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Abstract

We consider a class of neutral functional differential equations with state-dependent
delays, and discuss existence, uniqueness, and numerical approximation of solutions of
corresponding initial value problems. In the sequel we make use of an Euler-type approx-
imate method based on equations with piecewise constant arguments.

1 Introduction

In this paper we study local existence, uniqueness and numerical approximation of solutions
in a class of neutral functional differential equations (NFDEs) with state-dependent delays
described by

%(m(t) —I—q(t):c(t—T(t,x(t)))) = f(t,m(t),x(t—a(t,x(t)))). (1.1)

This is the single delay version (m = 1, [ = 1) of the more general equation

%(m(t)—l-z ai(Da(t=ri(t,2(1)) = f(t,2(), 2t - 01 (t,2(1)), ..., 2t —on(t,2(t)) ). (1.2)
i=1

We study (1.1) for simplicity of the presentation, but our results have a natural generalization
for the multiple delay case (see Remark 2.17 below).

The time-dependent delay case of (1.2) has been used widely in applications (see e.g. [15]).
For well-posedness of time-dependent NFDEs of the form (1.2), or, in general, for NFDEs of
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the form %D(t, zt) = f(t,z¢) we refer to [6] and [7]. To the best knowledge of the authors,
a general theory of the state-dependent NFDE, (1.2), has not been studied before.
Another typical class of NFDEs (including state-dependent delays) can be described by

a(t) = f(t2(t), 2t — alt, z(1)), 3(t - Bt 2(1)))). (1.3)

For corresponding well-posedness results we refer to [2], [3] and [13]. Note that (1.1) and
(1.3), especially in the state-dependent case, can not be easily transformed to the other form.

In Section 2 we define an approximation scheme based on equations with piecewise con-
stant arguments (EPCAs), and using a classical argument based on the Arsela-Ascoli’s Lem-
ma, show local existence of solutions of our equation. We also discuss uniqueness of the
solution, and show convergence of the numerical method. In Section 3 we present a few
numerical examples.

Note that EPCAs were used first in [4] to obtain numerical approximation schemes and to
prove the convergence of the approximation method for linear delay and neutral differential
equations with constant delays, and later in [5] for nonlinear delay equations with state-
dependent delays. EPCA based numerical schemes were used in [8]-[11] to define numerical
methods for identifying parameters in various classes of functional differential equations.
We refer the interested reader to [12] and [14], and the references therein, for numerical
approximation methods for NFDEs of the form (1.3).

2 Existence, Uniqueness of Solutions

Consider the vector NFDE
%(zp(t) +q®)a(t - 7(t,2(1)) = f(La®), 5t — ot 2(1)),  te[0,T] (2.1)

with initial condition
z(t) = o(t),  te[-r0] (2.2)

By a solution of the initial value problem (IVP) (2.1)-(2.2) we mean a continuous function,
z(t), such that ¢t — z(t) + q(t)z(t — 7(¢,z(¢))) is continuously differentiable, and z(¢) satisfies
(2.1) and (2.2).

We make the following assumptions:

(H1) f € C([0,7] x R™ x R™; R"™) is locally Lipschitz-continuous in its second and third
arguments, i.e., for every M > 0 there exists Ly = Li(M) > 0 such that

F(tw,y) = ft,5,9) < Dy (12— 2]+ |y — 9),

fort €[0,T], z,z,y,5 € R", |z, 7], |y|, ly] < M,
(H2) ¢ € C([0,T]; R) is Lipschitz-continuous, i.e., there exists Ly > 0 such that

|q(t) - q('E)| S L2|t - ﬂa for tat_E [OaT]a



(H3) 7,0 € C(]0,T] x R"; R) are such that
(i) there exist r > 0 and 79 > 0 such that
—r <t—71(t,x) <t—rg and —r <t—o(t,z) <t fort € [0,T], z € R",

(ii) 7 is locally Lipschitz-continuous in its first and second arguments, i.e., for every
M > 0 there exists constants Ls = L3(M) > 0 and Ly = Lg(M) > 0 such that

|7(t,z) — 7(¢,%)| < Ls|t — t| + La|z — T|,

for t,t € [0,T), z,z € R™, |z, |z| < M,

(iii) o is locally Lipschitz-continuous in its second argument, i.e., for every M > 0
there exists Ly = Ls(M) > 0 such that

lo(t,z) —o(t,z)| < Ls|z — x|
for t € [0,T], z,z € R", |z|, |Z| < M,
(H4) ¢ € C([—r,0]; R™) is Lipschitz-continuous on [—r, 0], i.e., there exists Lg > 0 such that

o(t) — p(B)] < Lot — 1], for £ € [0,T).

Here, and throughout this paper, |- | denotes a vector norm on R", |¢|¢ and |¢|c denote
the respective supremum norms on C([0,T]; R) and C([—r,0]; R").

We comment that for delay equations with state-dependent delays (¢(¢t) = 0) (H1)—(H4)
are standard assumptions for existence and uniqueness (see e.g. [1] or [5]).

For h > 0 we introduce the “greatest integer function with respect to h”, [t], = [t/h]h,
where [-] is the greatest integer function. It is a piecewise constant, right continuous function
satisfying

t—h <[t <t. (2.3)

Following the ideas of [4] and [10], we discretize (2.1) by changing the time variable ¢ to
the piecewise constant function, [t]. Consider

< (on0) + al0)on (e ~ [ (2~ )I0)
= F ([ yn (1) w81 = [ ([ (1)) (24)

for t € [0, T], with the initial condition

un(t) = o(t),  te[-r0] (2.5)

Note that we also introduced a delayed second argument of 7 in order to get an explicit
recursive formula for the approximate solution (see (2.7)-(2.8) below). We will show that the
solutions of IVP (2.4)-(2.5) approximate that of IVP (2.1)-(2.2) as h — 0+.

The subscript h of yp,(¢) emphasizes that y,(t) is the solution of (2.4) corresponding
to the discretization parameter h. By a solution of IVP (2.4)-(2.5) we mean a function



yp : [-r,T] — R", which is defined on [—r,0] by (2.5), such that the function ¢ — yj(t) +
q([tln)yn(t — [T([t]n, yn([t]n — h))]n) is continuous on [0,7], and its derivative exists at each
point ¢ € [0,T), with the possible exception of the points kh (k = 0, 1,2, ...) where finite one-
sided derivatives exist, and the function y;, satisfies (2.4) on each interval [kh, (k+1)h) N[0, T
(k=0,1,2,...).

This definition yields that (2.4) is equivalent to the integral equation

o (8) + a([8)un(t = ([, ([ — D)) = (0) + a(O)(~[r (0 (=h))s)
[ £ (bl wn (s~ oSl W) ds. (26

Hence applying the method of steps and using that ¢(¢) is a.e. differentiable by (H4) we
immediately obtain the next lemma.

Lemma 2.1 Let 0 < h <ro. Then IVP (2.})-(2.5) has a unique, a.e. differentiable solution
on [0, T].

Since the initial function is continuous but [t]; is only right continuous at mesh points kh
(left-limit of [t], exists at mesh points) we get that yy(¢) is, in general, only right-continuous
at mesh points, and it has jump discontinuities at mesh points. We introduce the notation
an(k) = yp(kh) and by (k) = limy_xp_ yp(¢) for the value of the solution and its left-sided
limit at mesh points, respectively. Integrating (2.4) from kh to ¢ and taking the limit as

— (k 4+ 1)h+ yields the recursive formula

ap(k+1) = an(k) + q(kh)an(k = [7(kh, an(k = 1))/h])
= q((k + Dh)an(k +1 = [7((k + 1)h, an(k))/h]) (2.7)
+ hf(kh,an(k),an(k —[o(kh,an(k))/h])), fork=0,1,...,
an(k) = @(kh), for —r<kh<0, k=0,—-1,.... (2.8)

This recursive formula uses past values of the solution only at mesh points. Note that y (%),
in general, is not linear on (kh, (k + 1)h), so the computation of y,(¢) between mesh points
is not convenient.

The continuity of yp, () + q([t]n)yn(t — [7([t]n, yn([t]n — h))]n) and ¢(t) at mesh points yield

bk +1) = ap(k+1) — q(kh)by(k + 1 = [r(kh,an(k — 1))/h]) (2.9)
+q((k + Dh)ap(k +1 = [7((k + 1)k, an(k))/R]), k=0,1,...,
bo(k) = ¢(kh), fork=0,—-1,..., —r<kh<O. (2.10)

Our proof of local existence will be based on the following lemmas.

Lemma 2.2 Assume (H1)-(Hj). Let hy = ro/2. Then there exist constants M; > 0, a =
a(My), and My = My(My) such that 0 < a < ro/2,

|yh(t)| < Mla te [—7’, Ot], 0<h< hOa (211)

and
gn(t)| < My, a.e. t € [—-r,al, 0<h<hy. (2.12)



Proof Fix
r
My > K = |qlclele + (1 +[q(0)])]elc + gomax{\f(t,O,O)l : t €[0,70/2]}.

We show that we can find corresponding oo = a(M;) and My = My (M;) which satisfy (2.11)
and (2.12).

Let wy(t) = max_,<y<t |yn(u)|, L1 = Li(M;) be the constant from (H1), and let 0 <
ap < ro/2 be the largest number such that |y, (¢)| < M; on [—r, ay,). Then (2.6), (2.3), and
(H1) imply for ¢ € [0, ap]:

o) < la) lya(t = I ([n v [n = W)I)] + Le(0)] + 1a(0) (= [r(0, o(=h))]a)]
t
1 (il (s10). 9 ((sh = o U5l wn([5h))n)) = £ (Ish.0,0)] ds

+ [ 0,01 ds
ro/
< lalolun(t = [t un(fs ~ D) -+ 1+ la@)Dlelo + [ 170l 0.0)/ ds

L [ (sl + b 05— ol wn (5h)Ia) ).
For 0 < h < hy and ¢ € [0,7¢/2] condition (H3) (i) and (2.3) imply
t—=[r([tln, yn([t]n = W)l <t = [roln <t —ro+h <t—ro/2 <0. (2.13)
Therefore the monotonicity of wy, yields
wn(t) < K + 2L, /Utwh(s) ds,  tel0al,
and hence

|yh(t)| < wh(t) < KeQLlaha te [Oa ah]a

so (2.11) holds with a = min{log(M1/K)/(2L1),r/2}.

Since q([t]n) and 7([t]n, yn([t]n — h)) are constant on each interval (kh, (k + 1)h), and by
(H4) the initial function, ¢(t), is a.e. differentiable, it follows that y,(¢) is a.e. differentiable,
and

gn(t) = —a(tn)o( = 7 ([Ea yn([n — b)) (2.14)
+ £ ([ ([0) yn (B = (s (a)]8)). ae ¢ €[0,0l.

Therefore, we have that
My = max{lqloL + max{|f(t.z,y)| : ¢ € [0,T], [al. [yl < Mi}, L} (2.15)

satisfies (2.12). n

Remark 2.3 It is easy to see that if f is globally Lipschitz-continuous in its second and
third arguments, then & = r7/2 can be used in Lemma 2.2.



The next result shows that the jumps of the solutions of IVP (2.4)-(2.5) at mesh points
go to 0 as h — 0+.

Lemma 2.4 Assume (H1)-(Hj). Let hy, o, My and My be defined by Lemma 2.2, Ly =
L4(My) be the constant from (HS3) (ii), and assume that |q|cLsLg < 1. Then there exists a
constant Mz > 0 such that

lan (k) — by (k)| < Mzh,  for0<h <hg, k=1,2,...,[a/h). (2.16)
Proof It follows from (2.9) that
an(k +1) =ba(k+ 1) = |q((k+ Dh)an(k +1 = [7((k + 1)h, an(k))/h])
= q(kh)bn(k + 1 = [1(kh, ap(k = 1)) /h])]|
lq((k + 1)h) = q(kh)llan(k + 1 = [7((k + 1)h, ap(k))/h])|

+lg(kh)llan(k + 1 = [7((k + 1)h, an(K))/h])
—bn(k +1 = [r(kh,an(k —1))/h])].

IN

Let Ly = L3(M;) and Ly = L4(M;) be the constants from (H3) (ii). Then (2.13), (2.8),
(2.10), (2.3), (H2)-(H4) imply for & < [a/h]:

|an(k +1) = bn(k +1)]

< g((k + 1)) = q(kh)[lo((k + 1)h — [7((k + 1)h, an(k))]n)|
+ lglcle((k + )b = [r((k + Dh,an(k))]n) — @((k + 1)h — [7(kh, ap(k — 1))]n)]
< lq((k+1)h) —q(kh)||lplc + lalcLe|[T((k + L)h, an(k))]n — [T (kh, ap(k — 1))]]
< Lehlylc + lqlcLe(2h 4 Lsh + Lylap (k) — ap(k — 1)])
< Lehlp|lc + [qlcLe(2h + Lsh + La|by (k) — an(k — 1)|) + |g|c LaLglan (k) — b (k).

Hence, noting that [by (k) — ax(k — 1)] < Myh by (2.12), it follows that
lan(k +1) = by (k + 1)| < Lohlgplc + |qlcLe(2h + Lsh + LyMsh) + |g|c LaLe|an (k) — b (k)|.
Therefore the assumed condition |¢|¢LsL¢ < 1 yields the statement of the lemma with

M3 = (La|plc + |qlcLe(2 + Lz + LaM2)) /(1 — |g|cLaLe). (2.17)

Remark 2.5 If ¢ and 7 are constant functions, then M3 = 0, i.e., yj is continuous.

Lemma 2.6 Assume (H1)-(HJ). Let hg, a, My, Ms and M3 be defined by Lemma 2.2 and
2.4, Ly = L4(My) be the constant from (H3) (ii), and assume that |q|cLaLe¢ < 1. Then there
ezist a sequence {hi} and a function x € C([—r,a]; R") such that hy — 0+ as k — oo, and

sup |yhk( ) —z(t)| = 0, as k — oo.

—T



Proof For 0 < h < hg define the function z, € C([-r, a]; R™) by

(k+1)h—t t—kh
zh(t) = { ah(k) h +ah(k + 1) h le [kh, (k + 1)h), 0 < k < [a]ha (2.18)

o(t), t € [-r0].

The function zj, is the linear spline interpolation of y; on [0, @] using the mesh points kh.
Fix ¢t € [kh, (k + 1)h), and let v = (¢ — kh)/h. Then (2.11) yields

lzn(8)| < lan(k)|v + |an(k + 1)[(1 —v) < My, 0 < h < ho. (2.19)
The definition of z;, and (2.12) and (2.16) imply
an(k +1) — an(k)

12n()] =

an(k +1) = by(k+ 1)
h
< My + Ms. (2.20)

IA

h
bk + 1) — an(k)
h ) h ‘-I—

Relations (2.19) and (2.20) show that {2z, : 0 < h < hg} is a family of uniformly bounded
and equicontinuous functions, therefore, by Arsela-Ascoli’s Lemma, there exist a sequence
{hx} and a function z € C([—r, a]; R") such that hy — 0+ as k — oo, and

sup |zp, (t) — z(t)] = 0, as k — oo.
—r<t<a
Finally, the inequalities
yn, (8) =2 (@) < yn, (8) — 21, ()| + |2, (t) — z(2)]
<y, () = an, (B)|v + |yn, (8) = bay, (E + 1)|(1 = v)

+ lan, (K +1) = by, (b + 1)|(1 —v) + |25, (1) — z(?)]
< (Mg + Mz)hy + |zp, (t) — z(t)]

establish the lemma. [ ]

Remark 2.7 It follows from the proof of the previous lemma that

2 (t) — yn(t)| < (Ma + M3)h,  t€[-ra], 0<h<hg.

Lemma 2.8 Suppose that the assumptions of Lemma 2.6 hold. Then
yn(t) —yn(t)| < (M2 + Ms)|t =2, t,i€[-ral, 0<h<he. (2.21)
Proof Assume first that 0 < ¢ < ¢ < « are such that ¢ € [kh, (k+1)h) and ¢ € [mh, (m+1)h).
Then (2.12) and (2.16) imply
[yn(t) — yn(?)]
m m—1
< ) =B+ D[+ D Jan(i) = bu(i) + Y 1ba(i + 1) = an(i)| + [y () — an(m)]
i—k+1 i=k+1
Ms(t — (k+ 1)h) + (m — k)Msh + (m — k — 1) My + My(t — mh)
(M; + Ms)|t — .



For t,t € [—r,0] the inequality Lg < My yields (2.21). Finally, for —r < ¢t < 0 <t < « the
inequalities

lyn(t) — yn(D)] < lyn(t) — ya(0)] + lyn(0) — yn(t)| < Le(—t) + (M2 + M3)t < (M + M3)|t — |

conclude the proof of the lemma. [ |
Now we are ready to prove existence and uniqueness of solutions of IVP (2.1)-(2.2).

Theorem 2.9 Assume (H1)-(HJ). Let hy, a, My, My and M3 be defined by Lemma 2.2
and 2.4, Ly = Ly(My) be the constant from (H3) (ii), and assume that

lglcLaLe < 1. (2.22)
Then IVP (2.1)-(2.2) has a Lipschitz-continuous solution, x(t), on [—r,a].

Proof For every 0 < h < hgy consider IVP (2.4)-(2.5), and let y, be the corresponding
solution. Lemma 2.6 yields the existence of a sequence {h} and a function z € C([—r, a]; R")
such that hy — 0+ and yp, (t) converges to z(t) as k — oo, uniformly on [—r,a]. Clearly,
z(t) = ¢(t) on [—r,0], and |z(t)| < M; for t € [—r, al.

We need to show that x(t) satisfies the following integral equation for ¢ € [0, a]:

z(t) + q(t)z(t — 7(t, 2(t))) = ©(0) + q(0)(—=7(0,%(0))) + /Ut f(s,2(s),2(s — o(t,2(s)))) ds.
(2.23)
Using (2.6), yp, (t) satisfies the integral equation

e (8) + a8 (¢ = [y (Fne = 1)) = #(0) + a0) ([0, (),
[ 5 (e Ul T, = ol o (sl ) s (220

The continuity of ¢, ¢ and 7, and (2.3) yield that
q([th,) — a(t), and [7(0, o(=hi))]n, — 7(0,0(0)), ask — oco. (2.25)
Next we show that

Y (8= [T ([ ngs Yy ([Eny = Pa))lny) = (= 7(8,2(8)))  as k — oo, (2.26)

Let Ly = L4(M7) be the constant from (H3), and consider the estimates

‘[T([ﬂhkﬂyhk([ﬂhk - hk))}hk - T(t’x(t)”
< ‘[T([ﬂhkﬂyhk([ﬂhk - hk))]hk - T(th’yhk([t]hk - hk))|
+ (e yng (Eny = h)) = 7 (a2 ()] + |7 ([Eny 2(8)) — 72, 2(2))]
hi + Lalyn, ([, — hi) = z()] + |7 ([t , 2 () — (2, 2(2))]
hie + Lalyn, ([, — hi) = yn, (D] + Lalyn, () — 2(t)] + |7 ([t 2 () — 7(¢, 2(2))]
hi + 2Ly Mahy + Lafyn, () — x(8)| + [7([tln,, 2(F)) = 7(F, 2(2))]
0, as k — oo.

L IAIA A



Hence, using Lemma 2.8,

lz(t = 7(t,2(t))) — yni (8 = [7([Engs Yy ([ — k)] )]
<zt =7t z(t) — yn, (t — 7(t, z(2)))]
+ |yn, (¢ = 7(¢,2(2)) — yn, (& = [T([Eny> Yni ([Eny — i))]ny))]
< lz(t =7t 2t) — yn, (¢ — 7(t,2(2)))]
+ (M + M3)|7(t,z(t)) — [T([tlngs Yy ([Eny — Rk))]ny)|

implies (2.26). Similarly, yp, ([t]n — [0([t]n,s Un, ([En,)]n,) — x(t — o(t,z(t))) as k — oc.
Therefore Lebesgue Dominant Convergence Theorem, the continuity of f, the estimate

T (G (C I R (6 P CE(C P51 ) |

< max{|f(u,v,w)| : u€0,a|v],|w] < M}, s €[00

together with (2.25) and (2.24) imply (2.23). Consequently z(¢) is a solution of TVP (2.1)-
(2.2).
To show that z(t) is Lipschitz-continuous, fix —r <t < ¢ < «, and ¢ > 0. Let k be such
that sup{|yn, (u) — z(u)| : u € [-r,a]} < ¢|t — ¢|/2. Then Lemma 2.8 yields
(1) —z(@®)] < Jzt) = yn O]+ [Yn, () = yn, (O] + lyn, () — z(?)]
< (MQ + M3 —1-8)‘25 — 7?|

Since ¢ > 0 is arbitrary, it follows that z(¢) is Lipschitz-continuous with Lipschitz-constant
My + Ms. |

Remark 2.10 The proof of Theorem 2.9 yields that the solution obtained by the theorem
satisfies
\z(t)| < My + Ms, for a.e. t € [-r, a,

where My and M3 are defined by (2.15) and (2.17), respectively.

Next we state a slightly generalized version of Lemma 3.2 from [4].

Lemma 2.11 Leta > 0,5 >0, « > 0, f > 0, v = max{a,(}, and g : [0,T] — [0,00)
be continuous and nondecreasing. Let u : [—v,T] — [0,00) be continuous except at finite
many points 0 < t1 <ty < ... < t, < T, where finite one-sided limits exist, and satisfy the

inequality .
u(t) < g(t) +bu(t — p) + a/ u(s — a) ds, t €[0,T].
0

Then u(t) < d(t)e fort € [0,T), where ¢ is the unique positive solution of che™ +ae™® = ¢,

and
9(t) max ecsu(s)} , t€0,7T].

d(t) = max {71 ~po—cn _MAx



This result was stated and proved in [4] for the case when () is continuous. The proof for
this case is an obvious modification of that of the continuous case, and therefore we will not
include the proof here.

The uniqueness of the solution follows from the following theorem.

Theorem 2.12 Assume (H1)-(H}), and let x(t) be a Lipschitz-continuous solution of IVP
(2.1)-(2.2) on [—r,a]. Let M = max{|z(t)| : t € [-r,a]} +¢ for some e >0, Ly = Ly(M)
be the corresponding constant from (HS3) (ii), and M5 = esssup{|&(t)| : t € [-r,a]}. If

lglcLaM5 <1, (2.27)

then x(t) is the unique solution of IVP (2.1)-(2.2) on [—r,al, and
lim sup |z t)| =0, 2.28
Jim sup (o(0) = (1) (2.28)

where yp, is the solution of the initial value problem (2.4)-(2.5).

Proof For h > 0let 0 < a;, < a be the largest number such that |y, (¢)| < My for [0, ap,).
Such «ay, exists since M; > |p|c.

Clearly, the uniqueness of the solution follows if we prove (2.28). To show (2.28) we
subtract (2.6) from (2.23):

z(t) —yn(t) = —q@)z(t — 7 2()) + q([t]n)yn(t = [T ([t ya([tln = h))ln)
+ q(0)p(=7(0,9(0))) = q(0)p(=[7(0, (- ))] )
t

+ Uf(s,x(s z(s — o(s,z(s))) ) s

= [ £ (sl wn(sh = o Ush 1)) ) s
Let Ly = L1(M7) be the constant from (H1). Then (H1) and (H2) yield for ¢ € [0, ay]:

[z (t) — yn(t)]
< la(®) = q([tn) lyn (¢ = [7([ns yn([n = 2)In)
+ gzt — (¢, 2(t))) — ya(t — [T ([ta, yn ([tln — 2))]n)]
+ 19(0)[|o(=7(0,0(0))) = ¢(=[7(0,(=h))]n)

+ / ‘f s, z( (s —o(s x(s)))) - ([s}h,x(s),x(s —a(s,x(s))))‘ds
+—/Lfbh, 2(s = o(s.2(5))))

—f(Hmyﬂ[]%%G] — [o (sl yn([s]n)In)) | ds.
< LaMih+ |glcla(t = 7(t2(8)) =yt = [t a (s — 2)a)]
+ lale Lo |7(0, 9(0)) = [7(0, o(=h))]a)

b [17(5:6),2(5 = ot (6))) = £ (I )25 = (s, 2(s)) [ ds

+MA0ﬂ>—%qHumm—daﬂm»—%wn—wmm%wmmmow
(2.29)

10



Let wy(t) = max_,<y<¢ |2(u) — yp(u)|, and Lz = Lz(M{) be the constant from (H3) (ii).
Then (2.13) and (H3) (ii) yield
In))l

(= 7(t,2(4)) = yn(t = [T([tln, yn([E]n = 7)]n
< w(t = [r([Ens yn([En = 2)]n) = yn(E = [7 ({2 ya([En = h))1n)]
+ |zt =7t 2(t) — 2 = [7([#h, yn([t]n = h))]n)]
t

< wp(t = [T([n, yn([Eln = B)]n) + My |7 (8, 2(2)) — [7([Hn, yn ([EIn — B))]nl

< wp(t —ro/2) + My (h+[7(t,z(t)) — 7([t]n, yn([tln — 1))

< wp(t—ro/2) + ék(h+L3h+L4\33( ) = yn([tln = h)])

< wn(t = r0/2) + M;(h+ Lah+ Laun([dln — ) + 2L M) (2.30)
Similarly, for ¢ € [0, ay):

[zt — o(t,z(t)))) — ya([tlh — [o([t]n: ya([t]n))]n))]
< wip([th = o([t]n, yn([t]n))) + M3 (2R + |o(t, 2(t)) — o([t]n, z(t))] + Lswn([t]n) + Ls My h).
(2.31)

yn([t]n)| < M3h + wp([t]n),

Combining (2.29), (2.30) and (2.31), and the inequalities |z(t) —
tn) ) < wp(t), we get for ¢ € [0, ap]:

wp([tlh —h) < wp([t]n) < wp(t), and wp([t]n — o ([E]n, ya([t]n))

t
[2(8) = yn(8)] < gn(8) + lalo LM wn () + alown(t = r0/2) + L1 (2 + LsM5) [ un(s) ds,
and therefore

¢
(1= lgleLaMy)wi(t) < gn(t) + |qlcwn(t —ro/2) + L1(2 + L5M2*)/0 wp(s) ds, t €10, apl,

(2.32)
where

gn(t) = LoMih+ |qlcM5(1+ Ls + LyM3)h + [qlcLe(1 + Le)h
+ M2*(3 + L; M) ah + L1M2*/0 lo(s,z(s)) — o([s]n, x(s))| ds
(s —o(s a:(s)))) - f([s]h,x(s),a:(s — a(s,x(s)))) ‘ ds.

Note that gy (¢) is defined on [0, ). Lemma 2.11, (2.32) and wy(t) = 0 for ¢ € [—r, 0] yield
that y,(t) < wp(t) < dp(t)e*® for t € [0, o], where ) is the unique positive solution of

Mgloe /% 4 L1(2 + LsM3) = (1 — |qlcLaM3)A,

and

gn(t)
dp(t) = .
h( ) 1—|q‘cL4M2*_‘Q|Ce_)\TO/2

We introduce the following notations for h > 0, M > 0:

we (h, M)
wg(h, M)

sup{|o(s,z) —o(s,z)| : |s—5| <h, s,5€[0,a], z € R", |z| < M}, (2.33)
sup{|f(s,z,y) = f(S,z,9)| : [s =8| < h,5,5 €[0,0], z,y € R, |z|,[y| < M}.
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Using these notations, the definition of g, (¢) implies

gn(t) < LoMih+ |glcMy(1+ Ly + LaMy)h + |qlcLe(1 + Le)h
+ M5 (34 LsMy)ah + LiMyws(h, M{)a + wg(h, M{)c. (2.34)

The continuity of o and f yield that wy(h, M{) — 0 and wy¢(h, M{) — 0 as h — 0+. Hence
gn(t) — 0 as h — 0+, and therefore dy(t) — 0 as h — 0+ uniformly in ¢t € [0,a]. In
particular, for some hg > 0 it follows that supo<i<q, [2(£) — yn(t)| < €, hence |y,(t)] < M{
on [0, o], therefore oy, = o can be used for 0 < h < hg, and the theorem follows. [ |

Remark 2.13 If in addition to (H1)-(H4) we assume that o and f are locally Lipschitz-
continuous in their first arguments with Lipschitz-constants K; and Kj, respectively, then
we(h, M) < Kqh, and wy(h, M) < Ksh. Therefore in this case the convergence in (2.28) is
linear in h, i.e., there exists a constant Ky such that |z(t) — ys(t)| < Koh for t € [0, a].

Remark 2.14 Theorem 2.12 and Remark 2.7 yield that under the assumption of Theo-
rem 2.12,

lim sup |x(t) — zn(t)] =0,

Jim_ s jo(t) - ()
where zj, is defined by (2.18). Therefore in practice it is convenient to approximate IVP (2.1)-
(2.2) using the scheme generated by z,(t): compute the sequence a(k) using the recursive
definition (2.7)-(2.8), and then the approximate solution is the linear interpolate of these
values.

Remark 2.15 If 7(¢, z) is independent of z, then Ly = 0 can be used in (H3) (ii), therefore
the conditions (2.22) and (2.27) in Theorem 2.9 and 2.12, respectively, are automatically
satisfied.

Remark 2.16 Let My, Ms and M3 be the constants from Lemma 2.2 and 2.4. Remark 2.10
implies that condition (2.27) of Theorem 2.12 can be replaced by |q|cLa(M1)(Ma + M3) < 1.
Note that if a solution of IVP (2.1)-(2.2) is known, then (2.27) is usually a weaker condition,
since M and My + M3 could be large estimates for max |z(¢)| and ess sup|z(t)|.

Remark 2.17 Theorem 2.9 and 2.12 can be generalized for equations of the form (1.2):
Assume that each ¢; and 7; satisfy (H2) and (H3) (with Lipschitz-constants Lfli) in (H3) (ii)).
Then (H1)-(H4) and the conditions Lg "™ ;L) < 1, M Y™, |gilcL{ < 1 imply the
statements of Theorem 2.9 and 2.12, respectively. The proofs of there results are immediate
consequences of the results given for the IVP (2.1)-(2.2).
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3 Examples

Example 3.1 First we present an example of a state-dependent NFDE which has two solu-
tions. Consider

%(m(t) +qalt - r(t.o(®)) = 1 (3.1)
with initial condition
o(t) = $t+ I, te[-10,0, (3.2)
where
10,  |z| > 10,
T(t,z) =< |z[, 0.1 <|z| <10,

0.1, |z <0.1.

Then clearly (H1)-(H4) are satisfied, in particular, r = 10, rq = 0.1, 7 satisfies (H3) (ii)
with Ly = 1, and ¢ satisfies (H4) with Lg = 1/q. It is easy to see that zi(t) = t + 1
and 2o(t) = t + 1 — 2 are solutions of IVP (3.1)-(3.2) for all ¢ € [0,9] and ¢ € [0,0.5],
respectively. z7 is Lipschitz-continuous, and M5 = esssup|z1(t)| = max{1,1/q}. Therefore
lglcLaM5 = max{1,1/q}, i.e., condition (2.27) of Theorem 2.12 is not satisfied.

Example 3.2 Consider the state-dependent NFDE

%(m(t) (058 1 — 0.5)a(t - 7(t,2(1))))
— 0.0003tz() — 0.02552(t — [2(£)]) + (0.5088¢ — 1.4895)z(t) + 2.99¢, ¢ >0,

z(t) = 2, t € [-50,0],

where

7(t,7) = min{0.5 + 0.5 + 0.01/], 50}.

It is easy to check that z(t) = #? is a solution of this IVP for ¢ € [0,49] (more precisely,
until 0.5 + 0.5¢ + 0.01#2 < 50). The exact initial interval in this case is [~0.5,0], since
min{t — 7(¢,#%)} = —0.5. If we consider the interval [0,5], then we can see that |¢/c = 7
and M5 = esssup{|z(t)| : t € [-0.5,5]} = 10. L4 = 0.01, therefore (2.27) holds, hence
z(t) = t? is the unique solution of the IVP, and Theorem 2.12 yields theoretical convergence
of our approximation method. Table 1 contains our numerical findings for different values
of the discretization parameter, h. The approximate solution converges linearly to the true
solution. Note that in this case we can observe convergence of the approximate solution on
the interval [0, 7], i.e., on a larger interval than guaranteed by Theorem 2.12.

Example 3.3 Consider the simple state-dependent neutral difference equation

%(m(t)-l—qa:(t—T(t,x(t)))) — 0, t>0, (3.3)
o) = t41,  te[=3,0, (3.4)

13



Table 1:

t

h =0.0100

yn(t)

error

yn(t)

h =0.0010

error

h =0.00010

yn(t)

error

h =0.00001

yn(t)

error

1.0
2.0
3.0
4.0
5.0
6.0
7.0

0.9953075
3.9924221
8.9627737
15.8677646
24.6906086
35.3139144
39.3937123

4.693e-03

7.578e-03

3.723e-02

1.322e-01

3.094e-01

6.861e-01
9.606e+-00

0.9995417
3.9993110
8.9962909
15.9877990
24.9686883
35.8793144
48.2541641

4.583e-04
6.890e-04
3.709e-03
1.220e-02
3.131e-02
1.207e-01
7.458e-01

0.9999546
3.9999312
8.9996242
15.9988234
24.9965592
35.9878106
48.9256982

4.543e-05
6.883e-05
3.758e-04
1.177e-03
3.441e-03
1.219e-02
7.430e-02

0.9999955
3.9999945
8.9999627
15.9998782
24.9996401
35.9993075
48.9925757

4.532e-06
9.550e-06
3.727e-05
1.218e-04
3.599e-04
6.925e-04
7.424e-03

where

7(t,z) = min{t + 2% + 1, 6}.
Suppose that IVP (3.3)-(3.4) has a solution, z(¢). Since 0 — 7(0,z(0)) = —7(0,1) = =2,
it follows that there exists a* > 0 such that ¢t — 7(¢,z(t)) < 0 and ¢ + (z(¢))? + 1 < 6 for
t € [0,a*]. Then IVP (3.3)-(3.4) is equivalent to the quadratic functional equation

—q(z(t))? +z(t) +q—-1=0, t €0, a"],

which has a unique solution, z(¢) = 1, for all ¢. In fact, z(¢) = 1 is a solution of the IVP
for t € [0,4]. Along this solution we have ¢t — 7(¢,z(t)) = —2, i.e., r = 2 can be used in
(H3) (i). Compute M| = max{|z(t)| : t € [-r,a*]} + ¢ =1+ ¢, and My = esssup{|z(t)| :
t € [-r,a*]} = 1. We have Ly(M) = 2M. Therefore for this equation condition (2.27) is
lg| La(M{) My = 2|q| + 2|¢qle < 1. Theorem 2.12 yields that our numerical scheme converges
for |¢| < 0.5. Numerical experiments show that, in fact, |g| = 0.5 is a critical parameter value.
In Table 2 we print out numerical solutions corresponding to ¢ = —0.1, ¢ = 0.1 and ¢ = 0.4
and several discretization constants. We can see linear convergence to the true solution. In
Table 3 we print out the first 60 term of the approximate sequence for ¢ = 0.55 and h = 0.01,
0.001 and 0.0001. We can observe rapidly increasing error in each cases. Note that the delay
function becomes the constant 6 after the 18th, 36th and 58th terms, respectively, and then
the dynamics of the approximating equation is changed.

This example also illustrates that, of course, conditions (2.22) and (2.27) in Theorem 2.9
and 2.12 are only sufficient conditions. An IVP can have a solution or a unique solution even
if these conditions do not hold.

Example 3.4 Finally, consider

%(m(t) + %x(t —rta®) = 1, t>0, (3.5)
o) = 1, te[-150] (3.6)
where
15, 2] > 10,
T(t,z) =< 2|z| =5, 4 < |z| <10,
slel+1, Jal <4
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Table 2:

h =0.0100 h = 0.0010 h = 0.0001

q t yn(t) error yn(t) error yr(t) error

-0.1 1.0 | 0.9999000 1.00e-04 | 0.9999900 1.00e-05 | 0.9999990 1.00e-06
2.0 | 0.9999000 1.00e-04 | 0.9999900 1.00e-05 | 0.9999990 1.00e-06
3.0 | 0.9999000 1.00e-04 | 0.9999900 1.00e-05 | 0.9999990 1.00e-06

0.1 1.0 | 1.0020000 2.00e-03 | 1.0002000 2.00e-04 | 1.0000200 2.00e-05
2.0 | 1.0020000 2.00e-03 | 1.0002000 2.00e-04 | 1.0000200 2.00e-05
3.0 | 1.0020000 2.00e-03 | 1.0002000 2.00e-04 | 1.0000200 2.00e-05

0.4 1.0 | 1.0240000 2.40e-02 | 1.0024000 2.40e-03 | 1.0002400 2.40e-04
2.0 | 1.0240000 2.40e-02 | 1.0024000 2.40e-03 | 1.0002400 2.40e-04
3.0 | 1.0240000 2.40e-02 | 1.0024000 2.40e-03 | 1.0002400 2.40e-04

Table 3:
h =0.0100 h =0.0010 h = 0.0001
t Yn(t) error 1 Yn(t) error t Yn(t) error

0.1 1.170500 0.170500 | 0.01 1.014850 0.014850 | 0.001 1.001430 0.001430
0.2 3.101000 2.101000 | 0.02 1.058300 0.058300 | 0.002 1.005170 0.005170
0.3 3.046000 2.046000 | 0.03 1.292600 0.292600 | 0.003 1.015455 0.015455
0.4 2991000 1.991000 | 0.04 3.179100 2.179100 | 0.004 1.047190 0.047190
0.5 2936000 1.936000 | 0.05 3.173600 2.173600 | 0.005 1.193105 0.193105
0.6 2.881000 1.881000 | 0.06 3.168100 2.168100 | 0.006 3.196810 2.196810

Clearly, (H1)-(H4) are satisfied. Since 7(0,z(0)) = 7(0,1) = 1.5 > 0, there exists a* > 0
such that ¢ — 7(¢,z(t)) < 0 for ¢t € [0,*]. But then for £ € [0,a*], the IVP is equivalent
to (t) = 1, (0) = 1, therefore its unique solution is z(¢) = ¢ + 1. One can verify that
a* = 3 for this solution. Since #(3) =1 > 0, z(t) > z(3) = 4 for ¢t > 3, close enough to 3.
But then, for ¢ such that z(¢) > 4 and 0 < ¢t — 7(¢,2(¢)) < 3, the equation is equivalent to
%(x(t) + 3(t — 2z(t) + 6) = 1, which has no solution. Shifting the initial time back to zero,
we get that finding the continuation of the solution of IVP (3.5)-(3.6) for ¢ > 3 is equivalent
to solving (3.5) with the initial condition

t+4, te[-3,0]
z(t) ={ 1, t € [-15,-3). (3:7)

Condition (2.22) in Theorem 2.9 becomes |q|cLsLg = 5 -2-1 =1 for IVP (3.5)-(3.7), and,
as we have seen, this IVP has no solution.

This example illustrates that continuation of solutions for the class of IVP (2.1)-(2.2)
under our hypotheses may not exhibit the “usual” properties of that of ODEs or state-
independent NFDEs. A maximal solution can exist on a closed finite interval, and it can
have a finite limit at the end of its time-domain.
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