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1. Introduction

In this paper we study the effects of perturbations
of time delays to the stability of a class of delay
equations. QOur goal is to obtain a “practical” con-
dition, i.e., a norm bound on the perturbations cor-
responding to the particular system under consider-
ation, which guarantees the preservation of stability
under perturbations. It turns out that such condition
can be formulated assuming that we know the funda-
mental solution of the unperturbed system (see The-
orem 2.2 below). Since stability of the unperturbed
system implies that the components of its fundamen-
tal solution go to zero at infinity, it is possible to
get “good” numerical estimates of these components,
and consequently obtain norm bounds on the allow-
able perturbations.

We present our main results in Section 2 and in
Section 3 we consider numerical examples. Exam-
ple 3.3 demonstrates how our results can be used to
obtain an estimation on the maximum allowable sam-
pling interval in the satability of a hybrid system with
feedback delay. (Note that this problem was studied
in [1] in the case when the plant is described by an
ordinary differential equation.)

2. Main Results

Consider the delay differential system
E(t) = Ae(t)+ Br(t—1—e(t))+Cx(t—o—n(t)), t >0,
(2.1)

where z(t) € R", A, B and C are constant n x n
matrices, with initial condition

dt)=plt),  —r<t<0,  (22)

where ¢ : [-r,0] — R” is a continuous function.
We have the following assumptions on the delays:

(H1) 7>0, o >0and r > 7,0.
(H2) £(-) and 7(-) are piecewise continuous functions.

(H3) t—r <t—7—c(t) <tandt—r <t—o—n(t) <t
for t > 0.

Under these assumptions the initial value problem
(2.1)-(2.2) is a delay differential equation and has a
unique solution (see e.g. [3]).
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Consider the corresponding delay system with con-
stant delays

y(t) = Ay(t) + By(t =)+ Cy(t —o), 120, (2.3)
where y(t) € R”. We assume that

(H4) the null solution of (2.3) is asymptotically stable.

We can rewrite (2.1) in the form
() = Az(t)+ Be(t — )+ Cax(t — o) + f(1), (2.4)

where f(t) = B- (x(t —r—e(t))—x(t— T)) +C- (x(t —
o—n(t))—x(t—0)). In this setting (2.3) can be con-
sidered as the homogeneous equation corresponding
to (2.4). The variation-of-constants formula (see e.g.
[3]) gives the following expression for the solution of
(2.1) corresponding to the initial function x(t) = ()
for ¢ < 0 using the solution and the fundamental so-
lution, V'(¢), of the homogeneous equation:

t
) = v+ [ Vie-9fe)ds, 12T 25)
T

where y is the solution of (2.3) with the initial func-
tion y(t) = z(t) for t <T and T > 0.

For notational convenience, we introduce the ~ op-
eration on matrices, which means taking the ab-
solute value of the matrix componentwise, i.e., if

A= (aij)nxna then A = (|aij|)nxn~

Remark 2.1 Hypothesis (H4) implies (see e.g. [3])
that there exist constants K > 0 and o > 0, such that
V()] < Ke=* fort > 0, (where || - || is the matriz
norm induced by the vector norm ||(x1, 22, ..., 2n)|| =
max{|z1|, |ea|, ..., |Tnl}), and then every element of
the matrix fooo f/(s) ds 1s finite.

The next theorem shows, that if the perturbations
of the delays in (2.1) are small enough for large ¢,
then the equation remains asymptotically stable.

Theorem 2.2 Assume (H1)-(H4) and that the ma-
trie M = [T V(s)ds(limsup,_, |¢(t)] - B +
limsup,_ o, [n(t)| - C)(A+ B+ C) has spectral radius
less than 1, i.e., p(M) < 1. Then the null solution of
(2.1) is asymptotically stable.

The proof of the theorem uses the so called “M-
matrix” technique (see [2]) and relation (2.5). The



following corollary is an easy consequence of the the-
orem.

Corollary 2.3 Define My = fo s)ds( B+C)(

B + C). If limsup,_, |(t)] < 1/p(M0) and
limsup,_ o, [7(t)] < 1/p(My), then the null solution
of (2.1) is asymptotically stable.

For the scalar case of (2.1), (2.3) we have the fol-
lowing version of Theorem 2.2.

Corollary 2.4 Assume that (H1)-(H4) hold and the
functions e(+) and n(-) satisfy |B|limsup,_  |e(t)] +
|Clim sup,_ o, [n(?)]

< 1/((JAl + |B| + |C’|)f0Oo |V (t)|dt). Then the null
solution of the scalar version of (2.1) is asymptoti-
cally stable.

If the fundamental solution of the scalar version
of (2.3) is positive, then it is easy to compute the
integral in Corollary 2.4. In particular, we have the
following result.

Proposition 2.5 If the null solution of the scalar
version of (2.3) is asymptotically stable, then the
fundamental solution of (2.3) satisfies fo t)dt =
-1/(A+B+C).

We close this section by noting that an obvious
generalization of Theorem 2.2 applies for the multiple
delay case (i.e., (2.1) with more than two delays).

3. Examples

Example 3.1 Consider the equation

i(t) = —0.Le(t)+22(t—1)—2z ([t _h1'3] h) L (3.0

where [-] denotes the greatest integer function and
h > 0 1s the sampling period. The piecewise constant
delay in the last term can be considered as a pertur-
bation of ¢t — 1.3 with n(t) = ¢ — 1.3 = [(t — 1.3)/h]h.
Then we have that |n(t)] < h for all ¢ > 0. The
corresponding unperturbed delay equation is

#(t) = —0.1z(t) + 22(t — 1) — 22(t — 1.3).  (3.2)

We show a numerical approximation of the funda-
mental solution of Equation (3.2) on Figure 1. The
picture indicates that the fundamental solution expo-
nentially tends to zero, i.e., the null solution of (3.2)
is asymptotically stable. Numerical approximation

gives that [;°|V(t)]ds = 10.5914. Therefore using

Corollary 2.4 if h < m = 0.0115 then the null
solution of (3.1) is asymptotically stable.

Example 3.2 Consider the following system

2(t) = Ae(t)+ Be(t — 1 —¢(t)) + Ce(t — 1.2 — n(2)),

—-0.1 0.1
, B _
where #(t) € R*, A = ( 0.1 —0.2 )’ B =

0.5 2.0 —-0.5 -2.1

corresponding unperturbed equation is
2(t) = Ax(t) + Be(t — 1) + Cz(t — 1.2). (3.4)

On Figure 2 we display the components of the nu-
merical solutions of the fundamental matrix solution.
This picture indicates that every component function
tends to zero exponentially as t — oo, therefore the
null solution of (3.4) is asymptotically stable. Numer-

(2.0 —0.5) and € — —20 0.0 ) The

ical approximation of the components of fooo KN/(t) dt
gives the following numerical values for the matrix

My
A — (126453 3.226
0= 3.522 128.389 )

therefore p(Mp) = 130.929, hence using Corol-
lary 2.3, if the perturbations of the delays satisfy
limsup,_ . |e(t)] < 0.0076 and lim SUP; oo [n(t)| <
0.0076 then the null solution of (3.3) is asymptoti-
cally stable.
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