
Proceedings of the 32nd IEEE Conference on Decesion and Control,San Antonio, Texas, December 1993, 3829{3830.Stability in Delay Equations with Perturbed Time LagsI. Gy}oriComputer Center ofA. Szent-Gy�orgyi Medical UniversityH-6720 Szeged, Hungary F. Hartung and J. TuriPrograms in Mathematical SciencesUniversity of Texas at DallasRichardson, TX 750831. IntroductionIn this paper we study the e�ects of perturbationsof time delays to the stability of a class of delayequations. Our goal is to obtain a \practical" con-dition, i.e., a norm bound on the perturbations cor-responding to the particular system under consider-ation, which guarantees the preservation of stabilityunder perturbations. It turns out that such conditioncan be formulated assuming that we know the funda-mental solution of the unperturbed system (see The-orem 2.2 below). Since stability of the unperturbedsystem implies that the components of its fundamen-tal solution go to zero at in�nity, it is possible toget \good" numerical estimates of these components,and consequently obtain norm bounds on the allow-able perturbations.We present our main results in Section 2 and inSection 3 we consider numerical examples. Exam-ple 3.3 demonstrates how our results can be used toobtain an estimation on the maximumallowable sam-pling interval in the satability of a hybrid system withfeedback delay. (Note that this problem was studiedin [1] in the case when the plant is described by anordinary di�erential equation.)2. Main ResultsConsider the delay di�erential system_x(t) = Ax(t)+Bx(t���"(t))+Cx(t����(t)); t � 0;(2:1)where x(t) 2 Rn, A, B and C are constant n � nmatrices, with initial conditionx(t) = '(t); �r � t � 0; (2:2)where ' : [�r; 0]! Rn is a continuous function.We have the following assumptions on the delays:(H1) � > 0; � > 0 and r � �; �.(H2) "(�) and �(�) are piecewise continuous functions.(H3) t�r � t���"(t) � t and t�r � t����(t) � tfor t � 0.Under these assumptions the initial value problem(2.1)-(2.2) is a delay di�erential equation and has aunique solution (see e.g. [3]).

Consider the corresponding delay system with con-stant delays_y(t) = Ay(t) +By(t� � ) +Cy(t� �); t � 0; (2:3)where y(t) 2 Rn. We assume that(H4) the null solution of (2.3) is asymptotically stable.We can rewrite (2.1) in the form_x(t) = Ax(t) + Bx(t� � ) + Cx(t� �) + f(t); (2:4)where f(t) � B ��x(t�� �"(t))�x(t�� )�+C ��x(t����(t))�x(t��)�. In this setting (2.3) can be con-sidered as the homogeneous equation correspondingto (2.4). The variation-of-constants formula (see e.g.[3]) gives the following expression for the solution of(2.1) corresponding to the initial function x(t) = '(t)for t � 0 using the solution and the fundamental so-lution, V (t), of the homogeneous equation:x(t) = y(t) + Z tT V (t � s)f(s) ds; t � T; (2:5)where y is the solution of (2.3) with the initial func-tion y(t) = x(t) for t � T and T > 0.For notational convenience, we introduce the ~ op-eration on matrices, which means taking the ab-solute value of the matrix componentwise, i.e., ifA = (aij)n�n, then ~A � (jaijj)n�n.Remark 2.1 Hypothesis (H4) implies (see e.g. [3])that there exist constants K > 0 and � > 0, such thatkV (t)k � Ke��t for t � 0, (where k � k is the matrixnorm induced by the vector norm k(x1; x2; : : : ; xn)k �maxfjx1j; jx2j; : : : ; jxnjg), and then every element ofthe matrix R10 ~V (s) ds is �nite.The next theorem shows, that if the perturbationsof the delays in (2.1) are small enough for large t,then the equation remains asymptotically stable.Theorem 2.2 Assume (H1)-(H4) and that the ma-trix M � R10 ~V (s) ds�lim supt!1 j"(t)j � ~B +lim supt!1 j�(t)j � ~C�( ~A+ ~B + ~C) has spectral radiusless than 1, i.e., �(M ) < 1. Then the null solution of(2.1) is asymptotically stable.The proof of the theorem uses the so called \M-matrix" technique (see [2]) and relation (2.5). The



following corollary is an easy consequence of the the-orem.Corollary 2.3 De�ne M0 � R10 ~V (s) ds( ~B+ ~C)( ~A+~B + ~C). If lim supt!1 j"(t)j < 1=�(M0) andlim supt!1 j�(t)j < 1=�(M0), then the null solutionof (2.1) is asymptotically stable.For the scalar case of (2.1), (2.3) we have the fol-lowing version of Theorem 2.2.Corollary 2.4 Assume that (H1)-(H4) hold and thefunctions "(�) and �(�) satisfy jBj lim supt!1 j"(t)j +jCj limsupt!1 j�(t)j< 1=�(jAj+ jBj+ jCj) R10 jV (t)j dt�. Then the nullsolution of the scalar version of (2.1) is asymptoti-cally stable.If the fundamental solution of the scalar versionof (2.3) is positive, then it is easy to compute theintegral in Corollary 2.4. In particular, we have thefollowing result.Proposition 2.5 If the null solution of the scalarversion of (2.3) is asymptotically stable, then thefundamental solution of (2.3) satis�es R10 V (t) dt =�1=(A+ B +C).We close this section by noting that an obviousgeneralization of Theorem 2.2 applies for the multipledelay case (i.e., (2.1) with more than two delays).3. ExamplesExample 3.1 Consider the equation_x(t) = �0:1x(t)+2x(t�1)�2x�� t� 1:3h �h� ; (3:1)where [�] denotes the greatest integer function andh > 0 is the sampling period. The piecewise constantdelay in the last term can be considered as a pertur-bation of t � 1:3 with �(t) = t� 1:3� [(t� 1:3)=h]h.Then we have that j�(t)j � h for all t � 0. Thecorresponding unperturbed delay equation is_x(t) = �0:1x(t) + 2x(t� 1)� 2x(t� 1:3): (3:2)We show a numerical approximation of the funda-mental solution of Equation (3.2) on Figure 1. Thepicture indicates that the fundamental solution expo-nentially tends to zero, i.e., the null solution of (3.2)is asymptotically stable. Numerical approximationgives that R10 jV (t)j ds = 10:5914. Therefore usingCorollary 2.4 if h < 110:5914�8:2 = 0:0115 then the nullsolution of (3.1) is asymptotically stable.Example 3.2 Consider the following system_x(t) = Ax(t) +Bx(t� 1� "(t)) +Cx(t� 1:2� �(t));(3:3)where x(t) 2 R2, A = � �0:1 0:10:1 �0:2 �, B =

� 2:0 �0:50:5 2:0 � and C = � �2:0 0:0�0:5 �2:1 �. Thecorresponding unperturbed equation is_x(t) = Ax(t) +Bx(t � 1) +Cx(t� 1:2): (3:4)On Figure 2 we display the components of the nu-merical solutions of the fundamental matrix solution.This picture indicates that every component functiontends to zero exponentially as t ! 1, therefore thenull solution of (3.4) is asymptotically stable. Numer-ical approximation of the components of R10 ~V (t) dtgives the following numerical values for the matrixM0 M0 = � 126:453 3:2263:522 128:389 � ;therefore �(M0) = 130:929, hence using Corol-lary 2.3, if the perturbations of the delays satisfylim supt!1 j"(t)j < 0:0076 and lim supt!1 j�(t)j <0:0076 then the null solution of (3.3) is asymptoti-cally stable.
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