
Identi�ation of parameters in delay equations withstate-dependent delays
J. Nonlinear Analysis: Theory, Methods and Appliations, 29:11 (1997) 1303{1318.

Feren HartungInterdisiplinary Center for Applied MathematisVirginia Polytehni Institute & State UniversityBlaksburg, VA 24061Janos TuriPrograms in Mathematial SienesUniversity of Texas at DallasRihardson, TX 75083AbstratIn this paper we study parameter identi�ation problems for a lass of nonlineardelay equations with distributed state-dependent delays. We desribe a numerial iden-ti�ation tehnique using an Euler-type approximation sheme and show its theoretialonvergene. Illustrative numerial examples are also inluded.1 IntrodutionIn this paper we study parameter identi�ation problems for the nonlinear delay system withstate dependent delays_x(t) = f �t; x(t); Z 0�r ds�(s; t; xt; �)x(t+ s); �� ; t 2 [0; T ℄ (1.1)with initial ondition x(t) = '(t); t 2 [�r; 0℄: (1.2)The term �(t; xt; �) � Z 0�r ds�(s; t; xt; �)x(t+ s) (1.3)desribing the delay dependene is a Stieltjes-integral of the solution segment x(t + �) withrespet to �(�; t; xt; �), whih is a matrix valued funtion of bounded variations depending ontime, t, the state of the equation, xt, and a parameter � 2 �. Here 0 < T <1 and r > 0 are�xed, and xt : [�r; 0℄! Rn, xt(s) � x(t+ s). For simpliity of the presentation we assumethat only part of the delay term and the funtion f , represented by the parameters � 2 �1



and � 2 �, respetively, and the initial funtion, ', are unknowns in the equation. � and �are normed linear spaes with norms j � j� and j � j�, respetively.To give some motivation and/or justi�ation on the partiular form seleted by (1.3) forthe delay term, assume for example that the delayed term depends linearly on the state, i.e.,has the form Lxt, where L is a bounded linear operator on C � C([�r; 0℄;Rn). In this asethe Riesz Representation Theorem yields (1.3) with � = �(s). If L = L(t; �) depends ont and a parameter �, then by the same result we get that there exists � = �(s; t; �) suhthat (1.3) holds. Therefore it seems like a natural extension of the above ases to assumethe struture desribed by (1.3) for the state-dependent ase. Moreover, representation (1.3)inludes disrete and distributed, onstant and time-dependent delays, and the \usual" state-dependent delays, x(t� �(t; x(t); �)) or x(t� �(t; xt; �)) as well. A nie feature of this formis that it also allows delayed terms of the form�(t; xt; �) = 1Xi=1Ai(t; xt; �)x(t� �i(t; xt; �)) + Z 0��0 G(s; t; xt; �)x(t+ s) ds:We assume that some parameters ( 2 �) of the initial value problem (IVP) (1.1)-(1.2) areunknown, but we have measurements (X0;X1; : : : ;Xl) at disrete time values (t0; t1; : : : ; tl)for the solution of the IVP. The goal is to �nd the parameter value, whih minimizes theleast squares �t-to-data riterionJ() = lXi=0 jx(ti; )�Xij2;  2 �;i.e., whih is the best-�t parameter for the measurements. (Denote this problem by P). Here� � � is the admissible set of parameters, � is the parameter spae. Problem P has beenstudied by many authors, for di�erent lasses of di�erential equations (see e.g. [1℄ and thereferenes therein), inluding delay equations as well ([2, 3, 4℄).All the above ited papers use the same idea to �nd the solution of the optimizationproblem P:Step 1) First take �nite dimensional approximations of the parameters, N , (i.e., N 2�N � �, dim�N <1, N !  as N !1).Step 2) Consider a sequene of approximate initial value problems (IVPM;N ) orrespond-ing to a disretization of IVP (1.1)-(1.2) for some �xed parameter N 2 �N with solutionsyM (�; N ) satisfying that yM (t; N ) ! x(t; ) as N;M ! 1, uniformly on ompat timeintervals.Step 3) De�ne the least square minimization problems (PN;M ) for eah N;M = 1; 2; : : :,i.e., �nd N;M 2 �N , whih minimizes the least squares �t-to-data riterionJN;M (N ) = lXi=0 jyM (ti; N )�Xij2; N 2 �N ;where �N � �N is the projetion of � to �N .Step 4) Assuming that � is a ompat subset of �, argue, that the sequene of solu-tions, N;M (N;M = 1; 2; : : :), of the �nite dimensional minimization problems PN;M , has aonvergent subsequene with limit � 2 �. 2



Step 5) Show that � is the solution of the minimization problem P.Note that Step 4) and 5) an be argued without using the partiular approximationmethod of the initial value problem, using only ompatness arguments and Step 2) (see e.g.[4℄).In Setion 2 we de�ne an Euler-type approximation sheme for IVP (1.1)-(1.2) usingequations with pieewise onstant arguments. The theoretial onvergene of this shemewas shown in [5℄ assuming onditions (H1){(H3) (see below). Note that the theoretialonvergene of this sheme follows from Theorem 3 below as well. In Setion 3 we showthat this approximation sheme has the property required in Step 2), and in Setion 4 wepresent numerial examples for estimating parameters of IVP (1.1)-(1.2) by applying ourapproximation sheme and the method desribed above.For numerial approximation methods using equations with pieewise onstant argumentswe refer to [6, 7℄. Related numerial identi�ation shemes for neutral delay di�erentialequations were studied in [8, 9, 10℄. See also [11℄, where identi�ation methods based ondi�erene equations were studied.We lose this setion by noting that in this paper we fous on the onvergene of ournumerial sheme to minimize the least square ost funtion. The underlying identi�abilityissues (i.e., uniqueness of the solution of problem P) are not addressed here. (See [1, 12℄ onrelated developments for FDEs without state-dependent delays.) Although in ase of ertainequations identi�ability or the lak of it an be argued, to the best of our knowledge, thereis no omprehensive theory for identi�ability in general state-dependent delay equations.2 Notations, preliminariesThroughout this paper j � j denotes a vetor norm on Rn. We denote the open and losed ballabout x0 with radius R in a Banah spae X by GX(x0; R) and GX(x0; R), respetively. Ifthe ball is entered at the origin, we use simply GX(R) and GX(R). Similarly, the open andlosed neighborhood of a set A � X is denoted by GX(A; R) and GX(A; R), respetively. Thesupremum norm on C � C([�r; 0℄;Rn) is denoted by j � jC . We denote the spae of absolutelyontinuous funtions,  : [�r; 0℄! Rn, with essentially bounded derivatives by W 1;1. Thenorm in this Banah-spae is de�ned by j jW 1;1 � maxf sups2[�r;0℄ j (s)j; ess sups2[�r;0℄j _ (s)jg.Introdue the simplifying notation�(t;  ; �; �) � Z 0�r ds�(s; t;  ; �)�(s): (2.4)With this notation we have that �(t;  ; �) = �(t;  ; �;  ).Next we summarize onditions guaranteeing well-posedness of IVP (1.1)-(1.2) (see [5℄ andTheorem 3 below):(H1) (i) f : [0; T ℄�
1�
2�
3 ! Rn is ontinuous, where 
1 and 
2 are open subsetsof Rn, and 
3 is an open subset of �,3



(ii) for every M1 > 0 and M2 > 0 there exists a onstant L1 = L1(M1;M2) suh thatfor all t 2 [0; T ℄, x; �x 2 GRn(M1)\
1, y; �y 2 GRn(M1)\
2, and �; �� 2 G�(M2)\
3jf(t; x; y; �)� f(t; �x; �y; ��)j � L1�jx� �xj+ jy � �yj+ j� � ��j��;(H2) �(�; t;  ; �) is a matrix valued funtion of bounded variation for every t 2 [0; T ℄,  2 
4,and � 2 
5, where 
4 � C is open, and 
5 � � is open suh that(i) k�k � sup fj�(t;  ; �; �)j : t 2 [0; T ℄;  2 
4; � 2 
5; � 2 GC(1)g <1,(ii) for eah � 2 C the funtion [0; T ℄ � 
4 � 
5 ! Rn, (t;  ; �) 7! �(t;  ; �; �) isontinuous,(iii) for every M1 > 0 and M2 > 0 there exists a onstant L2 = L2(M1;M2) suh thatfor all � 2W 1;1, t 2 [0; T ℄,  ; � 2 GC(M1) \
4, and �; �� 2 G�(M2) \ 
5,j�(t;  ; �; �) � �(t; � ; ��; �)j � L2j�jW 1;1�j � � jC + j� � ��j��;(H3) ' 2W 1;1, i.e., ' is Lipshitz-ontinuous.It is easy to see that in order to have a properly posed problem, the initial funtion ',the parameter �, and the funtion � have to satisfy'(0) 2 
1; ' 2 
4; and Z 0�r ds�(s; 0; '; �)'(s) 2 
2: (2.5)The respetive de�nitions of �(t;  ; �) and k�k and assumption (H2) immediately implythe following lemmas, whih we shall need later.Lemma 1 Assume (H2). Thenj�(t;  ; �) � �(t; � ; ��)j� �k�k+ L2(M1;M2)j � jW 1;1��j � � jC + j� � ��j��;where t 2 [0; T ℄,  ; � 2 GC(M1) \ 
4, � 2W 1;1 and �; �� 2 G�(M2) \ 
5.Proof Let M1 and M2 be �xed, and L2 = L2(M1;M2) be the orresponding onstant fromassumption (H2). Let t,  , � , � and �� satisfy the assumptions of the lemma. Assumption(H2), the de�nition of k�k, and elementary estimates imply the inequalitiesj�(t;  ; �) � �(t; � ; ��)j� j�(t;  ; �;  ) � �(t;  ; �; � )j+ j�(t;  ; �; � )� �(t; � ; ��; � )j� ���Z 0�r ds�(s; t;  ; �)h (s)� � (s)i���+ L2j � jW 1;1�j � � jC + j� � ��j��� k�kj � � jC + L2j � jW 1;1�j � � jC + j� � ��j��;whih proves the lemma. 4



Lemma 2 Assume (H2). Then �(t;  ; �) is ontinuous on [0; T ℄� 
4 � 
5.Proof De�nition of k�k and assumption (H2) (ii) together with inequalitiesj�(t;  ; �) � �(�t; � ; ��)j� j�(t;  ; �;  ) � �(t;  ; �; � )j+ j�(t;  ; �; � )� �(�t; � ; ��; � )j� k�kj � � jC + j�(t;  ; �; � )� �(�t; � ; ��; � )jyield the lemma.Let h > 0. Throughout this paper we shall use the notation [t℄h � [t=h℄h, where [�℄ isthe greatest integer funtion. For later referene we mention an elementary property of thisfuntion, namely that: t� h < [t℄h � t: (2.6)
3 Convergene ResultsConsider the delay di�erential equation_x(t) = f�t; x(t);�(t; xt; �); ��; t 2 [0; T ℄; (3.7)and the orresponding initial onditionx(t) = '(t); t 2 [�r; 0℄; (3.8)where � 2 
3, � 2 
5, 
3 and 
5 are open subsets of � and �, respetively, the delayedterm � is de�ned by (1.3). We assume that f and � (i.e., �) are given in the equation,but the parts of f and � represented by � and �, and the initial funtion are unknown,i.e., onsidered as parameters. De�ne the parameter spae by � � C � � � �, with normj('; �; �)j� � j'jC + j�j� + j�j�, and the set of admissible parameters by � � n('; �; �) 2W 1;1 � 
5 � 
3 : '(0) 2 
1; ' 2 
4; R 0�r ds�(s; 0; '; �)'(s) 2 
2o. (See also (2.5).)We assume that f , ' and � satisfy (H1){(H3) and ('; �; �) 2 �. We reall the followingresult onerning the well-posedness of IVP (3.7)-(3.8) from [5℄.3.2 Assume that f , � and ('; �; �) 2 � satisfy (H1){(H3). Then there exist onstants0 < T � � T , Æ > 0 and L3 = L3(T �; '; �; �; Æ) > 0, suh that G�(('; �; �); Æ) � �, and IVP(3.7)-(3.8) has a unique solution on [0; T �℄ for all ( �'; ��; ��) 2 G�(('; �; �); Æ), the solution,x(�;'; �; �), is absolutely ontinuous on [�r; T �℄ with essentially bounded derivative, andjx(�;'; �; �)t � x(�; �'; ��; ��)tjC� L3�j'� �'jC + j� � ��j� + j� � ��j��; t 2 [0; T �℄: (3.9)5



We note that this result was shown in [5℄ for the ase � = � = Rm, (as a part of the proofof the stronger statement, where the j � jC norms in (3.9) are replaed by j � jW 1;1 norms).The proof for the ase when the parameters � and � are in�nite dimensional is an obviousmodi�ation of that of the �nite dimensional ase, and it is omitted here.We make the assumption for the rest of this paper that T = T �, i.e., IVP (3.7)-(3.8) hasa unique solution on [0; T ℄.To follow the general identi�ation proedure desribed in the introdution, we take �nitedimensional approximations, �N � �N ��N ��N , of the parameter spae, �: Let �N � C,�N � � and �N � � be sequenes of �nite dimensional spaes, suh that for eah ' 2 C,� 2 �, and � 2 �, the orresponding projetions, 'N 2 �N , �N 2 �N , and �N 2 �N satisfythat j'N � 'jC ! 0, j�N � �j� ! 0, and j�N � �j� ! 0, as N !1. Let �N � � \ �N .Next we de�ne approximate IVPs orresponding to parameters ('N ; �N ; �N ) 2 �N , usingEuler's method. Let h be a positive onstant, and de�ne the following delay equation withpieewise onstant arguments_yh;N(t) = f�[t℄h; yh;N([t℄h);�([t℄h; (yh;N )[t℄h ; �N ); �N�; t 2 [0; T ℄; (3.10)with initial ondition yh;N(t) = 'N (t); t 2 [�r; 0℄: (3.11)Here, to emphasize that the solution orresponds to a given h > 0 and ('N ; �N ; �N ), wedenote the solution and the solution segment funtion of IVP (3.10)-(3.11) by yh;N(t) and(yh;N)t, respetively.By a solution of IVP (3.10)-(3.11) we mean a funtion yh;N : [�r; T ℄ ! Rn, whih isde�ned on [�r; 0℄ by (3.11) and satis�es the following properties on [0; T ℄:(i) the funtion yh;N is ontinuous on [0; T ℄,(ii) the derivative _yh;N(t) exists at eah point t 2 [0; T ) with the possible exeption of thepoints ih (i = 0; 1; 2; : : :) where �nite one-sided derivatives exist,(iii) the funtion yh;N satis�es (3.10) on eah interval [ih; (i+ 1)h) \ [0; T ℄ for i = 0; 1; 2; : : :It is easy to see, using the method of steps, that for eah �xed h > 0 and ('N ; �N ; �N ) 2�N , IVP (3.10)-(3.11) has a unique solution. For a �xed h > 0 and N > 0 let [0; �h;N )(or [0; T ℄ if �h;N = T ) be the maximal interval where the solution an be ontinued. Then�h;N > 0 is the largest possible number suh thatyh;N(t) 2 
1; (yh;N )t 2 
4; and �(t; (yh;N )t; �N ) 2 
2 for t 2 [0; �h;N ):The following theorem guarantees Step 2) of the identi�ation method desribed in theintrodution using the approximation sheme (3.10)-(3.11).3.2 Assume that f , � and ('; �; �) 2 � satisfy (H1){(H3). Fix sequenes 'N 2 �N ,�N 2 
5, and �N 2 
3 suh that j'N � 'jC ! 0, j�N � �j� ! 0, and j�N � �j� ! 0 asN !1. Then 6



(i) there exist h0 > 0 and N0 > 0 suh that for all 0 < h < h0 and N > N0, IVP(3.10)-(3.11) has unique solution de�ned on [0; T ℄, i.e., �h;N = T for 0 < h < h0 andN > N0,(ii) the solution, yh;N , of IVP (3.10)-(3.11) onverges uniformly on [0; T ℄ to the solution, x,of IVP (3.7)-(3.8) as h! 0+ and N !1, i.e.,limh!0+N!1 max0�t�T jx(t)� yh;N(t)j = 0:Proof Fix ('; �; �) 2 �, and let Æ > 0 be the onstant from Theorem 3, i.e., suh thatG�(('; �; �); Æ) � �. We an (and do) assume that ('N ; �N ; �N ) 2 G�(('; �; �); Æ) for all N .Theorem 3 yields that the solution of IVP (3.7)-(3.8), x(t), is absolutely ontinuous on [0; T ℄with essentially bounded derivative, therefore the onstantM0 � maxn sup�r�u�T jx(u)j; ess sup�r�u�T j _x(u)jo+ Æis �nite. Let M � maxfk�kM0;M0g. Then the de�nitions of M and M0, and inequalityj�(t;  ; �)j � k�kj jC imply that xt and �(t; xt; �) remain in GRn(M) for t 2 [0; T ℄. LetL1 = L1(M; j�j�+ Æ) be the onstant given by (H1) (ii). Sine 'N (0) 2 GRn(M0), ontinuityargument gives that for eah h > 0 and N > 0 there exists 0 < ��h;N � �h;N suh thatjyh;N(t)j � M0 for t 2 [0; ��h;N ℄. But then also yh;N (t); �(t; (yh;N )t; �N ) 2 GRn(M) fort 2 [0; ��h;N ℄. Therefore (3.7), (3.10), assumption (H1) (ii), and standard estimates yield thefollowing inequalities for t 2 [0; ��h;N ℄:jx(t)� yh;N(t)j� j'(0) � 'N (0)j+ Z t0 ���f�u; x(u);�(u; xu; �); ��� f�[u℄h; x(u);�(u; xu; �); ����� du+ Z t0 ���f�[u℄h; x(u);�(u; xu; �); ��� f�[u℄h; yh;N([u℄h);�([u℄h; (yh;N)[u℄h ; �N ); �N���� du� j'� 'N jC + L1j� � �N j�t+ Z t0 ���f�u; x(u);�(u; xu; �); ��� f�[u℄h; x(u);�(u; xu; �); ����� du (3.12)+L1 Z t0 �jx(u)� yh;N([u℄h)j+ ����(u; xu; �)� �([u℄h; (yh;N )[u℄h ; �N )���� du:Introdue the funtionvh;N(t) � max�r�u�t jx(u)� yh;N(u)j; t 2 [0; ��h;N ℄:The de�nition and the monotoniity of vh;N and M , (2.6), and the Mean Value Theoremimply that jx(u)� yh;N([u℄h)j � jx([u℄h)� yh;N([u℄h)j+ jx(u)� x([u℄h)j� vh;N ([u℄h) +M0h� vh;N (u) +M0h; u 2 [�r; ��h;N ℄; (3.13)7



and similarly jxu � (yh;N )[u℄hjC � vh;N (u) +M0h; u 2 [0; ��h;N ℄: (3.14)Using (3.14), Lemma 1 with L2 = L2(M0; j�j� + Æ), we have the following estimate foru 2 [0; ��h;N ℄:����(u; xu; �)� �([u℄h; (yh;N )[u℄h ; �N )���� j�(u; xu; �) � �([u℄h; xu; �)j+ ����([u℄h; xu; �)� �([u℄h; (yh;N )[u℄h ; �N )���� j�(u; xu; �) � �([u℄h; xu; �)j+ (k�k + L2jxujW 1;1)�jxu � (yh;N )[u℄h jC + j� � �N j��� j�(u; xu; �) � �([u℄h; xu; �)j+ (k�k+ L2M0)vh;N (u)+ (k�k + L2M0)�M0h+ j� � �N j��: (3.15)Combining (3.12), (3.13) and (3.15) we getjx(t)� yh;N(t)j � gh;N (t) + Z t0 L1(1 + k�k+ L2M0)vh;N (u) du; (3.16)t 2 [0; ��h;N ℄, wheregh;N(t) � Z t0 ���f�u; x(u);�(u; xu; �); ��� f�[u℄h; x(u);�(u; xu; �); ����� du+ L1 Z t0 j�(u; xu; �)� �([u℄h; xu; �)j du+ L1(1 + k�k+ L2M0)M0ht (3.17)+ L1�(k�k + L2M0)j� � �N j� + j� � �N j��t+ j'� 'N jC :Note that gh;N (t) an be de�ned for t 2 [0; T ℄. Using the monotoniity of gh;N , (3.16) yieldsvh;N(t) � gh;N (T ) + Z t0 L1(1 + k�k+ L2M0)vh;N (u) du; t 2 [0; ��h;N ℄;whih, by Gronwall-Bellman's inequality, implies thatjx(t)� yh;N(t)j � vh;N (t)� gh;N (T ) exp�L1(1 + L2M + k�k)t�� gh;N (T ) exp�L1(1 + L2M + k�k)T�; t 2 [0; ��h;N ℄: (3.18)Using Lebesgue's Dominated Convergene Theorem for the �rst two integrals in (3.17), (2.6),the ontinuity of f and � guaranteed by (H1) (i) and Lemma 2, respetively, and the as-sumptions that 'N ! ', �N ! �, and �N ! � as N !1, we get thatgh;N (T )! 0; as h! 0+ and N !1: (3.19)In partiular, we get that there exist h1 > 0 and N1 > 0 suh that for all 0 < h < h1 andN > N1 it follows that jx(t) � yh;N (t)j < Æ, whenever yh;N(t) is de�ned. But then we have8



that jyh;N(t)j � M0, and �(t; (yh;N )t; �N ) 2 GRn(M), for all t 2 [0; T ℄ for whih yh;N(t) isde�ned, i.e., �h;N = ��h;N for 0 < h < h1; N > N1: (3.20)Let de�ne A1 � fx(t) : t 2 [0; T ℄g � 
1, A2 � f�(t; xt; �) : t 2 [0; T ℄g � 
2and A4 � fxt : t 2 [0; T ℄g � 
4. The ontinuity of the maps [0; T ℄ ! Rn; t 7! x(t),t 7! �(t;  ; �), and [0; T ℄ ! C; t 7! xt implies that A1, A2 and A4 are ompat subsets oftheir respetive spaes, therefore there exist " > 0, suh that GRn(Ai; ") � 
i (i = 1; 2) andGC(A4; ") � 
4. Relation (3.18) and (3.19) yield that there exist 0 < h2 � h1 and N2 � N1suh that jx(t)� yh;N(t)j < " for t 2 [0; �h;N ℄, 0 < h < h2 and N > N2, heneyh;N(�h;N ) 2 
1; (yh;N)�h;N 2 
4; for 0 < h < h2; N > N2: (3.21)Inequality (3.15), together with the ontinuity of �, (2.6), (3.18) and (3.19), and that �N ! �as N ! 1 imply that there exist 0 < h0 � h2 and N0 > N2 suh that j�(t; xt; �) ��([t℄h; (yh;N)[t℄h ; �N )j < " for t 2 [0; �h;N ℄, 0 < h < h0 and N > N0, therefore�([�h;N ℄h; (yh;N )[�h;N ℄h ; �N ) 2 
2; for 0 < h < h0; N > N0: (3.22)Combining (3.21) and (3.22) we get that the solution of IVP (3.10)-(3.11) an be extendedto [0; T ℄, i.e., �h;N = ��h;N = T; for 0 < h < h0; N > N0; (3.23)whih proves (i) of the statement. Part (ii) follows from (3.23), and from (3.18) and (3.19).4 Numerial examplesIn this setion we present appliations of the identi�ation method desribed in the introdu-tion and in Setion 3. Consider an identi�ation problem orresponding to IVP (3.7)-(3.8),then we de�ne the approximating IVPs by (3.10)-(3.11). De�ne the orresponding �nite di-mensional minimization problems, and �nd the solutions of them. Choose small enough hand large enough N , and use the solution of the minimization problem orresponding to thish and N as an approximation of the solution of the original identi�ation problem.In eah example we used a nonlinear least square minimization ode, based on a seantmethod with Dennis-Gay-Welsh update, ombined with a trust region tehnique. See Setion10.3 in [13℄ for detailed desription of this method.Example 3 Consider �rst the salar linear delay equation_x(t) = �(t)x(t� �(t)); t 2 [0; T ℄; (4.24)with initial ondition x(t) = '(t); t 2 [�r; 0℄; (4.25)where 0 � �(t) � r for t 2 [0; T ℄, and �, � and ' are ontinuous funtions. IVP (4.24)-(4.25)an be written in the form IVP (3.7)-(3.8) in the following way: De�ne � � C([0; T ℄; R) and9



� � C([0; T ℄; R). Let f(t; x; y; �) = �(t)y, and �(s; t;  ; �) = �[��(t);0℄(s), where �[��(t);0℄(s)is the harateristi funtion of the interval [��(t); 0℄. It is easy to see that �(t;  ; �) = (��(t)), and �(t;  ; �; �) = �(��(t)). Clearly, f satis�es (H1)(i), and it is easy to hekthat L1 � maxfM1;M2g is good in (H1) (ii). The funtion � learly satis�es (H2) (i) and(ii). To show (H2) (iii), onsiderj�(t;  ; �; �) � �(t; � ; ��; �)j = j�(��(t)) � �(���(t))j� j�jW 1;1 j�(t)� ��(t)j� j�jW 1;1 j� � ��jC ;hene (H2) (iii) follows with L2 = 1 for all M1 and M2.Consider a partiular ase of IVP (4.24)-(4.25): Let T = 3, r = 3, '(t) = t+ 1, and�(t) = ( �t2 + 2t+ 2; t 2 [0; 2℄;2; t 2 [2; 3℄: (4.26)The solution of this IVP orresponding to �(t) = (t� 1)2 isx(t) = 8><>: 1� t+ t22 + 2 t33 � 3 t44 + t55 ; t 2 [0; 2℄;17345 � 281 t15 + 1237 t230 � 4387 t390 + 101 t43�167 t512 + 611 t6180 � 9 t720 + t840 ; t 2 [2; 3℄:We use this funtion with ti = 0:1i (i = 0; : : : ; 30) to generate the measurements, Xi.The parameter spae is � = � = C([0; 3℄; R), (sine � is the only parameter in the IVP).To follow the general identi�ation proedure, we have to assume that � lies in a ompatsubset of the parameter spae, whih we an do by assuming some a priori estimates on �,e.g., � 2 � � f� 2 � : j�j� � 1; ess sup0�t�3 j _�(t)j � 2g for some 1 > 0 and 2 > 0.In pratie, if the parameter spae is in�nite dimensional and there is no natural onstraintfor the parameters in the equation, like in this example, we solve unonstraint minimizationproblems to simplify the numerial minimization proess. (In our examples, of ourse, globalminimum exists.)We disretize the parameter spae using linear splines, i.e., pieewise linear ontinuousfuntions, whih are linear on the intervals [(i� 1)T=(N � 1); iT=(N � 1)℄ (i = 1; : : : ; N � 1).It is known (see e.g. [14℄) that linear splines an be used to approximate ontinuous funtionsuniformly on ompat time intervals. We an identify �N by RN , as  = (a1; : : : ; aN ), whereai is the value of the spline funtion at the ith mesh point, (i� 1)T=(N � 1).Let h > 0 and de�ne the approximating IVP aording to IVP (3.10)-(3.11)_yh(t) = �N ([t℄h)yh([t℄h � �([t℄h)); t 2 [0; 3℄; (4.27)with initial ondition yh(t) = t+ 1; t 2 [�3; 0℄: (4.28)It is easy to obtain by integrating (4.27) from nh to (n+ 1)h thatyh((n+ 1)h) = yh(nh) + �N (nh)yh(nh� �(nh))h; n = 0; 1; 2; : : : ;10



where, using (4.28), yh(nh��(nh)) = nh��(nh)+1 if nh��(nh) � 0, otherwise we evaluateit by interpolating between already omputed solution values at mesh points.Consider the minimization problemminJh(�N ) � 30Xi=0(yh(ti; �N )�Xi)2:We solved this problem numerially for several N values, using �N = 0 as the initial guess.In Figure 1 we plotted out the true � funtion (solid graph) and the numerial solutions ofthe minimization problem orresponding to N = 3, 5 and 7 and h = 0:0001 (dashed graphs).The numerial results show good reovery of the oeÆient, even for suh small dimensions.In Table 1 and 2 we list the value of the ost funtion, Jh(��N ), and the maximal error,i.e., maxi=0;:::;30 jyh(ti; �N ) �Xij), respetively, for N = 3, 11, 19 and 27. Both values showdereasing pattern as we inrease N and derease h, whih illustrate the onvergene of thenumerial identi�ation method. Table 1: Jh(��N)h N=3 N=11 N=19 N=270.1000 2.189e-02 1.132e-04 2.638e-05 2.678e-050.0100 2.065e-02 1.827e-06 3.123e-07 1.030e-070.0010 2.105e-02 1.561e-06 6.204e-08 8.192e-100.0001 2.109e-02 1.578e-06 5.928e-08 2.591e-11
Table 2: Maximal errorh N=3 N=11 N=19 N=270.1000 0.603619 0.373733 0.496216 0.5716480.0100 0.570814 0.023817 0.034678 0.0407830.0010 0.568044 0.016307 0.006010 0.0047690.0001 0.567774 0.016116 0.006304 0.002605Example 4 In this example we onsider IVP (4.24)-(4.25) again with T = 3, r = 3, '(t) =t + 1, �(t) = (t � 1)2, and using the measurements of Example 3, we identify the delayfuntion, (4.26). We proeed as before, we approximate � by linear spline funtion �N ,de�ne the approximate IVP (4.27)-(4.28) (where we replae � by �N and �N by �), andminimize the orresponding ost funtion, Jh(�N ). Note that in this example we had to useonstrained minimization to guarantee that �N remains nonnegative, i.e., to have a delayequation in (4.27). We present the orresponding numerial results on Figure 2 (N = 3,5, 7 and h = 0:0001), and on Tables 3 and 4 (N = 3, 11, 19 and 27). The numerial�ndings indiate onvergene to the true delay funtion as both h ! 0 and N ! 1, but itis interesting to see that how the maximal error an inrease for �xed h as N inreases.11



Table 3: Jh(��N )h N=3 N=11 N=19 N=270.1000 1.095e-02 7.067e-03 3.955e-05 1.849e-050.0100 6.249e-03 4.964e-04 3.809e-06 1.053e-090.0010 5.838e-03 2.602e-05 1.932e-06 7.267e-090.0001 5.798e-03 2.525e-05 3.076e-08 7.901e-09
Table 4: Maximal errorh N=3 N=11 N=19 N=270.1000 0.421799 2.119123 2.722342 7.4296970.0100 0.324328 1.932437 1.993864 2.0238130.0010 0.347840 0.105441 1.945538 0.0809710.0001 0.352248 0.106412 0.014420 0.017938Example 5 Our next example is a salar delay equation with distributed onstant delay_x(t) = Z 0�1�(2 + s)�x(t+ s)� 73 t2 + �1t+ �2�ds; t 2 [0; 3℄;x(t) = t2; t 2 [�1; 0℄:The goal in this example is the identi�ation of the parameters �; �1; �2 2 R. It is easy tohek, that the solution of this IVP orresponding to � = 2, �1 = 23=6 and �2 = �8=15 isx(t) = t2. We used this solution to generate measurements at ti = 0:1i, (i = 0; 1; : : : ; 30). Inthis example the parameter spae, � = R3, is �nite dimensional, therefore there is no needfor disretization, i.e., we use �N = R3. The orresponding approximate IVP is_yh(t) = Z 0�1�(2 + s)�y([t℄h + s)� 73 [t℄2h + �1[t℄h + �2�ds; t � 0; (4.29)yh(t) = t2; t 2 [�1; 0℄: (4.30)Using the fat that yh is linear on the intervals [ih; (i+1)h℄, we an easily obtain a di�ereneequation for the values of the solution at mesh points.In Table 5 we present our numerial �ndings, whih shows onvergene to the true pa-rameter values, as h! 0. Note that our numerial approximation method, and therefore thenumerial identi�ation method as well, takes a long time for \small" h, sine we, in fat,ompute the true values of the integral in (4.29) for a pieewise linear yh by summing up thetrue value of the integral in eah interval [ih; (i + 1)h℄. On the other hand, we got relativelygood estimate for the true parameters using \large" h values.12



Table 5:h �� ��1 ��2 Jh(��; ��1; ��2) Maximal error0.1000 2.000000 3.833333 -0.437222 16.0249849 9.611167e-020.0100 2.000002 3.833329 -0.523370 0.2343549 9.962903e-030.0010 1.999999 3.833336 -0.532335 0.0024401 9.981619e-04Example 6 Consider the salar state-dependent delay equation_x(t) = � 916x2�t� �(t; x(t); �)�; t 2 [0; 3℄; (4.31)x(t) = '(t); t 2 [�1; 0℄; (4.32)where '(t) = ( 1=(t+ 1); t 2 [�0:5; 0℄;2; t 2 [�1;�0:5℄; (4.33)and � 2 C([0; 3℄;R), �(t; u; �) � minf�(t)juj; 1g. It is easy to see that the solution of thisIVP orresponding to �(t) = 14(t+ 1)2 is x(t) = 1=(t+ 1). Using this solution, we generatedmeasurements at ti = 0:1i, (i = 0; 1; : : : ; 30).Taking �(s; t;  ; �) � �[��(t; (0);�);0℄(s) and f(t; x; y; �) = � 916y2, one an rewrite IVP(4.31)-(4.32) in the form IVP (1.1)-(1.2), and an hek that (H1){(H3) are satis�ed.We printed out the numerial results in Tables 6 and 7 using spline approximations withdimensions N = 3; 11; 19 and 27. In Figure 3 the graph of the true � funtion (solid graph)and the approximate funtions (dashed graphs) orresponding to N = 3; 5, 7 and h = 0:0001are presented. Table 6: Jh(��N )h N=3 N=11 N=19 N=270.1000 3.580e-04 1.578e-07 6.713e-09 4.688e-100.0100 2.923e-04 4.867e-08 8.884e-10 2.241e-110.0010 2.864e-04 4.350e-08 9.756e-10 4.400e-130.0001 2.858e-04 4.305e-08 9.808e-10 2.986e-11Example 7 Finally, onsider again IVP (4.31)-(4.32), with �(t) = 14(t + 1)2, and the samemeasurements of the previous example, and we identify the initial funtion, (4.33). Thenumerial results are presented in Table 8 (for N = 3, 11, 19 and 27), and in Figure 4 (forN = 3, 5, 7, 9 and h = 0:0001).Let �r� � minft� �(t; x(t); �) : t 2 [0; 3℄g. Then, learly, r� � 1, and the atual initialinterval is [�r�; 0℄, the values of initial funtion on [�1;�r�℄ are superuous, i.e., are not usedand needed in the equation. The diÆulty of identifying initial funtions in state-dependent13



Table 7: Maximal errorh N=3 N=11 N=19 N=270.1000 0.334270 0.156771 0.158563 0.1507080.0100 0.360240 0.019216 0.016235 0.0157850.0010 0.363738 0.005593 0.002634 0.0021500.0001 0.364103 0.004317 0.001382 0.001623delay equations is that the atual initial interval, [�r�; 0℄, depends on the atual solution,therefore it is not known in advane. In this example, using initial funtion (4.33) and�(t) = 14(t + 1)2, the true solution is x(t) = 1=(t + 1), therefore r� = 0:25. We approximatethe initial funtion by linear spline funtions de�ned on [�1; 0℄, and use 'N (t) = 0:5 as ourinitial guess in the numerial minimization routine. We an observe that the solution ofthe orresponding �nite dimensional minimization problem remains onstant 0:5 in betweenmesh points, whih are not used in the numerial approximation, i.e., from whih the leastsquare ost funtion is independent. We denote the �rst mesh point, where the numerialsolution of the minimization problem is not equal to the initial guess, by �rN . That is, thenumerial solution is onstant 0:5 on the interval [�1;�rN � h℄. We listed the values of rNorresponding to h = 0:001 in Table 9 for several hoies of N . This experiment indiatesthat rN ! r�. Table 8: Jh( �'N )h N=3 N=11 N=19 N=270.1000 3.580e-04 1.578e-07 6.713e-09 4.688e-100.0100 2.923e-04 4.867e-08 8.884e-10 2.241e-110.0010 2.864e-04 4.350e-08 9.756e-10 4.400e-130.0001 2.858e-04 4.305e-08 9.808e-10 2.986e-11
Table 9:N 3 5 9 17�rN -1.00000 -0.50000 -0.50000 -0.37500N 33 65 129 257�rN -0.31250 -0.28125 -0.25781 -0.25390Referenes[1℄ H. T. Banks and K. Kunish, Estimation Tehniques for Distributed Parameter Systems(Birkh�auser, 1989). 14
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