and 27). The numerical
findings indicate convergence to the true delay function as both h — 0 and N — oo, but it

is interesting to see that how the maximal error can increase for fixed h as N increases.
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Table 3: Jy, (V)

h N=3 N=11 N=19 N=27
0.1000 1.095e-02 7.067e-03 3.955e-05 1.849e-05
0.0100 6.249e-03 4.964e-04 3.809e-06 1.053e-09
0.0010 5.838e-03 2.602e-05 1.932e-06 7.267e-09
0.0001  5.798e-03 2.525e-05 3.076e-08 7.901e-09

Table 4: Maximal error

h N=3 N=11 N=19 N=27
0.1000 0.421799 2.119123 2.722342 7.429697
0.0100 0.324328 1.932437 1.993864 2.023813
0.0010 0.347840 0.105441 1.945538 0.080971
0.0001 0.352248 0.106412 0.014420 0.017938

Example 5 Our next example is a scalar delay equation with distributed constant delay

i(t) = /_Ul((2+s)”x(t+s)—§t2+01t+92) ds, te[o,3],

z(t) = t*,  te[-1,0].

The goal in this example is the identification of the parameters o,60;,05 € R. It is easy to
check, that the solution of this IVP corresponding to o = 2, #; = 23/6 and 0y = —8/15 is
z(t) = t2. We used this solution to generate measurements at ¢; = 0.1i, (i = 0,1,...,30). In
this example the parameter space, I' = R?, is finite dimensional, therefore there is no need
for discretization, i.e., we use I'N = R3. The corresponding approximate IVP is

gn(t) = /Ul((2+s)ffy([t]h+s)—g[t]§+91[t]h+92) ds, t>0, (4.29)

y(t) = 2, t € [-1,0]. (4.30)

Using the fact that y, is linear on the intervals [ih, (i + 1)h], we can easily obtain a difference
equation for the values of the solution at mesh points.

In Table 5 we present our numerical findings, which shows convergence to the true pa-
rameter values, as h — 0. Note that our numerical approximation method, and therefore the
numerical identification method as well, takes a long time for “small” h, since we, in fact,
compute the true values of the integral in (4.29) for a piecewise linear y;, by summing up the
true value of the integral in each interval [ih, (i + 1)h]. On the other hand, we got relatively
good estimate for the true parameters using “large” h values.

12



Table 5:

h o 04 6, Jn(5,61,65) Maximal error
0.1000 2.000000 3.833333 -0.437222 16.0249849 9.611167e-02
0.0100 2.000002 3.833329 -0.523370 0.2343549  9.962903e-03
0.0010 1.999999 3.833336 -0.532335 0.0024401 9.981619e-04

Example 6 Consider the scalar state-dependent delay equation

9
i(t) = —3p’ (t - T(t,x(t),a)), te 0,3, (4.31)
:E(t) = (P(t), te [_LOL (4 32)
where
[ 1t+1),  te[-05,0)

wt) = { 2. tel-1,-0.5], (4.33)
and o € C([0,3];R), 7(t,u,0) = mln{a( )u|,1}. Tt is easy to see that the solution of this
IVP corresponding to o(t) = %(t -I— 1)2 is x(t) = 1/(t + 1). Using this solution, we generated

measurements at t; = 0.14, (i = 0,1,...,30).
Taking (s, t,%,0) = X[—r(t,(0),0),0 }( s) and f(t,z,y,0) = —%y?, one can rewrite IVP

(4.31)-(4.32) in the form IVP (1.1)-(1.2), and can check that (H1)-(H3) are satisfied.

We printed out the numerical results in Tables 6 and 7 using spline approximations with
dimensions N = 3,11,19 and 27. In Figure 3 the graph of the true o function (solid graph)
and the approximate functions (dashed graphs) corresponding to N = 3,5, 7 and h = 0.0001
are presented.

Table 6: .J, ()

h N=3 N=11 N=19 N=27
0.1000 3.580e-04 1.578e-07 6.713e-09 4.688e-10
0.0100 2.923e-04 4.867e-08 8.884e-10 2.241e-11
0.0010 2.864e-04 4.350e-08 9.756e-10 4.400e-13
0.0001 2.858e-04 4.305e-08 9.808e-10 2.986e-11

Example 7 Finally, consider again IVP (4.31)-(4.32), with o(¢) = 1(¢ + 1)2, and the same
measurements of the previous example, and we identify the initial function, (4.33). The
numerical results are presented in Table 8 (for N = 3, 11, 19 and 27), and in Figure 4 (for
N =3,5,7, 9 and h = 0.0001).

Let —r* = min{t — 7(¢,z(t),0) : t € [0,3]}. Then, clearly, r* < 1, and the actual initial
interval is [—r*, 0], the values of initial function on [—1, —r*] are superfluous, i.e., are not used
and needed in the equation. The difficulty of identifying initial functions in state-dependent
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Table 7: Maximal error

h N=3 N=11 N=19 N=27
0.1000 0.334270 0.156771 0.158563 0.150708
0.0100 0.360240 0.019216 0.016235 0.015785
0.0010 0.363738 0.005593 0.002634 0.002150
0.0001 0.364103 0.004317 0.001382 0.001623

delay equations is that the actual initial interval, [—r*, 0], depends on the actual solution,
therefore it is not known in advance. In this example, using initial function (4.33) and
o(t) = 1(t + 1)2, the true solution is z(t) = 1/( + 1), therefore r* = 0.25. We approximate
the initial function by linear spline functions defined on [—1,0], and use ¢ (t) = 0.5 as our
initial guess in the numerical minimization routine. We can observe that the solution of
the corresponding finite dimensional minimization problem remains constant 0.5 in between
mesh points, which are not used in the numerical approximation, i.e., from which the least
square cost function is independent. We denote the first mesh point, where the numerical
solution of the minimization problem is not equal to the initial guess, by —r”™. That is, the
numerical solution is constant 0.5 on the interval [—1, —r" — h]. We listed the values of rV
corresponding to h = 0.001 in Table 9 for several choices of N. This experiment indicates
that rV — r*,

Table 8: Jy,(¢")

h N=3 N=11 N=19 N=27
0.1000 3.580e-04 1.578e-07 6.713e-09 4.688e-10
0.0100 2.923e-04 4.867e-08 8.884e-10 2.241e-11
0.0010 2.864e-04 4.350e-08 9.756e-10  4.400e-13
0.0001 2.858e-04 4.305e-08 9.808e-10  2.986e-11

Table 9:

N 3 5 9 17
—rN 1 -1.00000 -0.50000 -0.50000 -0.37500
N 33 65 129 257
—rV 1 -0.31250 -0.28125 -0.25781 -0.25390
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