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Introduction

Mathematical Foundations of Economics is the fundamental mathematical course for
students learning at the Faculty of Business and Econimics at University of Pannonia.
This book contains exercises closely related to this course and the minimum theoreti-
cal knowledge needed to solve these problems. The notations of the listed definitions
and theorems are the ones used by Dr. Győri István, Dr. Pituk Mihály: Kalkulus infor-
matikusoknak I. textbook published by University of Pannonia, so this book is excellent
for acquiring the theoretical knowledge required to complete the course. In English, we
recommend Trench, William F.: Introduction to Real Analysis.

We have devoted separate chapters to each topic. Each chapter has an introduction,
in which some fundamental definitions and propositions are prepared. There are a
number of solved examples and many exercises. The problems we solve have been
carefully selected to illustrate common situations, techniques and tricks to deal with
these. In chapter Solutions we give detailed solutions of the exercises.

The book is suitable for students who wish to solve basic mathematical analysis prob-
lems. Although we recommend this book mainly for self-sudying, it can be really useful
for students who participate in classes and use the benefits of them.

Veszprém, 2020.
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1 Composite Functions

We can combine two given functions by composing one
into the other. The result of this combination - if it exists-
is a new function called composite function. In this section
we study these functions.

Definition 1.1

Given two functions

f : B→ C

and
g : A→ B

the composite function f ◦ g (also called the composition
of f and g) is defined by

( f ◦ g) (x) = f (g (x)) ,

for x in the domain of g such that g (x) is in the
domain of f ; that is,

dom ( f ◦ g) = {x ∈ dom (g) | g (x) ∈ dom ( f )} .

f (g (x)) is read as “ f of g of x”. �

Figure 1.1: function f ◦ g.
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1 Composite Functions

1.1 Step-by-Step Examples

Now we give a step-by-step solution to a problem. At the end of this section there are
more exercises for practice.

SOLVED EXAMPLE 1.1
Composite Function

Find the composite function f ◦ g, if it exists.

f (x) = 3x + 1, x ∈ [0, 7] ,

g (x) = x2 − 9, x ∈ [0, 5] .

SOLUTION
First, we determine the domain of the composite function. From the definition,

the domain of f ◦ g contain all of x in the domain of g such that g (x) is in the
domain of f ; that is

dom ( f ◦ g) =
{

x ∈ [0, 5] |
(

x2 − 9
)
∈ [0, 7]

}
.

So we have to solve the system of inequalities

0 ≤ x2 − 9 ≤ 7

for
0 ≤ x ≤ 5.

To determine the domain, consider

0 ≤ x2 − 9 ≤ 7.

From this we get

9 ≤ x2 ≤ 16,

3 ≤ |x| ≤ 4,

so
3 ≤ −x ≤ 4 or 3 ≤ x ≤ 4,

and from this
−4 ≤ x ≤ −3 or 3 ≤ x ≤ 4.

6



Composite Functions 1

Comparing this with condition 0 ≤ x ≤ 5, we get

dom ( f ◦ g) = [3, 4] .

The composite function f ◦ g is formed when g (x) is substituted for x in f (x) .
More precisely,

f (x) = 3x + 1,

g (x) = x2 − 9,

f (g (x)) = f
(

x2 − 9
)
= 3

(
x2 − 9

)
+ 1 = 3x2 − 26.

So we get
( f ◦ g) (x) = 3x2 − 26, x ∈ [3, 4] .

7



1 Composite Functions

1.2 Exercises

The solutions of the following problems can be found in
Chapter 8. Solutions.

Exercises 1.1

Find the composite function f ◦ g, if it exists.

1.

f (x) = x2 − 9, x ∈ [0, 5] ,

g (x) = 3x + 1, x ∈ [0, 7] .
See Solution 8.1.1

2.

f (x) = 3x2 + 5, x ∈ [1, 125] ,

g (x) = 2x + 3, x ∈ [0, 100] .
See Solution 8.1.2

3.

f (x) = 8− sin (x) , x ∈ [1, 125] ,

g (x) = 5x, x ∈ [−1, 10] .
See Solution 8.1.3

4.

f (x) = sin3 (x) , x ∈ [1, 25] ,

g (x) = x2, x ∈ [0, 3] .
See Solution 8.1.4

5.

f (x) =
cos (x)

5
− x, x ∈ [1, 4] ,

g (x) = log2 (x) , x ∈ [1, 10] .
See Solution 8.1.5

6.

f (x) = 6− 9 cos (x) , x ∈ [0, 15] ,

g (x) = x2 + 2x, x ∈ [1, 10] .
See Solution 8.1.6

7.

f (x) = x2 − 6x− 83, x ∈ [4, 7] ,

g (x) =
√

x + 3, x ∈ [0, 23] .
See Solution 8.1.7

8



Composite Functions 1

8.

f (x) =
√

4x2 + 2 + 3x, x ∈ [4, 7] ,

g (x) = ln (x) + 3, x ∈ [0, 23] .
See Solution 8.1.8

9.

f (x) =
√

x + 3, x ∈ [3, 4] ,

g (x) = cos (x) + 3, x ∈
[

π

4
,

3π

4

]
.

See Solution 8.1.9

10.

f (x) =
√

1− x, x ≤ 1,

g (x) = x2, x ∈ R.
See Solution 8.1.10

11.

f (x) =
√

1− x, x ≤ 1,

g (x) = x2, x ∈ [2, 4] .
See Solution 8.1.11

9





2 The Inverse Function

In some cases, there is a function which does the “re-
verse” of a given function. This function -if it exists- is
the inverse function.

Definition 2.1

A function f is called a one-to-one function if no two
x1, x2 elements of dom ( f ) have the same image; that
is,

f (x1) 6= f (x2) whenever x1 6= x2,

or

x1 = x2 whenever f (x1) = f (x2) . �

The property one-to-one is also called injective. A func-
tion is one-to-one if and only if no horizontal line inter-
sects its graph more than once.

Definition 2.2

Let f be a one-to-one function with domain A and
range B. Then its inverse function f −1 has domain B
and range A and is defined by

f−1(y) = x ⇔ f (x) = y

for any y in B. �

11



2 The Inverse Function

Figure 2.1: Inverse function f−1.

Thus if f has an inverse, f−1 ( f (x)) = x and f
(

f−1 (y)
)
=

y for all x in the domain of f and all y in the range of f .

Finding an Inverse Function
Follow these steps to find the inverse of a function f .

1. Verify that f is a one-to-one function.
Let f (x1) = f (x2) and examine whether it implies that
x1 = x2.

2. Determine the domain of function f−1.

3. Determine f−1(x)

(a) Write y = f (x).

(b) Solve this equation for x in terms of y (if possible).

(c) Interchange x and y.

The resulting equation is y = f−1(x).

There is an interesting relationship between the graph
of a function and the graph of its inverse. The graph of
the inverse is a reflection of the actual function about the
line y = x.

12



The Inverse Function 2

2.1 Step-by-Step Examples

Now we give a step-by-step solution to two problems. At the end of this section there
are more exercises for practice.

SOLVED EXAMPLE 2.1
Inverse Function

Find the inverse function of the given f function, if it exists.

f (x) = 1− x2, x ∈ (−∞, 0) .

SOLUTION
First, we verify that f is a one-to-one function, i. e. if the function has the same
value at two points, then the points must be the same. So let x1, x2 be any two
values of dom ( f ) , suppose that f (x1) = f (x2) and examine that it implies that
x1 = x2. Namely,

1− x2
1 = 1− x2

2
?

=⇒ x1 = x2,

for any x1, x2 ∈ (−∞, 0) . As
1− x2

1 = 1− x2
2,

we get
x2

1 = x2
2,

so
|x1| = |x2| .

But x1, x2 ∈ (−∞, 0) , so from the definition of absolute value we get

−x1 = −x2,

so
x1 = x2.

This implies that the inverse of f exists.
Now we determine the domain of function f−1. As dom

(
f−1) = im ( f ) , we deter-

mine the range of function f . As dom ( f ) = (−∞, 0) , we have

x < 0.

13



2 The Inverse Function

From this
x2 > 0,

so
−x2 < 0,

and this follows
1− x2 < 1.

Thus,
(y =) f (x) = 1− x2 < 1.

So dom
(

f−1) = im ( f ) = (−∞, 1) .
Finally, we solve

y = f (x) .

So consider
y = 1− x2,

where x < 0 and y < 1 and solve for ”x = ”. As

x2 = 1− y,

we get
|x| =

√
1− y.

By figuring out the domain and range of the inverse (y < 1 and x < 0) , we find

−x =
√

1− y,

thus
x = −

√
1− y.

So the inverse of f (x) = 1− x2, x ∈ (−∞, 0) exists and

f−1 (x) = −
√

1− x, x ∈ (−∞, 1) .
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SOLVED EXAMPLE 2.2
Inverse Function

Find the inverse function of the given f function, if it exists.

f (x) = x2 − 2x, x ∈ (−∞, 0) .

SOLUTION
To determine the inverse of function f first we have to rewrite f (x) . To solve this
problem we write

f (x) = x2 − 2x = (x− 1)2 − 1.

First, we verify that f is a one-to-one function, i. e. if the function has the same
value at two points, then the points must be the same. So let x1, x2 be any two
values of dom ( f ) , suppose that f (x1) = f (x2) and examine that it implies that
x1 = x2. Namely,

(x1 − 1)2 − 1 = (x2 − 1)2 − 1 ?
=⇒ x1 = x2,

for any x1, x2 ∈ (−∞, 0) . As

(x1 − 1)2 − 1 = (x2 − 1)2 − 1,

we get
|x1 − 1| = |x2 − 1| .

but x1, x2 ∈ (−∞, 0) , so from the definition of absolute value we get

1− x1 = 1− x2,

this follows
x1 = x2,

so the inverse of function f exists.
Now we determine the domain of function f−1. As dom

(
f−1) = im ( f ) , we deter-

mine the range of function f (im ( f )) . As dom ( f ) = (−∞, 0) , we have

x < 0,

so we find
x− 1 < −1

thus
(x− 1)2 > 1,

and
(x− 1)2 − 1 > 0.

15



2 The Inverse Function

So
(y =) f (x) = (x− 1)2 − 1 > 0.

Thus dom
(

f−1) = im ( f ) = (0, ∞) .
Finally, we solve

y = f (x) ,

namely consider
y = (x− 1)2 − 1

where x < 0 and y > 0 and solve for ”x = ”. As

y + 1 = (x− 1)2 ,

we get √
y + 1 = |x− 1| .

from x < 0 and y > 0 we find √
y + 1 = 1− x,

so
x = 1−

√
y + 1.

So the inverse of f (x) = x2 − 2x, x ∈ (−∞, 0) exists and

f−1 (x) = 1−
√

y + 1, x ∈ (0, ∞) .

16
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SOLVED EXAMPLE 2.3
Inverse Function

Find the inverse function of the given f function, if it exists.

f (x) =
2

3−
√

x− 2
.

SOLUTION
Clearly

dom ( f ) = {x ∈ R : 2 ≤ x, x 6= 11} .

1. Before inverting f we most check whether f is invertible, i.e. it is injective. This
means that, from f (x1) = f (x2) we have to deduce x1 = x2.

f (x1) =
2

3−
√

x1 − 2
=

2
3−
√

x2 − 2
= f (x2) / : 2

and take reciprocial. So, we have

3−
√

x1 − 2 = 3−
√

x2 − 2

⇓
−
√

x1 − 2 = −
√

x2 − 2

⇓
x1 − 2 = x2 − 2

⇓
x1 = x2,

so f is injective!

Let us advice to the Reader to change the letters x and y at the end of the solu-
tion (after step 6)).

2. To find the expression for f−1 (y), we have to solve the equality y = f (x) to
the unknown x (and consider y as a parameter).

y =
2

3−
√

x− 2
/ : 2

and take reciprocial, so we have

17



2 The Inverse Function

2
y

= 3−
√

x− 2

⇓
2
y
− 3 = −

√
x− 2 / square

⇓(
2
y
− 3
)2

= x− 2

⇓(
2
y
− 3
)2

+ 2 = x,

so we have the inverse formula

x =

(
2
y
− 3
)2

+ 2 = f−1 (y) .

3. For the first glance, from the above expression we might think that

dom
(

f−1
)
= {y ∈ R : y 6= 0} .

However it turns out to be BAD !

4. Try to make the sketch of the graph of f :

f (2) =
2
3

,

f is strictly increasing and positive for 2 ≤ x < 11,

lim
x→11−

f (x) = +∞, lim
x→11+

f (x) = −∞,

f is strictly increasing also for 11 < x and is negative,

lim
x→−∞

f (x) = −0 (see in blue in the Figure below).

It is well known, that the graph of the inverse function f−1 is the reflection of
the graph of f to the straight line y = x (see in green in the Figure).

The Figure also shows the graph of the expression (2.3) for y 6= 0 in red . We
must observe that this red curve contains the reflection of the blue one (this is
GOOD) and something else (this is BAD). In other words: dom

(
f−1) is less

than R \ {0}, i.e. dom
(

f−1) $ {y ∈ R : y 6= 0}.

18
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Figure: The functions

f (x) =
2

3−
√

x− 2
, g (x) =

2
3 +
√

x− 2
,

and y = x, f−1 (x) = g−1 (x) =
(

2
x
− 3
)2

+ 2.

What went wrong in step 3.?

5. We have to check again the calculations in step 2.!

When we squared the expressions

2
y
− 3 = −

√
x− 2 / square,

we lost the sign of them: squaring makes everything positive. So, we have to

find out the sign of
2
y
− 3 to find restrictions for y, i.e. to find dom

(
f−1).

How to make out the sign of
2
y
− 3? Observe, that

2
y
− 3 = −

√
x− 2

implies the equality of the signs of its two sides: we must have
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2 The Inverse Function

2
y
− 3 ≤ 0

since −
√

x− 2 ≤ 0. Solving this inequality (your homework) we get y < 0 or
2
3
≤ y , so

dom
(

f−1
)
=

{
y ∈ R : y < 0 or

2
3
≤ y

}
.

6. Looking to the Figure above, we may check that

dom
(

f−1
)
=

{
y ∈ R : y < 0 or

2
3
≤ y

}
.

is correct: it excludes the middle part of the red graph, for

0 ≤ y <
2
3

,

and the remainig two other parts are really the reflections of the blue original
function f (x).

7. As we adviced, at the very end is safe to change x and y to get the usual form
of the inverse function:

y = f−1 (x) =
(

2
x
− 3
)2

+ 2

and
dom

(
f−1
)
=

{
x ∈ R : x < 0 or

2
3
≤ x

}
.

Remark 2.1.1 1. dom
(

f−1) can be also obtained from the result in step 4. by a thoroughful
investigation, using dom

(
f−1) = im ( f ).

2. What on earth the omitted middle part of the red graph (for 0 ≤ y <
2
3

) could be? Reflecting
it back to the green line "y = x" we get the (monotone increasing) light blue graph.

After a while we can solve the puzzle: this light blue function must be

g (x) =
2

3 +
√

x− 2
.

It is your homework to find g−1 (y) and dom
(

g−1), with calculations, similar to steps 1.
through 7., to get

x =

(
2
y
− 3
)2

+ 2 = g−1 (y) ,

yes: the formulas of f−1 (y) and g−1 (y) are the same, but dom
(

g−1) is different as

dom
(

g−1
)
=

{
y ∈ R : 0 < y ≤ 2

3

}
.

The explanation of the connection of f−1 and g−1 is the following. The only difference between
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f and g (− and + in the denumerator) disappears when squaring and so makes

x =

(
2
y
− 3
)2

+ 2 = f−1 (y) ,

and

x =

(
2
y
− 3
)2

+ 2 = g−1 (y)

identical, while the sign restriction in
2
y
− 3 = −

√
x− 2

changes to
2
y
− 3 ≥ 0 and implies 0 < y ≤ 2

3
for dom

(
g−1).

3. For most of the functions f to determine im ( f ) is not so easy as above in step 4., so careful
investigation of step 2. (as in step 5. above) is compulsory.
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2 The Inverse Function

2.2 Exercises

The solutions of the following problems can be found in
Chapter 8. Solutions.

Exercises 2.1

Find the inverse function of the given f function, if
it exists.

1.
f (x) = (x− 2)2 , x ∈ [1, 3] .

See Solution 8.2.1

2.
f (x) = 5x + 1, x ∈ [1, 5] ,

See Solution 8.2.2

3.
f (x) = x2 + 2x, x ∈ [−1, 2] ,

See Solution 8.2.3

4.
f (x) = 5x + 1, x ∈ [−1, 1] ,

See Solution 8.2.4

5.
f (x) = 1− log3 (x) , x ∈ [1, 27] ,

See Solution 8.2.5

6.
f (x) =

√
x− 1 + 5, x ∈ [1, 37] ,

See Solution 8.2.6

7.
f (x) = x2 − 4x + 3, x < 0,

See Solution 8.2.7

8.
f (x) =

√
x− 3, x ∈ [4, 16] ,

See Solution 8.2.8

9.

f (x) = log 1
2
(x) , x ∈

[
1
2

, 4
]

,
See Solution 8.2.9

10.
f (x) = ln (x) + 4, x ∈

[
1, e2

]
,

See Solution 8.2.10

11.
f (x) = 3x−2, x ∈ [1, 2] ,

See Solution 8.2.11
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3.1 The Extended Real Number System

Notation 3.1.1

R = R ∪ {−∞,+∞}

It is convenient to adjoin to the real number system two
fictitious points, +∞ (or simply ∞) and −∞. We define
for every real a number

−∞ < a a < ∞ −∞ < ∞ .

If a is a real number, then

− (±∞) = ∓∞,

+∞ + a = a + (+∞) = +∞, a > −∞,

−∞ + a = a + (−∞) = −∞, a < +∞,

(±∞) · a = a · (±∞) = ±∞, a > 0,

(±∞) · a = a · (±∞) = ∓∞, a < 0,
a
±∞

= 0, a ∈ R.

The following forms are called indeterminate forms, and
left undefined.

±∞
±∞

,

±∞
∓∞

,

a
0

, a ∈ R,

+∞−∞,

−∞ + ∞,

(±∞) · 0,

0 · (±∞) .
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3.2 Convergent and Divergent Sequences

We say
an → a

if and only if

∀ε > 0 ∃n0 ∈ N : ∀n ≥ n0 =⇒ |an − a| < ε.

Definition 3.1

The number a ∈ R is said to be the (finite) limit of
a sequence {an} , if for every ε > 0 there exists a
natural number n0 ∈ N such that for all n ≥ n0 , the
terms an satisfy |an − a| < ε.
When a sequence {an} has limit a, we will use the
notation an → a or lim

n→∞
an = a. �

The number n0 is called treshold, since for indexes n ≥ n0

the numbers an behave "better" than for n < n0.

Definition 3.2

If a sequence has a finite limit, we say that the se-
quence is convergent. Any non-convergent sequence
is called divergent. �.

The following statements are equivalent.

Definition 3.3

A sequence {an} in R is said to converge to a ∈ R if
for every ε > 0 for all but a finite number of terms of
n |an − a| < ε. �

Definition 3.4

A sequence {an} in R is said to converge to a ∈ R if
for every neighborhood of a for all but a finite num-
ber of terms of n the terms an belong to the neigh-
borhood. �
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We say
an → ∞

if and only if

∀c ∈ R ∃n0 ∈ N : ∀n ≥ n0 =⇒ an > c.

Definition 3.5

We say that {an} diverges to infinity and we write,

an → ∞,

whenever, for all c ∈ R, there exists n0 ∈ N such that
if n ≥ n0 then an > c. �

We say
an → −∞

if and only if

∀c ∈ R ∃n0 ∈ N : ∀n ≥ n0 =⇒ an < c.

Definition 3.6

We say that {an} tends to −∞ and we write,

an → −∞

whenever, for all c ∈ R, there exists n0 ∈ N such that
if n ≥ n0 then an < c. �

Remark 3.2.1 Clearly any subse-
quence is a subset of the original
sequence.

Definition 3.7

If {nk}∞
k=0 is strictly increasing sequence in N we

call sequence {ank}
∞
k=0 the subsequence of {an}∞

n=0.
�

Theorem 3.1

Any sequence an has a limit if and only if all of its
subsequences ank are convergent to the same limit
a ∈ R, and in this case an has also the limit a .

lim
k→∞

ank = lim
n→∞

an = a. �

Theorem 3.2: Limits of Special Sequences

a. The limit of the constant sequence

c→ c,

b.
1
n
→ 0,
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c. Geometric sequences

qn →



0, |q| < 1,

1, q = 1,

∞, q > 1,

divergent if q ≤ −1.

d.
n
√

a→ 1, a > 0,

e.
n
√

n→ 1,

f. (
1 +

1
n

)n
→ e,

g. (
1 +

a
n

)n
→ ea, a ∈ R. �

Remark 3.2.2 The limit e is a compli-
cated but fixed real number, approxi-
mately e ≈ 2.71828... . Some scientists
call it Eulerian number (Leonhard Eu-
ler, Swiss mathematician, 1707–1783).

3.2.1 Algebraic Properties

The following algebraic properties of limits and divergent
limits are often used in practice.

Theorem 3.3

If an → a and bn → b, where a, b ∈ R, then

an ± bn → a± b,

an · bn → a · b,

if bn, b 6= 0 for every n, then
an

bn
→ a

b
. �
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Theorem 3.4

If an → ∞, then

−an → −∞. �

Theorem 3.5

If an → ∞, then
1
an
→ 0. �

Theorem 3.6

If an → 0 and an > 0 for all but a finite number of
terms of n, then

1
an
→ ∞, �

Theorem 3.7

If an → 0 and an < 0 for all but a finite number of
terms of n, then

1
an
→ −∞. �

Theorem 3.8

Every bounded, monotone sequence converges to a
real number. �

Theorem 3.9

If an → a and {bn} is bounded, then anbn → 0. �
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Theorem 3.10

If an → a, bn → b , where a, b ∈ R and an ≤ bn for all
but a finite number of terms of n, then a ≤ b. �

Theorem 3.11

If an → ∞ (bn → −∞) and an ≤ bn for all but a fi-
nite number of terms of n, then bn → ∞ (an → −∞).
�

Theorem 3.12

If an → a and a > 0, then
√

an →
√

a. �

Theorem 3.13: The Squeeze Theorem

If an → a, cn → a, where a ∈ R and an ≤ bn ≤ cn

for all but a finite number of terms of n, then bn → a.
�
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3.3 Sequences with Limit "∞
∞"

In this section we give solutions to sequences with limit
∞
∞ .

3.4 Step-by-Step Examples

Now we give a step-by-step solution to some common problems. At the end of this
section there are more exercises for practice.

3.4.1 Rational Fraction Sequences

We already know that
1
n
→ 0. From this with the prop-

erties of limits we can find the limit of any sequences of
racional fractions.

SOLVED EXAMPLE 3.1
Sequences

Find the limit of the following sequence.

an =
5n + 1
n2 + n

.

SOLUTION
As n→ ∞, we have

5n + 1→ ∞

and
n2 + n→ ∞.

So preliminary manipulations are necessary before applying the properties of lim-
its. First, we identify the largest power of n in the denominator (and yes, we only
consider the denominator for this) and then we factor this out of both the numer-
ator and denominator. This gives,

an =
5n1 + 1
1n2 + n

=

n2
(

5
n
+

1
n2

)
n2
(

1 +
1
n

) =

5
n
+

1
n2

1 +
1
n

→ 0 + 0
1 + 0

= 0.

29



3 Sequences

SOLVED EXAMPLE 3.2
Sequences

Find the limit of the following sequence.

bn =
5n2 − 1
n2 + n

.

SOLUTION
As n→ ∞, we have

bn =
5n2 − 1
n2 + n

→ ∞
∞

,

again, which is an indeterminate form. Now the largest power of n in the denom-
inator is n2, so we factor this out of both the numerator and denominator. This
gives,

bn =
5n2 − 1
1n2 + n

=

n2
(

5− 1
n2

)
n2
(

1 +
1
n

) =
5− 1

n2

1 +
1
n

→ 5− 0
1 + 0

= 5.

SOLVED EXAMPLE 3.3
Sequences

Find the limit of the following sequence.

cn =
3n3 − 1
2n2 + n

.

SOLUTION
As n→ ∞, we have

bn =
3n3 − 1
2n2 + n

→ ∞
∞

,

again, which is an indeterminate form. Now the largest power of n in the denom-
inator is n2, so we factor this out of both the numerator and denominator. This
gives,

cn =
3n3 − 1
2n2 + n

=

n2
(

3n− 1
n2

)
n2
(

2 +
1
n

) =
3n− 1

n2

2 +
1
n

→ ∞− 0
2 + 0

= ∞.

30



Sequences 3

SOLVED EXAMPLE 3.4
Sequences

Find the limit of the following sequence.

dn =
8n3 + 4

1− 2n2 + n
.

SOLUTION
Now the largest power of n in the denominator is n2, so we factor this out of both
the numerator and denominator. This gives,

dn =
8n3 + 4

1−2n2 + n
=

n2
(

8n +
4
n2

)
n2
(

1
n2−2 +

1
n

) =
8n +

4
n2

1
n2−2 +

1
n

→ ∞ + 0
0−2 + 0

=
∞
−2

= −∞.

In the following example we use the same process as
above, although the sequence is not a rational fraction se-
quence.

SOLVED EXAMPLE 3.5
Sequences

Find the limit of the following sequence.

an =
5
√

n + 1√
n2 + n + n

.

SOLUTION
As n→ ∞, we have

bn =
5
√

n + 1√
n2 + n + n

→ ∞
∞

,

again, which is an indeterminate form. Now the largest power of n in the denom-
inator is n =

√
n2, so we factor this out of both the numerator and denominator.

This gives,

an =
5
√

n + 1√
n2 + n + n

=

n
(

5√
n
+

1
n

)
n

(√
n2 + n

n
+ 1

) =

5√
n
+

1
n√

n2 + n
n

+ 1
.
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As √
n2 + n

n
=

√
n2 + n

n2 ,

and from the eariler results we find
n2 + n

n2 → 1,

so √
n2 + n

n2 →
√

1 = 1,

which implies

an =
5
√

n + 1√
n2 + n + n

=

5√
n
+

1
n√

n2 + n
n2 + 1

→ 0 + 0
1 + 1

= 0.

3.4.2 Geometric Sequences

Now we turn our attention to the geometric sequences.
A sequence {an} in which the ratio of an+1 and an is the
same for all n ∈ N is called a geometric sequence. For
simplicity, we use the general form an = qn of geometric
sequences, where n ∈ N and q ∈ R. The convergence
properties of geometric sequences are listed in Theorem
3.2.

SOLVED EXAMPLE 3.6
Sequences

Find the limit of the following sequence.

an =
3 · 5n + 12 · 4n

2 · 5n + 3n + 2
.

SOLUTION
bn =

3 · 5n + 12 · 4n

2 · 5n + 3n + 2
→ ∞

∞
,

again, which is an indeterminate form. Now the dominant term in the denom-
inator is 5n, so we factor this out of both the numerator and denominator. This
gives,
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an =
3 · 5n + 12 · 4n + 1

2 · 5n + 3n + 2
=

5n
(

3 + 12
(

4
5

)n
+

(
1
5

)n)
5n
(

2 +
(

3
5

)n
+ 2

(
1
5

)n) =

3 + 12
(

4
5

)n
+

(
1
5

)n

2 +
(

3
5

)n
+ 2

(
1
5

)n

Use the fact that (
4
5

)n
→ 0,

similalry, (
1
5

)n
→ 0,

and (
3
5

)n
→ 0,

we can conclude that

an =
3 · 5n + 12 · 4n + 1

2 · 5n + 3n + 2
→ 3 + 0 + 0

2 + 0 + 0
=

3
2

.
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3.5 Exercises

The solutions of the following problems can be found in
Chapter 8. Solutions.

3.5.1 Rational Fraction Sequences

The solutions of the following problems can be found in
Chapter 8. Solutions.

Exercises 3.1: Rational Fraction Sequences

Find the limit of the following sequences.

1.

an =
2016n32 − 5n6 + 1

n32 + n5 − 76
,

See Solution 8.3.1

2.

an =
n2017 + 8n5 + 1
n62 + n7 − 98

,
See Solution 8.3.2

3.

an =
7− 54

√
n4 + 1

n2 +
√

n− 9
,

See Solution 8.3.3

4.

an =
3
√

5n + 1− 6
n2 + 3

√
n− 8

,
See Solution 8.3.4

5.

an =
87n13 + 42

1− 2n25 + 87n
,

See Solution 8.3.5

Exercises 3.2

Find the limit of the following sequences.

1.

an =
3
√

n + 1 +
√

n− 6√
n2 − 8 + 3

√
n

,
See Solution 8.3.6

2.
an =

1− n√
n2 + 1 +

√
n2 + n

,
See Solution 8.3.7
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3.

an =

√
5n + 1− 6

n2 + 3
√

n− 7
,

See Solution 8.3.8

4.

an =
65 3
√

n− 6
13 3
√

n− 8
,

See Solution 8.3.9

5.

an =
−1

√
n +
√

n + 1
.

See Solution 8.3.10

3.5.2 Geometric Sequences

Exercises 3.3: Geometric Sequences

Find the limit of the following sequences.

1.

an =
(−1)n + 1

5n + 3n + 2
,

See Solution 8.3.11

2.

an =
3 · 5n + (−4)n + 12

2 · 5n + 3n + 2
,

See Solution 8.3.12

3.

an =
5n+1 + 2 · 3n

2 · 5n + 2n + 9
,

See Solution 8.3.13

4.

an =
3 · 7n + 12 · 4n

9 · 4n + 3n + 29
,

See Solution 8.3.14

5.

an =
3 · 8n−1 + 12 · 4n − 1

2 · 7n + (−3)n + 2
,

See Solution 8.3.15

6.
an =

3 · 5n + 12 · 4n

2 · (−9)n + 3n + 2
,

See Solution 8.3.16

7.

an =
7 · (−5)n + 92 · 7n

2 · 5n + (−8)n + 2
,

See Solution 8.3.17

8.

an =
(−1)n + 9 · 4n

3n + 2
,

See Solution 8.3.18
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9.

an =
(−1)n + 9 · 4n

3n + 2 · 4n ,
See Solution 8.3.19

10.

an =
(−1)n+1 + 5 · 3n

3n−2 + 9
.

See Solution 8.3.20
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3.6 Sequences with Limit ”∞−∞”

We already know how to deal with limit ∞
∞ . In this section

we give solutions to sequences with limit ”∞−∞”.

3.7 Step-by-Step Examples

Now we give a step-by-step solution to some problems. At the end of this section there
are more exercises for practice.

3.7.1 Difference of Terms of Different Order

In the following limits, we identify the dominant term
and find the limit by factoring it out. Note that factoring
works thanks to the fact that dominant term is always
unique here.

SOLVED EXAMPLE 3.7
Sequences

Find the limit of the following sequence.

an = n2 − n.

SOLUTION
As n approaches infinity, then n to the power 2 can only get larger. So, we have

an = n2 − n→ ∞−∞,

which is an indeterminate form. Without more work there is simply no way
to know what will be ∞ − ∞. First, we identify the largest power of n in the
polynomial and we factor this out of the whole polynomial as follows,

an = n2 − n = n2
(

1− 1
n

)
→ ∞ · 1 = ∞.
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SOLVED EXAMPLE 3.8
Sequences

Find the limit of the following sequence.

bn = 4n − 3n.

SOLUTION
As n→ ∞, we find

bn = 4n − 3n → ∞−∞

again. As 4n is the dominant term in the polynomial, we factor this out of the
whole polynomial as follows,

bn = 4n − 3n = 4n
(

1−
(

3
4

)n)
→ ∞ · 1 = ∞.

3.7.2 Difference of Terms of Equal Order

As we will see the "factor the dominant terms out of
the whole polynomial" does not work here, because this
would result (±∞) · 0, which would be an indeterminate
form. Now we multiply and divide the difference by the
same expression, but with plus, and use the formula

(a− b) (a + b) = a2 − b2.

The above formula can be applied to substractions of
square roots, read carefully.

SOLVED EXAMPLE 3.9
Sequences

Find the limit of the following sequence.

an =
√

n−
√

n + 1.

SOLUTION
As n→ ∞, we find

bn =
√

n−
√

n + 1→ ∞−∞

again.
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So multiply and divide the difference by
(√

n +
√

n + 1
)

.

an =
√

n−
√

n + 1 =
(√

n−
√

n + 1
)
·
√

n +
√

n + 1
√

n +
√

n + 1
=

=

(√
n
)2 −

(√
n + 1

)2

√
n +
√

n + 1
=

n− (n + 1)√
n +
√

n + 1
=

−1
√

n +
√

n + 1
→ 0.

The essence of the applied method is to cancel the
square roots and so to make possible the substraction.
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SOLVED EXAMPLE 3.10
Sequences

Find the limit of the following sequence.

bn =
√

n2 + 1−
√

n2 + n.

SOLUTION
As n→ ∞, we find

bn =
√

n2 + 1−
√

n2 + n→ ∞−∞

again. So multiply and divide the difference by
(√

n2 + 1 +
√

n2 + n
)

and use the
earlier results of the previous section.

bn =
√

n2 + 1−
√

n2 + n =
(√

n2 + 1−
√

n2 + n
)
·
√

n2 + 1 +
√

n2 + n√
n2 + 1 +

√
n2 + n

=

=

(√
n2 + 1

)2
−
(√

n2 + n
)2

√
n2 + 1 +

√
n2 + n

=
n2 + 1−

(
n2 + n

)
√

n2 + 1 +
√

n2 + n
=

1− n√
n2 + 1 +

√
n2 + n

=

=
n
(

1
n − 1

)
n
(√

n2+1
n +

√
n2+n
n

) =
n
(

1
n − 1

)
n
(√

n2+1
n2 +

√
n2+n

n2

) =
1
n − 1√

1 + 1
n2 +

√
1 + 1

n

→ −1
2

.
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3.8 Exercises

The solutions of the following problems can be found in
Chapter 8. Solutions.

Exercises 3.4

Find the limit of the following sequences.

1.
an = 12 · 4n − 3 · 7n + 3, See Solution 8.3.21

2.
an = 26n312 − 59n6 + 31, See Solution 8.3.22

3.
an = n32 − 9n5 − 796, See Solution 8.3.23

4.
an = 7 · (−5)n + 92 · 7n,

See Solution 8.3.24

5.
an =

√
n3 + n−

√
n3 + 2, See Solution 8.3.25

6.
an =

√
n2 + 1− n, See Solution 8.3.26

7.
an =

√
n2 + n− 1− n, See Solution 8.3.27

8.
an =

√
n4 + 1− n2, See Solution 8.3.28

9.
an =

√
n4 + n− 1− n2, See Solution 8.3.29

10.
an =

√
4n + 1− 2n, See Solution 8.3.30

11.
an =

√
2n + 1−

√
2n + 3, See Solution 8.3.31
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12.
an =

1√
9n + 1−

√
9n − 2

,
See Solution 8.3.32

13.

an =
1√

n4 + 1−
√

n4 − 2
,

See Solution 8.3.33

14.

an =
1√

n4 + n−
√

n4 − 2
.

See Solution 8.3.34
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3.9 Application of The Squeeze Theorem

In the following examples, we show how Theorem 3.13
can be used to prove convergence of a sequence. First
we establish a lemma - a direct consequence of Definition
3.1, in fact - which will be useful.

Lemma 3.1

If an → 1, then there exists n0 ∈ N such that,
1
2
≤ an ≤

3
2

for every n ≥ n0. �

3.10 Step-by-Step Examples

Now we give a step-by-step solution to some problems. At the end of this section there
are more exercises for practice.

SOLVED EXAMPLE 3.11
Sequences

Find the limit of the following sequence.

an =
n
√

3n3 + 5n2 − 3n + 2.

SOLUTION
We use the following known results on limit of sequences.

n
√

a→ 1, a > 0

and
n
√

n→ 1.

As
3n3 + 5n2 − 3n + 2 = 3n3 ·

(
1 +

5
n
− 3

n2 +
2
n3

)
and

1 +
5
n
− 3

n2 +
2
n3 → 1,

from Lemma 3.1. we find, that there exists n0 ∈ N such that, for every n ≥ n0.
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1
2
≤ 1 +

5
n
− 3

n2 +
2
n3 ≤

3
2

So, if n ≥ n0, then

3n3 · 1
2
≤ 3n3 + 5n2 − 3n + 2 ≤ 3n3 · 3

2
.

Thus
n

√
3n3 · 1

2
≤ n
√

3n3 + 5n2 − 3n + 2 ≤ n

√
3n3 · 3

2
whenever n ≥ n0. This follows that for n ≥ n0, we have

n

√
3
2
·
(

n
√

n
)3

=
n

√
3n3 · 1

2
≤ n
√

3n3 + 5n2 − 3n + 2 ≤ n

√
3n3 · 3

2
=
(

n
√

n
)3 · n

√
9
2

.

As
n

√
3
2
(

n
√

n
)3 → 1

and (
n
√

n
)3 n

√
9
2
→ 1,

from the Squezze Theorem, we get

an =
n
√

3n3 + 5n2 − 3n + 2→ 1.

SOLVED EXAMPLE 3.12
Sequences

Find the limit of the following sequence.

bn = n
√

3 · 4n + 5 · 3n − 3 · 2n + 2

SOLUTION
As

3 · 4n + 5 · 3n − 3 · 2n + 2 = 3 · 4n
(

1 +
5
3
·
(

3
4

)n
− 3

3
·
(

2
4

)n
+

2
3

(
1
4

)n)
and

1 +
5
3
·
(

3
4

)n
− 3

3
·
(

2
4

)n
+

2
3

(
1
4

)n
→ 1,
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from Lemma 3.1. we find, that there exists n0 ∈ N such that,

1
2
≤ 1 +

5
3
·
(

3
4

)n
− 3

3
·
(

2
4

)n
+

2
3

(
1
4

)n
≤ 3

2

for every n ≥ n0. So, if n ≥ n0, then

3 · 4n · 1
2
≤ 3 · 4n + 5 · 3n − 3 · 2n + 2 ≤ 3 · 4n · 3

2
.

Thus
n

√
3 · 4n · 1

2
≤ n
√

3 · 4n + 5 · 3n − 3 · 2n + 2 ≤ n

√
3 · 4n · 3

2
,

whenever n ≥ n0.
As

n

√
3
2
· 4 =

n

√
3
2

n
√

4n =
n

√
3 · 4n · 1

2
and

n

√
3 · 4n · 3

2
=

n
√

4n n

√
9
2
= 4 · n

√
9
2

.

for n ≥ n0, we have

n

√
3
2
· 4 ≤ n

√
3n3 + 5n2 − 3n + 2 ≤ 4 · n

√
9
2

.

As
n

√
3
2
→ 1

and
n

√
9
2
→ 1,

from the Squezze Theorem, we get

an = n
√

3 · 4n + 5 · 3n − 3 · 2n + 2→ 4.
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SOLVED EXAMPLE 3.13
Sequences

Find the limit of the following sequence.

cn = n
√

3n− 2 cos (n).

SOLUTION
Using

−1 ≤ cos (n) ≤ 1,

we get, that
−1 ≤ − cos (n) ≤ 1,

−2 ≤ −2 cos (n) ≤ 2,

3n− 2 ≤ 3n− 2 cos (n) ≤ 3n + 1.

As n ≥ 2 integer,
3n− 2n ≤ 3n− 2

and
3n + 1 ≤ 3n + n.

This follows
n
√

n ≤ n
√

3n− 2 cos (n) ≤ n
√

4n =
n
√

4 n
√

n,

so from the Squezze Theorem, we get

cn = n
√

3n− 2 cos (n)→ 1.
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3.11 Exercises

The solutions of the following problems can be found in
Chapter 8. Solutions.

Exercises 3.5

Find the limit of the following sequences.

1.
an =

n
√

n2 + n + 2,
See Solution 8.3.35

2.
an =

n
√

n4 − n3 − n− 2,
See Solution 8.3.36

3.
an =

n
√

n5 + n4 − 2n3 + 32,
See Solution 8.3.37

4.

an =
n
√

n2 + 5
√

n + 9,
See Solution 8.3.38

5.
an = n

√
7 · 8n + 3 · 5n + 9,

See Solution 8.3.39

6.
an = n

√
2 · 9n + 3 · 6n + 9 · 2n,

See Solution 8.3.40

7.
an = n

√
7 · 5n − 2 · 3n − 89,

See Solution 8.3.41

8.
an = n

√
7 · 10n − 31 · 6n + 72,

See Solution 8.3.42

9.

an = n
√

7n + 5 sin (n),
See Solution 8.3.43

10.
an = n

√
7n2 + 2 sin (n).

See Solution 8.3.44
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3.12 The Sequence
(
1 + 1

n

)n

First we establish the following theorem.

Theorem 3.14

If
lim

n→∞
an = ∞,

then

lim
n→∞

(
1 +

1
an

)an

= e. �

3.13 Step-by-Step Examples

Now we give a step-by-step solution to some problems. At the end of this section there
are more exercises for practice.

SOLVED EXAMPLE 3.14
Sequences

Find the limit of the following sequence.

an =

(
n + 5

n

)n
.

SOLUTION
As (

1 +
a
n

)n
→ ea, a ∈ R

after some basic manipulations, we have

an =

(
n + 5

n

)n
=

(
1 +

5
n

)n
→ e5.
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SOLVED EXAMPLE 3.15
Sequences

Find the limit of the following sequence.

bn =

(
4n + 5
4n− 2

)n
.

SOLUTION
As (

1 +
a
n

)n
→ ea, a ∈ R

after some basic manipulations, we have

bn =

(
4n + 5
4n− 2

)n
=

4n
(

1 +
5

4n

)
4n
(

1− 2
4n

)


n

=

(
1 +

5
4n

)n

(
1− 2

4n

)n =

(
1 +

5
4
n

)n

(
1 +
− 2

4
n

)n →
e

5
4

e
−2
4

.

SOLVED EXAMPLE 3.16
Sequences

Find the limit of the following sequence.

cn =

(
3n2 + 5
3n2 − 2

)n2

.

SOLUTION
Let m = n2. So (

3n2 + 5
3n2 − 2

)n2

=

(
3m + 5
3m− 2

)m
.

As n→ ∞, we have m→ ∞. After some basic manipulations, we have

(
3m + 5
3m− 2

)m
=

3m
(

1 +
5

3m

)
3m
(

1− 2
3m

)


m

=

(
1 +

5
3m

)m

(
1− 2

3m

)m =

(
1 +

5
3
m

)m

(
1 +
− 2

3
m

)m →
e

5
3

e
−2
3

,

thus

cn =

(
3n2 + 5
3n2 − 2

)n2

→ e
5
3

e
−2
3

.

49



3 Sequences

SOLVED EXAMPLE 3.17
Sequences

Find the limit of the following sequence.

dn =

(
1 +

1
2n + 1

)n
.

SOLUTION
After some basic manipulations, we have

dn =

(
1 +

1
2n + 1

)n
=

((
1 +

1
2n + 1

) 2n+1
2n+1
)n

=

((
1 +

1
2n + 1

)2n+1
) n

2n+1

.

As (2n + 1)→ ∞, using Theorem 3.14, we find(
1 +

1
2n + 1

)2n+1

→ e,

whenever n→ ∞. Furthermore,
n

2n + 1
→ 1

2
,

whenever n→ ∞. So

dn =

(
1 +

1
2n + 1

)n
→ e

1
2 .
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3.14 Exercises

The solutions of the following problems can be found in
Chapter 8. Solutions.

Exercises 3.6

Find the limit of the following sequences.

1.

an =

(
n + 9
n− 4

)n
,

See Solution 8.3.45

2.

an =

(
9n + 5
9n− 3

)n
,

See Solution 8.3.46

3.

an =

(
1 +

1
9n

)3n−1

,
See Solution 8.3.47

4.

an =

(
n3 + 9

n3 + 14

)n3

,
See Solution 8.3.48

5.

an =

(
1 +

1
n2

)3n2−1

,
See Solution 8.3.49

6.

an =

(
3n2 + 9
3n2 + 14

)n2

,
See Solution 8.3.50

7.

an =

(
1− 21

6n− 3

)n
,

See Solution 8.3.51

8.

an =

(
1 +

1
5n + 1

)1−3n2

,
See Solution 8.3.52

9.

an =

(
1 +

1
5n2 + 1

)1−3n
,

See Solution 8.3.53

10.

an =

(
4n− 5
5n + 2

)n
.

See Solution 8.3.54
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3.15 Finding the Limit of a Sequence with Definition

In the previous sections we computed the limits of se-
quences using the properties of limits.

Now we show some examples how the limit of a se-
quence can be determined using Definition 3.1, Definition
3.5 or Definition 3.6.

3.16 Step-by-Step Examples

Now we give a step-by-step solution to some problems. At the end of this section there
are more exercises for practice.

SOLVED EXAMPLE 3.18
Sequences

Use Definition 3.1 to prove that

4n− 5
3n + 2

→ 4
3

.

SOLUTION
Let

an =
4n− 5
3n + 2

,

and
a =

4
3

.

We want to show that
lim

n→∞

4n− 5
3n + 2

=
4
3

.

From Definition 3.1, given any ε > 0, we want to make∣∣∣∣4n− 5
3n + 2

− 4
3

∣∣∣∣ < ε.

Thus we have to find n0 (n0 = n0 (ε)) , such that if n ≥ n0, then∣∣∣∣4n− 5
3n + 2

− 4
3

∣∣∣∣ < ε.

holds. As ∣∣∣∣4n− 5
3n + 2

− 4
3

∣∣∣∣ < ε

after some equivalent (!) manipulations, we have
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∣∣∣∣4n− 5
3n + 2

− 4
3

∣∣∣∣ < ε

m∣∣∣∣3 (4n− 5)− 4 (3n + 2)
3 (3n + 2)

∣∣∣∣ < ε

m∣∣∣∣12n− 15− 12n− 8
3 (3n + 2)

∣∣∣∣ < ε

m∣∣∣∣ −23
3 (3n + 2)

∣∣∣∣ < ε

m as n > 0
23

3 (3n + 2)
< ε

m as ε > 0
23
3ε

< 3n + 2

m
23
3ε
− 2

3
< n.

If ε ≥ 23
6 , then the left side of the last inequality is nonpositive, thus it holds for

any n ∈ N. Thus we have

n0 =


0, if ε ≥ 23

6 , 23
3ε
− 2

3

+ 1, if 0 < ε < 23
6

.

Hence n ≥ n0 implies ∣∣∣∣4n− 5
3n + 2

− 4
3

∣∣∣∣ < ε,

by Definition 3.1, this proves that

lim
n→∞

4n− 5
3n + 2

=
4
3

.
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SOLVED EXAMPLE 3.19
Sequences

Use Definition 3.5 to prove that

n2 − 1→ ∞.

SOLUTION
Let

an = n2 − 1.

By Definition 3.5, we need to show that, given any c ∈ R there exists an n0

(n0 = n0 (c)) , such that if n ≥ n0, then

n2 − 1 > c

holds. As
n2 − 1 > c,

we have
n2 > c + 1,

If c < 1, then the right side is negative, so for any n ∈ N the inequality holds.
Suppose that c ≥ 1. Then

n2 > c + 1

follows
n >
√

c + 1.

Thus

n0 =

{
0, if c < 1,[√

c + 1
]
+ 1, if c ≥ 1

,

and n ≥ n0 implies
n2 − 1 > c,

and by definition, this proves that

n2 − 1→ ∞.
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SOLVED EXAMPLE 3.20
Sequences

Use Definition 3.6 to prove that

1− n2 → −∞.

SOLUTION
Let c ∈ R given and

an = 1− n2.

By Definition 3.6, we need to show that, given any c ∈ R there exists an n0

(n0 = n0 (c)) , such that if n ≥ n0, then

1− n2 < c

holds. As
1− n2 < c,

we find
1− c < n2,

If c > 1, then the left side is negative, so for any n ∈ N the inequality holds.
Suppose that c ≤ 1. Then √

1− c < n.

Thus

n0 =

{
0, if c > 1,[√

1− c
]
+ 1, if c ≤ 1

.

and n ≥ n0 implies
1− n2 < c

and by definition, this proves that

1− n2 → −∞.
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3.17 Exercises

The solutions of the following problems can be found in
Chapter 8. Solutions.

Exercises 3.7

Use Definition 3.1 to prove that

1.

an =
5n− 4
2n + 3

→ 5
2

,

See Solution 8.3.55

2.

an =
6n + 1
9n− 2

→ 2
3

,

See Solution 8.3.56

3.

an =

(
1
2

)n
→ 0,

See Solution 8.3.57

4.

an =

(
−1
5

)n
→ 0,

See Solution 8.3.58

5.

an =
1

n2 + 1
→ 0.

See Solution 8.3.59
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Exercises 3.8

Use Definition 3.5 to prove that

1.
an = 2n → ∞,

See Solution 8.3.60

2.
an = ln (n)→ ∞,

See Solution 8.3.61

3.
an = n2 + 2n + 1→ ∞.

See Solution 8.3.62

Exercises 3.9

Use Definition 3.6 to prove that

1.
an = 1− lg (n)→ −∞,

See Solution 8.3.63

2.
an = 1− 3n → −∞.

See Solution 8.3.64
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3.18 Divergent Sequences

In this section we turn our attention to the divergence of
a sequence. (Recall, that non-convergent sequences are
called divergent.) Definition 3.7 and Theorem 3.1 are the
keys to our solutions.

3.19 Step-by-Step Examples

Now we give a step-by-step solution to some problems. At the end of this section there
are more exercises for practice.

SOLVED EXAMPLE 3.21
Sequences

Prove that the sequence is divergent.

an =
(−1)n n + 3

2n + 1

SOLUTION
Consider the "odd" and "even" subsequences of an. If

nk1 = 2k, k ∈ N,

then

a2k =
(−1)2k (2k) + 3

2 (2k) + 1
.

As (−1)2k = 1, we have

a2k =
2k + 3

2 (2k) + 1
=

2k + 3
4k + 1

→ 2
4

,

whenever k→ ∞. Now let
nk2 = 2k + 1,

where k ∈ N, so we have

a2k+1 =
(−1)2k+1 (2k + 1) + 3

2 (2k + 1) + 1
.

As (−1)2k+1 = −1, we find

a2k+1 =
− (2k + 1) + 3
2 (2k + 1) + 1

=
−2k + 2
4k + 3

→ −2
4

.

whenever k→ ∞.
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We can conclude, that
lim
k→∞

a2k 6= lim
k→∞

a2k+1,

so sequence

an =
(−1)n n + 3

2n + 1
has no limit at all.

SOLVED EXAMPLE 3.22
Sequences

Prove that the sequence is divergent.

an = (−1)n 4n + 2
3n + 5

,

SOLUTION
Although we can use the same method as above, we give another solution to this
example. No matter n is odd or even, we have

4n + 2
3n + 5

→ 4
3

holds. From this we get for n = 2k that (−1)2k = 1→ 1, so

a2k → 1 · 4
3
=

4
3

whenever k→ ∞.
Now let n = 2k + 1 then (−1)2k+1 = −1→ −1, so

a2k+1 → −1 · 4
3
= −4

3
whenever k→ ∞. This follows

lim
k→∞

a2k 6= lim
k→∞

a2k+1,

so sequence

an = (−1)n 4n + 2
3n + 5

has no limit at all.
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3 Sequences

3.20 Exercises

The solutions of the following problems can be found in
Chapter 8. Solutions.

Exercises 3.10

Prove that the sequence is divergent.

1.

an =
(−1)n n2

n2 + 7
,

See Solution 8.3.65

2.

an =
1 + (−1)n n2

n + 1
,

See Solution 8.3.66

3.

an = (−1)n 5n + 3
6n + 1

,
See Solution 8.3.67

4.
an =

n
n(−1)n

+ 2
,

See Solution 8.3.68

5.

an =
5n (1 + (−1)n)+ 3n

5n + 2n ,
See Solution 8.3.69

6.
an = (n + 1)(−1)n

,
See Solution 8.3.70

7.

an = (−1)n 6n + 1
2 · 6n − 1

,
See Solution 8.3.71

8.
an = (−1)n√n + 1−

√
n,

See Solution 8.3.72

9.
an = (−1)n

√
n2 + 1− n,

See Solution 8.3.73

10.
an = (−1)n

(√
n2 + n− n

)
.

See Solution 8.3.74
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4 Limit and Continuity of One Vari-
able Real Functions

Calculating f (a) for any (or some) a ∈ dom ( f ) with a
pocket calculator can not reveal the important properties
of the function f . In many cases a /∈ dom ( f ), i.e. f (a)
can not be computed at all, or we are interested in f (a)
for large a, which are beyond the capacities of calcula-
tors. In these cases we have to use mathematical tools:
investigating the values of f (x) for values x "close to a",
we can deduce the possible value of the missing f (a) or
" f (±∞)", more exactly than predicting!

Another motivation of the following methods is the
continuity of the function f : can its graph be drawn with
a single curve or it has breaks, separate lines are needed?
Think a little bit on this question: when drawing, the hor-
izontal coordinate is x, the vertical is y = f (x), so a fine
(little) movement of x does imply also a fine movement
of y ? In other words, does "x is close to a" imply " f (x)
is close to f (a)" ?

Since we already have fairly good experience in se-
quences and R = R ∪ {−∞,+∞}, first we give the shorter
definitions using sequences, and after the exact (longer)
definition of "close to".

In many cases we can deal with inputs x < a or a < x
only, these problems are called "one sided", but first we
consider "two sided" limits.
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4 Limit and Continuity of One Variable Real Functions

4.1 Two Sided Limits

Definition 4.1: Neighbourhood of Point a

For a ∈ R an open interval of the form (a− δ, a + δ)

is called a neighbourhood of a for any positive δ. �

Definition 4.2: Deleted Neighbourhood of Point a

For a ∈ R a set of the form (a− δ, a + δ) \ {a} is
called a deleted neighbourhood of a for any positive
δ. �

Notation 4.1.1

lim
x→a

f (x) = b .
Definition 4.3: Limit of Function

Any b ∈ R is called the limit of the function f at
the "point" a ∈ R if dom ( f ) contains a deleted neigh-
bourhood of a and for any sequence {xn}∞

n=0 such that
∀n xn ∈ dom ( f ) and xn → a we have the sequence
{yn}∞

n=0 where yn = f (xn) converges to b. �.

Let us emphasize that f (a) is irrelevant when comput-
ing lim

x→a
f (x) , even when a /∈ dom ( f ) is allowed.

The Reader is asked to think on
the statement " lim

x→0

x
1− e1/x = 0

" (i.e. f (x) =
x

1− e1/x , a = 0

and b = 0 , see also the solution of
Exercise 4.5 6.

For example for every sequence xn → 2, xn 6= 0, we

have yn =
1
xn

converges to
1
2

(i.e. f (x) =
1
x

, a = 2 and

b =
1
2

), so we can write lim
x→2

1
x
=

1
2

.

Now we turn to the definitions using the phrase "close
to". Since "close" to ±∞ (infinites) are quite another than
to real (finite) numbers (e.g.

√
2), we need separate defin-

tions for ±∞ and a ∈ R .
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Limit and Continuity of One Variable Real Functions 4

Notation 4.1.2

lim
x→a

f (x) = b .
Definition 4.4: Finite Limit at Finite Point

Let a ∈ R, suppose dom ( f ) contains a deleted neigh-
bourhood of a .
Then f has a finite limit at a if there is a number
b ∈ R such that for any ε > 0 there is a δ > 0 such
that

if |x− a| < δ then | f (x)− b| < ε . �

Notation 4.1.3

lim
x→a

f (x) = +∞

and
lim
x→a

f (x) = −∞ .

Remark 4.1.1 The red and blue col-
ors are essentials above: i) and ii) are
differ only in these "minor" symbols.

Definition 4.5: Infinite Limit at Finite Point

Let a ∈ R, suppose dom ( f ) contains a deleted neigh-
bourhood of a .
Then f has a finite limit at a

(i) +∞ if for any p ∈ R there is a δ > 0 such that

if |x− a| < δ then f (x)>p .

(ii) -∞ if for any p ∈ R there is a δ > 0 such that

if |x− a| < δ then f (x)<p . �

Notation 4.1.4

lim
x→+∞

f (x) = b

and
lim

x→−∞
f (x) = b .

Definition 4.6: Finite Limits at Infinity

Function f has finite limit

(i1) at +∞ , if there is a number b ∈ R such that
for every ε > 0 there is a number K ∈ R such that

if K < x then | f (x)− b| < ε ,

(i2) at −∞ , if there is a number b ∈ R such that
for every ε > 0 there is a number K ∈ R such that

if x < K then | f (x)− b| < ε . �
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4 Limit and Continuity of One Variable Real Functions

Clearly (i1) is interesting for large positive K →+∞),
while in (i2) we deal with large negative K →−∞. Sim-
ilar remarks yield for the forthcoming definitions, too.

Notation 4.1.5

lim
x→+∞

f (x) = +∞

and

lim
x→−∞

f (x) = +∞ .

Notation 4.1.6

lim
x→+∞

f (x) = −∞

and

lim
x→−∞

f (x) = −∞ .

Remark 4.1.2 Clearly, the numbers
p we are interested in (ii1) and
(ii2) are large positive (p →+∞),
while in (iii1) és (iii2) large negative
(p→−∞).

Observe, that the colors are impor-
tant in the above definition: red <
signs correspond to red + ones, and
similarly blue > signs to blue - .

Make drafts of function graphs for
the different cases (x → +∞ , x→ a ,
x → −∞) for better understanding
the definitions and the role of the let-
ters b , ε , K , p .

Definition 4.7: Infinite Limits at Infinity

Function f has limit
(ii1) +∞ at +∞ , if for any number p ∈ R there is a
number K ∈ R such that

if K < x then p < f (x) ,

(ii2) +∞ at −∞ , if for any number p ∈ R there is
a number K ∈ R such that

if x < K then p < f (x) ,

(iii1) −∞ at +∞ , if for any number p ∈ R there is
a number K ∈ R such that

if K < x then p > f (x) ,

(iii2) −∞ at −∞ , if for any number p ∈ R there is
a number K ∈ R such that

if K > x then p > f (x)

4.2 One Sided Limits

In many cases, when computing lim
x→a

f (x) , f (x) can be
computed for x < a or for a < x only, or the limit can be
different for "below" and "above" a , these tasks are called
also "half-sided" ones.

Typical situations are the limits of type "
c
0

" (c 6= 0),
i.e. when the limit of the numerator is far from 0 but the
limit of the denomirator is 0 . Since fractions "big/small"
have huge values, the sign of these huge numbers are im-
portant ("running either to −∞ or to +∞"), which sign
depend on the sign of the denomirator. This question
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Limit and Continuity of One Variable Real Functions 4

in most of the cases can be decided by investigating the
question "x < a" or "a < x".

These cases are discussed in this subsection, detailed
explanation can be found in Solved Examples 4.11 and
4.12.

We provide the definitions using sequences and b ∈ R ,
the "ε− δ" -definitions can be invented by anyone, or can
be found in many books.

Notation 4.2.1

lim
x→a−0

f (x) = b

and
lim

x→a+0
f (x) = b .

or shortly

lim
x→a−

f (x) = b

and
lim

x→a+
f (x) = b .

Definition 4.8

Consider function f : R → R. We say function f has

(i) left sided limit b ∈ R at the point a ∈ (−∞, ∞]

if dom ( f ) contains a deleted left sided neighbour-
hood of a and for any sequence {xn}∞

n=0 in this neigh-
bourhood, i.e. xn ∈ dom ( f ) ∀n and xn < a we have
the sequence yn := f (xn) has limit b .

(ii) right sided limit b ∈ R at the point a ∈ [−∞, ∞)

if dom ( f ) contains a deleted right sided neighbour-
hood of a and for any sequence {xn}∞

n=0 in this neigh-
bourhood, i.e. xn ∈ dom ( f ) ∀n and a < xn we have
the sequence yn := f (xn) has limit b. �

Let us emphasize, that the symbols "x → a − 0" and
"x → a + 0" mean x < a and x < a , and are originated
from "x ≈ a + 0" and "x ≈ a− 0" , respectively.

An easy but important connection among half-sided
and two.sided limit is the following.

Notation 4.2.2 If our calculations
show f (x) ≤ b ∀x or b ≤ f (x) ∀x
for any limit lim

x→a
or lim

x→a−
or lim

x→a+
,

we can denote this fact by

lim f (x) = b− and lim f (x) = b+

Theorem 4.1

Any function f has a two-sided limit (either finite
or infinite) at the "point" a ∈ R if and only if both
lim

x→a−
f (x) and lim

x→a+
f (x) do exist, and moreover

lim
x→a−

f (x) = lim
x→a+

f (x) = lim
x→a

f (x) . �
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4 Limit and Continuity of One Variable Real Functions

4.3 Methods for calculating

At this point we finished listing the definitions, now we
start to make limit calculations.

Remark 4.3.1 Recall, that the opera-
tions +,−, · and : in R were discussed
in Section 3.1.

Remark 4.3.2 When calculating
lim
x→a

f (x) for a = ±∞ we can use the
same methods learned for calculating
the limits of sequenes, taking care both
of the possibilities "n → +∞" and
"n → −∞" (i.e. the sign of n can be
negative, too).

Theorem 4.2: Rules for Limit Calculation

For any a ∈ R , assuming that the limits lim
x→a

f (x)
and lim

x→a
g (x) do exist, we have

lim
x→a

( f (x)± g (x)) = lim
x→a

f (x)± lim
x→a

g (x) ,

lim
x→a

( f (x) · g (x)) = lim
x→a

f (x) · lim
x→a

g (x) ,

lim
x→a

(
f (x)
g (x)

)
=

lim
x→a

f (x)

lim
x→a

g (x)
when lim

x→a
g (x) 6= 0 . �

The following special limits are often used in problem
solving, but recall the methods and formulae learned in
Chapter 3.

Theorem 4.3: Famous Limits

lim
x→0

sin (x)
x

= 1 , lim
x→0

ex − 1
x

= 1 , lim
x→0

ln (x + 1)
x

= 1 ,

lim
x→0

1− cos x
x2 =

1
2

, lim
x→0

ax − 1
x

= ln a , lim
x→0

x · ln (x) = 0 ,

lim
x→0+

1
x
= +∞ , lim

x→0−

1
x
= −∞ , lim

x→0

1
x

does not exist. �
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4.4 Step-by-Step Examples

Now we give step-by-step solutions to some problems. At the end of this section there
are more exercises for practice.

SOLVED EXAMPLE 4.1
Function Limit

Calculate

lim
x→−∞

x2 − 2x + 1
x2 − 1

.

SOLUTION
The solution method is the same as of the problem

lim
n→−∞

n2 − 2n + 1
n2 − 1

.

The fact x → −∞ causes both the numerator and the denomirator to tend to
±∞ , so we extract the main term of the denomirator, i.e. x2 from both of the
numerator and the denomirator, and simplify after:

lim
x→−∞

x2 − 2x + 1
x2 − 1

= lim
x→−∞

x2
(

1− 2
x + 1

x2

)
x2
(

1− 1
x2

) = lim
x→−∞

1− 2
x + 1

x2

1− 1
x2

= 1 .
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SOLVED EXAMPLE 4.2
Function Limit

Calculate
lim
x→∞

(√
x2 + x + 4−

√
x2 − x + 2

)
.

SOLUTION
Square roots can not be substracted, so first we have to eliminate them by using

the following identity.
(a− b) (a + b) = a2 − b2

lim
x→∞

(√
x2 + x + 4−

√
x2 − x + 2

)
=

= lim
x→∞

(√
x2 + x + 4−

√
x2 − x + 2

) (√
x2 + x + 4 +

√
x2 − x + 2

)
√

x2 + x + 4 +
√

x2 − x + 2
=

= lim
x→∞

(
x2 + x + 4

)
−
(
x2 − x + 2

)
√

x2 + x + 4 +
√

x2 − x + 2
= lim

x→∞

2x + 2√
x2 + x + 4 +

√
x2 − x + 2

.

This latter limit is of form "
∞
∞

" , so we simplify it as in the previous example,

by
√

x2 = x :

lim
x→∞

2x + 2√
x2 + x + 4 +

√
x2 − x + 2

= lim
x→∞

x
(

2 +
2
x

)
√

x2

(√
1 +

1
x
+

4
x2 +

√
1− 1

x
+

2
x2

) =

= lim
x→∞

2 +
2
x√

1 +
1
x
+

4
x2 +

√
1− 1

x
+

2
x2

=
2

1 + 1
= 2

In the following examples x → x0 but x0 6= ±∞, so we
have to learn new methods for limit calculations.

First we mention an identity which is useful when deal-
ing quadratic polinomials.
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Theorem 4.4

Any quadratic polinomial ax2 + bx+ c , a 6= 0 , which
has roots x1 and x2 (x1 = x2 is allowed) can be de-
composed as

ax2 + bx + c = a (x− x1) (x− x2) . �

The following method and examples are for problems

lim
x→x0

p (x)
q (x)

,

where p (x) and q (x) are polynomials and

p (x0) = q (x0) = 0,

i.e. this is a special problem of type "0
0".

Definition 4.9

Fractions of two polinomials are called rational (in-
teger) functions. �

Let us emphasize that limits not of type "0
0" or not ratio-

nal (integer) functions need another methods, which we
introduce in later examples.

SOLVED EXAMPLE 4.3
Function Limit

Calculate

lim
x→1

x2 − 2x + 1
x2 − 1

.

SOLUTION
The limits of both the numerator and the denomirator are 0 ("type 0

0"). Since
we need the limit of a rational function, we can extract the term (x− x0) from
both the numerator and the denomirator (since they are polynomials), and then
simplify the fraction with this term.
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The numerator x2− 2x + 1 has roots x1,2 = 2±
√

22−4
2 = 1 , the roots of the denomi-

rator are x1,2 = ±1 , and x0 = 1 = x1 , so we have

lim
x→1

x2 − 2x + 1
x2 − 1

= lim
x→1

(x− 1) (x− 1)
(x− 1) (x + 1)

= lim
x→1

x− 1
x + 1

=
0
2
= 0 .

SOLVED EXAMPLE 4.4
Function Limit

Calculate

lim
x→0

√
4 + x− 2

x
.

SOLUTION
We eliminate the root by extending the fraction as usual

lim
x→0

√
4 + x− 2

x
= lim

x→0

√
4 + x− 2

x
·
√

4 + x + 2√
4 + x + 2

= lim
x→0

4 + x− 4
x
(√

4 + x + 2
) =

= lim
x→0

1√
4 + x + 2

=
1√

4 + 2
=

1
4

.

In the following examples and exercises we (can) use
the "Famous limits" listed in Theorem 4.3.

SOLVED EXAMPLE 4.5
Function Limit

Calculate
lim
x→0

sin (5x)
x

.

SOLUTION
First, this problem of type "0

0". Second, it reminds us to the famous limit
lim
x→0

sin(x)
x = 1 , so we try to transform our actual problem to the famous one.

However, the variable x plays different role in these limits, so we advice to rewrite
the famous one to lim

y→0

sin(y)
y = 1 . Now we can try to use the substitution y = 5x

and solve our problem as

lim
x→0

sin (5x)
x

= lim
x→0

sin (5x)
5x

· 5 = lim
y→0

sin (y)
y
· 5 = 1 · 5 = 5 .

Do not forget to check, that x → 0⇐⇒ y→ 0.

70



Limit and Continuity of One Variable Real Functions 4

SOLVED EXAMPLE 4.6
Function Limit

Calculate
lim
x→1

sin (x− 1)
x− 1

.

SOLUTION
Now use the substitution y = x− 1 (and check x → 1⇐⇒ y→ 0 ) :

lim
x→1

sin (x− 1)
x− 1

= lim
y→0

sin (y)
y

= 1 .

SOLVED EXAMPLE 4.7
Function Limit

Calculate

lim
x→0

sin
(
x2 + x

)
x2 + 2x

.

SOLUTION
In order to substitute y = x2 + x we write

lim
x→0

sin
(
x2 + x

)
x2 + 2x

= lim
x→0

sin
(
x2 + x

)
x2 + x

· x2 + x
x2 + 2x

=

= lim
y→0

sin (y)
y
· lim

x→0

x + 1
x + 2

= 1 · 1
2
=

1
2

,

and do not forget to check x → 0⇐⇒ y→ 0.

SOLVED EXAMPLE 4.8
Function Limit

Calculate
lim
x→0

sin (5x)
sin (2x)

.

SOLUTION
As

lim
x→0

sin (5x)
sin (2x)

= lim
x→0

sin (5x)
5x

· 2x
sin (2x)

· 5
2

,

now we use substitutions y1 = 5x and y2 = 2x.

lim
x→0

sin (5x)
5x

· 2x
sin (2x)

· 5
2
= lim

y1→0

sin (y1)

y1
· lim

y2→0

y2

sin (y2)
· 5

2
= 1 · 1 · 5

2
=

5
2

.
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SOLVED EXAMPLE 4.9
Function Limit

Calculate
lim
x→0

ln (1 + 4x)
sin (2x)

.

SOLUTION
As

lim
x→0

ln (1 + 4x)
sin (2x)

= lim
x→0

ln (1 + 4x)
4x

· 2
sin (2x)

· 4
2

we use
lim
x→0

sin (x)
x

= 1

and
lim
x→0

ln (x + 1)
x

= 1,

with substitutions y1 = 4x and y2 = 2x. This follows

lim
x→0

ln (1 + 4x)
4x

· 2
sin (2x)

· 4
2

= lim
x→0

ln (1 + 4x)
4x

· lim
x→0

2
sin (2x)

· 4
2
=

= lim
y1→0

ln (1 + y1)

y1
· lim

y2→0

2
sin (y2)

· 4
2
=

= 1 · 1 · 4
2
= 2.

72



Limit and Continuity of One Variable Real Functions 4

SOLVED EXAMPLE 4.10
Function Limit

Calculate
lim
x→0

1− cos (x)
sin2 (x)

.

SOLUTION
As

lim
x→0

1− cos (x)
sin2 (x)

= lim
x→0

1− cos (x)
x2 · x2

sin2 (x)
= lim

x→0

1− cos (x)
x2 ·

(
x

sin (x)

)2

,

we use
lim
x→0

sin (x)
x

= 1

and
lim
x→0

1− cos x
x2 =

1
2

.

So we get

lim
x→0

1− cos (x)
x2 ·

(
x

sin (x)

)2

= lim
x→0

1− cos (x)
x2 · lim

x→0

(
x

sin (x)

)2

=

=
1
2
· 12 =

1
2

.

As mentioned in the introduction, in many cases we
have to deal with left- and right- hand limits separately.

SOLVED EXAMPLE 4.11
Function Limit

Calculate

lim
x→1

x2 + 5x
x2 − 5x + 4

.

SOLUTION
Let us denote the numerator by e (x) := x2 + 5x and the numerator by d (x) :=

x2 − 5x + 4 for short. Their limits are lim
x→1

e (x) = 6 and lim
x→1

d (x) = 0, so the

problem is of type "
c
0

" (c 6= 0), more exactly the 0 in this fraction makes our
head-ache.
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For the following you are adviced to make a draft of d (x), especially for the values
and their sign (+/-) when x is close to 1.

−1 1 2 3 4 5 6

−2

2

4

d (x) = x2 − 5x + 4

x

y

Since c = 6 = e (1) = lim
x→1

e (x) , we can conclude that e (x) is close to 6, espe-

cially e (x) is always positive, for any x which is close to 1. Recall, that " x → 1 "
means "x is close to 1" but does not mean "x = 1", i.e. we are adviced to assume
"x 6= 1". These good news says, that there is no 0 in the denomirator, in fact, "only"

d (x) is extremaly small. Imagine:
e (x)
d (x)

means: dividing "almost 6" by "almost 0"

= "very small" number, we receive an extremaly "huge" number. However, num-
bers close to 0 may be both negative and positive, their reciprocials also + or -, but
huge + numbers tend to +∞ and huge - numbers tend to −∞ . And this is a huge
difference: +∞ and −∞ are very far from each other!

This is why we have to investigate the sign (+/-) of e (x) and d (x) !
Concerning d (x) , it is a parabola meeting the x axe at point x = 1 , having

before positive and after negative values.

Now we can start to solve the problem.

lim
x→1

e (x)
d (x)

= ?

The left-side limit says " x → 1− " which means x < 1 , Figure clearly shows that
d (x) > 0 for these x . So we can solve the left-side limit:

lim
x→1−

x2 + 5x
x2 − 5x + 4

= ”
6

0+
” = +∞ .

Similarly, " x → 1+ " means x > 1 and Figure shows d (x) < 0 for these x , so the
right-side limit is

lim
x→1+

x2 + 5x
x2 − 5x + 4

= ”
6

0−” = −∞ .
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SOLVED EXAMPLE 4.12
Function Limit

Calculate
lim
x→3

2
1

3−x .

SOLUTION
First we calculate the limits of the exponent: x → 3− means x < 3 and x → 3+

means 3 < x , so

lim
x→3−

1
3− x

= ”
1

0+
” = +∞ , lim

x→3+

1
3− x

= ”
1

0−” = −∞ .

Since we also know

lim
k→−∞

2k = 0 and lim
k→+∞

2k = +∞ ,

we conclude that

lim
x→3−

2
1

3−x = ”2+∞” = +∞ and lim
x→3+

1
3− x

= ”2−∞” = 0 .
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4.5 Exercises

The solutions of the following problems can be found in
Chapter 8. Solutions.

4.5.1 Limits at Infinity

Exercises 4.1: Limits at Infinity

Calculate the following limits.

1.

lim
x→−∞

x3 − 4x2 + 1
x3 − x2 − 1

,
See Solution 8.4.1

2.

lim
x→∞

x3 + 3x
x2 − x + 1

,
See Solution 8.4.2

3.

lim
x−→∞

x5 + x4

3x6 + x2 + 1
,

See Solution 8.4.3

4.

lim
x→∞

√
x2 + 2x + 1

x2 − 1
,

See Solution 8.4.4

5.

lim
x→∞

2x + 1
5
√

x2 − 1
,

See Solution 8.4.5

6.

lim
x→∞

√
x + 1√
x− 1

,
See Solution 8.4.6

7.
lim
x→∞

(√
x + 4−

√
x + 2

)
,

See Solution 8.4.7

8.
lim
x→∞

x
(√

x + 1−
√

x
)

,
See Solution 8.4.8

9.
lim
x→∞

(√
x2 + 4− x

)
,

See Solution 8.4.9

10.
lim
x→∞

(√
x2 + 4− (x + 2)

)
,

See Solution 8.4.10
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11.

lim
x→∞

1√
x2 − 1− x

.
See Solution 8.4.11

4.5.2 Limits at Finite Point

Exercises 4.2: Limits at Finite Point

Calculate the limits. Please check in all cases if the
problem is of type "0

0" or not!

1.

lim
x→−1

x2 + 2x + 1
x2 − 1

,
See Solution 8.4.12

2.

lim
x→3

x2 − x− 6
x2 − 5x + 6

,
See Solution 8.4.13

3.

lim
x→−2

2− x− x2

x2 + 3x + 2
,

See Solution 8.4.14

4.

lim
x→4

x2 − 5x + 4
x2 − 6x + 1

,
See Solution 8.4.15

5.

lim
x→1

x3 − x
x2 + 2x− 3

,
See Solution 8.4.16

6.

lim
x→0

√
x + 1−

√
1− x

x
,

See Solution 8.4.17

7.

lim
x→0

√
x2 + x + 1− 1

x
,

See Solution 8.4.18

8.

lim
x→1

x2 − x√
x− 1

,
See Solution 8.4.19

9.

lim
x→0

√
x + 1− 1
x2 − 1

,
See Solution 8.4.20
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10.

lim
x→0

x√
9 + x− 3

,
See Solution 8.4.21

11.

lim
x−→1

1− x3

1− x
,

See Solution 8.4.22

12.

lim
x→0

3
√

x + 1− 1
x

.
See Solution 8.4.23

4.5.3 Famous Limits I.

Exercises 4.3: Famous Limits I.

Calculate the following limits.

1.

lim
x→0

sin (2x)
x

,
See Solution 8.4.24

2.

lim
x→0

sin
(
x2)

x2 ,
See Solution 8.4.25

3.

lim
x→0

sin2 (2x)
x

,
See Solution 8.4.26

4.

lim
x→0+

sin
(√

x
)

√
x

,
See Solution 8.4.27

5.

lim
x→−2

sin (x + 2)
x + 2

,
See Solution 8.4.28

6.

lim
x→−2

sin
(
x2 − 4

)
x + 2

,
See Solution 8.4.29

7.

lim
x→0

sin (2x)
sin (7x)

,
See Solution 8.4.30
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8.
lim

x→−1

sin (4x + 4)
x2 + x

,
See Solution 8.4.31

9.

lim
x→0

sin
(
x2 + x

)
x

,
See Solution 8.4.32

10.
lim
x→0

sin (2x)
tan (5x)

.
See Solution 8.4.33

4.5.4 Famous Limits II.

Exercises 4.4: Famous Limits II.

Calculate the following limits.

1.
lim
x→0

sin(2x)− 2x
x

,
See Solution 8.4.34

2.
lim
x→0

sin(3x)
ln(1 + 5x)

,
See Solution 8.4.35

3.

lim
x→0

ln (1 + 3x)
2 sin (x)

,
See Solution 8.4.36

4.

lim
x→0

e2x − 1
sin (5x) ,

See Solution 8.4.37

5.

lim
x→0

tan (x)
ex − 1

,
See Solution 8.4.38

6.
lim
x→0

1− cos (x)
x · sin (x)

,
See Solution 8.4.39

7.

lim
x→0

ex2 − cos (x)
x2 ,

See Solution 8.4.40

8.
lim
x→0

cot (x) · ln (1 + 2x) ,
See Solution 8.4.41
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9.

lim
x→0

2 cos (3x)− 2 + 9x2

2x
,

See Solution 8.4.42

10.
lim
x→0

1− cos (x)
ln (x + 1)− (x + 1)2 + 1

.
See Solution 8.4.43

4.5.5 Function Limits " c
0 " (c 6= 0)

Exercises 4.5: Function Limit "
c
0

" (c 6= 0)

Calculate the following limits.

1.

lim
x→−1

x2 − 2x + 1
x2 − 1

,
See Solution 8.4.44

2.

lim
x→4

x2 − 6x + 1
x2 − 5x + 4

,
See Solution 8.4.45

3.

lim
x→−1

sin (4x + 2)
x2 + x

,
See Solution 8.4.46

4.

lim
x→π

2

ln (1− sin (x))
π
2 − x

,
See Solution 8.4.47

5.

lim
x→a

e
x

1−x = lim
x→a

exp
(

x
1− x

)
, where a = 0, 1,±∞,

See Solution 8.4.48

6.
lim
x→a

x
1− e1/x , where a = 0, 1,±∞.

See Solution 8.4.49
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4.6 Continuity of Functions

Having all neccessary definitions, now we can discuss the
problem of continuity of functions’ graphs: what hap-
pens when moving our pencil (eyes) horizontally (x) and
vertically (y) at the same time. Consider for example the
(usual) graph of the function f (x) = x2, i.e. y = x2. Why
can you draw this curve with smoothly moving your pen-
cil, for example between 0 and 2, i.e. for 0 ≤ x ≤ 2 ?
Why are not any bump (distortion, jump) anywhere, for
example at x0 = 1.5 ?

−2 −1 1 2

1

2

3

y = x2

x

y

Figure 4.1: Graph of function x2.

Look: when you consider points with x -coordinates ap-
proaching x0 , the y -coordinates of these points became
more and more closer to y0 = 2.25. This value is exactly
1.52, i.e. f (1.5). This coincidence ensures the smoothness
of the move of our pencil, i.e. of the (graph of the) func-
tion f (x).

We hope, that the explanations mentioned so far make
the following definitions clear.

Remark 4.6.1 Let us emphasize
that a and b := lim

x→a
f (x) are finite

real numbers (not ±∞), and moreover
a ∈ dom ( f ) is also required (which
was unimportant for lim

x→a
f (x)).

Definition 4.10

The function f : R → R is (two sided) continuous at
the point a ∈ dom ( f ) if

lim
x→a

f (x) = f (a) . �

Half-sided continuity can be defined similarly:

Definition 4.11

The function f : R → R is continuous from left /
from right at the point a ∈ dom ( f ) if

lim
x→a−

f (x) = f (a) / lim
x→a+

f (x) = f (a). �

Clearly we have
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Theorem 4.5

The function f : R → R is (two sided) continuous at
the point a ∈ dom ( f ) if and only if

lim
x→a+

f (x) = lim
x→a−

f (x) = f (a) . �

However, neither a function nor its graph mean a single
point, rather an interval of (infinite) points.

Definition 4.12

For any interval I ⊆ dom ( f ) the function f : R → R

is continuous on the interval I if f is continuous at
each point a ∈ I . �

We assure our Readers that in practice we only have to
calculate limits in some cases only, since (by Theorems)
all base and composite functions are continuous at most
of the points of their dom .

In many practical applications one formula is not enough
for a phenomenon, especially in extremal circumstances.
For example the physical properties of engines must be
described in low and in high temperatures, or interest
dependencies in stock exchange are different under low
and high economical restrictions, etc. Such phenomena
can not be described by one formula, in mathematics we
use the following notation.

Definition 4.13

For given functions g (x) and h (x) and a ∈ R the
definition of f (x) as

f (x) =


g (x) , if x ≤ a

h (x) , if x > a
.

has the following meaning: for the phenomenon (func-
tion) f (x) we have to use the formula g (x) for x ≤ a
and h (x) for a < x . Clearly the continuity of f (x) is
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crucial at the joint point a , which is our task in the
subsequent part of this Section.

Similar notations are in use, too, which can be un-
derstood easily, e.g.

f (x) =


g (x) , if x < a
b, if x = a
h (x) , if x > a

. �
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4.7 Step-by-Step Examples

Now we give step-by-step solutions to some problems. At the end of this section there
are more exercises for practice.

SOLVED EXAMPLE 4.13
Function Continuity

Check the continuity of the function below at the point a = 0 .

f (x) =


e2x + 8, if x ≤ 0

x√
x + 25− 5

, if x > 0
.

SOLUTION
Function f is continuous at the point a = 0 just in the case

lim
x→0−

f (x) = lim
x→0+

f (x) = f (0) .

From the definition of function f , we have

lim
x→0−

f (x) = lim
x→0−

e2x + 8 = e0 + 8 = f (0) = 9

(i.e. f (x) is continuous from left), so the only task left is to calculate

lim
x→0+

f (x)

and check = 9 (from right). From the definition of function f , we have

lim
x→0+

f (x) = lim
x→0+

x√
x + 25− 5

=

= lim
x→0+

x√
x + 25− 5

·
√

x + 25 + 5√
x + 25 + 5

=

= lim
x→0+

x
(√

x + 25 + 5
)

x + 25− 25
=

= lim
x→0+

(√
x + 25 + 5

)
= 10 6=9 = f (0) .

Though the right hand limit does exist, but it is different from f (0) , so f (x) is
not continuous from right at the point a = 0. See Figure 4.7.
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−4 −2 2 4 6

6

8

10

12

14

y = e2x + 8

y =
x√

x + 25− 5

x

y

Figure 4.2: Graph of function f .

The above computations show the break of function f
at point a = 0 , which break can not be eliminated.

SOLVED EXAMPLE 4.14
Function Continuity

Check the continuity of function below at point a = 0.

f (x) =



√
x + 2−

√
2− x

x
, if x ∈ [−2, 2] \ {0}

√
2

2
, if x = 0

.

SOLUTION

lim
x→0

f (x) = lim
x→0

√
x + 2−

√
2− x

x
=

= lim
x→0

√
x + 2−

√
2− x

x
·
√

x + 2 +
√

2− x√
x + 2 +

√
2− x

=

= lim
x→0

x + 2− (2− x)
x
(√

x + 2 +
√

2− x
) = lim

x→0

2x
x
(√

x + 2 +
√

2− x
) =

= lim
x→0

2√
x + 2 +

√
2− x

=
2

2
√

2
.

Since

lim
x→0

f (x) =
√

2
2

= f (0) ,

we must say that f (x) is continuous at the point a = 0 .

85



4 Limit and Continuity of One Variable Real Functions

4.8 Exercises

The solutions of the following problems can be found in
Chapter 8. Solutions.

Exercises 4.6

Decide the continuity of the functions below at the
point where the two formulae (g (x) and h (x)) are
joined.

1.

f (x) =


sin (8x)
sin (4x)

, if x 6= 0

2, if x = 0

,

See Solution 8.4.50

2.

f (x) =


x2 − x− 6
x2 − 2x− 3

, if x 6= 3

5
4

, if x = 3

,

See Solution 8.4.51

3.

f (x) =


2x−1, if x ≤ 0

√
x + 1− 1

x
, if x > 0

,

See Solution 8.4.52

4.

f (x) =


x2 − x
2− 2x

, if x < 1

log 1
2
(2x + 1) , if x ≥ 1

.

See Solution 8.4.53
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5 Derivatives of Real Functions

When investigating functions, e.g. increasing or decreas-
ing the tangent line (meeting smoothly the function curve
or graph) is a good approximation of the function at the
point P0 (x0, y0) where y0 = f (x0) and can help us. We omit now the exact geometrical

definition of the tangent line.However, to calculate the slope m = tan (α) of the tan-
gent line y = m · x + b is not so obvious, so we have to
calculate secant lines of the function: a straight line meet-
ing the function curve at (least) two points P0 (x0, y0) and
P1 (x1, y1) where y1 = f (x1).

x

y

x1 x2

y0 = f (x0)

y1 = f (x1)

P0

P1

Secant Line

x1 − x0

f (x1)− f (x0)

Figure 5.1: A secant line of a curve.

5.1 Basic Definitions and Theorems

It is well known from secondary schools, that the secant
line crossing the two points P0 and P1 has the equality

y = y0 +
y1 − y0

x1 − x0
· (x− x0) =

=
y1 − y0

x1 − x0
· x +

(
y0 − x0 ·

y0 − y1

x0 − x1

)
.
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One can except that the slopes of the secant lines approxi-
mate the slope of the tangent line, i.e.

m = lim
x1→x0

y1 − y0

x1 − x0
, (5.1.1)

as can be seen here.
The next definition is a slight variation of the above

definition of secant line. In fact (5.1.2) is a fraction, both
the enumerator and the denomina-
tor are differences.

Remark 5.1.1 Clearly the limit
(5.1.3) is convergent only for continu-
ous functions, so f ultimately must be
continuous at x0 .

The difference fraction (5.1.2) is the
slope of the secant lines at the fixed
point P0 (x0, y0) and the "moving"
point P (x, y), while the differential
fraction (5.1.3) is of the tangent line
at the fixed point P0 (x0, y0), of course
y0 = f (x0) and y = f (x).

Some other experts and many (mod-
ern) computer programs still use the
old fashioned notations

d
dx

f (x) or
d f
dx

(x)

for the derivative f ′ (x0), so we are
adviced to know these notations.

Definition 5.1: Derivative of a Function at a Point

Let f be a continuous function and let x0 ∈ dom ( f )
an inner point.

(i) For each x ∈ dom ( f ), x 6= x0 the fraction

f (x)− f (x0)

x− x0
(5.1.2)

is called difference fraction.
(ii) If (5.1.2) has a finite limit when x → x0 , then

this limit is denoted by f ′ (x0) ( f prime):

f ′ (x0) := lim
x→x0

f (x)− f (x0)

x− x0
(5.1.3)

and is called the differential fraction or the deriva-
tive of the function f at the point x0. �

Though (5.1.3) is defined only for a fixed (inner) point
x0 ∈ dom ( f ), and f ′ (x0) is a single real number, we can
extend for other points as in the next definition.

Definition 5.2: Derivative Function

Let f be a continuous function and let H ⊆ dom ( f )
be the set (possibly empty) of inner points x0 for which
(5.1.3) is convergent. Then we can define the deriva-
tive function of f as: f ′ : H → R and for each
x0 ∈ H we set f ′ (x0) := the limit in (5.1.3). �

In German: Ableitung, ableiten with
the same literary meaning.

Please have in mind that f ′ is another function, related to
f .

The word "to derive" means to deduce, give reasoning, to
trace the source, ...", and really f ′ is deduced from f . More-
over, we will deduce many properties of f from f ′!
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Higher order derivatives f ” (x), f ′′′ (x), ... , f (n) (x) ,
... (n is any natural number) of a function f (x) can "eas-
ily" be defined: f ” (x) := ( f ′ (x))′, f ′′′ (x) := ( f ” (x))′ =(
( f ′ (x))′

)′
, ... . Let us emphasize, that the number n

in the exponent f (n) (x) must be in brackets to denote the
n -th derivative, otherwise f n (x) := f (x) · ... · f (x) =

( f (x))n is the usual n -th power of f (w.r.t.1) the multi- 1 ) w.r.t. = with respect to

plication "·").

5.2 Differentiation Rules

Since all complicated functions (expressions) are build up
from basic functions, basic operations (+,-,·,/) and com-
positions, using the following Theorems we can derive all
functions!

Assuming f and g have the derivative functions f ′ and
g′ and c ∈ R is any fixed number, then the following
equalities hold.

Theorem 5.1: Sum and Difference Rule

( f (x)± g (x))′ = f ′ (x)± g′ (x) . �

Theorem 5.2: Constant Multiple Rule

(c · f (x))′ = c · f ′ (x) . �

Theorem 5.3: Product Rule

( f (x) · g (x))′ = f ′ (x) · g (x) + f (x) · g′ (x) . �

Theorem 5.4: Quotient Rule

(
f (x)
g (x)

)′
=

f ′ (x) · g (x)− f (x) · g′ (x)

[g (x)]2
. �
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Remark 5.2.1 Theorem 5.5 is often
called "onion- , cabbage- or chain
rule" since "first we derive the outer
part (the inner part remains), then (·)
we derive the next part (inner part re-
mains), " , or, another explanation:
the multipliers in the theorem with the
symbol · look like a chain.

Theorem 5.5: Chain Rule

[ f (g (x))]′ = f ′ (g (x)) · g′ (x)

[ f (g (h (x)))]′ = f ′ (g (h (x))) · g′ (h (x)) · h′ (x) . �

You must be an expert in deriving
any function!

When calculating derivative functions, using the above
theorems and omitting the limit (5.1.3), is called formal
derivative calculus. Deriving is one of the most fun-
damental calculation method in Mathematical Analysis
(calculus), it can be considered as the 5

th (or 6
th) basic

operation.
In the forthcoming Sections we learn many applica-

tions of derivatives of functions.
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5.3 Table of Derivatives

How to calculate the derivative function f ′ ? The limit
(5.1.3) is usually hard. Fortunately we have a lot of theo-
rems making much easier calculating derivative functions. Please say many thanks to the

mathematicians!

Theorem 5.6

All the basic functions can be derived ((5.1.3) exist)
at almost all inner points of dom ( f ) (with few excep-
tions), these derivative functions can be found in the
next Table. �

f (x) f ′(x)

c 0

xα αxα−1

ex ex

ax ax ln(a)

ln(x) 1
x

loga(x)
1

x ln(a)

sin(x) cos(x)

cos (x) − sin (x)

f (x) f ′(x)

tan (x)
1

cos2(x)

cot (x) dx − 1
sin2(x)

arcsin (x)
1√

1− x2

arccos (x) − 1√
1− x2

arctan (x)
1

1 + x2

arccot (x) − 1
1 + x2

c, α ∈ R, a ∈ (0, ∞) \ {1} .
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5.4 Step-by-Step Examples

Now we give a step-by-step solution to two problems. At the end of this section there
are more exercises for practice.

SOLVED EXAMPLE 5.1
Derivation

Derivate the following function.

f (x) = 3x4 +
2
x5 −

3
√

x

SOLUTION
First, we use Theorem 5.1.

f ′(x) =
(

3x4 +
2
x5 −

3
√

x
)′

=
(

3x4
)′

+

(
2
x5

)′
−
(

3
√

x
)′ .

Using Theorem 5.2 and some basic mathematics, all the derivations can be evalu-
ated using 5.3 Table of Derivatives, that is(

3x4
)′

= 3 · 4x3,(
2
x5

)′
=
(

2x−5
)′

= 2 · (−5)x−6 =
−10
x6 ,

and (
3
√

x
)′
=
(

x(
1
3)
)′

=
1
3

x(
−2
3 ) =

1
3

1
3
√

x2
.

This follows (
3x4 +

2
x5 −

3
√

x
)′

= 3 · 4x3 +
−10
x6 −

1
3

1
3
√

x2
.
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SOLVED EXAMPLE 5.2
Derivation

Derivate the following function.

f (x) = sin(x)ex +
ln(x)

x4 − 5x

SOLUTION
First, we use Theorem 5.1, that is(

sin(x)ex +
ln(x)

x4 − 5x

)′
= (sin(x)ex)′ +

(
ln(x)

x4 − 5x

)′
.

Using Theorem 5.3 and 5.4, all the derivations can be evaluated using 5.3 Table of
Derivatives. As

(sin(x)ex)′ = (sin(x))′ ex + sin(x) (ex)′ = cos(x)ex + sin(x)ex,

and(
ln(x)

x4 − 5x

)′
=

(ln(x))′ (x4 − 5x)− ln(x)
(
x4 − 5x

)′
(x4 − 5x)2 =

1
x (x4 − 5x)− ln(x)

(
4x3 − 5

)′
(x4 − 5x)2 ,

the result is(
sin(x)ex +

ln(x)
x4 − 5x

)′
= cos(x)ex + sin(x)ex +

1
x (x4 − 5x)− ln(x)

(
4x3 − 5

)′
(x4 − 5x)2 .

SOLVED EXAMPLE 5.3
Derivation

Derivate the following function.

f (x) = arctan
(

1
x

)

SOLUTION
Now, we use Theorem 5.5), that is

f ′(x) =
(

arctan
(

1
x

))′
= arctan′

(
1
x

)(
1
x

)′
.

As
(arctan (x))′ =

1
1 + x2 ,

93



5 Derivatives of Real Functions

and (
arctan

(
1
x

))′
=

1

1 +
(

1
x

)2 ,

this with (
1
x

)′
=
(

x−1
)′

= −x−2 =
−1
x2 .

follows that

f ′(x) =
(

arctan
(

1
x

))′
=

1

1 +
(

1
x

)2
−1
x2

is the final result.
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5.5 Exercises

The solutions of the following problems can be found in
Chapter 8. Solutions.

Exercises 5.1

Derivate the following functions.

1.
F(x) =

√
x +
√

x,
See Solution 8.5.1

2.

F(x) =
ln(2x− 4x3)

3
√

4x + 1
,

See Solution 8.5.2

3.

F(x) =
ln(x2 + 2x)

sin(ex)
,

See Solution 8.5.3

4.
F(x) = sin2(x) tan(x3 − 5x),

See Solution 8.5.4

5.

F(x) =
e2−3x4

4
√

cot(x)
,

See Solution 8.5.5

6.
F(x) =

tan(ex)

ln(x2)
,

See Solution 8.5.6

7.
F(x) = cos(x3 − 2x2) ln(sin(x)),

See Solution 8.5.7

8.

F(x) =
35x+2

ln(x2 + x)
,

See Solution 8.5.8

9.
F(x) = e3 ln(x) cot(x3 − 5x),

See Solution 8.5.9

10.
F(x) = (x2 + 1)1974 cos(x5 − 3x2).

See Solution 8.5.10
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5.6 Application I. - The Tangent Line

Now we give the equation for the tangent line, (meeting
smoothly the function curve). So, we are given a continu-
ous function f (x) and a point P0 (x0, y0) on the function
curve where x0 ∈ dom ( f ) an inner point and y0 = f (x0) ,
and we look for the equation y = mx + b for the tan-
gent line.

x0

y = f (x)

tangent line

x

y

Figure 5.2: Tangent line to function
f at the point x0.

Definition 5.3: The Tangent Line

If f : R → R is differentiable at the inner point x0,
than

y = f ′(x0)(x− x0) + f (x0)

line called tangent line to the function f at the point
x0. �

5.7 Step-by-Step Example

Now we give a step-by-step solution to some problems. At the end of this section there
are more exercises for practice.

SOLVED EXAMPLE 5.4
The tangent line

Write the equation of the tangent line of x0 = 1 to the graph of the following
function.

f (x) = e−3x.

SOLUTION First we need to compute a following derivative function

f ′(x) =
(

e−3x
)′

= −3e−3x.

Then we need to compute a following values:

f (x0) = f (1) = e−3 =
1
e3

f ′(x0) = f ′(1) = −3e−3 =
−3
e3
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Finally write the equation of the tangent line.

y =
−3
e3 (x− 1) +

1
e3

y =
−3x

e3 +
4
e3

y = e−3x

y = −3x
e3 + 4

e3

x

y
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5.8 Exercises

The solutions of the following problems can be found in
Chapter 8. Solutions.

Exercises 5.2

Write the equation of the tangent line to the graph of
the following function at that x0 point.

1.
f (x) = 4x− 1

x2 , x0 = 4,
See Solution 8.5.11

2.
f (x) = x ln(x), x0 = e,

See Solution 8.5.12

3.
f (x) =

√
x + 1, x0 = 3,

See Solution 8.5.13

4.

f (x) =
x + 2
x− 3

, x0 = 2,
See Solution 8.5.14

5.

f (x) = 2x− 1
x + 1

, x0 = 0.
See Solution 8.5.15
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5.9 Application II. - Extremal Values of Functions and
Monotonicity

First, we have to define precisely what we are looking for.

Remark 5.9.1 Remark, that ("pure")
monotone increasing/decreasing func-
tions can be constant, i.e. horizontal
graph on any subinterval of (a, b), see
for example

f (x) =
1
2
(|x + 1| − |x− 1|)

−1 1

y = f (x)

x

y

Figure 5.3: The graph of function f .
So, better titles would be mono-

tone not decreasing / not in-
creasing. Clearly strictly monotone
functions must not have horizontal
parts.

Remark 5.9.2 "iff" is a short form of
"if and only if"

Definition 5.4

A function f is said to be
(i) monotone increasing / decreasing on the

nonempty interval (a, b) iff for every x1, x2 ∈ (a, b),
x1 < x2 we have

f (x1) ≤ f (x2) / f (x1) ≥ f (x2)

(ii) strictly monotone increasing / decreasing on
the nonempty interval (a, b) iff for every x1, x2 ∈
(a, b), x1 < x2 we have

f (x1) < f (x2) / f (x1) > f (x2) . �

Now, how to decide from a complicated function on
which intervals it is monotone increasing or decreasing?
Even using modern HD computer graphics, the answer
is still difficult, see for example

g (x) = x3 + 7.5x2 + 18x, x ∈ R

y = g (x)

x

y

Figure 5.4: Graph of function g.

Despite this function has a relatively simple furmula,
it is hard (or impossible) to find exactly where it changes
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from increasing to decreasing or vica versa.

Theorem 5.7

(i) If the continuous function f is monotone in-
creasing / decreasing on the nonempty interval (a, b)
then for its derivative f ′ (x) we have

0 ≤ f ′ (x) / f ′ (x) ≤ 0 on the whole interval
(a, b).

(ii) If for the derivative f ′ (x) we have on the
whole interval (a, b)

0 < f ′ (x) / f ′ (x) < 0 , then (the original)
function f is monotone increasing / decreasing on
the nonempty interval (a, b). �

Sorry, we are not allowed to say "if and only". For
godness sake we use only (ii) in the practice.

Though this theorem requires a precise proof, it fits to
our intuition well. First, monotone increasing / decreas-
ing functions have tangent lines with positive / negative
slopes. Second, looking at the definition (5.1.3) of the
derivative we must observe that the enumerator and the
denominator must have the same / opposite signs for in-
creasing / decreasing functions.

In practice the extremal (minimal and maximal) values
of several variable functions are very important.

Definition 5.5: Local Maximal Value

Function f : R → R has a local maximal value
y0 = f (x0) at the fixed place (point) x0 ∈ dom ( f ) iff
there is a neighborhood around x0 (for some ε > 0)
such that f (x0) is greater than f (x) for any x from
this neighborhood, that is

f (x0) ≥ f (x) ⇐⇒ f (x0) is maximal

for any x : x0 − ε < x < x0 + ε.
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Definition 5.6: Local Minimal Value

Function f : R → R has a local minimal value
y0 = f (x0) at the fixed place (point) x0 ∈ dom ( f ) iff
there is a neighborhood around x0 (for some ε > 0)
such that f (x0) is smaller than f (x) for any x from
this neighborhood, that is

f (x0) ≤ f (x) ⇐⇒ f (x0) is minimal

for any x : x0 − ε < x < x0 + ε.

Definition 5.7: Global Maximal Value

Function f : R → R has a global maximal value
y0 = f (x0) at the fixed place (point) x0 ∈ dom ( f ) iff
the neighborhood (x0 − ε < x < x0 + ε) above can be
replaced to the whole dom ( f ), that is

f (x0) ≥ f (x) ⇐⇒ f (x0) is global maximal

for any x ∈ dom ( f ).

Definition 5.8: Global Minimal Value

Function f : R → R has a global minimal value
y0 = f (x0) at the fixed place (point) x0 ∈ dom ( f ) iff
the neighborhood (x0 − ε < x < x0 + ε) above can be
replaced to the whole dom ( f ), that is

f (x0) ≤ f (x) ⇐⇒ f (x0) is global minimal

for any x ∈ dom ( f ).

Any maximal / minimal value f (x0) is called shortly a
maximum / minimum of f , the respective plurals are

maxima and minima. The collective word for maximum
and minimum is extremal value or extremum, the plural
form is extrema. In each case x0 is the place or spot of
the extremum.

The following theorems and methods tell us how to
find the spots and the values of the local extrema. After,
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global extrema can be found by considering the largest
local maximum / smallest local minimum and checking
the functions’s values at the endpoints of dom ( f ).

Theorem 5.8

If the function f : R → R has a local extremum at
the point x0 ∈ dom ( f ) then the derivative of f at
x0 must be zero, that is

f ′ (x0) = 0 . �

Remark 5.9.3 i) The equality in
Theorem 5.8 should be seem obvious:
the tangent lines at maxima and min-
ima are horizontal, so their slope are 0.

ii) Let us emphasize, that the re-
quirement in Theorem 5.8 is necces-
sary only but not sufficient, i.e. from

f ′ (x0) = 0

we should not deduce that the function
f would have any extremum. Later
theorems and explanations help us to
resolve this situation.

Definition 5.9: Critical Point

The points x0 ∈ dom ( f ) satisfying the above equality

f ′ (x0) = 0

are called stationary or critical points or places. �

For deciding if stationary points are local extrema, there
are methods using second derivatives f ” (x), but they are
not 100% safe. So we suggest the following method.

Theorem 5.9

If x0 ∈ dom ( f ) is a stationary point of f and the
derivative f ′ (x) changes its sign at x0 , then the
(original) function has a local extremum at x0 .

In more detail: if there is an ε such that
i) f ′ (x) is positive for x0 − ε < x < x0 and nega-

tive for x0 < x < x0 + ε then f has a local maximum
x0 ,

ii) f ′ (x) is negative for x0 − ε < x < x0 and posi-
tive for x0 < x < x0 + ε then f has a local minimum
x0 . �

5.10 Step-by-Step Example

Now we give a step-by-step solution to some problems. At the end of this section there
are more exercises for practice.
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SOLVED EXAMPLE 5.5
Monotonity

Calculate the intervals, where the following function is monotone increasing /
decreasing and give the extremal points and values of the function.

f (x) = x3 + 2x2 − x− 2, x ∈ R

SOLUTION First, we have to calculate the following limits.

lim
x→−∞

x3 + 2x2 − x− 2 = −∞

lim
x→∞

x3 + 2x2 − x− 2 = ∞

This follows that there is neither a global maximal nor a global minimal value,
just local. Now, we determine the derivate function.

f ′(x) =
(

x3 + 2x2 − x− 2
)′

= 3x2 + 4x− 1

Using the derivative function, we can give the extremal points. For this, we solve
equation

f ′(x) = 0.

f ′(x) = 3x2 + 4x− 1 = 0

⇓

x1,2 =
−4±

√
16− 4 · 3 · (−1)

6
=
−4±

√
28

6

x1 = −2
3
+

√
7

3
≈ −1, 549, x2 = −2

3
−
√

7
3
≈ 0, 215

This means that function f can have local extremal value at x1 and x2.
We use Theorem 5.7 to determine the intervals, where function f is increasing

or decreasing. For this, we determine the intervals where the derivative function
f ′ is negative, the intervals where it is positive and examine whether function f ′

changes sign at x1 and x2.
We use the following table to summarise our results.
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x < x1 x = x1 x1 < x < x2 x = x2 x2 < x
f ′(x) + 0 − 0 +

f (x) ↗ max ↘ min ↗

x1 x2

y = x3 + 2x2 − x− 2

x

y

SOLVED EXAMPLE 5.6
Monotonity

Calculate the intervals, where the following function is monotone increasing /
decreasing and give the extremal points and values of the function

f (x) = x +
1

x− 1
, x ∈ R\{1}.

SOLUTION
This function has one breaking point (x = 1), so we have to calculate the following
limits.

lim
x→−∞

x +
1

x− 1
= −∞

lim
x→1−

x +
1

x− 1
= −∞

lim
x→1+

x +
1

x− 1
= ∞

lim
x→∞

x +
1

x− 1
= ∞

This follows that there is neither a global maximal nor a global minimal value,
just local. Now, we determine the derivate function

f ′(x) =
(

x +
1

x− 1

)′
= 1− 1

(x− 1)2 .
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Using the derivative function, we can give the extremal points. For this, we solve
equation

f ′(x) = 0.

f ′(x) = 1− 1
(x− 1)2 = 0

(x− 1)2 − 1
(x− 1)2 =

x2 − 2x
(x− 1)2 = 0

⇓
x1 = 0

x2 = 2

This means that function f can have local extremal value at x1 and x2.
We use Theorem 5.7 to determine the intervals, where function f is increasing

or decreasing. For this, we determine the intervals where the derivative function
f ′ is negative, the intervals where it is positive and examine whether function f ′

changes sign at x1 and x2.
We use the following table to summarise our results.

x < 0 x = 0 0 < x < 1 1 < x < 2 x = 2 2 < x
f ′(x) + 0 − − 0 +

f (x) ↗ max ↘ ↘ min ↗

1 2

x +
1

x− 1

x

y
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SOLVED EXAMPLE 5.7
Monotonity

Calculate the intervals, where the following function is monotone increasing /
decreasing and give the extremal points and values of the function.

f :
[

π

2
;

5π

2

]
→ R, f (x) = ecos(x)

SOLUTION
As function cos is bounded, we get

e−1 ≤ ecos(x) ≤ e1.

In this case we can get eighter global or local extremal points. Firstly, we need to
derivate the function.

f ′(x) =
(

ecos(x)
)′

= − sin(x)ecos(x)

Using the derivative function, we can give the extremal points. For this, we solve
equation

f ′(x) = 0.

As for x ∈
[

π

2
;

5π

2

]
, ecos(x) > 0, we have

f ′(x) = − sin(x)ecos(x) = 0,

⇓
sin(x) = 0,

x1 = π,

x2 = 2π.

This means that function f can have local extremal value at x1 and x2.
We use Theorem 5.7 to determine the intervals, where function f is increasing

or decreasing. For this, we determine the intervals where the derivative function
f ′ is negative, the intervals where it is positive and examine whether function f ′

changes sign at x1 and x2.
We summarise our results in the following table.

x =
π

2
π

2
< x < π x = π π < x < 2π x = 2π 2π < x <

5π

2
x =

5π

2
f ′(x) − − 0 + 0 − −
f (x) max ↘ min ↗ max ↘ min
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This follows, we have two maximal and two minimal values, so we have to decide,
which one is global, a which one is local.

f (
π

2
) = e

cos
(π

2

)
= e0 = 1, local maximal value

f (π) = ecos(π) = e−1 =
1
e

, global minimal value

f (2π) = ecos(2π) = e1 = e, global maximal value

f (
5π

2
) = e

cos

(5π

2

)
= e0 = 1, local minimal value.
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5.11 Exercises

The solutions of the following problems can be found in
Chapter 8. Solutions.

Exercises 5.3

Calculate the intervals, where the following function
is monotone increasing / decreasing and give the ex-
tremal points and values of the function.

1.
f (x) =

x + 1
x− 3

, x ∈ R \ {3},
See Solution 8.5.16

2.
f (x) = x3 − 6x2, x ∈ [−1; 2] ,

See Solution 8.5.17

3.
f (x) = x5 + 5x4, x ∈ R,

See Solution 8.5.18

4.
f (x) = 3x3 + 9x2, x ∈ [−1; 1] ,

See Solution 8.5.19

5.
f (x) = 2x3 − 3x2 − 12x, x ∈ [0; 4] ,

See Solution 8.5.20

6.
f (x) = 2x3 − 3x2 − 120x, x ∈ [−2; 6] ,

See Solution 8.5.21

7.

f (x) =
x3

3
+ x2 − 15x, x ∈ R.

See Solution 8.5.22
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5.12 Application III. - Convexity of Functions and Points
of Inflection

In the previous section we studied the monotonity of a
function. However, there is another issue to consider
when we study the shape of the graph of a function.
How does it curves? Figure 5.5 shows curves of different
shapes. Not only the shapes, but the rates of the mono-
tonicity of these functions are changing differently. This
phenomenon is investigated in this section.

x

y

x

y

xy xy

Figure 5.5: Curves of different shapes.

Secant Line

x

y

Secant Line

xy

Figure 5.6: Graph of a convex /
concave function.

Definition 5.10: Convex / Concave Function

A function f is called convex / concave over the inter-
val (a, b) ⊆ dom ( f ) if the graph of the function is
under / above all the secant lines. �

The explanation of the words convex and concave came
from geometry: if you draw any straight line above the
graph of the function, the geometrical plane figure you
get is (geometrically) convex or concave, looking from be-
low.
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How to decide exactly from function it is convex or con-
cave?

Theorem 5.10

(i) If the continuous function f is convex / concave
on the nonempty interval (a, b) then for its second
derivative f ” (x) we have

f ” (x) / ≤ f ” (x) ≤ 0

on the whole interval (a, b).

(ii) If for the second derivative f ” (x) we have
on the whole interval (a, b)

0 < f ” (x) / f ” (x) < 0,

then (the original) function f is convex / concave on
the interval (a, b). �

Sorry, we are not allowed to say "if and only", we use
only (ii) in the practice.

Though this theorem requires a precise proof, it fits to
our intuition well. Once, draw several tangent lines of
the function graph and investigate the changes of their
slopes. At a convex function these slopes are increasing
(when moving x0 from left to right), at a concave function
these slopes are decreasing.

Second, looking to the changes of the slopes, one can
imagine the unknown graph of the function.

How to find the convex and concave inervals of a func-
tion? Determine first the second derivative f ” and its
roots, i.e. solve f ” (x) = 0, and find the sign of f ” (x)
between these roots (and be aware of some other compli-
cations). inflection point

x

y

"Inflection" comes from the word
"flexible": the graph of f is really
flexible at inflection point(s).

Definition 5.11: Inflection Point

Any point x0 ∈ dom ( f ) is called inflection point (or
point of inflection) of f if f is continuous at x0 and
changes convexity at x0 . �
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Theorem 5.11

Let x0 ∈ dom ( f ). If there is an ε such that the sign
of f ” is different on the intervals (x0 − ε , x0) /left/
and (x0 , x0 + ε) /right/, then f has an inflection
point at x0 . �

5.13 Step-by-Step Example

Now we give a step-by-step solution to some problems. At the end of this section there
are more exercises for practice.

SOLVED EXAMPLE 5.8
Convexity

Determine all intervals where f is convex / concave and list all inflection points.

f (x) = xe−2x, x ∈ R

SOLUTION
We use the second derivative function to determine the inflection points. For this,
we calculate the first derivate function

f ′ (x) =
(

xe−2x
)′

= e−2x − 2xe−2x,

and then we give the second derivative function.

f ′′ (x) =
(

xe−2x
)′′

=
(

e−2x − 2xe−2x
)′

=

= −2e−2x −
(

2e−2x + 2xe−2x · (−2)
)
= 4xe−2x − 4e−2x.

Now, we solve the following equation.

f ′′ (x) = 4xe−2x − 4e−2x = 0

As e−2x > 0, we have

4xe−2x − 4e−2x = 0,

4e−2x (x− 1) = 0,

which follows
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x− 1 = 0.

So the solution is
x = 1.

This means that function f can have inflection poin at x = 1.
We use Theorem 5.10 to determine the intervals, where function f is convex or

concave. For this, we determine the intervals where the derivative function f ′′

is negative, the intervals where it is positive and examine whether function f ′′

changes sign at x = 1.
We can summarise our results in the following table.

dom ( f )

sign of f ′′

convexity of f and inflection points

For function f we get the following table.

dom ( f ) = R x < 1 1 1 < x

f ′ − 0 +

f ∩ inflection point ∪
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SOLVED EXAMPLE 5.9
Convexity

Determine all intervals where f is convex / concave and list all inflection points.

f (x) = x +
1
x

, x ∈ R \ {0}

SOLUTION
We use the second derivative function to determine the inflection points. For this,
we calculate the first derivate function

f ′ (x) =
(

x +
1
x

)′
= 1− x−2 = 1− 1

x2 ,

and then we give the second derivative function.

f ′′ (x) =
(

x +
1
x

)′′
=
(

1− x−2
)′

= 2x−3 =
2
x3 ,

and solve the following equation.

f ′′ (x) =
2
x3 = 0

But this equation has no solution, which means there is no inflection point for
function f .

We use Theorem 5.10 to determine the intervals, where function f is convex or
concave. For this, we determine the intervals where the derivative function f ′′ is
negative, the intervals where it is positive.

We can summarise our results in the following table.

dom ( f ) = R \ {0} x < 0 0 0 < x

f ′′ − +

f ∩ ∪
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SOLVED EXAMPLE 5.10
Convexity

Determine all intervals where f is convex / concave and list all inflection points.

f (x) = x3 + 2x2 − x− 2, x ∈ R

SOLUTION
Firstly, we have to derivate the function twice.

f ′(x) =
(

x3 + 2x2 − x− 2
)′

= 3x2 + 4x− 1

f ′′(x) =
(

3x2 + 4x− 1
)′

= 6x + 4

Using the second derivative function we can give the inflexion points and the
intervals, where the function is convex or concave.

f ′′(x) = 6x + 4 = 0

⇓

x = −2
3

dom ( f ) = R x < −2
3

−2
3

−2
3
< x

f ′′ + 0 −

f ∪ inflection point ∩
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5.14 Exercises

The solutions of the following problems can be found in
Chapter 8. Solutions.

Exercises 5.4

Determine all intervals where f is convex / concave
and list all inflection points.

1.
f (x) =

x + 1
x− 3

, x ∈ R \ {3},
See Solution 8.5.23

2.
f (x) =

1− x
ex , x ∈ R,

See Solution 8.5.24

3.

f (x) =
x + 1

ex , x ∈ R,
See Solution 8.5.25

4.

f (x) =
x4

12
+

x3

3
− 4x2 + 6x, x ∈ R,

See Solution 8.5.26

5.

f (x) =
x4

12
+

x3

6
− 3x2 + 12x, x ∈ R.

See Solution 8.5.27

115



5 Derivatives of Real Functions

5.15 Application IV. - L’Hospital’s Rule

In this section we examine a useful tool for evaluating

limits type of ”
0
0

” or ”
∞
∞

”. Guillaume François Antoine
Marquis de L’Hôpital (1661-1704)
French army officer, knight, ama-
teur mathematician. His full name
was: Guillaume- François- Antoine
Marquis de l’Hôpital, Marquis de
Sainte- Mesme, Comte d’Entremont
and Seigneur d’Ouques-la-Chaise.

He learned this theorem from his
teacher, Johann Bernoulli (1667-
1748), a Swiss mathematician and
published it in his book. See more
here.

The following result is named after Guillaume François
Antoine Marquis de L’Hôpital though it was invented by
his teacher, Johann Bernoulli (1667-1748) Swiss mathe-
matician.

Theorem 5.12: L’Hospital’s Rule

Consider the limit problem

lim
x→A

f (x)
g (x)

, (5.15.1)

where either A ∈ R or A = ±∞ . Assume further
the following three conditions:

i) either lim
x→A

f (x) = lim
x→A

g (x) = 0

("(5.15.1) is of type
0
0

")

or lim
x→A

f (x) = ±∞ and lim
x→A

g (x) = ±∞

("(5.15.1) is of type
∞
∞

"),

ii) both f ′ (x) and g′ (x) exist and g′ (x) 6= 0 for
x → A ,

iii) the limit lim
x→A

f ′ (x)
g′ (x)

does exist

(either ∈ R or = ±∞).

Then
lim
x→A

f (x)
g (x)

= lim
x→A

f ′ (x)
g′ (x)

.

�
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Derivatives of Real Functions 5

5.16 Step-by-Step Example

Now we give a step-by-step solution to some problems. At the end of this section there
are more exercises for practice.

SOLVED EXAMPLE 5.11
L’Hospital’s Rule

Evaluate the following limit.

lim
x→∞

x2

e3x

SOLUTION
As the limit is type of ”

(∞
∞

)
” and there are differentiable functions in the nu-

merator and in the demoninator, we can apply L’Hospital’ rule.

lim
x→∞

x2

e3x = lim
x→∞

(
x2)′

(e3x)
′ = lim

x→∞

2x
e3x · 3.

As the new limit is still type of ”
(∞

∞

)
” and we still have differentiable functions

in the numerator and in the demoninator, we can apply L’Hospital’s rule again.

lim
x→∞

2x
3e3x = lim

x→∞

(2x)′

(3e3x)
′ = lim

x→∞

2
3e3x · 3 = 0.

SOLVED EXAMPLE 5.12
L’Hospital’s Rule

Evaluate the following limit.

lim
x→0

2 arctan(x)− (x + 1)2 + 1
sin2(x)

SOLUTION
First, we substitute x = 0 to the fraction.

2 arctan(0)− (1)2 + 1
sin2(0)

=
0
0

We obtain that the limit is type of "
(

0
0

)
" and we have differentiable functions in

the numerator and in the demoninator, so we can apply L’Hospital’s rule.

117



5 Derivatives of Real Functions

lim
x→0

2 arctan(x)− (x + 1)2 + 1
sin2(x)

= lim
x→0

2
1 + x2 − 2(x + 1)

2 sin(x) cos(x)

Substitute x = 0 again.
2
1
− 2

2 sin(0) cos(0)
=

0
0

.

We get, that the limit is type of "
(

0
0

)
" and we still have differentiable functions in

the numerator and in the demoninator, so we can apply L’Hospital’s rule again.

lim
x→0

2
1 + x2 − 2(x + 1)

2 sin(x) cos(x)
= lim

x→0

−4x
(1 + x2)2 − 2

2
(
cos2(x)− sin2(x)

)
Substiting x = 0 again, we have

0
(1 + 02)2 − 2

2
(
cos2(0)− sin2(0)

) = −1,

so the result is

lim
x→0

2 arctan(x)− (x + 1)2 + 1
sin2(x)

= lim
x→0

−4x
(1 + x2)2 − 2

2
(
cos2(x)− sin2(x)

) = −1.
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5.17 Exercises

The solutions of the following problems can be found in
Chapter 8. Solutions.

Exercises 5.5

Evaluate the following limit.

1.
lim
x→0

arctan(x)− x
1− cos(x)

,
See Solution 8.5.28

2.
lim
x→1

cos(x− 1) + ln(x)− x
(x− 1)2 ,

See Solution 8.5.29

3.

lim
x→0

arctan(x) + 2x2 + x
cos(x)− 1

,
See Solution 8.5.30

4.

lim
x→−1−

tan(x + 1)

(x + 1)2 ,
See Solution 8.5.31

5.

lim
x→2

ln(x− 1)− sin(x− 2)
(x− 2)2 .

See Solution 8.5.32
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6 Antiderivatives and Indefinite In-
tegrals of Real Functions

Previously, we calculated the derivatives of many func-
tions. Now we have the following question: If we have a
function f can we find another function F with derivative
f , i. e. F′ = f ? How many solutions do exist? How can
we find the solutions? To answer these questions, first we
introduce the basic definitions and theorems.

6.1 Basic Definitions and Theorems

Definition 6.1: Primitive Function

Let I ⊂ R be an interval and consider function f :
I ⊂ R. A function F : I ⊂ R is an antiderivative or
primitive function of function f over interval I if
F is differentiable and F′(x) = f (x) for all x ∈ I .
�

Theorem 6.1

If F is an antiderivative of function f over interval
I then for each C ∈ R, function F + C is also an
antiderivative of f over I, and every antiderivative of
f over I has the form of F + C, where C ∈ R. �

x

y

Figure 6.1: The family of an-
tiderivatives of function 2x.

The functions F+C, where C is any real number is also
known as the family of antiderivatives of f .
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6 Antiderivatives and Indefinite Integrals of Real Functions

Notation 6.1.1∫
f (x) dx = F (x) + C.

Definition 6.2: Indefinite Integral

Let I ⊂ R be an interval and consider function f :
I → R. The indefinite integral of f over interval
I ⊂ R is the set of the antiderivatives of f over I (if
it is not empty). It is denoted by

∫
f or

∫
f (x) dx.

Function f is called the integrand. �

Theorem 6.2: Linearity

Let (a, b) ⊂ R, and k ∈ R. If F and G are the an-
tiderivatives of functions f and g over (a, b), respec-
tively, then kF is the antiderivative of k f and F + G
is the antiderivative of f + g over (a, b) and∫

(k f ) = k
∫

f ,∫
( f + g) =

∫
f +

∫
g. �

Theorem 6.3: Newton’s Theorem

For any continuous function f a primitive function F
of f (i.e. F′ = f ) does exist. �

Liouville1 showed that primitive function F of "certain" 1 Joseph Liouville (1809-1882),
French mathematician.functions f can not be written with a formula. The descrip-

tion of these "certain" functions is complicated, but Liou-
ville’s result says that we are unable to write F (both in
paper with pencil and in computer). Many simple func-
tions, used in engineering, economics and many other
areas of our life, belong to these "certain" functions. For
example∫

ex2
dx,

∫
eaxn

dx,
∫ eax

x
dx (a 6= 0, n ∈ N, n > 1),∫

e−x2
dx ,

∫ ex

x
dx,

∫
sin
(
x2) dx,

∫
cos

(
x2) dx,∫ √

1− k · sin2 (x) dx (k 6= 1),

and moreover, the most important ones
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Φ (x) :=
1√
2π

x∫
−∞

e−t2/2 dt , Ci (x) :=
∫ cos (x)

x
dx,

Si (x) :=
∫ sin (x)

x
dx, Li (x) :=

∫ 1
ln (x)

dx,

and many others.

To overcome this trouble, tables for the corresponding
primitive functions have been constructed (the appropri-
ate methods belong to the subject of Numerical Analysis).

6.2 Table of Standard Indefinite Integrals

The table below contains the integrals used in many prob-
lems.

∫
f (x) dx F (x) + C

∫
xαdx xα+1

α + 1
+ C

∫ 1
x

dx ln |x| + C

∫
exdx ex + C

∫
axdx ax

ln a
+ C

∫
sin (x) dx − cos (x) + C∫
cos (x) dx sin (x) + C

∫
f (x) dx F (x) + C∫ 1

cos2(x)dx tan (x) + C

∫
− 1

sin2 x
dx cot (x) + C

∫ 1√
1−x2 dx arcsin (x) + C

∫ (
− 1√

1−x2

)
dx

arccos (x) +
C

∫ 1
1+x2 dx arctan (x) +

C∫ (
− 1

1+x2

)
dx arccot (x) +C

c, α ∈ R, α 6= 1, a ∈ (0, ∞) \ {1} .
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6.3 Step-by-Step Examples

Now we give a step-by-step solution to some basic problems. At the end of this section
there are more exercises for practice.

SOLVED EXAMPLE 6.1
Indefinite Integral

Evaluate the following indefinite integral.∫ (
x2 + 5x3 −

√
x
)

dx.

SOLUTION
Integration is the reverse process of differentiation. We are really just asking what
we differentiated to get the given function.

We use the linear proprety of the indefinite integral (Theorem 6.2) and some basic
mathematics.∫ (

x2 + 5x3 −
√

x
)

dx =
∫

x2dx+ 5
∫

x3dx−
∫ √

xdx =
∫

x2dx+ 5
∫

x3dx−
∫

x
1
2 dx.

All the integrals can be evaluated using the 6.2 Table of Standard Indefinite Inte-
grals. That is ∫

x2dx =
x3

3
+ C1,∫

x3dx =
x4

4
+ C2,

and ∫
x

1
2 dx =

x
1
2+1

1
2 + 1

+ C3.

This follows∫ (
x2 + 5x3 −

√
x
)

dx =
x3

3
+ C1 + 5 ·

(
x4

4
+ C2

)
− x

1
2+1

1
2 + 1

+ C3.

But we do not need three separate constants, so we combine them as one C. That
is ∫ (

x2 + 5x3 −
√

x
)

dx =
x3

3
+ 5 · x4

4
− x

1
2+1

1
2 + 1

+ C.
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SOLVED EXAMPLE 6.2
Indefinite Integral

Evaluate the following indefinite integral.∫ (
sin (x) +

3
x
− 1

x2

)
dx.

SOLUTION
We are asked to determine all functions whose derivative is sin (x) + 3

x −
1
x2 . We

use the linear proprety of the indefinite integral (Theorem 6.2) again.∫ (
sin (x) +

3
x
− 1

x2

)
dx =

∫
sin (x) dx +

∫ 3
x

dx−
∫ 1

x2 dx =

=
∫

sin (x) dx + 3
∫ 1

x
dx−

∫
x−2dx

All the integrals can be evaluated using the 6.2 Table of Standard Indefinite Inte-
grals. That is∫ (

sin (x) +
3
x
− 1

x2

)
dx = − cos (x) + 3 ln |x| − x−1

−1
+ C.
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6.4 Exercises

The solutions of the following problems can be found in
Chapter 8. Solutions.

Exercises 6.1

Evaluate the following indefinite integrals.

1. ∫ √
x
√

xdx,
See Solution 8.6.1

2. ∫ x2 + 5
x

dx,
See Solution 8.6.2

3. ∫ (
2x − 5

x2 + 1

)
dx,

See Solution 8.6.3

4. ∫
e2x+3dx.

See Solution 8.6.4
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6.5 Integration by Parts

Theorem 6.4: Integration by Parts

Let (a, b) ⊂ R. If f and g is differentiable on (a, b)
and function f g′ has antiderivative over (a, b) then
function f ′g also has antiderivative over (a, b) and∫

f ′ (x) g (x) dx = f (x) g (x)−
∫

f (x) g′ (x) dx,

for x ∈ (a, b) . �

Integration by parts is a method for integrating special
products of functions which corresponds to the product
rule for derivatives.
We have to calculate function f (x) and g′ (x) . For this

we determine functions f ′ (x) and g (x) and we inte-

grate function f ′ (x) and differentiate function g (x) .
The following table will be very useful.

Integration by Parts

∫
f ′ (x) g (x) dx = f (x) g (x) −

∫
f (x) g′ (x) dx.

Given Calculated

In
te

gr
at

e f ′ f

D
iff

er
en

ti
at

e g g′
This integration technique can be very useful if a prod-

uct of a transcendental function and an algebraic function
is the integrand. The following table contains some com-
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mon cases.

Remark 6.5.1 We use method shown
in Solved Example 6.3 in the following
cases ∫

P (x) · sin (ax + b) dx,∫
P (x) · cos (ax + b) dx,

and ∫
P (x) · eax+bdx,

where P is a polinomial and a, b ∈ R,
a 6= 0.

f ′ g

sin (ax + b) P (x)

cos (ax + b) P (x)

eax+b P (x)

where P (x) is a polynomial function of x and a, b ∈ R,
a 6= 0,
and

Remark 6.5.2 We use method shown
in Solved Example 6.5 in the following
cases ∫

P (x) · loga (bx + c) dx,∫
n
√

x · loga (bx + c) dx,∫ 1
xn · loga (bx + c) dx,

and ∫ 1
n
√

x
· loga (bx + c) dx,

where P is a polinomial and , n ≥ 2
integer, b, c ∈ R, b 6= 0, and a ∈
(0, ∞) \ {1} .

f ′ g

P (x) ln (x)

n
√

x ln (x)

1
xn

ln (x)

where P (x) is a polynomial function of x and n ≥ 2
integer.
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6.6 Step-by-Step Examples

Now we give a step-by-step solution to some problems. At the end of this section there
are more exercises for practice.

SOLVED EXAMPLE 6.3
Indefinite Integral - Integration by Parts

Evaluate the following indefinite integral.∫
x sin (x) dx.

SOLUTION
To use this technique we need to identify candidates for functions f ′ (x) and

g (x) . We wish to replace integral
∫

f ′g with another (
∫

f g′) , which can be
easier to evaluate. Let

f ′ (x) = sin (x)

and
g (x) = x.

We have to calculate function f (x) and g′ (x) . For this we determine functions

f ′ (x) and g (x) and we integrate function f ′ (x) and differentiate function

g (x) .

f (x) =
∫

sin (x) dx = − cos (x) ,

and
g′ (x) = 1 .

or shortly
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Given Calculated

I f ′ (x) = sin (x) f (x) = − cos (x)

D g (x) = x g′ (x) = 1

from Theorem 6.4, we obtain∫
x sin (x) dx = − cos (x) · x −

∫ (
− cos (x)

)
· 1 dx =

= − cos (x) · x +
∫

cos (x) dx.

As ∫
cos (x) dx = sin (x) + C,

the solution is ∫
x sin (x) dx = − cos (x) · x + sin (x) + C.

SOLVED EXAMPLE 6.4
Indefinite Integral - Integration by Parts

Evaluate the following indefinite integral.∫
x2exdx.

SOLUTION
First, we need to identify candidates for functions f ′ (x) and g (x) .
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So let

Given Calculated

I f ′ (x) = ex f (x) = ex

D g (x) = x2 g′ (x) = 2x

Using Theorem 6.4, we get∫
x2 ex dx = ex · x2 −

∫
ex · 2x dx = x2ex − 2

∫
xexdx.

Note that ∫
xexdx

is not a standard integral. We calculate this integral by repeated integration by
parts. From

Given Calculated

I f ′ (x) = ex f (x) = ex

D g (x) = x g′ (x) = 1

we obtain

∫
x ex dx = ex · x −

∫
ex · 1 dx = xex −

∫
exdx = xex − ex.

Combining this with the previous result, we get∫
x2exdx = x2ex − 2 (xex − ex) + C.
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SOLVED EXAMPLE 6.5
Indefinite Integral - Integration by Parts

Evaluate the following indefinite integral.∫
x ln (x) dx.

SOLUTION
Let

f ′ (x) = x

and
g (x) = ln (x) .

We have to calculate function f (x) and g′ (x) . For this we integrate function

f ′ (x) and differentiate function g (x) .
Using the idea of the previous example, we get

Given Calculated

I f ′ (x) = x f (x) = x2

2

D g (x) = ln (x) g′ (x) = 1
x

and from Theorem 6.4, we get∫
ln (x) x dx = x2

2 · ln (x) −
∫

x2

2 ·
1
x dx =

x2

2
ln (x)−

∫ x2

2
· 1

x
dx.

Next, we must simplify
x2

2
· 1

x
.

That is
x2

2
· 1

x
=

x
2

,

so we get the original
∫

xdx integral back, but with another coefficient.
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Hence ∫
x ln (x) dx =

x2

2
ln (x)− 1

2

∫
xdx.

This yields ∫
x ln (x) dx =

x2

2
ln (x)− x2

4
+ C.
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6.7 Exercises

The solutions of the following problems can be found in
Chapter 8. Solutions.

Exercises 6.2

Evaluate the following indefinite integrals.

1. ∫
x2 sin (x) dx,

See Solution 8.6.5

2. ∫
(x− 1) cos (x) dx,

See Solution 8.6.6

3. ∫
x · 2xdx,

See Solution 8.6.7

4. ∫
ln (x) dx,

See Solution 8.6.8

5. ∫ √
x ln (x) dx,

See Solution 8.6.9

6. ∫ 1√
x

ln (x) dx,
See Solution 8.6.10

7. ∫ (
x2 + 1

)
ln (x) dx,

See Solution 8.6.11

8. ∫
2x log2 (x) dx,

See Solution 8.6.12

9. ∫
(2x + 2) ln (x + 2) dx,

See Solution 8.6.13

10. ∫
xe2x+3dx.

See Solution 8.6.14
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6.8 Integration by Substitution

Theorem 6.5: Substitution Rule

Let g be differentiable function on (a, b) ⊂ R whose
range is an interval. If F is an antiderivative of f on
g ((a, b)) , then F ◦ g is an antiderivative of ( f ◦ g) · g′

on (a, b), i. e.

∫
f (g (x)) g′ (x) dx =

[∫
f (u) du

]
u=g(x)

=

= F (g (x)) + C,

for x ∈ (a, b) . �

Now, we consider the following special cases of the
substitution rule.

First, let us apply the above theorem to the composite
function f (ax + b) , i.e. when g (x) = ax + b .

So, consider an integral of the form∫
f (ax + b) dx

where a, b ∈ R, a 6= 0. Letting

ax + b = y,

we have
adx = dy,

so
dx =

1
a

dy.

This allows us to change variable from x to y, that is∫
f (ax + b) dx =

∫
f (y)

1
a

dy =
1
a

∫
f (y) dy.

Suppose ∫
f (y) dy = F (y) + C,

then ∫
f (ax + b) dx =

1
a

F (ax + b) + C.

So we get the following theorem.
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Theorem 6.6: Linear Substitution

Let F be the antiderivative of f and g over (α, β) , let
g (x) = ax + b be a linear function where a, b ∈ R,
a 6= 0 and let (γ, δ) be an interval such g ((γ, δ)) ⊂
(α, β) . Then

1
a
(F ◦ g) is an antiderivative of f ◦ g over

(γ, δ) and∫
f (ax + b) dx =

1
a

F (ax + b) + C,

for x ∈ (a, b) . �

Now we show another application of Theorem 6.5. Con-
sider an integral of the form∫ f ′ (x)

f (x)
dx

where f is differentiable and f 6= 0. Letting

f (x) = y,

we have
f ′ (x) dx = dy.

This allows us to change variable from x to y, that is∫ f ′ (x)
f (x)

dx =
∫ 1

f (x)
f ′ (x) dx =

∫ 1
y

dy.

Using 6.2 Table of Standard Indefinite Integrals, we get∫ f ′ (x)
f (x)

dx = ln | f (x)|+ C.

So we get the following theorem.

Theorem 6.7

If f is differentiable on an interval I ⊂ R and f (x) 6=
0 for any x ∈ I. Then∫ f ′

f
= ln (| f |) + C. �

Finally, as another application of Theorem 6.5,consider
an integral of the form∫

f α (x) · f ′ (x) dx,
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where f is differentiable and α 6= −1. Letting

f (x) = y,

we have
f ′ (x) dx = dy.

This allows us to change variable from x to y, that is∫
f α (x) · f ′ (x) dx =

∫
yαdy.

Using 6.2 Table of Standard Indefinite Integrals, we get∫
f α (x) · f ′ (x) dx =

f α+1 (x)
α + 1

+ C,

For example α = 1, we have∫
f (x) · f ′ (x) dx =

f 2 (x)
2

+ C.

So we get the following theorem.

Theorem 6.8

Let f be differentiable function on an interval (a, b) ⊂
R and suppose f is not constant on (a, b) . Then for
any x ∈ (a, b) we have∫

f α (x) · f ′ (x) dx =
f α+1 (x)

α + 1
+ C,

where α 6= −1 real. �

Integration by substitution is another method for inte-
grating special products of functions. It corresponds to
the chain rule for derivatives. It can be used when an
integral contains a composite function and the derivative
of its inner function. In the following examples we apply
Theorem 6.5, Theorem 6.6, Theorem 6.7 and Theorem 6.8 for
evaluating indefinite integrals.
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6.9 Step-by-Step Examples

Now we give a step-by-step solutions to some problems. At the end of this section there
are more exercises for practice.

SOLVED EXAMPLE 6.6
Indefinite Integral - Substitution Rule

Evaluate the following indefinite integral.∫
esin(x) cos (x) dx.

SOLUTION
The integral contains a composite function and the derivative of its inner function.
We use Theorem 6.5 and make the substitution

sin (x) = y.

Then
cos (x) dx = dy.

This allows us to change variable from x to y, that is∫
esin(x) cos (x) dx =

∫
eydy

Using 6.2 Table of Standard Indefinite Integrals, we get∫
esin(x) cos (x) dx =

∫
eydy = ey + C = esin(x) + C.
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SOLVED EXAMPLE 6.7
Indefinite Integral - Substitution Rule

Evaluate the following indefinite integral.∫
cos (2x + 3) dx.

SOLUTION
The integral contains a composite function and its inner function is a linear func-
tion. So the result can be obtained by using∫

f (ax + b) dx =
1
a

F (ax + b) + C.

Let
f (x) = cos (x)

and
a = 2.

Using 6.2 Table of Standard Indefinite Integrals, we get∫
cos (x) dx = sin (x) + C.

Combining this with the Theorem 6.6, the result is∫
cos (2x + 3) dx =

sin (2x + 3)
2

+ C.

SOLVED EXAMPLE 6.8
Indefinite Integral - Substitution Rule

Evaluate the following indefinite integral.∫ 1
x ln (x)

dx.

SOLUTION
We need to rewrite the integral∫ 1

x ln (x)
dx =

∫ 1
x

ln (x)
dx.
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6 Antiderivatives and Indefinite Integrals of Real Functions

As
(ln (x))′ =

1
x

.

the result can be obtained by using∫ f ′ (x)
f (x)

dx = ln | f (x)|+ C.

Let
f (x) = ln (x) ,

so from Theorem 6.7, we get∫ 1
x ln (x)

dx =
∫ 1

x
ln (x)

dx = ln |ln (x)|+ C.

SOLVED EXAMPLE 6.9
Indefinite Integral - Substitution Rule

Evaluate the following indefinite integral.∫ ln (x)
x

dx.

SOLUTION
As ∫ ln (x)

x
dx =

∫
ln (x)

1
x

dx,

and
(ln (x))′ =

1
x

.

the result can be obtained by using∫
f (x) · f ′ (x) dx =

f 2 (x)
2

+ C.

Let
f (x) = ln (x) ,

so from Theorem 6.8, we get∫ ln (x)
x

dx =
∫

ln (x)
1
x

dx =
ln2 (x)

2
+ C.
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Antiderivatives and Indefinite Integrals of Real Functions 6

6.10 Exercises

The solutions of the following problems can be found in
Chapter 8. Solutions.

Exercises 6.3

Evaluate the following indefinite integrals.

1. ∫
x2ex3

dx,
See Solution 8.6.15

2. ∫
x sin

(
x2
)

dx,
See Solution 8.6.16

3. ∫ etan(x)

cos2 (x)
dx,

See Solution 8.6.17

4. ∫
sin
(

1
2

x + 3
)

dx
See Solution 8.6.18

5. ∫
e7x+1dx,

See Solution 8.6.19

6. ∫
53x−9dx,

See Solution 8.6.20

7. ∫
sin (2− 3x) dx,

See Solution 8.6.21

8. ∫
cos

(
1− 1

2
x
)

dx,
See Solution 8.6.22

9. ∫
e5−xdx,

See Solution 8.6.23

10. ∫
tan (x) dx,

See Solution 8.6.24
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6 Antiderivatives and Indefinite Integrals of Real Functions

11. ∫ e2x

e2x + 4
dx,

See Solution 8.6.25

12. ∫ sin (x)
1 + cos (x)

dx,
See Solution 8.6.26

13. ∫ 4
7x + 5

dx,
See Solution 8.6.27

14. ∫ x− 2
x2 − 4x + 1

dx,
See Solution 8.6.28

15. ∫ x2 + 1
x3 + 3x + 4

dx,
See Solution 8.6.29

16. ∫ 1
tan (x) cos2 (x)

dx,
See Solution 8.6.30

17. ∫ tan (x)
cos2 (x)

dx,
See Solution 8.6.31

18. ∫
x
(

x2 + 5
)10

dx,
See Solution 8.6.32

19. ∫ √
(2x + 5)3dx,

See Solution 8.6.33

20. ∫
sin (x) cos (x) dx,

See Solution 8.6.34

21. ∫ √
ln (x)
x

dx,
See Solution 8.6.35

22. ∫ 1
x
√

ln (x)
dx,

See Solution 8.6.36

23. ∫ 1
4
√

tan (x) cos2 (x)
dx,

See Solution 8.6.37
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24. ∫ cos (x)
3
√

sin (x)
dx,

See Solution 8.6.38

25. ∫ x√
x2 + 1

dx,
See Solution 8.6.39

26. ∫ 1

(3x + 1)2 dx,
See Solution 8.6.40

27. ∫ 1
4
√

3x + 1
dx,

See Solution 8.6.41

28. ∫ x2

4
√

x3 + 1
dx.

See Solution 8.6.42
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7 Definite Integrals of Real Functions

The area "under the graph of a function", i.e. the area of
the region between the x-axis, the vertical lines x = a and
x = b and the graph of y = f (x) , assuming [a, b] ⊆
dom ( f ) and 0 ≤ f (x) for a ≤ x ≤ b , is called the definite
integral of the function f (x) on the interval [a, b] , and is
denoted by

a b

f

A =
b∫
a

f (x) dx

x

y

Figure 7.1: Area under the graph of
a nonnegative continuous function
f .

b∫
a

f (x) dx or by
∫

[a,b]

f (x) dx.

We do not give here the precise (mathematical) definition,
involving

lim
max |xi−xi−1|→0

n

∑
i=1

f (x∗i ) · (xi − xi−1)

and the below illustration, since in practice we mainly
use the "Rule" of Newton and Leibniz (see Theorem 7.1).

x

y

a = x0 b = xnξi

f (ξi)

xi−1 xi xi+1

We just mention, that the words "integral / to integrate"
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7 Definite Integrals of Real Functions

mean in general (not only in mathematics) "formed of con-
stituent parts, united, make a complete thing from several oth-
ers", and especially in sciences and in engineering "sum-
ming a huge umber of extremally (infinitesimally) small
quantities ".

7.1 The Fundamental Theorem of Calculus

Although notation for definite integral
b∫

a
f (x) dx look sim-

ilar to the notation for indefinite integral
∫

f (x) dx, they
are not the same. Indefinite integrals are families of func-
tions, definite integrals are numbers. Since finding an an-
tiderivative is usually easier than calculating the value of
a definite integral, we look at the relationship between
definite and indefinite integrals. The following theorem
is often cited as the Fundamental Theorem of Calculus
or Newton-Leibniz Rule1. 1 Isaac Newton (1642-1727) English

mathematician, physician,
Gottfried Wilhelm Leibniz (1646-

1716) German mathematician,
physician.Theorem 7.1: Newton-Leibniz Rule

If [a, b] j dom ( f ) and f has a primitive function F
on the interval [a, b], 0 ≤ f (x) for a ≤ x ≤ b, then
the integral

b∫
a

f (x) dx

exists, and
b∫

a

f (x) dx = F (b)− F (a) . �

Definition 7.1

The difference F (b) − F (a) is often called the net
change of function F over an interval [a, b] and de-
noted by [F (x)]ba or [F (x)]x=b

x=a . �

Remark 7.1.1 We have to highlight,
that dom ( f ) and dom (F) both must
contain the whole closed interval
[a, b] , not only because of Theorem 7.1;
this problem will be discussed in Sec-
tion Improper Integrals.

Obviously Theorem 7.1 says first compute a primitive
function F and then substract values F (b) and F (a) .
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Let us mention, that the "tail" +C in∫
f (x) dx = F (x) + C.

can be omitted, since

[F (x) + C ]ba = (F (b) + C)− (F (a) + C) =

= F (b) + C− F (a)− C = F (b)− F (a) .

Theorem 6.3 says that for any continuous function f a
primitive function F of f (i.e. F′ = f ) exists. So, for any
continuous f also has the area under its graph, which can
be calculated using Theorem 7.1.

So Newton’s theorem suggest us to be able to calculate
the definite integral

∫
[a,b] f (x) dx easily (using Theorem

7.1) for any continuous function f , once we have found a
primitive function F for f .
However, Liouville’s theorem states, that this is not al-
ways the case. See details here: 6.1 in Chapter An-

tiderivatives and Indefinite Integrals of
Real Functions.
WARNING: The most important

to our studies is: always try to
solve problems from problem books, but
avoid "ad hoc" problems !
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7 Definite Integrals of Real Functions

7.2 Step-by-Step Examples

Now we give step-by-step solution to some basic problems. At the end of this section
there are more exercises for practice.

SOLVED EXAMPLE 7.1
Definite Integral

Evaluate the following definite integral.
1∫

0

(
x2 + 5x3 −

√
x
)

dx.

SOLUTION
From Solved Example 6.1, we have∫ (

x2 + 5x3 −
√

x
)

dx =
x3

3
+ 5 · x4

4
− x

1
2+1

1
2 + 1

+ C.

So from Theorem 7.1 with F (x) = x3

3 + 5 · x4

4 −
x

1
2+1

1
2+1

, we get

1∫
0

(
x2 + 5x3 −

√
x
)

dx = [F (x)]10 =

[
x3

3
+ 5 · x4

4
− x

1
2+1

1
2 + 1

]1

0

=

=
13

3
+ 5 · 14

4
− 1

1
2+1

1
2 + 1

− 0.
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SOLVED EXAMPLE 7.2
Definite Integral

Evaluate the following definite integral.
2π∫
0

sin (x) dx.

SOLUTION
Using the 6.2 Table of Standard Indefinite Integrals, we have∫

sin (x) dx = − cos (x) + C.

So from Theorem 7.1 with F (x) = − cos (x) , we get
2π∫
0

sin (x) dx = [F (x)]2π
0 = [− cos (x)]2π

0 = − cos (2π)− (− cos (0)) = −1 + 1 = 0.
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7 Definite Integrals of Real Functions

7.3 Exercises

The solutions of the following problems can be found in
Chapter 8. Solutions.

Exercises 7.1

Evaluate the following definite integrals.

1.
1∫

0

√
x
√

xdx,

See Solution 8.7.1

2.
π∫

0

(x− 1) cos (x) dx,

See Solution 8.7.2

3.
1∫

0

x · 2xdx,

See Solution 8.7.3

4.
e∫

1

ln (x) dx,

See Solution 8.7.4

5.
0∫
−1

e5−xdx,

See Solution 8.7.5

6.
π
4∫

0

tan (x) dx,

See Solution 8.7.6

7.
π∫

0

sin (x) cos (x) dx.

See Solution 8.7.7
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Definite Integrals of Real Functions 7

7.4 Applications of Definite Integral

Most of mathematical, physical, ... , or even everyday
quantities can be calculated (or, at least approximated) by
measuring all its small components and summing them.
As we mentioned in the previous subsection, the process
"integrating" is precisely the same. So, it must not be sur-
prising, that many these quantities are calculated using
integrals.

In what follows, we only list the formulae and present
several exercises.

7.4.1 Areas Under, Above and Between Curves

Computing the area under the graph of a nonnegative con-
tinuous function f (see Figure 7.1), we can use formula

A =

b∫
a

f (x) dx.

a b

f

A =
b∫
a
(− f (x)) dx

xy

Figure 7.2: Area above the graph of
a nonpositive continuous function
f .

Computing the area above the graph of a nonpositive
continuous function f , we can use formula

A =

b∫
a

(− f (x)) dx.

Computing the area between the x-axis and the graph
of any continuous function f , we can use formula

a b

fA =
b∫
a
| f (x) |dx

x

y

Figure 7.3: Area between the x-
axis and the graph of a continuous
function f .

A =

b∫
a

| f (x) |dx.
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7 Definite Integrals of Real Functions

Computing the area between the graphs of two contin-
uous functions f and g, the following formula is an easy
but useful variant of Theorem 7.1.

a b

f

g

A =
b∫
a

( f (x)− g (x)) dx

x

y

Figure 7.4: Area between graphs of
two functions.

Theorem 7.2

Considering two continuous functions, f and g on
interval [a, b] , and assuming

g (x) ≤ f (x) for ∀x ∈ [a, b] ,

the area of the region "between f and g" (i.e. below
f and above g), and between the vertical lines x = a
and x = b is

A =

b∫
a

( f (x)− g (x)) dx . �
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Definite Integrals of Real Functions 7

7.4.2 Volume of Revolution

A solid of revolution is created by rotating (revolving)
the graph of a positive function around the x-axis. Many
goods in our everyday life are made in this way, with
a rotating (revolving) machine called potter’s wheel or
lathe2 2 but not by revolver.

Figure 7.5: A revolved solid, around the x -axis*

*source: \https://de.wikipedia.

org/wiki/Drehmaschine.

y = f (x)

a b

y

x

Figure 7.6: Volume of the solid,
created by rotating the graph of f
around the x-axis.

y = f (x)

f (a)

f (b)

y

x

Figure 7.7: Volume of the solid,
created by rotating the graph of f
around the y-axis.

Theorem 7.3

For any function f , continuous on the interval [a, b] ⊂
dom ( f ), the volume of the solid, created by rotating
(revolving) the graph of f around the x-axis is

Vx = π

b∫
a

f 2 (x) dx.

Only monotone (increasing or decreasing) functions
can be rotated around the y -axis, the volume is

Vy = π

∣∣∣∣∣∣∣
f (b)∫

f (a)

(
f−1(y)

)2
dy

∣∣∣∣∣∣∣ =

= π

∣∣∣∣∣∣
b∫

a

x2 · f ′(x) dx

∣∣∣∣∣∣ =

= π

∣∣∣∣∣∣
[

x2 f (x)
]b

a
− 2

b∫
a

x · f (x) dx

∣∣∣∣∣∣
(please choose any of the above three formulas).
�
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7 Definite Integrals of Real Functions

7.4.3 Length of a Curve

Theorem 7.4

The length of a function graph between the points
(a, f (a)) and (b, f (b)) is

` =

b∫
a

√
1 + ( f ′ (x))2 dx . �

We have to warn the Reader, that even for simple func-
tions f the integrand in Theorem 7.4 belongs to Liou-
ville’s Theorem 6.1.

7.4.4 Area of Revolution

Theorem 7.5

The area of the solid’s surface when rotating (revolv-
ing) the graph of a positive function around the x-
axis is

Ax = 2π

b∫
a

f (x) ·
√

1 + ( f ′(x))2 dx . �

7.4.5 Other

As we mentioned in the introduction, integration both ver-
bally and (not only) mathematically means "forming of
constituent parts, summing something from "infinitely" many
but small parts". So, it not surprising, that

∫
is a funda-

mental tool in physics, chemics, economy, and in all sci-
ences. E.g. route=

∫
velocity, (mechanical) work=

∫
force,

(electrical) work=
∫

I(t) · U(t)dt , velocity=
∫

acceleration
are only some examples.
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7.5 Step-by-Step Examples

Now we give step-by-step solutions to some problems. At the end of this section there
are more exercises for practice.

SOLVED EXAMPLE 7.3
Definite Integral - Area

Find the area under parabola y =
1
5

x2 over the interval [0, 4].

SOLUTION

0 4

y = 1
5 x2

x

y

Since ∫ 1
5

x2dx =
1
5
· x3

3
+ C ,

using Theorem 7.1 with F (x) =
1
5
· x3

3
, we have

4∫
0

1
5

x2 dx = [F (x)]40 =

[
1
5
· x3

3

]4

0
=

1
5
·
(

43

3
− 03

3

)
≈ 4.2667 .

Since 0 ≤ f (x) for each 0 ≤ x ≤ 4 , the above number is the real geometrical area
of the region between the graph of f (x) and the x axis.

SOLVED EXAMPLE 7.4
Definite Integral - Area

Find the area between y = 4− x2 and y = (x + 1)2 over the interval [−1, 0.5] .
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7 Definite Integrals of Real Functions

SOLUTION
First we have to decide which function from the above is f (x) and g (x) for satis-
fying g (x) ≤ f (x) in Theorem 7.2. Substituting e.g. x = 0 yields

(0 + 1)2 = 1 < 4− 02 = 4

makes us to think that g (x) = (x + 1)2 and f (x) = 4− x2.

Now we have to check g (x) ≤ f (x) for all x between a = −1 and b = 0.5. But

(x + 1)2 < 4− x2

is equivalent to
0 < h (x) = −2x2 − 2x + 3

which is valid since h (x) has roots

x1 =
−2−

√
28

4
≈ −1.8229,

and

x2 =
−2 +

√
28

4
≈ +0.82288,

and h (x) is a concave function.

−1 0.5

y = 4− x2

y = (x + 1)2

x

y

Then∫ ((
4− x2

)
− (x + 1)2

)
dx =

∫ (
−2x2 − 2x + 3

)
dx =

−2x3

3
− x2 + 3x + C ,

and from Theorem 7.1 with F (x) =
−2x3

3
− x2 + 3x, the required area is

0.5∫
−1

(
4− x2

)
− (x + 1)2 dx =

[
−2x3

3
− x2 + 3x

]0.5

−1
=

=

(
−2 · 0.53

3
− 0.52 + 3 · 0.5

)
−
(
−2 · (−1)3

3
− (−1)2 + 3 · (−1)

)
= 4.5.

Note, that the above problem asked the area over the

156



Definite Integrals of Real Functions 7

interval [−1, 0.5] only.
However, the whole region, determined by the func-

tions is located in the interval [x1, x2] where x1 and x2 are
the solutions of the equation f (x) = g (x) , i.e.

4− x2 = (x + 1)2 ⇐⇒ 0 = 2x2 + 2x− 3,

and the roots of the latest equation are

x1 =
−2−

√
28

4
≈ −1.82288,

and

x2 =
−2 +

√
28

4
≈ 0.82288.

x1 x2

y = 4− x2

y = (x + 1)2

x

y

Figure 7.8: The whole area between
the graphs of function f and g.

So the whole area is

x2∫
x1

(
4− x2)− (x + 1)2 dx =

[
−2x3

3
− x2 + 3x

]x2

x1

=

=

−2 ·
(
−2+

√
28

4

)3

3
−
(
−2+

√
28

4

)2
+ 3 ·

(
−2+

√
28

4

)−

−

−2 ·
(
−2−

√
28

4

)3

3
−
(
−2−

√
28

4

)2
+ 3 ·

(
−2−

√
28

4

) ≈

6.17342 . �

If the interval [a, b] is not given, we have to determine
it for ensuring the region between the graphs of f (x) and
g (x) to be finite, as in the above example.
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SOLVED EXAMPLE 7.5
Definite Integral - Area

Find the area between the function curves 1− cos (x) and sin (x) .

SOLUTION
The default interval [a, b] is where a and b are two consecutive intersection points
of the curves f and g , i.e. solutions of the equation

f (x) = g (x) .

In our case

sin (x) = 1− cos (x)

m

sin (x) + cos (x) = 1

m
1√
2

sin (x) +
1√
2

cos (x) =
1√
2

m

cos
(π

4

)
sin (x) + sin

(π

4

)
cos (x) = cos

(
x− π

4

)
=

1√
2

m

x− π

4
= ±π

4
+ 2kπ

m

x1 =
π

2
+ 2kπ, x2 = 2kπ, (k ∈ Z) .

Because of periodicity, the interval is [a, b] =
[
0,

π

2

]
.

0 π
2

y = sin (x)

y = cos (x)
x

y
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Since over this interval sin (x) is concave and 1− cos (x) is convex, we have

1− cos (x) ≤ sin (x) .

So ∫
(sin (x)− (1− cos (x))) dx =

∫
(sin (x) + cos (x)− 1) dx =

= − cos (x) + sin (x)− x + C.

From Theorem 7.1 with F (x) = − cos (x) + sin (x)− x, the area is
π/2∫

0
(sin (x)− (1− cos (x))) dx = [− cos (x) + sin (x)− x ]π/2

0 =

=
(
− cos

(
π
2

)
+ sin

(
π
2

)
− π

2

)
− (− cos (0) + sin (0)− 0) = 2− π

2
≈ 0.4292 .

SOLVED EXAMPLE 7.6
Definite Integral - Area

Find the area between the x-axis and the graph of f (x) = sin (x) over the interval
[0, 2π].

SOLUTION

0 π 2π

y = sin (x)

x

y

A1

A2

Since f (x) = sin (x) is nonnegative over the interval [0, π] and nonpositive over
[π, 2π] the area is

A = A1 + A2 =

π∫
0

sin (x) dx +

2π∫
π

(− sin (x)) dx.
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As ∫
sin (x) dx = − cos (x) + C,

using Theorem 7.1 with F (x) = − cos (x) , we have

A =

π∫
0

sin (x) dx +

2π∫
π

(− sin (x)) dx =

π∫
0

sin (x) dx−
2π∫

π

sin (x) dx =

= [− cos (x)]π0 − [− cos (x)]2π
π =

= − cos (π)− (− cos (0))− (− cos (2π)− [− cos (π))) = 4.

We showed in Solved Example 7.2 that
2π∫
0

sin (x) dx = 0.

As region A1 and A2 are congruent,
2π∫
0

sin (x) dx = A1 − A2 6= A.

WARNING

The assumption 0 ≤ f (x) is essential for the cor-
rect calculation of the (geometrical) area between the
graph of f (x) and the x axis! Region A1 is above the
x axis while A2 is below it and the area of congruent
regions are equal. If we learn, that

b∫
a

f (x) dx = F (b)− F (a) .

is negative for functions f (x) ≤ 0, we can understand
2π∫
0

sin (x) dx = A1 − A2 = 0.

The moral of the above discussion is that
b∫

a

f (x) dx = F (b)− F (a) .

summarizes the areas of the function regions above
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and below the x axis with signs (+/-), which is not
always the geometrical area of these regions.

Definition 7.2: Signed Area

The quantity calculated by
b∫

a

f (x) dx = F (b)− F (a) .

is called signed area of f (x) , which is understood
as follows.

i) if 0 ≤ f (x) for each a ≤ x ≤ b, then F (b) −
F (a) is the (geometrical) area of the region between
the graph of f (x) and the x axis (positive),

ii) if f (x) ≤ 0 for each a ≤ x ≤ b, then F (b)−
F (a) is (−1) -times the (geometrical) area of the re-
gion between the graph of f (x) and the x axis (neg-
ative),

iii) if f (x) is continuous and has both positive
and negative values in the interval [a, b], then first
find all the roots x1, ..., xk of f (x) in the interval, put
x0 := a and xk+1 := b , then add the signed areas
xi+1∫

xi

f (x) dx (as defined in i) and ii)), i.e.

b∫
a

f (x) dx =
k

∑
i=0

xi+1∫
xi

f (x) dx

 = F (b)− F (a) . �
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SOLVED EXAMPLE 7.7
Definite Integral - Volume

Find the volume of the solid of revolution formed by revolving the graph of func-
tion f (x) = x + 2, 0 ≤ x ≤ 1 around the x -axis (truncated cone).

SOLUTION
y = x + 2

0 1

y

x

From Theorem 7.3 with f (x) = x + 2, we get

Vx = π

1∫
0

(x + 2)2 dx = π

1∫
0

x2 + 4x + 4 dx = π

[
x3

3
+ 2x2 + 4x

]1

0
=

= π

[(
13

3
+ 2 · 12 + 4 · 1

)
− 0
]
=

19
3

π ≈ 19.897 .

SOLVED EXAMPLE 7.8
Definite Integral - Volume

How much water has to be poured into a cylindric glass of diameter 6cm and
height 7cm, which, when stirred with a spoon, reaches exactly from bottom to
top?

SOLUTION
The vertical intersection of the surface of the water (the y -axis is exactly the ro-
tating axe of the glass), is a parabola y = f (x) = ax2 where we must have
7 = f (3) = a · 32 which implies a = 7

9 , i.e. y = f (x) = 7
9 · x2, 0 ≤ x ≤ 3

and 0 ≤ y ≤ 7.
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Since formula

Vx = π

b∫
a

f 2 (x) dx.

in Theorem 7.3 for rotating around the x -axis is much easier than any of stated for
rotating around the y -axis, we turn the glass down the table, i.e. take the inverse
of f (x) and rotate it around the x -axis.

f (x) = 7
9 x2

0

7

y

x−3 3

f−1 (x) =
√

9
7 x

0 7 x

−3

3

The inverse of
y = f (x) =

7
9

x2

is

x =

√
9
7

y

i.e.

y = g (x) = f−1 (x) =

√
9
7

x

for 0 ≤ x ≤ 7 .
So the volume is

Vx = π

b∫
a

g2 (x) dx = π

7∫
0

(√
9
7

x

)2

dx =

7

π
∫
0

9
7

x dx = π

[
9
7
· x2

2

]7

0
=

= π · 9
7
· 72

2
− 0 =

63
2

π ≈ 98.9602 (cm3) .
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However Vx is the volume under the graph of g (x) , which is the volume of the air
contained (left) in the glass. This yields, the volume of the water is

Vwater = Vglass −Vair = 32 · π · 7− π
63
2

=
63
2

π ≈ 98.9602 (cm3) .

No wonder: exactly half of the glass must be filled water (and half volume left for
the air), stir carefully and observe the phenomenon.

Smart Readers may observe, that turning the glass, i.e. taking the inverse of
f (x) and rotating it around the x -axis, correspond to the formula

Vy = π

∣∣∣∣∣∣∣
f (b)∫

f (a)

(
f−1(y)

)2
dy

∣∣∣∣∣∣∣
in Theorem 7.3.
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7.6 Exercises

The solutions of the following problems can be found in
Chapter 8. Solutions.

7.6.1 Areas Under, Above and Between Curves

Exercises 7.2

In each of the following exercises find the area of the
indicated region.
It is advisable to sketch the region (and also of a
small enclosing rectangle with horizontal and ver-
tical sides) before computing.

1. Between the vertical lines x = 0 , x = 1 , the x -axis
and the graph of f (x) = x3. See Solution 8.7.8

2. Above the graph of f (x) =
√

x , below the line y = 2
and between x = 0 and x = 4. See Solution 8.7.9

3. Above the x -axis and below the graph of f (x) =

x2 − x3 . See Solution 8.7.10

4. Above the x -axis and below the graph of f (x) =

4x2 − x4. See Solution 8.7.11

5. Above the x -axis and below the graph of f (x) =
1

1 + x2 between x = 0 and x = 1. See Solution 8.7.12

(In general, the curves f (x) = 8a3

4a2+x2 for a ∈ R are
known as Maria Agnesi’s3 "witch", which word is a mis- 3 Italian mathematician (1718-1799)

women.translation of the italian word "sailing sheet". See also https://en.wikipedia.

org/wiki/Witch_of_Agnesi or
https://en.wikipedia.org/wiki/

Maria_Gaetana_Agnesi.6. The region between the x -axis and the graph of f (x) =
1

1 + x
+

x
2
− 1 . See Solution 8.7.13
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Exercises 7.3

Find the area of the region bounded by the given
curves.

1.
y = x2 − x and y = 5x− 5.

See Solution 8.7.14

2.
y = x2 − 6 and y = x + 6.

See Solution 8.7.15

3.
y = −(x + 1)2 and y = 5x + 11.

See Solution 8.7.16

4.
y = x2 − 12 and y = 2x− x2.

See Solution 8.7.17

5.
y = (x− 1)2 and y = 1− x2.

See Solution 8.7.18

6. *
y2 = 4x and y = 2x.

See Solution 8.7.19

7.
y = x(2− x) and x = 2y.

See Solution 8.7.20

8.
x2 = 4y and x = 4y− 2.

See Solution 8.7.21

9. *
x = y2 and y = x2.

See Solution 8.7.22

10. *
y2 = x and x + y = 2.

See Solution 8.7.23

11.
y =
√

x and y = x.
See Solution 8.7.24
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12.
y = x2 and y = 3/(2 + x2).

See Solution 8.7.25

13.
y = (1/2) · x2 + 1 and y = x + 1.

See Solution 8.7.26

14. *
y2 = x and x2 = 16y.

See Solution 8.7.27

15. *
y2 = 4ax and y = mx.

where a, m ∈ R are parameters. See Solution 8.7.28

Exercises 7.4

Use integration to calculate the following areas.

1. The triangular region bounded by the given lines.

y = 2x + 1, y = 3x + 1 and x = 4.
See Solution 8.7.29

2. The triangular region bounded by the given lines.

y = x + 3, y = 2x + 1 and y = 4− x.
See Solution 8.7.30

3. * Find a so that the curves y = x2 and y = a cos x
intersect at the points (x, y) =

(
π/4, π2/16

)
. Then

find the area between these curves. See Solution 8.7.31

4. * The area of the region between the two circles x2 +

y2 = 1 and (x− 1)2 + y2 = 1 .

(You might check the results after by elementary geo-
metrical calculations.) See Solution 8.7.32
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7.6.2 Volume of Revolution

Exercises 7.5

Calculate the volume of solids over the given inter-
val, when f is revolved around the x -axis.

1.
f (x) = x, 0 ≤ x ≤ 2,

See Solution 8.7.33

2.
f (x) =

√
2− x, 0 ≤ x ≤ 2,

See Solution 8.7.34

3.

f (x) =
(

1 + x2
)−1/2

, |x| ≤ 1,
See Solution 8.7.35

4.
f (x) = sin(x), 0 ≤ x ≤ π,

See Solution 8.7.36

5.
f (x) = 1− x2, |x| ≤ 1,

See Solution 8.7.37

6. *
f (x) = cos(x), 0 ≤ x ≤ π,

See Solution 8.7.38

7.

f (x) =
1

cos(x)
, 0 ≤ x ≤ π/4,

See Solution 8.7.39

8.

f (x) =
√

r2 − x2, 0 ≤ x ≤ r, (semicircle)
See Solution 8.7.40

9.

f (x) =
√
(5x + 1) · ex, 0 ≤ x ≤ 1,

See Solution 8.7.41

10.
f (x) =

√
(x + 1) · ln(x), 1 ≤ x ≤ e,

See Solution 8.7.42

11.
f (x) = 3

√
x, 0 ≤ x ≤ 1,

See Solution 8.7.43
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12.
f (x) =

√
sin(x), 0 ≤ x ≤ π/2.

See Solution 8.7.44

13. A traditional (wine) barrel has shape (approximately)
a part of a rotated ellipse around the x -axis.

−80 80

−50

50
−60 60

See also https://en.wikipedia.

org/wiki/Spheroid.

The ellipse has the equality (in centimeters)( x
80

)2
+
( y

50

)2
= 1

from which we need the part −60 ≤ x ≤ 60.
Calculate the volume of the barrel. See Solution 8.7.45
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7.7 Improper Integrals

In many cases, even in practice, we cannot use Newton-
Leibniz Rule (Theorem 7.1), not because of Liouville’ The-
orem.
We may have two difficulties: either the interval [a, b] is
not a finite one, or the integrand function f (x) is not fi-
nite in the interval [a, b] , i.e. either f (a) or f (b) or f (c)
does not exists for some c as a < c < b . These cases are
called "improper integrals": it is not proper for the first
glance, what to do (though the definitions below make
them clearer). Note, that "improper" and "indefinite" in-
tegrals should not to be confused!

7.7.1 Integrating over Infinite Intervals

Integrating over Infinite Intervals is easy to observe (in

exams): in the notations
b∫
−∞

f (x) dx ,
∞∫
a

f (x) dx or
∞∫
−∞

f (x) dx

we must observe the ±∞ symbol, the other type of prob-
lem is much harder to observe. We discuss these prob-
lems and their solutions separately. We write simply ∞
instead of +∞ .

Definition 7.3

Denote I := (−∞, c] for any c ∈ R. Suppose that
I j dom( f ) and for each [a, b] ⊂ I there is a primitive
function F for f on the subinterval [a, b] (i.e. we
can apply Newton-Leibniz Rule on [a, b]). Then the
improper integral

b∫
−∞

f (x) dx

is defined as
b∫

−∞

f (x) dx := lim
ω→−∞

 b∫
ω

f (x) dx


assuming that the limit does exist.
In this case the integral is called convergent, other-
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wise it is divergent. �

Definition 7.4

Denote I := [c, ∞) for any c ∈ R. Suppose that I j
dom( f ) and for each [a, b] ⊂ I there is a primitive
function F for f on the subinterval [a, b] (i.e. we
can apply Newton-Leibniz Rule on [a, b]). Then the
improper integral

∞∫
a

f (x) dx

is defined as
∞∫

a

f (x) dx := lim
ω→∞

 ω∫
a

f (x) dx


assuming that the limit does exist.
In this case the integral is called convergent, other-
wise it is divergent. �

Remark 7.7.1 Note, that for even

functions
0∫
−∞

f (x) dx and
∞∫
0

f (x) dx

both have the same value: either both
are convergent or both are divergent
with the same sign. This implies that

∞∫
−∞

f (x) dx is convergent just in the

case
∞∫
0

f (x) dx is, which implies the

equality for even functions
∞∫
−∞

f (x) dx = 2 ·
∞∫

0

f (x) dx

holds in all cases.
However, for odd functions (sym-

metric to the origin, i.e.

f (−x) = − f (x)

for all x ∈ R), the equality

0∫
−∞

f (x) dx = −
∞∫

0

f (x) dx

might lead us to the false conclusion
∞∫
−∞

f (x) dx =

∞∫
0

f (x) dx−
∞∫

0

f (x) dx = 0.

While this is surely true for conver-

gent improper integrals
0∫
−∞

f (x) dx

and
∞∫
0

f (x) dx , for divergent inte-

grals we must say that
∞∫
−∞

f (x) dx

is divergent. See e.g. the integral
∞∫
−∞

x
x2 + 1

dx in the above example.

Definition 7.5

The integral
∞∫
−∞

f (x) dx is defined as

∞∫
−∞

f (x) dx :=
c∫

−∞

f (x) dx +

∞∫
c

f (x) dx , (7.7.1)

assuming that both improper integrals on the right
do exist, where c ∈ R is an artbitrary number. �

Let us emphasize that the integral (7.7.1) on the left
does exist only when both integrals on the right do exist,
even for even or odd functions f . Further explanations can
be found in Remark 7.7.1, based on Solved Examples 7.11

and 7.12.

7.7.2 Integrating Discontinuous Functions

We have to recall that the Newton-Leibniz Rule (Theo-
rem 7.1) is valid only for functions which are continuous
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on the whole closed interval [a, b]. So, on finite intervals
the integrand function (i.e. which we have to integrate
= summarize) may cause problems. Either the function
may have not have any value at one of the endpoints of
the interval, i.e. either f (a) or f (b) or both does not exist.
Or, what is more hard to observe: some functions have no
values at certain inner points c in the interval: a < c < b .

In one word: we have to check the continuity of the
function f (x) at all points x in the closed interval [a, b] ,
including the endpoints: for all x such that a ≤ x ≤ b for
calculating

∫ b
a f (x) dx .

Remark 7.7.2 Observe, that the spe-
cial value of c is unimportant, since,
if F (x) is a primitive function of f (x),
then (7.7.5) calculates

lim
ω→a+

c∫
ω

f (x) dx + lim
ω→b−

ω∫
c

f (x) dx =

= lim
ω→a+

[F (x) ]cω + lim
ω→b−

[F (x) ]ωc =

= lim
ω→a+

(F (c)− F (ω)) +

+ lim
ω→b−

(F (ω)− F (c)) =

= F (c)− lim
ω→a+

F (ω) +

+ lim
ω→b−

F (ω)− F (c) =

= lim
ω→b−

F (ω)− lim
ω→a+

F (ω) .

This final formula could be con-
sidered as a generalized Newton-
Leibniz Rule. �

Definition 7.6

Suppose that the function f (x) is continuous on in-
terval (a, b] .
In other words: only f (a) is the exception, that is
b∫

ω
f (x) dx does exist for all a < ω ≤ b .

Then we define
b∫

a

f (x) dx :=

 lim
ω→a+

b∫
ω

f (x) dx

 . (7.7.2)

Similarly, if f (x) is continuous on interval [a, b)
then we have

b∫
a

f (x) dx := lim
ω→b−

 ω∫
a

f (x) dx

 . � (7.7.3)

Definition 7.7

If f (x) is continuous only on an open interval (a, b)
then we have to cut the interval into two parts at an
(arbitrary) point c, a < c < b .

b∫
a

f (x) dx :=
c∫

a

f (x) dx +

b∫
c

f (x) dx , (7.7.4)
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detailed by (7.7.2) and (7.7.3)
b∫

a

f (x) dx := lim
ω→a+

c∫
ω

f (x) dx + lim
ω→b−

ω∫
c

f (x) dx

(7.7.5)
assuming that both above limits do exist. (c can be
any fixed number such that a < c < b.) �

Let us emphasize, that both limits in (7.7.5) must be con-
vergent in order that the integral

∫ b
a would be convergent.

Even in the case "
∫ c

a = −∞ and
∫ b

c = +∞" we should
not say "−∞ + ∞ = 0" /FALSE!/ , rather "

∫ b
a " is divergent

only!

As mentioned, the function may have no value at some
inner point c in the interval: a < c < b .

Remark 7.7.3 Let us emphasize that
(7.7.5) and (7.7.6) look very similar
but they have very different caclula-
tions and meanings!

Definition 7.8

Suppose that the function f (x) is continuous on the
(whole) closed interval [a, b] except at an intermediate
point c , i.e. a < c < b . Then we define

b∫
a

f (x) dx := lim
ω→c−

ω∫
a

f (x) dx+ lim
ω→c+

b∫
ω

f (x) dx . �

(7.7.6)
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7.8 Step-by-Step Examples

Now we give step-by-step solutions to some problems. At the end of this section there
are more exercises for practice.

SOLVED EXAMPLE 7.9
Improper Integral over Infinite Interval

Evaluate the following improper integral.
∞∫

1

1
x2 dx.

SOLUTION
Using Definition 7.4 first, we rewrite the improper integral as a limit. That is

∞∫
1

1
x2 dx = lim

ω→∞

ω∫
1

1
x2 dx.

Next, we evaluate the indefinite integral, that is∫ 1
x2 dx = −1

x
+ C.

Now, we evaluate the definite integral. From Theorem 7.1 with F (x) = − 1
x , we

get
ω∫

1

1
x2 dx =

[
−1

x

]ω

1
= − 1

ω
− (−1

1
) = − 1

ω
+ 1.

Finally, we evaluate the limit, that is
∞∫

1

1
x2 dx = lim

ω→∞

ω∫
1

1
x2 dx = lim

ω→∞
(− 1

ω
+ 1) = 1.

So the improper integral is convergent.
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SOLVED EXAMPLE 7.10
Improper Integral over Infinite Interval

Evaluate the following improper integral.
∞∫
√

2

2x
x2 + 1

dx.

SOLUTION
Using Definition 7.4 first, we rewrite the improper integral as a limit. That is

∞∫
√

2

2x
x2 + 1

dx = lim
ω→∞

ω∫
√

2

2x
x2 + 1

dx.

Next, we evaluate the indefinite integral. Using Theorem 6.7, we have∫ 2x
x2 + 1

dx = ln
∣∣∣x2 + 1

∣∣∣+ C .

Now, we evaluate the definite integral. From Theorem 7.1 with F (x) = ln
∣∣x2 + 1

∣∣ ,
we get

ω∫
√

2

2x
x2 + 1

dx =
[
ln
∣∣∣x2 + 1

∣∣∣]ω
√

2
= ln

(
ω2 + 1

)
− ln

((√
2
)2

+ 1
)

.

Finally, we evaluate the limit, that is
∞∫
√

2

2x
x2 + 1

dx = lim
ω→∞

ω∫
√

2

2x
x2 + 1

dx = lim
ω→∞

(ln
(

ω2 + 1
)
− ln

((√
2
)2

+ 1
)
) = ∞.

This means, that this improper integral is divergent.
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SOLVED EXAMPLE 7.11
Improper Integral over Infinite Interval

Evaluate the following improper integral.
∞∫
−∞

x
x2 + 1

dx.

SOLUTION
From equation 7.7.1, we have

∞∫
−∞

x
x2 + 1

dx =

c∫
−∞

x
x2 + 1

dx +

∞∫
c

x
x2 + 1

dx

for any arbitrary c ∈ R. Now, we rewrite both of the improper integrals as limits.
That is

∞∫
−∞

x
x2 + 1

dx =

c∫
−∞

x
x2 + 1

dx+
∞∫

c

x
x2 + 1

dx = lim
ω→−∞

c∫
ω

x
x2 + 1

dx+ lim
ω→∞

ω∫
c

x
x2 + 1

dx.

Next, we evaluate the indefinite integral∫ x
x2 + 1

dx.

Theorem 6.7 follows, that∫ x
x2 + 1

dx =
1
2

∫ 2x
x2 + 1

dx =
1
2

ln
(

x2 + 1
)
+ C,

as
x2 + 1 > 0.

Now we evaluate the definite integrals. From Theorem 7.1 with F (x) = 1
2 ln

(
x2 + 1

)
,

we get
c∫

ω

x
x2 + 1

dx =

[
1
2

ln
(

x2 + 1
) ]c

ω

=
1
2
(ln
(

c2 + 1
)
− ln

(
ω2 + 1

)
),

and
ω∫

c

x
x2 + 1

dx =

[
1
2

ln
(

x2 + 1
) ]ω

c
=

1
2
(ln
(

ω2 + 1
)
− ln

(
c2 + 1

)
).
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Finally, we evaluate the limits. That is

lim
ω→−∞

c∫
ω

x
x2 + 1

dx = lim
ω→−∞

[
1
2

ln
(

x2 + 1
) ]c

ω

=

= lim
ω→−∞

1
2
(ln
(

c2 + 1
)
− ln

(
ω2 + 1

)
) =

=
1
2

ln
(

c2 + 1
)
−∞.

Similarly,

lim
ω→∞

ω∫
c

x
x2 + 1

dx = lim
ω→∞

[
1
2

ln
(

x2 + 1
) ]ω

c
=

= lim
ω→∞

1
2
(ln
(

ω2 + 1
)
− ln

(
c2 + 1

)
) =

= ∞− 1
2

ln
(

c2 + 1
)

.

This yields,

∞∫
−∞

x
x2 + 1

dx = lim
ω→−∞

c∫
ω

x
x2 + 1

dx + lim
ω→∞

ω∫
c

x
x2 + 1

dx =

=
1
2

ln
(

c2 + 1
)
−∞ + ∞− 1

2
ln
(

c2 + 1
)

.

So the improper integral is divergent.
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SOLVED EXAMPLE 7.12
Improper Integral over Infinite Interval

Evaluate the following improper integral.
+∞∫
−∞

3
x2 + 4

dx.

SOLUTION
Function f (x) =

3
x2 + 4

is even (symmetric to the y axis, i.e. f (−x) = f (x) for all

x ∈ R), so
+∞∫
−∞

3
x2 + 4

dx = 2 ·
+∞∫
0

3
x2 + 4

dx.

Now, we rewrite the improper integral as a limit. That is
+∞∫
0

3
x2 + 4

dx = lim
ω→∞

ω∫
0

3
x2 + 4

dx.

Next, we evaluate the indefinite integral. Theorem 6.6 follows, that∫ 3
x2 + 4

dx =
3
4

∫ 1
x2

4 + 1
dx =

3
4

∫ 1( x
2

)2
+ 1

dx =

=
3
4
·

arctan
( x

2

)
1/2

+ C =
6
4
· arctan

(x
2

)
+ C.

Next, we evaluate the definite integral.

From Theorem 7.1 with F (x) =
6
4
· arctan

(x
2

)
, we get

ω∫
0

3
x2 + 4

dx =
6
4

[
arctan

(x
2

)]ω

0
=

6
4

(
arctan

(ω

2

)
− arctan (0)

)
=

6
4

arctan
(ω

2

)
.

Finally, we evaluate the limit. That is
+∞∫
0

3
x2 + 4

dx = lim
ω→∞

ω∫
0

3
x2 + 4

dx = lim
ω→∞

6
4

arctan
(ω

2

)
=

6
4
· π

2
=

3π

4
.

So the result is
+∞∫
−∞

3
x2 + 4

dx = 2 ·
+∞∫
0

3
x2 + 4

dx = 2 · 3π

4
=

3π

2
≈ 4.712389.

This means, that this improper integral is convergent.
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SOLVED EXAMPLE 7.13
Improper Integral - Discontinuous Function

Evaluate the following improper integral.
2∫

0

1
x

dx.

SOLUTION
Function

1
x

is discontinous at x = 0.

−3 −2 −1 1 2 3

−4

−2

2

4

y = 1
x

x

y

Using Definition 7.6 first, we rewrite the improper integral as a limit. That is
2∫

0

1
x

dx = lim
ω→0+

2∫
ω

1
x

dx.

Next, we evaluate the indefinite integral, that is∫ 1
x

dx = ln |x|+ C.

Now, we evaluate the definite integrals. From Theorem 7.1 with F (x) = ln |x| ,
we get

2∫
ω

1
x

dx = [ln |x|]2ω = ln |2| − ln |ω| = ln (2)− ln (ω),

as ω > 0. Finally, we evaluate the limit, that is
2∫

0

1
x

dx = lim
ω→0+

2∫
ω

1
x

dx = lim
ω→0+

(ln (2)− ln (ω)) = +∞.

So the improper integral is divergent.
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SOLVED EXAMPLE 7.14
Improper Integral - Discontinuous Function

Evaluate the following improper integral.
5∫

3

(
1√

x− 3
+

1√
5− x

)
dx.

SOLUTION
Function f (x) = 1√

x−3
+ 1√

5−x
is continous on the whole open interval (3, 5)

while can not be calculated at the endpoints a = 3 and b = 5 . So we have to use
(7.7.5) (choosing e.g. c = 4)

5∫
3

(
1√

x− 3
+

1√
5− x

)
dx =

c∫
3

(
1√

x− 3
+

1√
5− x

)
dx+

5∫
c

(
1√

x− 3
+

1√
5− x

)
dx.

1 2 3 4 5 6 7

2

4

6

8

10

y = 1√
x−3

+ 1√
5−x

x

y

Using Definition 7.6 first, we rewrite the improper integrals as limits. That is
c∫

3

(
1√

x− 3
+

1√
5− x

)
dx +

5∫
c

(
1√

x− 3
+

1√
5− x

)
dx =

= lim
ω→3+

c∫
ω

(
1√

x− 3
+

1√
5− x

)
dx + lim

ω→5−

ω∫
c

(
1√

x− 3
+

1√
5− x

)
dx.

Next, we evaluate the indefinite integral, that is∫ ( 1√
x− 3

+
1√

5− x

)
dx = 2

√
x− 3− 2

√
5− x + C.
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Now, we evaluate the definite integrals. From Theorem 7.1 with

F (x) = 2
√

x− 3− 2
√

5− x,

we get
c∫

ω

(
1√

x− 3
+

1√
5− x

)
dx =

[
2
√

x− 3− 2
√

5− x
]c

ω
=

= 2
√

c− 3− 2
√

5− c−
(

2
√

ω− 3− 2
√

5−ω
)

,

and
ω∫

c

(
1√

x− 3
+

1√
5− x

)
dx =

[
2
√

x− 3− 2
√

5− x
]ω

c
=

= 2
√

ω− 3− 2
√

5−ω−
(

2
√

c− 3− 2
√

5− c
)

.

Finally, we evaluate the limits, that is
c∫

3

(
1√

x− 3
+

1√
5− x

)
dx = lim

ω→3+

c∫
ω

(
1√

x− 3
+

1√
5− x

)
dx =

= lim
ω→3+

(2
√

c− 3− 2
√

5− c−
(

2
√

ω− 3− 2
√

5−ω
)
) =

= 2
√

c− 3− 2
√

5− c− 0 + 2
√

2.

and
5∫

c

(
1√

x− 3
+

1√
5− x

)
dx = lim

ω→5−

ω∫
c

(
1√

x− 3
+

1√
5− x

)
dx =

= lim
ω→5−

(2
√

ω− 3− 2
√

5−ω−
(

2
√

c− 3− 2
√

5− c
)
) =

= 2
√

2− 0− 2
√

c− 3 + 2
√

5− c.

So, the improper integral
5∫

3

(
1√

x− 3
+

1√
5− x

)
dx = 2

√
c− 3− 2

√
5− c + 2

√
2 + 2

√
2− 2

√
c− 3 + 2

√
5− c =

= 4
√

2 ≈ 5.65685.

is convergent.
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SOLVED EXAMPLE 7.15
Improper Integral - Discontinuous Function

Evaluate the following improper integral.
5∫

3

(
1√

x− 3
+

1
x− 5

)
dx.

SOLUTION
Function f (x) = 1√

x−3
+ 1

x−5 is continous on the whole open interval (3, 5) while
can not be calculated at the endpoints a = 3 and b = 5 . So we have to use (7.7.5)
(choosing e.g. c = 4)

5∫
3

(
1√

x− 3
+

1
x− 5

)
dx =

c∫
3

(
1√

x− 3
+

1
x− 5

)
dx +

5∫
c

(
1√

x− 3
+

1
x− 5

)
dx.

1 2 3 4 5 6 7

−10

−5

5

10

y = 1√
x−3

+ 1
x−5

x

y

Using Definition 7.6 first, we rewrite the improper integrals as limits. That is
c∫

3

(
1√

x− 3
+

1
x− 5

)
dx +

5∫
c

(
1√

x− 3
+

1
x− 5

)
dx =

= lim
ω→3+

c∫
ω

(
1√

x− 3
+

1
x− 5

)
dx + lim

ω→5−

ω∫
c

(
1√

x− 3
+

1
x− 5

)
dx.

Next, we evaluate the indefinite integral, that is∫ ( 1√
x− 3

+
1

x− 5

)
dx = 2

√
x− 3 + ln |x− 5|+ C.
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Now, we evaluate the definite integrals. From Theorem 7.1 with F (x) = 2
√

x− 3+
ln |x− 5| , we get

c∫
ω

(
1√

x− 3
+

1
x− 5

)
dx =

[
2
√

x− 3 + ln |x− 5|
]c

ω
=

= 2
√

c− 3 + ln |c− 5| −
(

2
√

ω− 3 + ln |ω− 5|
)

,

and
ω∫

c

(
1√

x− 3
+

1
x− 5

)
dx =

[
2
√

x− 3 + ln |x− 5|
]ω

c
=

= 2
√

ω− 3 + ln |ω− 5| −
(

2
√

c− 3 + ln |c− 5|
)

.

Finally, we evaluate the limits, that is
c∫

3

(
1√

x− 3
+

1
x− 5

)
dx = lim

ω→3+

c∫
ω

(
1√

x− 3
+

1
x− 5

)
dx =

= lim
ω→3+

(2
√

c− 3 + ln |c− 5| −
(

2
√

ω− 3 + ln |ω− 5|
)
) =

= 2
√

c− 3 + ln |c− 5| − 0− ln (2).

and
5∫

c

(
1√

x− 3
+

1
x− 5

)
dx = lim

ω→5−

ω∫
c

(
1√

x− 3
+

1
x− 5

)
dx =

= lim
ω→5−

(2
√

ω− 3 + ln |ω− 5| −
(

2
√

c− 3 + ln |c− 5|
)
) =

= 2
√

2−∞− 2
√

c− 3− ln |c− 5| = −∞.

So, the improper integral
5∫

3

(
1√

x− 3
+

1
x− 5

)
dx = 2

√
c− 3 + ln |c− 5| − 0− ln (2) + (−∞)

is divergent, since one of the above integrals is divergent (namely
∫ 5

c = −∞).
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SOLVED EXAMPLE 7.16
Improper Integral - Discontinuous Function

Evaluate the following improper integral.
3∫

0

3x
x2 − x− 2

dx.

SOLUTION
Since function f (x) =

3x
x2 − x− 2

is continuous for all real numbers x ∈ R except

x1 = −1 and x2 = 2 , over interval [0, 3] , we must use (7.7.6) with c = x2 = 2.
3∫

0

3x
x2 − x− 2

dx =

2∫
0

3x
x2 − x− 2

dx +

3∫
2

3x
x2 − x− 2

dx.

−6 −4 −2 2 4 6

−10

−5

5

10

y = 3x
x2−x−2

x

y

Using Definition 7.6 first, we rewrite the improper integrals as limits. That is
2∫

0

3x
x2 − x− 2

dx+
3∫

2

3x
x2 − x− 2

dx = lim
ω→2−

ω∫
0

3x
x2 − x− 2

dx+ lim
ω→2+

3∫
ω

3x
x2 − x− 2

dx.

Next, we evaluate the indedinite integral. Denumerator can be factorized as

x2 − x− 2 = (x + 1) (x− 2) ,

and we decompose the function before calculating its primitive function. (See
details in https://math.uni-pannon.hu/~szalkai/ParcTort-pdfw.pdf. )

f (x) =
3x

x2 − x− 2
=

3x
(x + 1) (x− 2)

=
1

x + 1
+

2
x− 2

,

so∫ 3x
x2 − x− 2

dx =
∫ ( 1

x + 1
+

2
x− 2

)
dx = ln |x + 1|+ 2 ln |x− 2|+ C =

= ln
∣∣∣(x + 1) · (x− 2)2

∣∣∣+ C.
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Now, we evaluate the definite integrals. From Theorem 7.1 with

F (x) = ln
∣∣∣(x + 1) · (x− 2)2

∣∣∣ = ln
(
|x + 1| · (x− 2)2

)
,

we get

ω∫
0

3x
x2 − x− 2

dx =
[
ln |x + 1| · (x− 2)2

]ω

0
=

= ln |ω + 1| · (ω− 2)2 − ln |0 + 1| · (0− 2)2 =

= ln |ω + 1| · (ω− 2)2 − ln (4),

and
3∫

ω

3x
x2 − x− 2

dx =
[
ln |x + 1| · (x− 2)2

]ω

0
=

= ln |3 + 1| · (3− 2)2 − ln |ω + 1| · (ω− 2)2 =

= ln (4)− ln |ω + 1| · (ω− 2)2.

Finally, we evaluate the limits. That is
2∫

0

3x
x2 − x− 2

dx = lim
ω→2−

ω∫
0

3x
x2 − x− 2

dx =

= lim
ω→2−

(ln |ω + 1| · (ω− 2)2 − ln (4)) = ∞− ln (4) = ∞.

and
3∫

2

3x
x2 − x− 2

dx = lim
ω→2+

3∫
ω

3x
x2 − x− 2

dx =

= lim
ω→2+

(ln (4)− ln |ω + 1| · (ω− 2)2) = (4)−∞ = −∞.

So, the improper integral
3∫

0

3x
x2 − x− 2

dx = ∞ + (−∞)

is divergent, since both of the above integrals are divergent.
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WARNING

We would have a disaster if the discontinuous point x2 = 2 were not observed, since
automatic application of Newton-Leibniz Rule would give the following bad result.

3∫
0

3x
x2 − x− 2

dx = /FALSE!/ =
[
ln |x + 1| · (x− 2)2

]3

0
=

= ln |3 + 1| · (3− 2)2 − ln |0 + 1| · (0− 2)2 = 0 .

SOLVED EXAMPLE 7.17
Improper Integral - Discontinuous Function

Evaluate the following improper integral.
3∫

0

−x− 4
x2 − x− 2

dx.

SOLUTION
Since function f (x) =

−x− 4
x2 − x− 2

is continuous for all real numbers x ∈ R except

x1 = −1 and x2 = 2 , over interval [0, 3] , we must use (7.7.6) with c = x2 = 2.
3∫

0

−x− 4
x2 − x− 2

dx =

2∫
0

−x− 4
x2 − x− 2

dx +

3∫
2

−x− 4
x2 − x− 2

dx.

−6 −4 −2 2 4 6

−10

−5

5

10

y = −x−4
x2−x−2

x

y

Using Definition 7.6 first, we rewrite the improper integrals as limits. That is
2∫

0

−x− 4
x2 − x− 2

dx+
3∫

2

−x− 4
x2 − x− 2

dx = lim
ω→2−

ω∫
0

−x− 4
x2 − x− 2

dx+ lim
ω→2+

3∫
ω

−x− 4
x2 − x− 2

dx.
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Next, we evaluate the indedinite integral. Denumerator can be factorized as

x2 − x− 2 = (x + 1) (x− 2) ,

and we decompose the function before calculating its primitive function. (See
details in https://math.uni-pannon.hu/~szalkai/ParcTort-pdfw.pdf. )

f (x) =
−x− 4

x2 − x− 2
=

−x− 4
(x + 1) (x− 2)

=
1

x + 1
− 2

x− 2
,

so∫ −x− 4
x2 − x− 2

dx =
∫ ( 1

x + 1
− 2

x− 2

)
dx = ln |x + 1| − 2 ln |x− 2|+ C =

= ln

∣∣∣∣∣ x + 1

(x− 2)2

∣∣∣∣∣+ C.

Now, we evaluate the definite integrals. From Theorem 7.1 with

F (x) = ln

∣∣∣∣∣ x + 1

(x− 2)2

∣∣∣∣∣ ,

we get

ω∫
0

−x− 4
x2 − x− 2

dx =

[
ln

∣∣∣∣∣ x + 1

(x− 2)2

∣∣∣∣∣
]ω

0

= ln

∣∣∣∣∣ ω + 1

(ω− 2)2

∣∣∣∣∣− ln

∣∣∣∣∣ 0 + 1

(0− 2)2

∣∣∣∣∣ =
= ln

∣∣∣∣∣ ω + 1

(ω− 2)2

∣∣∣∣∣− ln
(

1
4

)
,

and
3∫

ω

−x− 4
x2 − x− 2

dx =

[
ln

∣∣∣∣∣ x + 1

(x− 2)2

∣∣∣∣∣
]3

ω

= ln

∣∣∣∣∣ 3 + 1

(3− 2)2

∣∣∣∣∣− ln

∣∣∣∣∣ ω + 1

(ω− 2)2

∣∣∣∣∣ =
= ln (4)− ln

∣∣∣∣∣ ω + 1

(ω− 2)2

∣∣∣∣∣.
Finally, we evaluate the limits, that is

2∫
0

−x− 4
x2 − x− 2

dx = lim
ω→2−

ω∫
0

−x− 4
x2 − x− 2

dx =

= lim
ω→2−

(ln

∣∣∣∣∣ ω + 1

(ω− 2)2

∣∣∣∣∣− ln
(

1
4

)
) = ∞− ln

(
1
4

)
= ∞.

and
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3∫
2

−x− 4
x2 − x− 2

dx = lim
ω→2+

3∫
ω

−x− 4
x2 − x− 2

dx =

= lim
ω→2+

(ln (4)− ln

∣∣∣∣∣ ω + 1

(ω− 2)2

∣∣∣∣∣) = (4)−∞ = −∞.

So improper integral
3∫

0

−x− 4
x2 − x− 2

dx = ∞ + (−∞)

is divergent, since both of the above integrals is divergent.

WARNING

We would have a disaster if the discontinuous point x2 = 2 were not observed, since
automatic application of Newton-Leibniz Rule would give the following bad result.

3∫
0

−x− 4
x2 − x− 2

dx = /FALSE!/ =

[
ln

∣∣∣∣∣ x + 1

(x− 2)2

∣∣∣∣∣
]3

0

=

= ln

∣∣∣∣∣ 3 + 1

(3− 2)2

∣∣∣∣∣− ln

∣∣∣∣∣ 0 + 1

(0− 2)2

∣∣∣∣∣ = 2 ln 4 ≈ 2.77259 .
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7.9 Exercises

The solutions of the following problems can be found in
Chapter 8. Solutions.

7.9.1 Integrating over Infinite Intervals

Exercises 7.6

Calculate the following improper integrals.

1.
−4∫
−∞

x + 1
x2 + 2x− 3

dx,

See Solution 8.7.46

2. 4

4 See also Exercise 7.9 1.−4∫
−∞

7
x2 + 2x− 3

dx,

See Solution 8.7.47

3.
∞∫
√

2

2x− 3
x2 + 1

dx,

See Solution 8.7.48

4.
∞∫

0

e−x dx,

See Solution 8.7.49

5.
∞∫

0

2
ex + e−x dx,

See Solution 8.7.50

6.
∞∫

1

1
x3 · exp

(
−1
x2

)
dx,

See Solution 8.7.51

7.
∞∫

1

dx
arctan (x) · (x2 + 1)

,

See Solution 8.7.52
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8.
7∫

−∞

1
x2 + 2x + 10

dx,

See Solution 8.7.53

9.
∞∫

0

1
x2 + 4x + 6

dx.

See Solution 8.7.54

Exercises 7.7

Calculate the following improper integrals.

1.
∞∫
−∞

1
x2 + 4x + 8

dx,

See Solution 8.7.55

2.
∞∫
−∞

1
x2 + 2x + 5

,

See Solution 8.7.56

3.
∞∫
−∞

arctan (x)
x2 + 1

dx,

See Solution 8.7.57

4. *
+∞∫
−∞

8a3

x2 + 4a2 dx,

where a ∈ R. See Solution 8.7.58

7.9.2 Integrating Discontinuous Functions

Exercises 7.8

Calculate the following improper integrals. Find all
the points in the interval where the function is dis-
continuous.

1.
1∫

0

2x
1− x2 dx,

See Solution 8.7.59

190



Definite Integrals of Real Functions 7

2.
1∫

0

ex + 1
e2x − 1

dx,

See Solution 8.7.60

3.
1∫

0

ln x
2
√

x
dx,

See Solution 8.7.61

4.
1∫

0

ln x
x3 dx,

See Solution 8.7.62

5.
1∫

0

ln x
3
√

x
dx,

See Solution 8.7.63

6. *
1∫

0

1
x · ln2 x

dx,

See Solution 8.7.64

7.
1∫

0

1√
x− 1

dx,

See Solution 8.7.65

8.
2∫

1

1√
x− 1

dx,

See Solution 8.7.66

9.
9∫

0

1√
x · (x− 9)

dx,

See Solution 8.7.67

10.
0∫
−2

−x2 + x− 3
(x2 + 5) (x + 2)

dx,

See Solution 8.7.68

11.
0∫
−1

x2 − x + 1
(x2 + 2) (x + 1)

dx,

See Solution 8.7.69
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12.
5∫

0

3x
x2 − x− 2

dx.

See Solution 8.7.70

On top of all, many integrals may contain all of the
above improper properties discussed so far.

Exercises 7.9

Calculate the following improper integrals. Be aware
of the critical inner points, too!
(See also Exercise 7.6. 2.)

1.
0∫

−∞

7
x2 + 2x− 3

dx,

See Solution 8.7.71

2. *
∞∫
−∞

1
x2 + x

dx.

See Solution 8.7.72
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8 Solutions

8.1 The Composite Functions

Step-by-Step Solution

Find the composite function f ◦ g, if it exists.

f (x) = x2 − 9, x ∈ [0, 5] ,

g (x) = 3x + 1, x ∈ [0, 7] .

Solution 8.1.1 From
0 ≤ 3x + 1 ≤ 5,

−1 ≤ 3x ≤ 4,

we get
−1
3
≤ x ≤ 4

3
.

As [
−1

3
,

4
3

]
∩ [0, 7] =

[
0,

4
3

]
,

the composit funcition exists and

dom ( f (g)) =

[
0,

4
3

]
,

f (g (x)) = (3x + 1)2 − 9.

Step-by-Step Solution

Find the composite function f ◦ g, if it exists.

f (x) = 3x2 + 5, x ∈ [1, 125] ,

g (x) = 2x + 3, x ∈ [0, 100] .

Solution 8.1.2 From
1 ≤ 2x + 3 ≤ 125,
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−2 ≤ 2x ≤ 122,

we get
−1 ≤ x ≤ 61.

As
[−1, 61] ∩ [0, 100] = [0, 61] ,

the composit funcition exists and

dom ( f (g)) = [0, 61] ,

f (g (x)) = 3 (2x + 3)2 + 5.

Step-by-Step Solution

Find the composite function f ◦ g, if it exists.

f (x) = 8− sin (x) , x ∈ [1, 125] ,

g (x) = 5x, x ∈ [−1, 10] .

Solution 8.1.3 From
1 ≤ 5x ≤ 125,

log5 (1) ≤ log5 (5
x) ≤ log5 (125) ,

log5

(
50
)
≤ log5 (5

x) ≤ log5

(
53
)

,

we get
0 ≤ x ≤ 3.

As
[0, 3] ∩ [−1, 10] = [0, 3] ,

the composit funcition exists and

dom ( f (g)) = [0, 3] ,

f (g (x)) = 8− sin (5x) .

Step-by-Step Solution

Find the composite function f ◦ g, if it exists.

f (x) = sin3 (x) , x ∈ [1, 25] ,

g (x) = x2, x ∈ [0, 3] .
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Solution 8.1.4 From
1 ≤ x2 ≤ 25,

√
1 ≤
√

x2 ≤
√

25,

1 ≤ |x| ≤ 5,

we get
−5 ≤ x ≤ −1 or 1 ≤ x ≤ 5.

As
([−5,−1] ∪ [1, 5]) ∩ [0, 3] = [1, 3] ,

the composit funcition exists and

dom ( f (g)) = [1, 3] ,

f (g (x)) = sin3
(

x2
)

.

Step-by-Step Solution

Find the composite function f ◦ g, if it exists.

f (x) =
cos (x)

5
− x, x ∈ [1, 4] ,

g (x) = log2 (x) , x ∈ [1, 10] .

Solution 8.1.5 From
1 ≤ log2 (x) ≤ 4,

21 ≤ 2log2(x) ≤ 24,

we get
2 ≤ x ≤ 16.

As
[2, 16] ∩ [1, 10] = [2, 10] ,

the composit funcition exists and

dom ( f (g)) = [2, 10] ,

f (g (x)) =
cos (log2 (x))

5
.
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Step-by-Step Solution

Find the composite function f ◦ g, if it exists.

f (x) = 6− 9 cos (x) , x ∈ [0, 15] ,

g (x) = x2 + 2x, x ∈ [1, 10] .

Solution 8.1.6 To solve
0 ≤ x2 + 2x ≤ 15

we use that
x2 + 2x = (x + 1)2 − 1.

From
0 ≤ (x + 1)2 − 1 ≤ 15

1 ≤ (x + 1)2 ≤ 16
√

1 ≤
√
(x + 1)2 ≤

√
16

1 ≤ |x + 1| ≤ 4,

we get
−4 ≤ x + 1 ≤ −1 or 1 ≤ x + 1 ≤ 4.

−5 ≤ x ≤ −2 or 0 ≤ x ≤ 3.

As
([−5,−2] ∪ [0, 3]) ∩ [1, 10] = [1, 3] ,

the composit funcition exists and

dom ( f (g)) = [1, 3] ,

f (g (x)) = 6− 9 cos
(

x2 + 2x
)

.

Step-by-Step Solution

Find the composite function f ◦ g, if it exists.

f (x) = x2 − 6x− 83, x ∈ [4, 7] ,

g (x) =
√

x + 3, x ∈ [0, 23] .

Solution 8.1.7 From
4 ≤
√

x + 3 ≤ 7,

1 ≤
√

x ≤ 4,
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we get
1 ≤ x ≤ 16.

As
[1, 16] ∩ [0, 23] = [1, 16] ,

the composit funcition exists and

dom ( f (g)) = [1, 16] ,

f (g (x)) =
(√

x + 3
)2 − 6

(√
x + 3

)
− 83.

Step-by-Step Solution

Find the composite function f ◦ g, if it exists.

f (x) =
√

4x2 + 2 + 3x, x ∈ [4, 7] ,

g (x) = ln (x) + 3, x ∈ [0, 23] .

Solution 8.1.8 From
4 ≤ ln (x) + 3 ≤ 7,

1 ≤ ln (x) ≤ 4,

e1 ≤ eln(x) ≤ e4,

we get
e ≤ x ≤ e4.

As [
e, e4

]
∩ [0, 23] = [e, 23] ,

the composit funcition exists and

dom ( f (g)) = [e, 23] ,

f (g (x)) =

√
4 (ln (x) + 3)2 + 2 + 3 (ln (x) + 3) .

Step-by-Step Solution

Find the composite function f ◦ g, if it exists.

f (x) =
√

x + 3, x ∈ [3, 4] ,

g (x) = cos (x) + 3, x ∈
[

π

4
,

3π

4

]
.
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Solution 8.1.9 From
3 ≤ cos (x) + 3 ≤ 4,

0 ≤ cos (x) ≤ 1,

we get
−π

2
+ 2kπ ≤ x ≤ π

2
+ 2kπ, k ∈ Z.

As (⋃
k∈Z

[
−π

2
+ 2kπ,

π

2
+ 2kπ

])
∩
[

π

4
,

3π

4

]
=
[π

4
,

π

2

]
,

the composit funcition exists and

dom ( f (g)) =
[π

4
,

π

2

]
,

f (g (x)) =
√

cos (x) + 3 + 3.

Step-by-Step Solution

Find the composite function f ◦ g, if it exists.

f (x) =
√

1− x, x ≤ 1,

g (x) = x2, x ∈ R.

Solution 8.1.10 From
x2 ≤ 1,

0 ≤ x2 ≤ 1,
√

0 ≤
√

x2 ≤
√

1,

we get
0 ≤ |x| ≤ 1,

so
−1 ≤ x ≤ 1.

As
[−1, 1] ∩R = [−1, 1] ,

the composit funcition exists and

dom ( f (g)) = [−1, 1] ,

f (g (x)) =
√

1− x2.
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Step-by-Step Solution

Find the composite function f ◦ g, if it exists.

f (x) =
√

1− x, x ≤ 1,

g (x) = x2, x ∈ [2, 4] .

Solution 8.1.11 From
x2 ≤ 1,

0 ≤ x2 ≤ 1,
√

0 ≤
√

x2 ≤
√

1,

we get
0 ≤ |x| ≤ 1,

so
−1 ≤ x ≤ 1.

As
[−1, 1] ∩ [2, 4] = ∅,

the composit funcition does not exist.
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8.2 The Inverse Function

Step-by-Step Solution

Find the inverse function of the given f function, if it exists.

f (x) = (x− 2)2 , x ∈ [1, 3] .

Solution 8.2.1 1. Is f a one-to-one function?

Let 1 ≤ x1, x2 ≤ 3 be any and

(x1 − 2)2 = (x2 − 2)2 ?
=⇒ x1 = x2.

As f (1) = (1− 2)2 = (−1)2 = 1 and f (3) = (3− 2)2 = 12 = 1 f is not a one-to-
one function, so the inverse function does not exist.

Step-by-Step Solution

Find the inverse function of the given f function, if it exists.

f (x) = 5x + 1, x ∈ [1, 5] .

Solution 8.2.2 1. Is f a one-to-one function?

Let 1 ≤ x1, x2 ≤ 5 be any and

5x1 + 1 = 5x2 + 1 ?
=⇒ x1 = x2.

From
5x1 + 1 = 5x2 + 1,

5x1 = 5x2,

so we get
x1 = x2.

This implies that the inverse of f exists.

2. Now we determine the domain of function f−1. As dom
(

f−1) = im ( f ) , we determine
the range of function f . As dom ( f ) = [1, 5] , we have

1 ≤ x ≤ 5.

From this
5 ≤ 5x ≤ 25,

6 ≤ 5x + 1 ≤ 26.

Thus,
6 ≤ (y = f (x) =) 5x + 1 ≤ 25,
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dom
(

f−1
)
= im ( f ) = [6, 26] .

3. Finally, we solve y = f (x) for ”x = ”. So consider

y = 5x + 1,

where 6 ≤ y ≤ 26 and 1 ≤ x ≤ 5. As

y− 1 = 5x,

we find
1
5

y− 1
5
= x.

So the inverse of f exists and

f−1 (x) =
1
5

x− 1
5

, x ∈ [6, 26] ,

Step-by-Step Solution

Find the inverse function of the given f function, if it exists.

f (x) = x2 + 2x, x ∈ [−1, 2] .

Solution 8.2.3 To determine the inverse of function f first we have to rewrite f (x) . To
solve this problem we write

f (x) = (x + 1)2 − 1, x ∈ [−1, 2] .

1. Is f a one-to-one function?

Let −1 ≤ x1, x2 ≤ 2 be any and

(x1 + 1)2 − 1 = (x2 + 1)2 − 1 ?
=⇒ x1 = x2.

From
(x1 + 1)2 − 1 = (x2 + 1)2 − 1,

(x1 + 1)2 = (x2 + 1)2 ,

|x1 + 1| = |x2 + 1|

but −1 ≤ x1, x2 ≤ 2, so from the definition of absolute value we get

x1 + 1 = x2 + 1,

this follows
x1 = x2.

This implies that the inverse of f exists.
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2. Now we determine the domain of function f−1. As dom
(

f−1) = im ( f ) , we determine
the range of function f . As dom ( f ) = [−1, 2] , we have

−1 ≤ x ≤ 2.

From this
0 ≤ x + 1 ≤ 3,

0 ≤ (x + 1)2 ≤ 9,

−1 ≤ (x + 1)2 − 1 ≤ 8.

Thus,
−1 ≤ (y = f (x) =) (x + 1)2 − 1 ≤ 8,

dom
(

f−1
)
= im ( f ) = [−1, 8] .

3. Finally, we solve y = f (x) for ”x = ”. So consider

y = (x + 1)2 − 1,

where −1 ≤ y ≤ 8 and −1 ≤ x ≤ 2. As

y = (x + 1)2 − 1,

y + 1 = (x + 1)2 ,√
y + 1 = |x + 1| ,

but −1 ≤ x1, x2 ≤ 2, so from the definition of absolute value we get√
y + 1 = x + 1,√
y + 1− 1 = x.

So the inverse of f exists and

f−1 (x) =
√

x + 1− 1, x ∈ [−1, 8] ,

Step-by-Step Solution

Find the inverse function of the given f function, if it exists.

f (x) = 5x + 1, x ∈ [−1, 1] .

Solution 8.2.4 1. Is f a one-to-one function?

Let −1 ≤ x1, x2 ≤ 1 be any and

5x1 + 1 = 5x2 + 1 ?
=⇒ x1 = x2.
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From
5x1 + 1 = 5x2 + 1,

we get
5x1 = 5x2 ,

log5 (5
x1) = log5 (5

x2) ,

so we have
x1 = x2.

This implies that the inverse of f exists.

2. Now we determine the domain of function f−1. As dom
(

f−1) = im ( f ) , we determine
the range of function f . As dom ( f ) = [−1, 1] , we have

−1 ≤ x ≤ 1.

From this
5−1 ≤ 5x ≤ 51,

1
5
≤ 5x ≤ 5,

6
5
≤ 5x + 1 ≤ 6.

Thus,
6
5
≤ (y = f (x) =) 5x + 1 ≤ 6,

dom
(

f−1
)
= im ( f ) =

[
6
5

, 6
]

.

3. Finally, we solve y = f (x) for ”x = ”. So consider

y = 5x + 1,

where 6
5 ≤ y ≤ 6 and −1 ≤ x ≤ 1. As

y = 5x + 1,

y− 1 = 5x,

log5 (y− 1) = log5 (5
x) ,

log5 (y− 1) = x,

we find
log5 (x− 1) = y.

So the inverse of f exists and

f−1 (x) = log5 (x− 1) , x ∈
[

6
5

, 6
]

,
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Step-by-Step Solution

Find the inverse function of the given f function, if it exists.

f (x) = 1− log3 (x) , x ∈ [1, 27] .

Solution 8.2.5 1. Is f a one-to-one function?

Let 1 ≤ x1, x2 ≤ 27 be any and

1− log3 (x1) = 1− log3 (x2)
?

=⇒ x1 = x2.

From
1− log3 (x1) = 1− log3 (x2) ,

− log3 (x1) = − log3 (x2) ,

log3 (x1) = log3 (x2) ,

3log3(x1) = 3log3(x2),

so we get
x1 = x2.

This implies that the inverse of f exists.

2. Now we determine the domain of function f−1. As dom
(

f−1) = im ( f ) , we determine
the range of function f . As dom ( f ) = [1, 27] , we have

1 ≤ x ≤ 27.

From this
log3 (1) ≤ log3 (x) ≤ log3 (27) ,

log3

(
30
)
≤ log3 (x) ≤ log3

(
33
)

,

0 ≤ log3 (x) ≤ 3,

0 ≥ − log3 (x) ≥ −3,

1 ≥ 1− log3 (x) ≥ −2.

Thus,
1 ≥ (y = f (x) =) 1− log3 (x) ≥ −2,

dom
(

f−1
)
= im ( f ) = [−2, 1] .

3. Finally, we solve y = f (x) for ”x = ”. So consider

y = 1− log3 (x) ,
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where −2 ≤ y ≤ 1 and 1 ≤ x ≤ 27. As

y = 1− log3 (x) ,

log3 (x) = 1− y,

3log3(x) = 31−y,

we find
x = 31−y.

So the inverse of f exists and

f−1 (x) = 31−x, x ∈ [−2, 1] ,

Step-by-Step Solution

Find the inverse function of the given f function, if it exists.

f (x) =
√

x− 1 + 5, x ∈ [1, 37] .

Solution 8.2.6 1. Is f a one-to-one function?

Let 1 ≤ x1, x2 ≤ 37 be any and√
x1 − 1 + 5 =

√
x2 − 1 + 5 ?

=⇒ x1 = x2.

From √
x1 − 1 + 5 =

√
x2 − 1 + 5,√

x1 − 1 =
√

x2 − 1,

x1 − 1 = x2 − 1,

so we get
x1 = x2.

This implies that the inverse of f exists.

2. Now we determine the domain of function f−1. As dom
(

f−1) = im ( f ) , we determine
the range of function f . As dom ( f ) = [1, 37] , we have

1 ≤ x ≤ 37.

From this
0 ≤ x− 1 ≤ 36,

√
0 ≤
√

x− 1 ≤
√

36,

5 ≤
√

x− 1 + 5 ≤ 11.
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Thus,
5 ≤ (y = f (x) =)

√
x− 1 + 5 ≤ 11,

dom
(

f−1
)
= im ( f ) = [5, 11] .

3. Finally, we solve y = f (x) for ”x = ”. So consider

y =
√

x− 1 + 5,

where 5 ≤ y ≤ 11 and 1 ≤ x ≤ 37. As

y =
√

x− 1 + 5,

y− 5 =
√

x− 1,

(y− 5)2 = x− 1,

we find
(y− 5)2 + 1 = x.

So the inverse of f exists and

f−1 (x) = (x− 5)2 + 1, x ∈ [5, 11] ,

Step-by-Step Solution

Find the inverse function of the given f function, if it exists.

f (x) = x2 − 4x + 3, x < 0.

Solution 8.2.7 To determine the inverse of function f first we have to rewrite f (x) . To
solve this problem we write

f (x) = x2 − 4x + 3 = (x− 2)2 − 1.

1. Is f a one-to-one function?

Let x1, x2 < 0 be any and

(x1 − 2)2 − 1 = (x2 − 2)2 − 1 ?
=⇒ x1 = x2.

From
(x1 − 2)2 − 1 = (x2 − 2)2 − 1,

(x1 − 2)2 = (x2 − 2)2 ,

|x1 − 2| = |x2 − 2| ,

But x1, x2 < 0, so from the definition of absolute value we get

− (x1 − 2) = − (x2 − 2) ,
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so we get
x1 = x2.

This implies that the inverse of f exists.

2. Now we determine the domain of function f−1. As dom
(

f−1) = im ( f ) , we determine
the range of function f . As dom ( f ) = (−∞, 0) , we have

x < 0.

From this
x− 2 < −2,

(x− 2)2 > 4,

(x− 2)2 − 1 > 3.

Thus,
3 < (y = f (x) =) (x− 2)2 − 1,

dom
(

f−1
)
= im ( f ) = (3, ∞) .

3. Finally, we solve y = f (x) for ”x = ”. So consider

y = (x− 2)2 − 1,

where 3 < y and x < 0. As
y = (x− 2)2 − 1,

y + 1 = (x− 2)2 ,√
y + 1 = |x− 2| ,

But x1, x2 < 0, so from the definition of absolute value we get√
y + 1 = − (x− 2) ,

−
√

y + 1 = x− 2,

so we find
2−

√
y + 1 = x.

So the inverse of f exists and

f−1 (x) = 2−
√

x + 1, 3 < x.
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Step-by-Step Solution

Find the inverse function of the given f function, if it exists.

f (x) =
√

x− 3, x ∈ [4, 16] .

Solution 8.2.8 1. Is f a one-to-one function?

Let 4 ≤ x1, x2 ≤ 16 be any and
√

x1 − 3 =
√

x2 − 3 ?
=⇒ x1 = x2.

From
√

x1 − 3 =
√

x2 − 3,
√

x1 =
√

x2,

so we get
x1 = x2.

This implies that the inverse of f exists.

2. Now we determine the domain of function f−1. As dom
(

f−1) = im ( f ) , we determine
the range of function f . As dom ( f ) = [4, 16] , we have

4 ≤ x ≤ 16.

From this
2 ≤
√

x ≤ 4,

−1 ≤
√

x− 3 ≤ 1.

Thus,
−1 ≤ (y = f (x) =)

√
x− 3 ≤ 1,

dom
(

f−1
)
= im ( f ) = [−1, 1] .

3. Finally, we solve y = f (x) for ”x = ”. So consider

y =
√

x− 3,

where −1 ≤ y ≤ 1 and 4 ≤ x ≤ 16. As

y =
√

x− 3,

y + 3 =
√

x,

so we find
(x + 3)2 = x.

So the inverse of f exists and

f−1 (x) = (x + 3)2 , x ∈ [−1, 1] .
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Step-by-Step Solution

Find the inverse function of the given f function, if it exists.

f (x) = log 1
2
(x) , x ∈

[
1
2

, 4
]

.

Solution 8.2.9 1. Is f a one-to-one function?

Let
1
2
≤ x1, x2 ≤ 4 be any and

log 1
2
(x1) = log 1

2
(x2)

?
=⇒ x1 = x2.

From
log 1

2
(x1) = log 1

2
(x2) ,(

1
2

)log 1
2
(x1)

=

(
1
2

)log 1
2
(x2)

,

so we get
x1 = x2.

This implies that the inverse of f exists.

2. Now we determine the domain of function f−1. As dom
(

f−1) = im ( f ) , we determine
the range of function f . As dom ( f ) =

[
1
2 , 4
]

, we have

1
2
≤ x ≤ 4.

As f (x) = log 1
2
(x) is monotone decreasing function we get

log 1
2

(
1
2

)
≥ log 1

2
(x) ≥ log 1

2
(4) ,

1 ≥ log 1
2
(x) ≥ −2.

Thus,
−2 ≤ (y = f (x) =) log 1

2
(x) ≤ 1,

dom
(

f−1
)
= im ( f ) = [−2, 1] .

3. Finally, we solve y = f (x) for ”x = ”. So consider

y = log 1
2
(x) ,

where −2 ≤ y ≤ 1 and
1
2
≤ x ≤ 4. As

y = log 1
2
(x) ,(

1
2

)y
=

(
1
2

)log 1
2
(x)

,
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so we find (
1
2

)y
= x.

So the inverse of f exists and

f−1 (x) =
(

1
2

)x
, x ∈ [−2, 1] ,

Step-by-Step Solution

Find the inverse function of the given f function, if it exists.

f (x) = ln (x) + 4, x ∈
[
1, e2

]
.

Solution 8.2.10 1. Is f a one-to-one function?

Let 1 ≤ x1, x2 ≤ e2 be any and

ln (x1) + 4 = ln (x2) + 4 ?
=⇒ x1 = x2.

From
ln (x1) + 4 = ln (x2) + 4,

ln (x1) = ln (x2) ,

eln(x1) = eln(x2),

so we get
x1 = x2.

This implies that the inverse of f exists.

2. Now we determine the domain of function f−1. As dom
(

f−1) = im ( f ) , we determine
the range of function f . As dom ( f ) =

[
1, e2] , we have

1 ≤ x ≤ e2.

From this we get
ln (1) ≤ ln (x) ≤ ln

(
e2
)

,

0 ≤ ln (x) ≤ 2,

4 ≤ ln (x) + 4 ≤ 6.

Thus,
4 ≤ (y = f (x) =) ln (x) + 4 ≤ 6,

dom
(

f−1
)
= im ( f ) = [4, 6] .
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3. Finally, we solve y = f (x) for ”x = ”. So consider

y = ln (x) + 4,

where 4 ≤ y ≤ 6 and 1 ≤ x ≤ e2. As

y = ln (x) + 4,

y− 4 = ln (x) ,

ey−4 = eln(x),

so we find
ey−4 = x.

So the inverse of f exists and

f−1 (x) = ex−4, x ∈ [4, 6] ,

Step-by-Step Solution

Find the inverse function of the given f function, if it exists.

f (x) = 3x−2, x ∈ [1, 2] .

Solution 8.2.11 1. Is f a one-to-one function?

Let 1 ≤ x1, x2 ≤ 2 be any and

3x1−2 = 3x2−2 ?
=⇒ x1 = x2.

From
3x1−2 = 3x2−2,

log3

(
3x1−2

)
= log3

(
3x2−2

)
,

x1 − 2 = x2 − 2,

so we get
x1 = x2.

This implies that the inverse of f exists.

2. Now we determine the domain of function f−1. As dom
(

f−1) = im ( f ) , we determine
the range of function f . As dom ( f ) = [1, 2] , we have

1 ≤ x ≤ 2.

From this we get
−1 ≤ x− 2 ≤ 0.
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3−1 ≤ 3x−2 ≤ 30.

Thus,
1
3
≤ (y = f (x) =) 3x−2 ≤ 1,

dom
(

f−1
)
= im ( f ) =

[
1
3

, 1
]

.

3. Finally, we solve y = f (x) for ”x = ”. So consider

y = 3x−2,

where
1
3
≤ y ≤ 1 and 1 ≤ x ≤ 2. As

y = 3x−2,

log3 (y) = log3

(
3x−2

)
,

log3 (y) = x− 2,

so we find
log3 (y) + 2 = x.

So the inverse of f exists and

f−1 (x) = log3 (x) + 2, x ∈
[

1
3

, 1
]

.
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8.3 Sequences

8.3.1 Sequences with Limit ” ∞
∞ ”

Step-by-Step Solution

Find the inverse function of the given f function, if it exists.

an =
2016n32 − 5n6 + 1

n32 + n5 − 76
.

Solution 8.3.1

an =
2016n32 − 5n6 + 1

n32 + n5 − 76
=

n32
(

2016− 5n6

n32 +
1

n32

)
n32
(

1 +
n5

n32 −
76
n32

) =

=
2016− 5

n26 +
1

n32

1 +
1

n27 −
76
n32

→ 2016− 0 + 0
1 + 0− 0

= 2016.

Step-by-Step Solution

Find the limit of the following sequence.

an =
n2017 + 8n5 + 1
n62 + n7 − 98

.

Solution 8.3.2

an =
n2017 + 8n5 + 1
n62 + n7 − 98

=

n62
(

n2017

n62 −
8n5

n62 +
1

n62

)
n62
(

1 +
n7

n62 −
98
n62

) =

=
n1955 − 8

n57 +
1

n62

1 +
1

n55 −
98
n62

→ ∞− 0 + 0
1 + 0− 0

= ∞.
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Step-by-Step Solution

Find the limit of the following sequence.

an =
7− 54

√
n4 + 1

n2 +
√

n− 9
.

Solution 8.3.3

an =
7− 54

√
n4 + 1

n2 +
√

n− 9
=

n2

(
7
n2 −

54
√

n4 + 1
n2

)

n2

(
1 +
√

n− 9
n2

) =

7
n2 −

54
√

n4 + 1
n2

1 +
√

n− 9
n2

=

=

7
n2 − 54

√
n4 + 1

n4

1 +
√

n− 9
n4

=

7
n2 − 54

√
1 +

1
n4

1 +

√
1
n3 −

9
n4

→ 0− 54
√

1 + 0
1 +
√

0− 0
= −54.

Step-by-Step Solution

Find the limit of the following sequence.

an =
3
√

5n + 1− 6
n2 + 3

√
n− 8

.

Solution 8.3.4

an =
3
√

5n + 1− 6
n2 + 3

√
n− 8

=

n2

(
3
√

5n + 1
n2 − 6

n2

)

n2
(

1 +
3
√

n
n2 −

8
n2

) =

3
√

5n + 1
n2 − 6

n2

1 +
3
√

n
n2 −

8
n2

=

=

3

√
5n + 1

n6 − 6
n2

1 + 3

√
n
n6 −

8
n2

=

3

√
5
n5 +

1
n6 −

6
n2

1 + 3

√
1
n5 −

8
n2

→
3
√

0 + 0− 0
1 + 3
√

0− 0
= 0.
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Step-by-Step Solution

Find the limit of the following sequence.

an =
87n13 + 42

1− 2n25 + 87n
.

Solution 8.3.5

an =
87n13 + 42

1− 2n25 + 87n
=

n25
(

87n13

n25 +
42
n25

)
n25
(

1
n25 − 2 +

87n
n25

) =

=

87n13

n25 +
42
n25

1
n25 − 2 +

87n
n25

=

87
n12 +

42
n25

1
n25 − 2 +

87
n24

→ 0 + 0
0− 2 + 0

= 0.

Step-by-Step Solution

Find the limit of the following sequence.

an =
3
√

n + 1 +
√

n− 6√
n2 − 8 + 3

√
n

.

Solution 8.3.6

an =
3
√

n + 1 +
√

n− 6√
n2 − 8 + 3

√
n

=

√
n2

(
3
√

n + 1√
n2

+

√
n√
n2
− 6√

n2

)
√

n2

(√
n2 − 8√

n2
+

3
√

n√
n2

) =

=

3
√

n + 1√
n2

+

√
n√
n2
− 6√

n2
√

n2 − 8√
n2

+
3
√

n√
n2

=

3
√

n + 1
n

+

√
n
n2 −

6
n√

n2 − 8
n2 +

3
√

n
n

=

=

3

√
n + 1

n3 +

√
1
n
− 6

n√
1− 8

n2 + 3

√
n
n3

=

3

√
1
n2 +

1
n3 +

√
1
n
− 6

n√
1− 8

n2 + 3

√
1
n2

→
3
√

0 + 0 +
√

0− 0√
1− 0 + 0

= 0.
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Step-by-Step Solution

Find the limit of the following sequence.

an =
1− n√

n2 + 1 +
√

n2 + n
.

Solution 8.3.7

an =
1− n√

n2 + 1 +
√

n2 + n
=

√
n2
(

1− n√
n2

)
√

n2

(√
n2 + 1√

n2
+

√
n2 + n√

n2

) =

=

1− n
n√

n2 + 1√
n2

+

√
n2 + n√

n2

=

1
n
− 1√

n2 + 1
n2 +

√
n2 + n

n2

=

=

1
n
− 1√

1 +
1
n2 +

√
1 +

1
n

→ 0− 1√
1 + 0 +

√
1 + 0

=
−1
2

.

Step-by-Step Solution

Find the limit of the following sequence.

an =

√
5n + 1− 6

n2 + 3
√

n− 7
.

Solution 8.3.8

an =

√
5n + 1− 6

n2 + 3
√

n− 7
=

n2

(√
5n + 1
n2 − 6

n2

)

n2
(

1 +
3
√

n
n2 −

7
n2

) =

√
5n + 1
n2 − 6

n2

1 +
3
√

n
n2 −

7
n2

=

√
5n + 1

n4 − 6
n2

1 + 3

√
n
n6 −

7
n2

=

√
5
n3 +

1
n4 −

6
n2

1 + 3

√
1
n5 −

7
n2

→
√

0 + 0− 0
1 + 3
√

0− 0
= 0.
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Step-by-Step Solution

Find the limit of the following sequence.

an =
65 3
√

n− 6
13 3
√

n− 8
.

Solution 8.3.9

an =
65 3
√

n− 6
13 3
√

n− 8
=

3
√

n
(

65− 6
3
√

n

)
3
√

n
(

13− 8
3
√

n

) =

65− 6
3
√

n

13− 8
3
√

n

→ 65− 0
13− 0

=
65
13

.

Step-by-Step Solution

Find the limit of the following sequence.

an =
−1

√
n +
√

n + 1
.

Solution 8.3.10

an =
−1

√
n +
√

n + 1
→ −1

∞ + ∞
= 0.
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8.3.2 Geometric Sequences

Step-by-Step Solution

Find the limit of the following sequence.

an =
(−1)n + 1

5n + 3n + 2
.

Solution 8.3.11

an =
(−1)n + 1

5n + 3n + 2
=

5n
(
(−1)n

5n +
1
5n

)
5n
(

1 +
3n

5n +
2
5n

) =

=

(
−1
5

)n
+

(
1
5

)n

1 +
(

3
5

)n
+

2
5n

→ 0 + 0
1 + 0 + 0

= 0.

Step-by-Step Solution

Find the limit of the following sequence.

an =
3 · 5n + (−4)n + 12

2 · 5n + 3n + 2
.

Solution 8.3.12

an =
3 · 5n + (−4)n + 12

2 · 5n + 3n + 2
=

5n
(

3 +
(−4)n

5n +
12
5n

)
5n
(

2 +
3n

5n +
2
5n

) =

=

3 +
(
−4
5

)n
+ 12

(
1
5

)n

2 +
(

3
5

)n
+ 2

(
1
5

)n → 3 + 0 + 0
2 + 0 + 0

=
3
2

.
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Step-by-Step Solution

Find the limit of the following sequence.

an =
5n+1 + 2 · 3n

2 · 5n + 2n + 9
.

Solution 8.3.13

an =
5n+1 + 2 · 3n

2 · 5n + 2n + 9
=

5 · 5n + 2 · 3n

2 · 5n + 2n + 9
=

5n
(

5 +
2 · 3n

5n

)
5n
(

2 +
2n

5n +
9
5n

) =

=

5 + 2
(

3
5

)n

2 +
(

2
5

)n
+ 9

(
1
5

)n →
5 + 0

2 + 0 + 0
=

5
2

.

Step-by-Step Solution

Find the limit of the following sequence.

an =
3 · 7n + 12 · 4n

9 · 4n + 3n + 29
.

Solution 8.3.14

an =
3 · 7n + 12 · 4n

9 · 4n + 3n + 29
=

4n
(

3 · 7n

4n + 12
)

4n
(

9 +
3n

4n +
29
4n

) =

=

3
(

7
4

)n
+ 12

9 +
(

3
4

)n
+ 29

(
1
4

)n →
∞ + 12

9 + 0 + 0
= ∞.
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Step-by-Step Solution

Find the limit of the following sequence.

an =
3 · 8n−1 + 12 · 4n − 1

2 · 7n + (−3)n + 2
.

Solution 8.3.15

an =
3 · 8n−1 + 12 · 4n − 1

2 · 7n + (−3)n + 2
=

3
8 · 8n + 12 · 4n − 1
2 · 7n + (−3)n + 2

=

7n
(

3
8
· 8n

7n +
12 · 4n

7n − 1
7n

)
7n
(

2 +
(−3)n

7n +
2
7n

) =

=

3
8

(
8
7

)n
+ 12

(
4
7

)n
−
(

1
7

)n

2 +
(
−3
7

)n
+ 2

(
1
7

)n → ∞ + 0− 0
2 + 0 + 0

= ∞.

Step-by-Step Solution

Find the limit of the following sequence.

an =
3 · 5n + 12 · 4n

2 · (−9)n + 3n + 2
.

Solution 8.3.16

an =
3 · 5n + 12 · 4n

2 · (−9)n + 3n + 2
=

(−9)n
(

3 · 5n

(−9)n +
12 · 4n

(−9)n

)
(−9)n

(
2 +

3n

(−9)n +
2

(−9)n

) =

=

3
(

5
−9

)n
+ 12

(
4
−9

)n

2 +
(

3
−9

)n
+ 2

(
1
−9

)n →
0 + 0

2 + 0 + 0
= 0.
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Step-by-Step Solution

Find the limit of the following sequence.

an =
7 · (−5)n + 92 · 7n

2 · 5n + (−8)n + 2
.

Solution 8.3.17

an =
7 · (−5)n + 92 · 7n

2 · 5n + (−8)n + 2
=

(−8)n
(

7 · (−5)n

(−8)n +
92 · 7n

(−8)n

)
(−8)n

(
2 · 5n

(−8)n + 1 +
2

(−8)n

) =

=

7
(

5
8

)n
+ 92

(
7
−8

)n

(
5
−8

)n
+ 1 + 2

(
1
−8

)n →
0 + 0

0 + 1 + 0
= 0.

Step-by-Step Solution

Find the limit of the following sequence.

an =
(−1)n + 9 · 4n

3n + 2
.

Solution 8.3.18

an =
(−1)n + 9 · 4n

3n + 2
=

3n
(
(−1)n

3n +
9 · 4n

3n

)
3n
(

1 +
2
3n

) =

=

(
−1
3

)n
+ 9

(
4
3

)n

1 + 2
(

1
3

)n → 0 + ∞
1 + 0

= ∞.
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Step-by-Step Solution

Find the limit of the following sequence.

an =
(−1)n + 9 · 4n

3n + 2 · 4n .

Solution 8.3.19

an =
(−1)n + 9 · 4n

3n + 2 · 4n =

4n
(
(−1)n

4n + 9
)

4n
(

3n

4n + 2
) =

=

(
−1
4

)n
+ 9(

3
4

)n
+ 2

→ 0 + 9
0 + 2

=
9
2

.

Step-by-Step Solution

Find the limit of the following sequence.

an =
(−1)n+1 + 5 · 3n

3n−2 + 9
.

Solution 8.3.20

an =
(−1)n+1 + 5 · 3n

3n−2 + 9
=
− (−1)n + 5 · 3n

1
9
· 3n + 9

=

3n
(
− (−1)n

3n + 5
)

3n
(

1
9
+

9
3n

) =

=

−
(
−1
3

)n
+ 5

1
9
+ 9

(
1
3

)n →
0 + 5
1
9
+ 0

= 45.
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8.3.3 Sequences with Limit ”∞−∞”

Step-by-Step Solution

Find the limit of the following sequence.

an = 12 · 4n − 3 · 7n + 3.

Solution 8.3.21

an = 12 · 4n − 3 · 7n + 3 = 7n
(

12
(

4
7

)n
− 3 + 3

(
1
7

)n)
→ ∞ · (0− 3 + 0) = −∞.

Step-by-Step Solution

Find the limit of the following sequence.

an = 26n312 − 59n6 + 31.

Solution 8.3.22

an = 26n312 − 59n6 + 31 = n312
(

26− 59n6

n312 +
31

n312

)
→ ∞ · (26− 0 + 0) = ∞.

Step-by-Step Solution

Find the limit of the following sequence.

an = n32 − 9n5 − 796.

Solution 8.3.23

an = n32 − 9n5 − 796 = n32
(

1− 9n5

n32 −
796
n32

)
→ ∞ · (1− 0− 0) = ∞.

Step-by-Step Solution

Find the limit of the following sequence.

an = 7 · (−5)n + 92 · 7n.

Solution 8.3.24 Although (−5)n is a divergent sequence, we can find the limit of this
sequence with the previous technique.

an = 7 · (−5)n + 92 · 7n = 7n
(

7
(
−5
7

)n
+ 92

)
→ ∞ · (0 + 92) = ∞.
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Step-by-Step Solution

Find the limit of the following sequence.

an =
√

n3 + n−
√

n3 + 2.

Solution 8.3.25

an =
√

n3 + n−
√

n3 + 2 =
(√

n3 + n−
√

n3 + 2
)
·
√

n3 + n +
√

n3 + 2√
n3 + n +

√
n3 + 2

=

=

(√
n3 + n

)2
−
(√

n3 + 2
)2

√
n3 + n +

√
n3 + 2

=
n3 + n−

(
n3 + 2

)
√

n3 + n +
√

n3 + 2
=

=
n− 2√

n3 + n +
√

n3 + 2
=

√
n3 · n− 2√

n3

√
n3

(√
n3 + n√

n3
+

√
n3 + 2√

n3

) =

=

n√
n3
− 2√

n3√
n3 + n

n3 +

√
n3 + 2

n3

=

1√
n
− 2√

n3√
1 +

1
n2 +

√
1 +

2
n3

→ 0− 0
1 + 1

= 0.

Step-by-Step Solution

Find the limit of the following sequence.

an =
√

n2 + 1− n.

Solution 8.3.26

an =
√

n2 + 1− n =
(√

n2 + 1− n
)
·
√

n2 + 1 + n√
n2 + 1 + n

=

=

(√
n2 + 1

)2
− n2

√
n2 + 1 + n

=
n2 + 1− n2
√

n2 + 1 + n
=

1√
n2 + 1 + n

→ 0.
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Step-by-Step Solution

Find the limit of the following sequence.

an =
√

n2 + n− 1− n.

Solution 8.3.27

an =
√

n2 + n− 1− n =
(√

n2 + n− 1− n
)
·
√

n2 + n− 1 + n√
n2 + n− 1 + n

=

=

(√
n2 + n− 1

)2
− n2

√
n2 + n− 1 + n

=
n2 + n− 1− n2
√

n2 + n− 1 + n
=

=
n− 1√

n2 + n− 1 + n
=

n · n− 1
n

n

(√
n2 + n− 1

n
+ 1

) =

=

n− 1
n√

n2 + n− 1
n

+ 1
=

1− 1
n√

n2 + n− 1
n2 + 1

=
1− 1

n√
1 +

1
n
− 1

n2 + 1
→ 1− 0

1 + 1
= 0.

Step-by-Step Solution

Find the limit of the following sequence.

an =
√

n4 + 1− n2.

Solution 8.3.28

an =
√

n4 + 1− n2 =
(√

n4 + 1− n2
)
·
√

n4 + 1 + n2
√

n4 + 1 + n2
=

=

(√
n4 + 1

)2
− n4

√
n4 + 1 + n2

=
n4 + 1− n4
√

n4 + 1 + n2
=

1√
n4 + 1 + n2

→ 0.
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Step-by-Step Solution

Find the limit of the following sequence.

an =
√

n4 + n− 1− n2.

Solution 8.3.29

an =
√

n4 + n− 1− n2 =
(√

n4 + n− 1− n2
)
·
√

n4 + n− 1 + n2
√

n4 + n− 1 + n2
=

=

(√
n4 + n− 1

)2
− n4

√
n4 + n− 1 + n2

=
n4 + n− 1− n4
√

n4 + n− 1 + n2
=

n− 1√
n4 + n− 1 + n2

=

=
n2 · n− 1

n2

n2

(√
n4 + n− 1

n2 + 1

) =

n− 1
n2√

n2 + n− 1
n2 + 1

=

1
n
− 1

n2√
n2 + n− 1

n4 + 1

=

=

1
n
− 1

n2√
1
n2 +

1
n3 −

1
n4 + 1

→ 0− 0
0 + 1

= 0.

Step-by-Step Solution

Find the limit of the following sequence.

an =
√

4n + 1− 2n.

Solution 8.3.30

an =
√

4n + 1− 2n =
(√

4n + 1− 2n
)
·
√

4n + 1 + 2n
√

4n + 1 + 2n
=

=

(√
4n + 1

)2 − (2n)2

√
4n + 1 + 2n

=
4n + 1− 4n
√

4n + 1 + 2n
=

1√
4n + 1 + 2n

→ 1
∞ + ∞

= 0.
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Step-by-Step Solution

Find the limit of the following sequence.

an =
√

2n + 1−
√

2n + 3.

Solution 8.3.31

an =
√

2n + 1−
√

2n + 3 =
(√

2n + 1−
√

2n + 3
)
·
√

2n + 1 +
√

2n + 3√
2n + 1 +

√
2n + 3

=

=

(√
2n + 1

)2 −
(√

2n + 3
)2

√
2n + 1 +

√
2n + 3

=
2n + 1− (2n + 3)√
2n + 1 +

√
2n + 3

=

=
−2√

2n + 1 +
√

2n + 3
→ −2

∞ + ∞
= 0.

Step-by-Step Solution

Find the limit of the following sequence.

an =
1√

9n + 1−
√

9n − 2
.

Solution 8.3.32

an =
1√

9n + 1−
√

9n − 2
=

1√
9n + 1−

√
9n − 2

·
√

9n + 1 +
√

9n − 2√
9n + 1 +

√
9n − 2

=

=

√
9n + 1 +

√
9n − 2(√

9n + 1
)2 −

(√
9n − 2

)2 =

√
9n + 1 +

√
9n − 2

9n + 1− (9n − 2)
=

=

√
9n + 1 +

√
9n − 2

3
→ ∞ + ∞

3
= ∞.
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Step-by-Step Solution

Find the limit of the following sequence.

an =
1√

n4 + 1−
√

n4 − 2
.

Solution 8.3.33

an =
1√

n4 + 1−
√

n4 − 2
=

1√
n4 + 1−

√
n4 − 2

·
√

n4 + 1 +
√

n4 − 2√
n4 + 1 +

√
n4 − 2

=

=

√
n4 + 1 +

√
n4 − 2(√

n4 + 1
)2
−
(√

n4 − 2
)2 =

√
n4 + 1 +

√
n4 − 2

n4 + 1− (n4 − 2)
=

=

√
n4 + 1 +

√
n4 − 2

3
→ ∞ + ∞

3
= ∞.

Step-by-Step Solution

Find the limit of the following sequence.

an =
1√

n4 + n−
√

n4 − 2
.

Solution 8.3.34

an =
1√

n4 + n−
√

n4 − 2
=

1√
n4 + n−

√
n4 − 2

·
√

n4 + n +
√

n4 − 2√
n4 + n +

√
n4 − 2

=

=

√
n4 + n +

√
n4 − 2(√

n4 + n
)2
−
(√

n4 − 2
)2 =

√
n4 + n +

√
n4 − 2

n4 + n− (n4 − 2)
=

√
n4 + n +

√
n4 − 2

n + 2
=

=

n

(√
n4 + n

n
+

√
n4 − 2

n

)

n
(

1 +
2
n

) =

√
n4 + n

n2 +

√
n4 − 2

n2

1 +
2
n

→ ∞ + ∞
1 + 0

= ∞.
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8.3.4 Application of The Squeeze Theorem

Step-by-Step Solution

Find the limit of the following sequence.

an =
n
√

n2 + n + 2.

Solution 8.3.35 As

n2 + n + 2 = n2
(

1 +
1
n
+

2
n2

)
and

1 +
1
n
+

2
n2 → 1,

from Lemma 3.1. we find, that there exists n0 ∈ N such that,
1
2
≤ 1 +

1
n
+

2
n2 ≤

3
2

for every n ≥ n0. So, if n ≥ n0, then

n2 · 1
2
≤ n2 + n + 2 ≤ n2 · 3

2
.

Thus
n

√
n2 · 1

2
≤ n
√

n2 + n + 2 ≤ n

√
n2 · 3

2
whenever n ≥ n0. This follows that for n ≥ n0, we have

n

√
1
2
·
(

n
√

n
)2

=
n

√
n2 · 1

2
≤ n
√

n2 + n + 2 ≤ n

√
n2 · 3

2
=
(

n
√

n
)2 · n

√
3
2

.

As
n

√
1
2
·
(

n
√

n
)2 → 1

and (
n
√

n
)2 · n

√
3
2
→ 1,

from the Squeeze Theorem, we get

an =
n
√

n2 + n + 2→ 1.

Step-by-Step Solution

Find the limit of the following sequence.

an =
n
√

n4 − n3 − n− 2.
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Solution 8.3.36 As

n4 − n3 − n− 2 = n4
(

1− 1
n
− 1

n3 −
2
n4

)
and

1− 1
n
− 1

n3 −
2
n4 → 1,

from Lemma 3.1. we find, that there exists n0 ∈ N such that,
1
2
≤ 1− 1

n
− 1

n3 −
2
n4 ≤

3
2

for every n ≥ n0. So, if n ≥ n0, then

n4 · 1
2
≤ n4 − n3 − n− 2 ≤ n4 · 3

2
.

Thus
n

√
n4 · 1

2
≤ n
√

n4 − n3 − n− 2 ≤ n

√
n4 · 3

2
whenever n ≥ n0. This follows that for n ≥ n0, we have

n

√
1
2
·
(

n
√

n
)4

=
n

√
n4 · 1

2
≤ n
√

n4 − n3 − n− 2 ≤ n

√
n4 · 3

2
=
(

n
√

n
)4 · n

√
3
2

.

As
n

√
1
2
·
(

n
√

n
)4 → 1

and (
n
√

n
)4 · n

√
3
2
→ 1,

from the Squeeze Theorem, we get

an =
n
√

n4 − n3 − n− 2→ 1.

Step-by-Step Solution

Find the limit of the following sequence.

an =
n
√

n5 + n4 − 2n3 + 32.

Solution 8.3.37 As

n5 + n4 − 2n3 + 32 = n5
(

1 +
1
n
− 2

n2 +
32
n5

)
and

1 +
1
n
− 2

n2 +
32
n5 → 1,

from Lemma 3.1. we find, that there exists n0 ∈ N such that,
1
2
≤ 1 +

1
n
− 2

n2 +
32
n5 ≤

3
2
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for every n ≥ n0. So, if n ≥ n0, then

n5 · 1
2
≤ n5 + n4 − 2n3 + 32 ≤ n5 · 3

2
.

Thus
n

√
n5 · 1

2
≤ n
√

n5 + n4 − 2n3 + 32 ≤ n

√
n5 · 3

2
whenever n ≥ n0. This follows that for n ≥ n0, we have

n

√
1
2
·
(

n
√

n
)5

=
n

√
n5 · 1

2
≤ n
√

n5 + n4 − 2n3 + 32 ≤ n

√
n5 · 3

2
=
(

n
√

n
)5 · n

√
3
2

.

As
n

√
1
2
·
(

n
√

n
)5 → 1

and (
n
√

n
)5 · n

√
3
2
→ 1,

from the Squeeze Theorem, we get

an =
n
√

n5 + n4 − 2n3 + 32→ 1.

Step-by-Step Solution

Find the limit of the following sequence.

an =
n
√

n2 + 5
√

n + 9.

Solution 8.3.38 As

n2 + 5
√

n + 9 = n2
(

1 +
5√
n
+

9
n2

)
and

1 +
5√
n
+

9
n2 → 1,

from Lemma 3.1. we find, that there exists n0 ∈ N such that,
1
2
≤ 1 +

5√
n
+

9
n2 ≤

3
2

for every n ≥ n0. So, if n ≥ n0, then

n2 · 1
2
≤ n2 + 5

√
n + 9 ≤ n2 · 3

2
.

Thus
n

√
n2 · 1

2
≤ n
√

n2 + 5
√

n + 9 ≤ n

√
n2 · 3

2
whenever n ≥ n0. This follows that for n ≥ n0, we have

n

√
1
2
·
(

n
√

n
)2

=
n

√
n2 · 1

2
≤ n
√

n2 + 5
√

n + 9 ≤ n

√
n2 · 3

2
=
(

n
√

n
)2 · n

√
3
2

.
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As
n

√
1
2
·
(

n
√

n
)2 → 1

and (
n
√

n
)2 · n

√
3
2
→ 1,

from the Squeeze Theorem, we get

an =
n
√

n2 + 5
√

n + 9→ 1.

Step-by-Step Solution

Find the limit of the following sequence.

an = n
√

7 · 8n + 3 · 5n + 9.

Solution 8.3.39 As

7 · 8n + 3 · 5n + 9 = 7 · 8n
(

1 +
3 · 5n

7 · 8n +
9

7 · 8n

)
= 7 · 8n

(
1 +

3
7
· 5n

8n +
9
7
· 1

8n

)
and

1 +
3
7
· 5n

8n +
9
7
· 1

8n = 1 +
3
7
·
(

5
8

)n
+

9
7
·
(

1
8

)n
→ 1,

from Lemma 3.1. we find, that there exists n0 ∈ N such that,

1
2
≤ 1 +

3
7
·
(

5
8

)n
+

9
7
·
(

1
8

)n
≤ 3

2

for every n ≥ n0. So, if n ≥ n0, then

7 · 8n · 1
2
≤ 7 · 8n + 3 · 5n + 9 ≤ 7 · 8n · 3

2
.

Thus
n

√
7 · 8n · 1

2
≤ n
√

7 · 8n + 3 · 5n + 9 ≤ n

√
7 · 8n · 3

2
whenever n ≥ n0. This follows that for n ≥ n0, we have

n

√
7
2
· n
√

8n =
n

√
7 · 8n · 1

2
≤ n
√

7 · 8n + 3 · 5n + 9 ≤ n

√
7 · 8n · 3

2
=

n
√

8n · n

√
21
2

.

As
n

√
7
2
· n
√

8n =
n

√
7
2
· 8→ 8

and
n
√

8n · n

√
21
2

= 8 · n

√
21
2
→ 8,

from the Squeeze Theorem, we get

an = n
√

7 · 8n + 3 · 5n + 9→ 8.
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Step-by-Step Solution

Find the limit of the following sequence.

an = n
√

2 · 9n + 3 · 6n + 9 · 2n.

Solution 8.3.40 As

2 · 9n + 3 · 6n + 9 · 2n = 2 · 9n
(

1 +
3 · 6n

2 · 9n +
9 · 2n

2 · 9n

)
= 2 · 9n

(
1 +

3
2
· 6n

9n +
9
2
· 2n

9n

)
and

1 +
3
2
· 6n

9n +
9
2
· 2n

9n = 1 +
3
2
·
(

6
9

)n
+

9
2
·
(

2
9

)n
→ 1,

from Lemma 3.1. we find, that there exists n0 ∈ N such that,

1
2
≤ 1 +

3
2
· 6n

9n +
9
2
· 2n

9n ≤
3
2

for every n ≥ n0. So, if n ≥ n0, then

2 · 9n · 1
2
≤ 2 · 9n + 3 · 6n + 9 · 2n ≤ 2 · 9n · 3

2
.

Thus
n

√
2 · 9n · 1

2
≤ n
√

2 · 9n + 3 · 6n + 9 · 2n ≤ n

√
2 · 9n · 3

2
whenever n ≥ n0. This follows that for n ≥ n0, we have

n

√
2
2
· n
√

9n =
n

√
2 · 9n · 1

2
≤ n
√

2 · 9n + 3 · 6n + 9 · 2n ≤ n

√
2 · 9n · 3

2
=

n
√

9n · n

√
6
2

.

As
n
√

1 · n
√

9n =
n
√

1 · 9→ 9

and
n
√

9n · n

√
6
2
= 9 · n

√
6
2
→ 9,

from the Squeeze Theorem, we get

an = n
√

2 · 9n + 3 · 6n + 9 · 2n → 9.

Step-by-Step Solution

Find the limit of the following sequence.

an = n
√

7 · 5n − 2 · 3n − 89.

Solution 8.3.41 As

7 · 5n − 2 · 3n − 89 = 7 · 5n
(

1− 2 · 3n

7 · 5n −
89

7 · 5n

)
= 7 · 5n

(
1− 2

7
· 3n

5n −
89
7
· 1

5n

)
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and

1− 2
7
· 3n

5n −
89
7
· 1

5n = 1− 2
7
·
(

3
5

)n
+

89
7
·
(

1
5

)n
→ 1,

from Lemma 3.1. we find, that there exists n0 ∈ N such that,

1
2
≤ 1− 2

7
· 3n

5n −
89
7
· 1

5n ≤
3
2

for every n ≥ n0. So, if n ≥ n0, then

7 · 5n · 1
2
≤ 7 · 5n − 2 · 3n − 89 ≤ 7 · 5n · 3

2
.

Thus
n

√
7 · 5n · 1

2
≤ n
√

7 · 5n − 2 · 3n − 89 ≤ n

√
7 · 5n · 3

2
whenever n ≥ n0. This follows that for n ≥ n0, we have

n

√
7
2
· n
√

5n =
n

√
7 · 5n · 1

2
≤ n
√

7 · 5n − 2 · 3n − 89 ≤ n

√
7 · 5n · 3

2
=

n
√

5n · n

√
21
2

.

As
n

√
7
2
· n
√

5n =
n

√
7
2
· 5→ 5

and
n
√

5n · n

√
21
2

= 5 · n

√
21
2
→ 5,

from the Squeeze Theorem, we get

an = n
√

7 · 5n − 2 · 3n − 89→ 5.

Step-by-Step Solution

Find the limit of the following sequence.

an = n
√

7 · 10n − 31 · 6n + 72.

Solution 8.3.42 As

7 · 10n− 31 · 6n + 72 = 7 · 10n
(

1− 31 · 6n

7 · 10n +
72

7 · 10n

)
= 7 · 10n

(
1− 31

7
· 6n

10n +
72
7
· 1

10n

)
and

1− 31
7
· 6n

10n +
72
7
· 1

10n = 1− 31
7
·
(

6
10

)n
+

72
7
·
(

1
10

)n
→ 1,

from Lemma 3.1. we find, that there exists n0 ∈ N such that,
1
2
≤ 1− 31

7
· 6n

10n +
72
7
· 1

10n ≤
3
2

for every n ≥ n0. So, if n ≥ n0, then

7 · 10n · 1
2
≤ 7 · 10n − 31 · 6n + 72 ≤ 7 · 10n · 3

2
.
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Thus
n

√
7 · 10n · 1

2
≤ n
√

7 · 10n − 31 · 6n + 72 ≤ n

√
7 · 10n · 3

2
whenever n ≥ n0. This follows that for n ≥ n0, we have

n

√
7
2
· n
√

10n =
n

√
7 · 10n · 1

2
≤ n
√

7 · 10n − 31 · 6n + 72 ≤ n

√
7 · 10n · 3

2
=

n
√

10n · n

√
21
2

.

As
n

√
7
2
· n
√

10n =
n

√
7
2
· 10→ 10

and
n
√

10n · n

√
21
2

= 10 · n

√
21
2
→ 10,

from the Squeeze Theorem, we get

an = n
√

7 · 10n − 31 · 6n + 72→ 10.

Step-by-Step Solution

Find the limit of the following sequence.

an = n
√

7n + 5 sin (n).

Solution 8.3.43 First we prove that

sin (n)
n

→ 0.

As
−1 ≤ sin (n) ≤ 1

we get
−1
n
≤ sin (n)

n
≤ 1

n
,

so from the Squeeze Theorem, we get

sin (n)
n

→ 0.

As
7n + 5 sin (n) = 7n

(
1 +

5 sin (n)
7n

)
and

1 +
5 sin (n)

7n
= 1 +

5
7
· sin (n)

n
→ 1,

from Lemma 3.1. we find, that there exists n0 ∈ N such that,

1
2
≤ 1 +

5 sin (n)
7n

≤ 3
2
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for every n ≥ n0. So, if n ≥ n0, then

7n · 1
2
≤ 7n + 5 sin (n) ≤ 7n · 3

2
.

Thus
n

√
7n · 1

2
≤ n
√

7n + 5 sin (n) ≤ n

√
7n · 3

2
whenever n ≥ n0. This follows that for n ≥ n0, we have

n

√
7
2
· n
√

n =
n

√
7n · 1

2
≤ n
√

7n + 5 sin (n) ≤ n

√
7n · 3

2
= n
√

n · n

√
21
2

.

As
n

√
7
2
· n
√

n→ 1

and
n
√

n · n

√
21
2
→ 1,

from the Squeeze Theorem, we get

an = n
√

7n + 5 sin (n)→ 1.

Step-by-Step Solution

Find the limit of the following sequence.

an = n
√

7n2 + 2 sin (n).

Solution 8.3.44 As
sin (n)

n
→ 0

and
7n2 + 2 sin (n) = 7n2

(
1 +

2 sin (n)
7n2

)
,

we have
1 +

2 sin (n)
7n2 = 1 +

2
7n
· sin (n)

n
→ 1.

So from Lemma 3.1. we find, that there exists n0 ∈ N such that,

1
2
≤ 1 +

2 sin (n)
7n2 ≤ 3

2
for every n ≥ n0. So, if n ≥ n0, then

7n2 · 1
2
≤ 7n2 + 2 sin (n) ≤ 7n2 · 3

2
.

Thus
n

√
7n2 · 1

2
≤ n
√

7n2 + 2 sin (n) ≤ n

√
7n2 · 3

2
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whenever n ≥ n0. This follows that for n ≥ n0, we have

n

√
7
2
·
(

n
√

n
)2

=
n

√
7n2 · 1

2
≤ n
√

7n2 + 2 sin (n) ≤ n

√
7n2 · 3

2
=
(

n
√

n
)2 · n

√
21
2

.

As
n

√
7
2
·
(

n
√

n
)2 → 1

and (
n
√

n
)2 · n

√
21
2
→ 1,

from the Squeeze Theorem, we get

an = n
√

7n2 + 2 sin (n)→ 1.
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8.3.5 The Sequence
(
1 + 1

n

)n

Step-by-Step Solution

Find the limit of the following sequence.

an =

(
n + 9
n− 4

)n
.

Solution 8.3.45

(
n + 9
n− 4

)n
=

n
(

1 +
9
n

)
n
(

1− 4
n

)


n

=

(
1 +

9
n

)n

(
1− 4

n

)n =

(
1 +

9
n

)n

(
1 +
−4
n

)n →
e9

e−4 .

Step-by-Step Solution

Find the limit of the following sequence.

an =

(
9n + 5
9n− 3

)n
.

Solution 8.3.46

(
9n + 5
9n− 3

)n
=

9n
(

1 +
5

9n

)
9n
(

1− 3
9n

)


n

=

(
1 +

5
9n

)n

(
1− 3

9n

)n =

(
1 +

5
9
n

)n

(
1 +
− 3

9
n

)n →
e

5
9

e
−3
9

.

Step-by-Step Solution

Find the limit of the following sequence.

an =

(
1 +

1
9n

)3n−1

.

Solution 8.3.47(
1 +

1
9n

)3n−1

=

((
1 +

1
9n

) 9n
9n
)3n−1

=

((
1 +

1
9n

)9n
) 3n−1

9n

.

As 9n→ ∞, using Theorem 3.14, we find(
1 +

1
9n

)9n
→ e,
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whenever n→ ∞. Furthermore,
3n− 1

9n
→ 3

9
,

whenever n→ ∞. So (
1 +

1
9n

)3n−1

→ e
3
9 .

Step-by-Step Solution

Find the limit of the following sequence.

an =

(
n3 + 9

n3 + 14

)n3

.

Solution 8.3.48 Let m = n3. So(
n3 + 9

n3 + 14

)n3

=

(
m + 9
m + 14

)m
.

As n→ ∞, we have m→ ∞. After some basic manipulations, we have

(
m + 9

m + 14

)m
=

m
(

1 +
9
m

)
m
(

1 +
14
m

)


m

=

(
1 +

9
m

)m

(
1 +

14
m

)m →
e9

e14 .

Step-by-Step Solution

Find the limit of the following sequence.

an =

(
1 +

1
n2

)3n2−1

.

Solution 8.3.49 Let m = n2. So(
1 +

1
n2

)3n2−1

=

(
1 +

1
m

)3m−1

.

As n→ ∞, we have m→ ∞. After some basic manipulations, we have(
1 +

1
m

)3m−1

=

((
1 +

1
m

)m)3

·
(

1 +
1
m

)−1

→ e3 · 1−1 = e3.
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Step-by-Step Solution

Find the limit of the following sequence.

an =

(
3n2 + 9

3n2 + 14

)n2

.

Solution 8.3.50 Let m = n2. So(
3n2 + 9

3n2 + 14

)n2

=

(
3m + 9

3m + 14

)m
.

As n→ ∞, we have m→ ∞. After some basic manipulations, we have

(
3m + 9

3m + 14

)m
=

 3m
(
1 + 9

3m
)

3m
(

1 + 14
3m

)
m

=

(
1 + 9

3m
)m(

1 + 14
3m

)m =

(
1 +

9
3
m

)m

(
1 +

14
3
m

)m →
e

9
3

e
14
3
= e−

5
3

Step-by-Step Solution

Find the limit of the following sequence.

an =

(
1− 21

6n− 3

)n
.

Solution 8.3.51(
1− 21

6n− 3

)n
=

((
1 +

−21
6n− 3

) 6n−3
6n−3
)n

=

((
1 +

−21
6n− 3

)6n−3
) n

6n−3

.

As 6n− 3→ ∞, using Theorem 3.14, we find(
1 +

−21
6n− 3

)6n−3

→ e−21,

whenever n→ ∞. Furthermore,
n

6n− 3
→ 1

6
,

whenever n→ ∞. So (
1− 21

6n− 3

)n
→
(

e−21
) 1

6
= e

−21
6 .
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Step-by-Step Solution

Find the limit of the following sequence.

an =

(
1 +

1
5n + 1

)1−3n2

,

Solution 8.3.52(
1 +

1
5n + 1

)1−3n2

=

((
1 +

1
5n + 1

) 5n+1
5n+1
)1−3n2

=

((
1 +

1
5n + 1

)5n+1
) 1−3n2

5n+1

.

As 5n + 1→ ∞, using Theorem 3.14, we find(
1 +

1
5n + 1

)5n+1

→ e,

whenever n→ ∞. Furthermore,

1− 3n2

5n + 1
=

n
(

1
n − 3n

)
n
(

5 + 1
n

) → −∞,

whenever n→ ∞. So (
1 +

1
5n + 1

)1−3n2

→ e−∞ = 0.

Step-by-Step Solution

Find the limit of the following sequence.

an =

(
1 +

1
5n2 + 1

)1−3n
.

Solution 8.3.53(
1 +

1
5n2 + 1

)1−3n
=

(1 +
1

5n2 + 1

) 5n2+1
5n2+1

1−3n

=

((
1 +

1
5n + 1

)5n+1
) 1−3n2

5n+1

.

As 5n2 + 1→ ∞, using Theorem 3.14, we find(
1 +

1
5n2 + 1

)5n2+1

→ e,

whenever n→ ∞. Furthermore,

1− 3n
5n2 + 1

=
n2
(

1
n2 − 3

n

)
n2
(

5 + 1
n2

) → 0,
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whenever n→ ∞. So (
1 +

1
5n2 + 1

)1−3n
→ e0 = 1.

Step-by-Step Solution

Find the limit of the following sequence.

an =

(
4n− 5
5n + 2

)n
.

Solution 8.3.54 As
4n + 5
5n + 2

→ 4
5
6= 1,

this problem cannot be solved as the previous ones. We will use the Squeeze Theorem. As
4n + 5
5n + 2

≤ 4n
5n + 2

≤ 4n
5n

=
4
5

we get

0 ≤ 4n + 5
5n + 2

≤ 4
5

and from this

0 ≤
(

4n + 5
5n + 2

)n
≤
(

4
5

)n

As (
4
5

)n
→ 0,

from the Squeeze Theorem, we get

an =

(
4n− 5
5n + 2

)n
→ 0.
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8.3.6 Finding the Limit of a Sequence with Definition

Step-by-Step Solution

Use Definition 3.1 to prove that

an =
5n− 4
2n + 3

→ 5
2

.

Solution 8.3.55 We want to show that

lim
n→∞

5n− 4
2n + 3

=
5
2

.

For any given ε > 0, we have to find n0 (n0 = n0 (ε)) , such that if n ≥ n0, then∣∣∣∣5n− 4
2n + 3

− 5
2

∣∣∣∣ < ε.

holds. As ∣∣∣∣5n− 4
2n + 3

− 5
2

∣∣∣∣ < ε

after some equivalent (!) manipulations, we have∣∣∣∣5n− 4
2n + 3

− 5
2

∣∣∣∣ < ε

m∣∣∣∣ −23
4n + 6

∣∣∣∣ < ε

m as n > 0
23

4n + 6
< ε

m as ε > 0
23
ε

< 4n + 6

m
23
ε
− 6

4
< n.

If ε ≥ 23
6 , then the left side of the last inequality is nonpositive, thus it holds for any

n ∈ N. Thus we have

n0 =


0, if ε ≥ 23

6 , 23
ε
− 6

4

+ 1, if 0 < ε < 23
6

.

Hence n ≥ n0 implies ∣∣∣∣5n− 4
2n + 3

− 5
2

∣∣∣∣ < ε,
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Definition 3.1, this proves that

lim
n→∞

5n− 4
2n + 3

=
5
2

.

Step-by-Step Solution

Use Definition 3.1 to prove that

an =
6n + 1
9n− 2

→ 2
3

.

Solution 8.3.56 We want to show that

lim
n→∞

6n + 1
9n− 2

=
2
3

.

For any given ε > 0, we have to find n0 (n0 = n0 (ε)) , such that if n ≥ n0, then∣∣∣∣6n + 1
9n− 2

− 2
3

∣∣∣∣ < ε.

holds. As ∣∣∣∣6n + 1
9n− 2

− 2
3

∣∣∣∣ < ε

after some equivalent (!) manipulations, we have∣∣∣∣6n + 1
9n− 2

− 2
3

∣∣∣∣ < ε

m∣∣∣∣ 7
27n− 6

∣∣∣∣ < ε

m as n > 0
7

27n− 6
< ε

m as ε > 0
7
ε

< 27n− 6

m
7
ε
+ 6

27
< n.

As
7
ε
+ 6 > 0 for any given ε > 0, we have

n0 =

 7
ε
+ 6

27

+ 1.

Hence n ≥ n0 implies ∣∣∣∣6n + 1
9n− 2

− 2
3

∣∣∣∣ < ε,
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by Definition 3.1, this proves that

lim
n→∞

6n + 1
9n− 2

=
2
3

.

Step-by-Step Solution

Use Definition 3.1 to prove that

an =

(
1
2

)n
→ 0.

Solution 8.3.57 We want to show that

lim
n→∞

(
1
2

)n
= 0.

For any given ε > 0, we have to find n0 (n0 = n0 (ε)) , such that if n ≥ n0, then∣∣∣∣(1
2

)n
− 0
∣∣∣∣ < ε.

holds. As ∣∣∣∣(1
2

)n
− 0
∣∣∣∣ < ε

after some equivalent (!) manipulations, we have∣∣∣∣(1
2

)n
− 0
∣∣∣∣ < ε

m∣∣∣∣(1
2

)n∣∣∣∣ < ε

m(
1
2

)n
< ε

m as ε > 0

n > log 1
2
(ε)

If ε ≥ 1, then the right side of the last inequality is nonpositive, thus it holds for any
n ∈ N. Thus we have

n0 =

{
0, if ε ≥ 1,[

log 1
2
(ε)
]
+ 1, if 0 < ε < 1

.

Hence n ≥ n0 implies ∣∣∣∣(1
2

)n
− 0
∣∣∣∣ < ε,

by Definition 3.1, this proves that

lim
n→∞

(
1
2

)n
= 0.
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Step-by-Step Solution

Use Definition 3.1 to prove that

an =

(
−1

5

)n
→ 0.

Solution 8.3.58 We want to show that

lim
n→∞

(
−1

5

)n
= 0.

For any given ε > 0, we have to find n0 (n0 = n0 (ε)) , such that if n ≥ n0, then∣∣∣∣(−1
5

)n
− 0
∣∣∣∣ < ε.

holds. As ∣∣∣∣(−1
5

)n
− 0
∣∣∣∣ < ε

after some equivalent (!) manipulations, we have∣∣∣∣(−1
5

)n∣∣∣∣ < ε

m∣∣∣∣(−1)n
(

1
5

)n∣∣∣∣ < ε

m∣∣(−1)n∣∣ · ∣∣∣∣(1
5

)n∣∣∣∣ < ε

m(
1
5

)n
< ε

m as ε > 0

n > log 1
5
(ε)

If ε ≥ 1, then the right side of the last inequality is nonpositive, thus it holds for any
n ∈ N. Thus we have

n0 =

{
0, if ε ≥ 1,[

log 1
5
(ε)
]
+ 1, if 0 < ε < 1

.

Hence n ≥ n0 implies ∣∣∣∣(−1
5

)n
− 0
∣∣∣∣ < ε,

by Definition 3.1, this proves that

lim
n→∞

(
1
5

)n
= 0.
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Step-by-Step Solution

Use Definition 3.1 to prove that

an =
1

n2 + 1
→ 0.

Solution 8.3.59 We want to show that

lim
n→∞

1
n2 + 1

= 0.

For any given ε > 0, we have to find n0 (n0 = n0 (ε)) , such that if n ≥ n0, then∣∣∣∣ 1
n2 + 1

− 0
∣∣∣∣ < ε.

holds. As ∣∣∣∣ 1
n2 + 1

− 0
∣∣∣∣ < ε

after some equivalent (!) manipulations, we have∣∣∣∣ 1
n2 + 1

− 0
∣∣∣∣ < ε

m∣∣∣∣ 1
n2 + 1

∣∣∣∣ < ε

m as n2 + 1 > 0
1

n2 + 1
< ε

m as ε > 0
1
ε

< n2 + 1

m
1
ε
+ 1 < n2

m as n, ε > 0√
1
ε
+ 1 < n.

As
√

1
ε
+ 1 for any given ε > 0, we have

n0 =

[√
1
ε
+ 1

]
+ 1.

Hence n ≥ n0 implies ∣∣∣∣ 1
n2 + 1

− 0
∣∣∣∣ < ε,
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by Definition 3.1, this proves that

lim
n→∞

1
n2 + 1

= 0.

Step-by-Step Solution

Use Definition 3.5 to prove that

an = 2n → ∞.

Solution 8.3.60 By Definition 3.5, we need to show that, given any c ∈ R there exists an
n0 (n0 = n0 (c)) , such that if n ≥ n0, then

2n > c

holds. If c ≤ 0, then the right side is nonpositive, so for any n ∈ N the inequality holds.
Suppose that c > 0. Then

n > log2 (c) .

Thus

n0 =

{
0, if c ≤ 0,[√

c + 1
]
+ 1, if c > 0

,

and n ≥ n0 implies
2n > c,

and by definition, this proves that
2n → ∞.

Step-by-Step Solution

Use Definition 3.5 to prove that

an = ln (n)→ ∞.

Solution 8.3.61 We need to show that, given any c ∈ R there exists an n0 (n0 = n0 (c)) ,
such that if n ≥ n0, then

ln (n) > c

holds. Then
n > ec.

Thus
n0 = [ec] + 1,
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and n ≥ n0 implies
2n > c,

and by Definition 3.5, this proves that

2n → ∞.

Step-by-Step Solution

Use Definition 3.5 to prove that

an = n2 + 2n + 1→ ∞.

Solution 8.3.62 Let
an = n2 + 2n + 1 = (n + 1)2 .

We need to show that, given any c ∈ R there exists an n0 (n0 = n0 (c)) , such that if
n ≥ n0, then

(n + 1)2 > c

holds. If c < 0, then the right side is negative, so for any n ∈ N the inequality holds.
Suppose that c ≥ 0. Then

(n + 1)2 > c

follows
n + 1 >

√
c,

and
n >
√

c− 1.

Thus

n0 =

{
0, if c < 0,[√

c− 1
]
+ 1, if c ≥ 0

,

and n ≥ n0 implies
n2 − 1 > c,

and by Definition 3.5, this proves that

n2 − 1→ ∞.

Step-by-Step Solution

Use Definition 3.6 to prove that

an = 1− lg (n)→ −∞.
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Solution 8.3.63 By Definition 3.5, we need to show that, given any c ∈ R there exists an
n0 (n0 = n0 (c)) , such that if n ≥ n0, then

1− lg (n) < c

holds. As
1− lg (n) < c,

we find
1− c < lg (n) ,

and
e1−c < n.

Thus
n0 =

[
e1−c

]
+ 1,

and n ≥ n0 implies
1− lg (n) < c

and by definition, this proves that

1− lg (n)→ −∞.

Step-by-Step Solution

Use Definition 3.6 to prove that

an = 1− 3n → −∞.

Solution 8.3.64 By Definition 3.6, we need to show that, given any c ∈ R there exists an
n0 (n0 = n0 (c)) , such that if n ≥ n0, then

1− 3n < c

holds. As
1− 3n < c,

we find
1− c < 3n,

If c ≥ 1, then the left side is negative, so for any n ∈ N the inequality holds. Suppose that
c < 1. Then

log3 (1− c) < n.
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Thus

n0 =

{
0, if c > 1,[√

1− c
]
+ 1, if c ≤ 1

.

and n ≥ n0 implies
1− 3n < c

and by definition, this proves that

1− 3n → −∞.
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8.3.7 Divergent Sequences

Step-by-Step Solution

Prove that the sequence is divergent.

an =
(−1)n n2

n2 + 7
.

Solution 8.3.65 First let n = 2k, where k ∈ N, so we have

a2k =
(−1)2k (2k)2

(2k)2 + 1
.

As (−1)2k = 1, we have

a2k =
(2k)2

(2k)2 + 1
=

4k2

4k2 + 1
→ 4

4
,

whenever k→ ∞.
Now let n = 2k + 1, where k ∈ N, so we have

a2k+1 =
(−1)2k+1 (2k + 1)2

(2k + 1)2 + 1
.

As (−1)2k+1 = −1, we find

a2k+1 =
(−1)2k+1 (2k + 1)2

(2k + 1)2 + 1
=
− (2k + 1)2

(2k + 1)2 + 1
= −4k2 + 4k + 1

4k2 + 4k + 2
→ −4

4
.

whenever k→ ∞. This follows

lim
k→∞

a2k 6= lim
k→∞

a2k+1.

As a result sequence

an =
(−1)n n2

n2 + 7
is divergent.

Step-by-Step Solution

Prove that the sequence is divergent.

Solution 8.3.66

an =
1 + (−1)n n2

n + 1
.

First let n = 2k, k ∈ N. Then

a2k =
1 + (−1)2k (2k)2

2k + 1
.
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As (−1)2k = 1, we have

a2k =
1 + (2k)2

2k + 1
=

1 + 4k2

2k + 1
→ ∞,

whenever k→ ∞.
Now let n = 2k + 1, where k ∈ N, so we have

a2k+1 =
1 + (−1)2k+1 (2k + 1)2

2k + 1 + 1
.

As (−1)2k+1 = −1, we obtain

a2k+1 =
1 + (−1)2k+1 (2k + 1)2

2k + 1 + 1
=

1− (2k + 1)2

2k + 2
=

1−
(
4k2 + 4k + 1

)
2k + 2

→ −∞.

whenever k→ ∞. This follows

lim
k→∞

a2k 6= lim
k→∞

a2k+1,

so sequence

an =
1 + (−1)n n2

n + 1
is divergent.

Step-by-Step Solution

Prove that the sequence is divergent.

an = (−1)n 5n + 3
6n + 1

.

Solution 8.3.67 No matter n is odd or even, we have
5n + 3
6n + 1

→ 5
6

holds. From this we get for n = 2k that (−1)2k = 1→ 1, so

a2k → 1 · 5
6
=

5
6

whenever k→ ∞.
Now let n = 2k + 1 then (−1)2k+1 = −1→ −1, so

a2k+1 → −1 · 5
6
= −5

6
whenever k→ ∞. This follows

lim
k→∞

a2k 6= lim
k→∞

a2k+1,

so sequence

an = (−1)n 5n + 3
6n + 1

is divergent.
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Step-by-Step Solution

Prove that the sequence is divergent.

an =
n

n(−1)n
+ 2

.

Solution 8.3.68 First let n = 2k, k ∈ N. Then

a2k =
2k

(2k)(−1)2k
+ 2

.

As (−1)2k = 1, we have

a2k =
2k

(2k)(−1)2k
+ 2

=
2k

2k + 2
→ 1,

whenever k→ ∞.
Now let n = 2k + 1, where k ∈ N, so we have

a2k+1 =
2 (k + 1)

(2k + 1)(−1)2k+1
+ 2

.

As (−1)2k+1 = −1, we find

a2k+1 =
2 (k + 1)

(2k + 1)(−1)2k+1
+ 2

=
2 (k + 1)

(2k + 1)−1 + 2
.

As
2 (k + 1)

(2k + 1)−1 + 2
=

2 (k + 1)
1

2k+1 + 2
=

4k2 + 6k + 2
4k + 3

,

so

a2k+1 =
4k2 + 6k + 2

4k + 3
→ ∞

whenever k→ ∞. We can conclude that

lim
k→∞

a2k 6= lim
k→∞

a2k+1,

so sequence
an =

n
n(−1)n

+ 2
is divergent.

Step-by-Step Solution

Prove that the sequence is divergent.

an =
5n (1 + (−1)n)+ 3n

5n + 2n .
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Solution 8.3.69 Preliminary manipulations are necessary before applying the properties
of limits.

an =
5n (1 + (−1)n)+ 3n

5n + 2n =
5n
(

1 + (−1)n +
(3

5

)n
)

5n
(

1 +
( 2

5

)n
) =

1 + (−1)n +
(3

5

)n

1 +
(2

5

)n .

No matter n is odd or even, we have (
3
5

)n
→ 0

and (
2
5

)n
→ 0

holds. From this we get for n = 2k that (−1)2k = 1→ 1, so

a2k =
1 + (−1)2k +

( 3
5

)2k

1 +
(2

5

)2k =
1 + 1 +

(3
5

)2k

1 +
(2

5

)2k → 2

whenever k→ ∞.
Now let n = 2k + 1 then (−1)2k+1 = −1→ −1, so

a2k+1 =
1 + (−1) +

(3
5

)2k

1 +
( 2

5

)2k → 0
1
= 0

whenever k→ ∞. This follows

lim
k→∞

a2k 6= lim
k→∞

a2k+1,

so sequence

an =
5n (1 + (−1)n)+ 3n

5n + 2n

is divergent.

Step-by-Step Solution

Prove that the sequence is divergent.

an = (n + 1)(−1)n
.

Solution 8.3.70 First let n = 2k, where k ∈ N, so we have

a2k = (2k + 1)(−1)2k
.

As (−1)2k = 1, we have

a2k = (2k + 1)(−1)2k
= 2k + 1→ ∞,

whenever k→ ∞.
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Now let n = 2k + 1, where k ∈ N, so we have

a2k+1 = (2k + 1 + 1)(−1)2k+1
.

As (−1)2k+1 = −1, we find

a2k+1 = (2k + 1 + 1)(−1)2k+1
= (2k + 2)−1 =

1
2k + 2

→ 0.

whenever k→ ∞. This follows

lim
k→∞

a2k 6= lim
k→∞

a2k+1,

so sequence
an = (n + 1)(−1)n

is divergent.

Step-by-Step Solution

Prove that the sequence is divergent.

Solution 8.3.71

an = (−1)n 6n + 1
2 · 6n − 1

.

No matter n is odd or even, we have
6n + 1

2 · 6n − 1
→ 1

2

holds. From this we get for n = 2k that (−1)2k = 1→ 1, so

a2k → 1 · 1
2
=

1
2

whenever k→ ∞.
Now let n = 2k + 1 then (−1)2k+1 = −1→ −1, so

a2k → −1 · 1
2
= −1

2
whenever k→ ∞. We obtain

lim
k→∞

a2k 6= lim
k→∞

a2k+1,

so sequence

an = (−1)n 6n + 1
2 · 6n − 1

is divergent.
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Step-by-Step Solution

Prove that the sequence is divergent.

an = (−1)n√n + 1−
√

n.

Solution 8.3.72 First let n = 2k, where k ∈ N, so we have

a2k = (−1)2k√2k + 1−
√

2k.

As (−1)2k = 1, we have

a2k =
√

2k + 1−
√

2k→ ∞−∞,

whenever k→ ∞. As
√

2k + 1−
√

2k =
√

n−
√

n + 1 =
(√

2k + 1−
√

2k
) √2k + 1 +

√
2k√

2k + 1 +
√

2k
=

=
2k + 1− 2k√
2k + 1 +

√
2k

=
1√

2k + 1 +
√

2k
,

we have
a2k =

√
2k + 1−

√
2k→ 0.

Now let n = 2k + 1, where k ∈ N, so we have

a2k+1 = (−1)2k+1√2k + 1 + 1−
√

2k + 1.

As (−1)2k+1 = −1, we find

a2k+1 = −
√

2k + 2−
√

2k + 1→ −∞−∞ = −∞.

whenever k→ ∞. This follows

lim
k→∞

a2k 6= lim
k→∞

a2k+1,

so sequence
an = (−1)n√n + 1−

√
n

is divergent.

Step-by-Step Solution

Prove that the sequence is divergent.

an = (−1)n
√

n2 + 1− n.

Solution 8.3.73 First let n = 2k, where k ∈ N, so we have

a2k = (−1)2k
√
(2k)2 + 1− 2k.
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As (−1)2k = 1, we have

a2k =
√

4k2 + 1− 2k→ ∞−∞,

whenever k→ ∞. As√
4k2 + 1− 2k =

(√
4k2 + 1− 2k

) √4k2 + 1 + 2k√
4k2 + 1 + 2k

=

=
4k2 + 1− (2k)2
√

4k2 + 1 + 2k
=

1√
4k2 + 1 + 2k

,

we have
a2k =

√
4k2 + 1− 2k→ 0.

Now let n = 2k + 1, where k ∈ N, so we have

a2k+1 = (−1)2k+1
√
(2k + 1)2 + 1− (2k + 1) .

As (−1)2k+1 = −1, we find

a2k+1 = −
√
(2k + 1)2 + 1− (2k + 1)→ −∞−∞ = −∞.

whenever k→ ∞. This follows

lim
k→∞

a2k 6= lim
k→∞

a2k+1,

so sequence
an = (−1)n

√
n2 + 1− n

is divergent.

Step-by-Step Solution

Prove that the sequence is divergent.

an = (−1)n
(√

n2 + n− n
)

.

Solution 8.3.74 Preliminary manipulations are necessary before applying the properties
of limits. No matter n is odd or even, we have√

n2 + n− n =
(√

n2 + n− n
) √n2 + n + n√

n2 + n + n
=

n2 + n− n2
√

n2 + n + n
=

=
n√

n2 + n + n
=

1√
1 + 1

n + 1
→ 1

2
.
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From this we get for n = 2k that (−1)2k = 1→ 1, so

a2k = (−1)2k
(√

(2k)2 + 2k− 2k
)
→ 1 · 1

2
=

1
2

whenever k→ ∞.
Now let n = 2k + 1 then (−1)2k+1 = −1→ −1, so

a2k = (−1)2k+1
(√

(2k + 1)2 + 2k + 1− (2k + 1)
)
→ −1 · 1

2
= −1

2

whenever k→ ∞. This follows

lim
k→∞

a2k 6= lim
k→∞

a2k+1,

so sequence
an = (−1)n

(√
n2 + n− n

)
is divergent.

259



8 Solutions

8.4 Limit and Continuity of One Variable Real Functions

8.4.1 Limits at Infinity

Step-by-Step Solution

Calculate the following limit.

lim
x→−∞

x3 − 4x2 + 1
x3 − x2 − 1

.

Solution 8.4.1

lim
x→−∞

x3 − 4x2 + 1
x3 − x2 − 1

= lim
x→−∞

x3
(

1− 4
x
+

1
x3

)
x3
(

1− 1
x
− 1

x3

) = lim
x→−∞

1− 4
x
+

1
x3

1− 1
x
− 1

x3

=
1
1
= 1.

Step-by-Step Solution

Calculate the following limit.

lim
x→∞

x3 + 3x
x2 − x + 1

.

Solution 8.4.2

lim
x→∞

x3 + 3x
x2 − x + 1

= lim
x→∞

x2
(

x +
3
x

)
x2
(

1− 1
x
+

1
x2

) =
∞
1

= ∞.

Step-by-Step Solution

Calculate the following limit.

lim
x−→∞

x5 + x4

3x6 + x2 + 1
.

Solution 8.4.3

lim
x−→∞

x5 + x4

3x6 + x2 + 1
= lim

x−→∞

x6
(

1
x
+

1
x6

)
x6
(

3 +
1
x4 +

1
x6

) = lim
x−→∞

1
x
+

1
x6

3 +
1
x4 +

1
x6

=
0
3
= 0.
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Step-by-Step Solution

Calculate the following limit.

lim
x→∞

√
x2 + 2x + 1

x2 − 1
.

Solution 8.4.4

lim
x→∞

√
x2 + 2x + 1

x2 − 1
= lim

x→∞

x2

(√
x2 + 2x

x2 +
1
x2

)

x2
(

1− 1
x2

) = lim
x→∞

√
x2 + 2x

x4 +
1
x2

1− 1
x2

=
0
1
= 0.

Step-by-Step Solution

Calculate the following limit.

lim
x→∞

2x + 1
5
√

x2 − 1
.

Solution 8.4.5

lim
x→∞

2x + 1
5
√

x2 − 1
= lim

x→∞

x2/5
(

2x
x2/5 +

1
x2/5

)
x2/5

(
5

√
1− 1

x2

) = lim
x→∞

2 · x1−2/5 +
1

x2/5

5

√
1− 1

x2

=
∞
1

= ∞.

Step-by-Step Solution

Calculate the following limit.

lim
x→∞

√
x + 1√
x− 1

.

Solution 8.4.6

lim
x→∞

√
x + 1√
x− 1

= lim
x→∞

√
x
(

1 + 1√
x

)
√

x
(

1− 1√
x

) = lim
x→∞

1 + 1√
x

1− 1√
x

=
1
1
= 1.
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Step-by-Step Solution

Calculate the following limit.

lim
x→∞

(√
x + 4−

√
x + 2

)
.

Solution 8.4.7

lim
x→∞

(√
x + 4−

√
x + 2

)
= lim

x→∞

(√
x + 4−

√
x + 2

) (√
x + 4 +

√
x + 2

)
√

x + 4 +
√

x + 2
=

= lim
x→∞

(x + 4)− (x + 2)√
x + 4 +

√
x + 2

= lim
x→∞

2√
x + 4 +

√
x + 2

=
2
∞

= 0.

Step-by-Step Solution

Calculate the following limit.

lim
x→∞

x
(√

x + 1−
√

x
)

.

Solution 8.4.8

lim
x→∞

x
(√

x + 1−
√

x
)
= lim

x→∞

x
(√

x + 1−
√

x
) (√

x + 1 +
√

x
)

√
x + 1 +

√
x

=

= lim
x→∞

x [(x + 1)− x]√
x + 1 +

√
x

= lim
x→∞

x√
x + 1 +

√
x
= lim

x→∞

√
x ·
√

x
√

x ·
(√

1 + 1√
x + 1

)
= lim

x→∞

√
x√

1 + 1√
x + 1

=
∞
2

= ∞.

Step-by-Step Solution

Calculate the following limit.

lim
x→∞

(√
x2 + 4− x

)
.

Solution 8.4.9

lim
x→∞

(√
x2 + 4− x

)
= lim

x→∞

(√
x2 + 4− x

) (√
x2 + 4 + x

)
√

x2 + 4 + x
=

lim
x→∞

(
x2 + 4

)
− x2

√
x2 + 4 + x

= lim
x→∞

4√
x2 + 4 + x

=
4
∞

= 0.
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Step-by-Step Solution

Calculate the following limit.

lim
x→∞

(√
x2 + 4− (x + 2)

)
.

Solution 8.4.10

lim
x→∞

(√
x2 + 4− (x + 2)

)
= lim

x→∞

(√
x2 + 4− (x + 2)

) (√
x2 + 4 + (x + 2)

)
√

x2 + 4 + (x + 2)
=

= lim
x→∞

(
x2 + 4

)
− (x + 2)2

√
x2 + 4 + x + 2

= lim
x→∞

−4x√
x2 + 4 + x + 2

observing
√

x2 = x

= lim
x→∞

x · (−4)
√

x2 ·
(√

1 + 4
x2 + 1 +

2
x

) = lim
x→∞

−4√
1 + 4

x2 + 1 +
2
x

=
−4
2

= −2.

Step-by-Step Solution

Calculate the following limit.

lim
x→∞

1√
x2 − 1− x

.

Solution 8.4.11

lim
x→∞

1√
x2 − 1− x

= lim
x→∞

√
x2 − 1 + x(√

x2 − 1− x
) (√

x2 − 1 + x
) =

= lim
x→∞

√
x2 − 1 + x

(x2 − 1)− x2 = lim
x→∞

√
x2 − 1 + x
−1

=
∞
−1

= −∞.

263



8 Solutions

8.4.2 Limits at Finite Point

Step-by-Step Solution

Calculate the following limit. Please check before that the problem is of type "0
0"

or not.

lim
x→1

x2 − 2x + 1
x2 − 1

.

Solution 8.4.12

lim
x→1

x2 − 2x + 1
x2 − 1

= lim
x→1

(x− 1) (x− 1)
(x− 1) (x + 1)

= lim
x→1

(x− 1)
(x + 1)

=
0
2
= 0.

Step-by-Step Solution

Calculate the following limit. Please check before that the problem is of type "0
0"

or not.

lim
x→3

x2 − x− 6
x2 − 5x + 6

.

Solution 8.4.13

lim
x→3

x2 − x− 6
x2 − 5x + 6

= lim
x→3

(x− 3) (x + 2)
(x− 3) (x− 2)

= lim
x→3

(x + 2)
(x− 2)

=
5
1
= 5.

Step-by-Step Solution

Calculate the following limit. Please check before that the problem is of type "0
0"

or not.

lim
x→−2

2− x− x2

x2 + 3x + 2
.

Solution 8.4.14

lim
x→−2

2− x− x2

x2 + 3x + 2
= lim

x→−2

(−1) · (x− 1) (x + 2)
(x + 1) (x + 2)

= lim
x→−2

− (x− 1)
(x + 1)

=
3
−1

= −3.
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Step-by-Step Solution

Calculate the following limit. Please check before that the problem is of type "0
0"

or not.

lim
x→4

x2 − 5x + 4
x2 − 6x + 1

.

Solution 8.4.15 Not of type "0
0" :

lim
x→4

x2 − 5x + 4
x2 − 6x + 1

=
0
−7

= 0.

Step-by-Step Solution

Calculate the following limit. Please check before that the problem is of type "0
0"

or not.

lim
x→1

x3 − x
x2 + 2x− 3

.

Solution 8.4.16

lim
x→1

x3 − x
x2 + 2x− 3

= lim
x→1

x
(
x2 − 1

)
(x− 1) (x + 3)

= lim
x→1

x (x− 1) (x + 1)
(x− 1) (x + 3)

=

= lim
x→1

x (x + 1)
(x + 3)

=
1 · 2

4
=

1
2

.

Step-by-Step Solution

Calculate the following limit. Please check before that the problem is of type "0
0"

or not.

lim
x→0

√
x + 1−

√
1− x

x
.

Solution 8.4.17

lim
x→0

√
x + 1−

√
1− x

x
= lim

x→0

√
x + 1−

√
1− x

x
·
√

x + 1 +
√

1− x√
x + 1 +

√
1− x

=

= lim
x→0

(x + 1)− (1− x)
x ·
(√

x + 1 +
√

1− x
) = lim

x→0

2x
x ·
(√

x + 1 +
√

1− x
) =

= lim
x→0

2√
x + 1 +

√
1− x

=
2

1 + 1
= 1.

265



8 Solutions

Step-by-Step Solution

Calculate the following limit. Please check before that the problem is of type "0
0"

or not.

lim
x→0

√
x2 + x + 1− 1

x
.

Solution 8.4.18

lim
x→0

√
x2 + x + 1− 1

x
= lim

x→0

√
x2 + x + 1− 1

x
·
√

x2 + x + 1 + 1√
x2 + x + 1 + 1

=

= lim
x→0

(
x2 + x + 1

)
− 12

x ·
(√

x2 + x + 1 + 1
) = lim

x→0

x2 + x

x ·
(√

x2 + x + 1 + 1
) =

= lim
x→0

x + 1√
x2 + x + 1 + 1

=
1√

1 + 1
=

1
2

.

Step-by-Step Solution

Calculate the following limit. Please check before that the problem is of type "0
0"

or not.

lim
x→1

x2 − x√
x− 1

.

Solution 8.4.19

lim
x→1

x2 − x√
x− 1

= lim
x→1

x2 − x√
x− 1

·
√

x + 1√
x + 1

= lim
x→1

x (x− 1)
(√

x + 1
)

x− 1
=

lim
x→1

x
(√

x + 1
)

1
=

1 · 2
1

= 2.

Step-by-Step Solution

Calculate the following limit. Please check before that the problem is of type "0
0"

or not.

lim
x→0

√
x + 1− 1
x2 − 1

.

Solution 8.4.20 Not of type "0
0" :

lim
x→0

√
x + 1− 1
x2 − 1

=
0
−1

= 0.
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Step-by-Step Solution

Calculate the following limit. Please check before that the problem is of type "0
0"

or not.
lim
x→0

x√
9 + x− 3

.

Solution 8.4.21

lim
x→0

x√
9 + x− 3

= lim
x→0

x√
9 + x− 3

·
(√

9 + x + 3
)(√

9 + x + 3
) .

= lim
x→0

x ·
(√

9 + x + 3
)

(9 + x)− 32 = lim
x→0

x ·
(√

9 + x + 3
)

x
=

= lim
x→0

(√
9 + x + 3

)
=
√

9 + 3 = 6.

Step-by-Step Solution

Calculate the following limit. Please check before that the problem is of type "0
0"

or not.

lim
x→1

1− x3

1− x
.

Solution 8.4.22 Use the identity

1− a3 = (1− a)
(

1 + a + a2
)

for a = x to get

lim
x→1

1− x3

1− x
= lim

x→1

(1− x)
(
1 + x + x2)

1− x
= lim

x→1

(
1 + x + x2

)
= 3.
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Step-by-Step Solution

Calculate the following limit. Please check before that the problem is of type "0
0"

or not.

lim
x→0

3
√

x + 1− 1
x

.

Solution 8.4.23 Using identity (8.4.22) for a = 3
√

x + 1, we can multiply both the nu-
merator and the denominator with a suitable expression to cancel the root as

lim
x→0

3
√

x + 1− 1
x

= lim
x→0

(
3
√

x + 1− 1
)
·
[(

3
√

x + 1
)2

+
(

3
√

x + 1
)
+ 1
]

x ·
[(

3
√

x + 1
)2

+
(

3
√

x + 1
)
+ 1
] =

= lim
x→0

(
3
√

x + 1
)3 − 1

x ·
[(

3
√

x + 1
)2

+
(

3
√

x + 1
)
+ 1
] =

= lim
x→0

1(
3
√

x + 1
)2

+
(

3
√

x + 1
)
+ 1

=
1
3

.
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8.4.3 Famous Limits I.

Step-by-Step Solution

Calculate the following limit.

lim
x→0

sin (2x)
x

.

Solution 8.4.24

lim
x→0

sin (2x)
x

= lim
x→0

sin (2x)
2x

· 2 = lim
y→0

sin (y)
y
· 2 = 1 · 2 = 2.

Step-by-Step Solution

Calculate the following limit.

lim
x→0

sin
(
x2)

x2 .

Solution 8.4.25

lim
x→0

sin
(
x2)

x2 = lim
y→0

sin (y)
y

= 1.

Step-by-Step Solution

Calculate the following limit.

lim
x→0

sin2 (2x)
x

.

Solution 8.4.26

lim
x→0

sin2 (2x)
x

= lim
x→0

(
sin (2x)

2x

)2

· 4x
1

= 12 · 0 = 0.

Step-by-Step Solution

Calculate the following limit.

lim
x→0+

sin
(√

x
)

√
x

.

Solution 8.4.27

lim
x→0+

sin
(√

x
)

√
x

= lim
y→0+

sin (y)
y

= 1.
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Step-by-Step Solution

Calculate the following limit.

lim
x→−2

sin (x + 2)
x + 2

.

Solution 8.4.28

lim
x→−2

sin (x + 2)
x + 2

= lim
y→0

sin (y)
y

= 1

(check y = x + 2→ 0⇐⇒ x → −2).

Step-by-Step Solution

Calculate the following limit.

Solution 8.4.29

lim
x→−2

sin
(
x2 − 4

)
x + 2

= lim
x→−2

sin
(
x2 − 4

)
x2 − 4

· x2 − 4
x + 2

=

= lim
y→0

sin (y)
y
· lim

x→−2

(x + 2) (x− 2)
x + 2

= 1 · lim
x→−2

x− 2
1

= 1 · (−4) = −4

(check y = x2 − 4→ 0⇐⇒ x → −2).

Step-by-Step Solution

Calculate the following limit.

lim
x→0

sin (2x)
sin (7x)

.

Solution 8.4.30

lim
x→0

sin (2x)
sin (7x)

= lim
x→0

sin (2x)
2x

· 7x
sin (7x)

· 2
7
=

= lim
y1→0

sin (y1)

y1
· lim

y2→0

y2

sin (y2)
· 2

7
= 1 · 1 · 2

7
=

2
7

.
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Step-by-Step Solution

Calculate the following limit.

lim
x→−1

sin (4x + 4)
x2 + x

.

Solution 8.4.31

lim
x→−1

sin (4x + 4)
x2 + x

= lim
x→−1

sin ( 4 (x + 1) )
x · 4 · (x + 1)

· 4 =
1
−1
· 4 = −4.

Step-by-Step Solution

Calculate the following limit.

lim
x→0

sin
(
x2 + x

)
x

.

Solution 8.4.32

lim
x→0

sin
(
x2 + x

)
x

= lim
x→0

sin
(
x2 + x

)
x2 + x

· x2 + x
x

= lim
y→0

sin (y)
y
· lim

x→0
(x + 1) = 1 · 1 = 1.

Step-by-Step Solution

Calculate the following limit.

lim
x→0

sin (2x)
tan (5x)

.

Solution 8.4.33

lim
x→0

sin (2x)
tan (5x)

= lim
x→0

sin (2x)
sin(5x)
cos(5x)

= lim
x→0

sin (2x)
1

· cos (5x)
sin (5x)

=

= lim
x→0

sin (2x)
2x

· 5x
sin (5x)

· 2
5
· cos (5x)

1
=

= lim
y1→0

sin (y1)

y1
· lim

y2→0

y2

sin (y2)
· 2

5
· lim

x→0

cos (5x)
1

=

= 1 · 1 · 2
5
· 1 =

2
5

.
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8.4.4 Famous Limits II.

Step-by-Step Solution

Calculate the following limit

lim
x→0

sin(2x)− 2x
x

.

Solution 8.4.34

lim
x→0

sin(2x)− 2x
x

= lim
x→0

sin(2x)
x

− lim
x→0

2x
x

= lim
x→0

sin(2x)
2x

· 2− 2 = 1 · 2− 2 = 0.

Step-by-Step Solution

Calculate the following limit

lim
x→0

sin(3x)
ln(1 + 5x)

.

Solution 8.4.35

lim
x→0

sin(3x)
ln(1 + 5x)

= lim
x→0

sin(3x)
3x

· 5x
ln (1 + 5x)

· 3
5
= 1 · 1 · 3

5
=

3
5

.

Step-by-Step Solution

Calculate the following limit

lim
x→0

ln (1 + 3x)
2 sin (x)

.

Solution 8.4.36

lim
x→0

ln (1 + 3x)
2 sin (x)

= lim
x→0

1
2
· ln (1 + 3x)

3x
· x

sin (x)
· 3

1
=

1
2
· 1 · 1 · 3

1
=

3
2

.

Step-by-Step Solution

Calculate the following limit

lim
x→0

e2x − 1
sin (5x)

.

Solution 8.4.37

lim
x→0

e2x − 1
sin (5x)

= lim
x→0

e2x − 1
2x

· 5x
sin (5x)

· 2
5
= 1 · 1 · 2

5
=

2
5

.
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Step-by-Step Solution

Calculate the following limit

lim
x→0

tan (x)
ex − 1

.

Solution 8.4.38

lim
x→0

tan (x)
ex − 1

= lim
x→0

sin (x)
cos (x)

· 1
ex − 1

= lim
x→0

sin (x)
x
· 1

cos (x)
· x

ex − 1
= 1.

Step-by-Step Solution

Calculate the following limit

lim
x→0

1− cos (x)
x · sin (x)

.

Solution 8.4.39

lim
x→0

1− cos (x)
x · sin (x)

= lim
x→0

1− cos (x)
x2 · x

sin (x)
=

1
2
· 1 =

1
2

.

Step-by-Step Solution

Calculate the following limit

lim
x→0

ex2 − cos (x)
x2 .

Solution 8.4.40

lim
x→0

ex2 − cos (x)
x2 = lim

x→0

ex2 − 1 + 1− cos (x)
x2 =

= lim
x→0

(
ex2 − 1

x2 +
1− cos (x)

x2

)
= 1 +

1
2
=

3
2

.
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Step-by-Step Solution

Calculate the following limit

lim
x→0

cot (x) · ln (1 + 2x) .

Solution 8.4.41

lim
x→0

cot (x) · ln (1 + 2x) = lim
x→0

cos (x)
sin (x)

· ln (1 + 2x) =

= lim
x→0

cos (x) · x
sin (x)

· ln (1 + 2x)
2x

· 2 = 13 · 2 = 2.

Step-by-Step Solution

Calculate the following limit

lim
x→0

2 cos (3x)− 2 + 9x2

2x
.

Solution 8.4.42

lim
x→0

2 cos (3x)− 2 + 9x2

2x
= lim

x→0

2 cos (3x)− 2
2x

+
9x2

2x
=

= lim
x→0

cos (3x)− 1

(3x)2 · 9x +
9x
2

= −1 · 0 + 0 = 0.
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Step-by-Step Solution

Calculate the following limit

lim
x→0

1− cos (x)
ln (x + 1)− (x + 1)2 + 1

.

Solution 8.4.43

lim
x→0

1− cos (x)
ln (x + 1)− (x + 1)2 + 1

= lim
x→0

1− cos (x)
x2 · x2

ln (x + 1)− (x + 1)2 + 1
=

=
1
2
· lim

x→0

x2

ln (x + 1)− (x + 1)2 + 1
.

We calculate the reciprocial of the second term, that is

lim
x→0

ln (x + 1)− (x + 1)2 + 1
x2 = lim

x→0

ln (x + 1)− x2 − 2x
x2 =

= lim
x→0

ln (x + 1)
x2 − x2 + 2x

x2 =

= lim
x→0

1
x
·
(

ln (x + 1)
x

− x− 2
)
=

= ±∞ · (1− 0− 2) = ±∞ · (−1) = ∓∞.

So the final answer is

lim
x→0

1− cos (x)
ln (x + 1)− (x + 1)2 + 1

1
2
· 1
∓∞

=
1
2
· 0 = 0.
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8.4.5 Function Limits " c
0 " (c 6= 0)

Step-by-Step Solution

Calculate the following limit

lim
x→−1

x2 − 2x + 1
x2 − 1

.

Solution 8.4.44 The numerator is

lim
x→−1

(
x2 − 2x + 1

)
= 4.

The denominator is
lim

x→−1

(
x2 − 1

)
= 0.

−3 −2 −1 1 2 3

−1

1

2

3

4

y = x2 − 1

x

y

In more detail
lim

x→−1−

(
x2 − 1

)
= 0+,

and
lim

x→−1+

(
x2 − 1

)
= 0− .

So

lim
x→−1−

x2 − 2x + 1
x2 − 1

= ”
4

0+
” = +∞ and lim

x→−1+

x2 − 2x + 1
x2 − 1

= ”
4

0−” = −∞ .

This implies that

lim
x→−1

x2 − 2x + 1
x2 − 1

does not exist.
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Step-by-Step Solution

Calculate the following limit

lim
x→4

x2 − 6x + 1
x2 − 5x + 4

.

Solution 8.4.45 The numerator is

lim
x→4

(
x2 − 6x + 1

)
= −7.

The denominator is
lim
x→4

(
x2 − 5x + 4

)
= 0.

−1 1 2 3 4 5

−2

2

4

y = x2 − 5x + 4

x

y

In more detail
lim

x→4−

(
x2 − 5x + 4

)
= 0−,

and
lim

x→4+

(
x2 − 5x + 4

)
= 0 + .

So

lim
x→4−

x2 − 6x + 1
x2 − 5x + 4

= ”
−7
0−” = +∞ and lim

x→4+

x2 − 6x + 1
x2 − 5x + 4

= ”
−7
0+

” = −∞ .

This implies that

lim
x→4

x2 − 6x + 1
x2 − 5x + 4

does not exist.

277



8 Solutions

Step-by-Step Solution

Calculate the following limit

lim
x→−1−

sin (4x + 2)
x2 + x

.

Solution 8.4.46 The numerator is

lim
x→−1

sin (4x + 2) = sin
(
−2rad

)
≈ −0.9093.

The denominator is
lim

x→−1

(
x2 + x

)
= 0.

−3 −2 −1 1 2

−2

2

4

y = x2 + x

x

y

In more detail
lim

x→−1−

(
x2 + x

)
= 0+,

and
lim

x→−1+

(
x2 + x

)
= 0− .

So
lim

x→−1−

sin (4x + 2)
x2 + x

=
” − 0.9093 ”

0+
= −∞,

and
lim

x→−1+

sin (4x + 2)
x2 + x

=
” − 0.9093 ”

0− = +∞ .

This implies that

lim
x→−1

sin (4x + 2)
x2 + x

does not exist.
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Step-by-Step Solution

Calculate the following limit

lim
x→π

2 +

ln (1− sin (x))
π
2 − x

.

Solution 8.4.47 In the numerator we have

lim
x→π

2±
(1− sin (x)) = 0+,

so
lim

x→π
2±

ln (1− sin (x)) = −∞.

The denominator is
lim

x→π
2−

(π

2
− x
)
= 0+,

and
lim

x→π
2 +

(π

2
− x
)
= 0− .

So
lim

x→π
2−

ln (1− sin (x))
π
2 − x

=
” −∞ ”

0+
= −∞,

and
lim

x→π
2 +

ln (1− sin (x))
π
2 − x

=
” −∞ ”

0− = +∞ .

This implies that

lim
x→π

2 +

ln (1− sin (x))
π
2 − x

does not exist.

Step-by-Step Solution

Calculate the following limit

lim
x→a

e
x

1−x = lim
x→a

exp
(

x
1− x

)
, where a = 0, 1,±∞.

Solution 8.4.48 Since function exp is continuous everywhere, we have to calculate the
exponent first.
For a = 0, we have

lim
x→0

(
x

1− x

)
= 0,

so
lim
x→0

e
x

1−x = e0 = 1.
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For a = 1, we have

lim
x→1−

(
x

1− x

)
=

” 1 ”
0+

= +∞,

and
lim

x→1+

(
x

1− x

)
=

” 1 ”
0− = −∞,

so
lim

x→1−
e

x
1−x = ”e+∞” = +∞,

and
lim

x→1+
e

x
1−x = ”e−∞” = 0.

This implies that
lim

x→1+
e

x
1−x

does not exist. For a = ±∞, we have

lim
x→±∞

(
x

1− x

)
= lim

x→±∞

x · 1
x ·
(

1
x − 1

) = lim
x→±∞

1
1
x − 1

= −1,

so
lim

x→±∞
e

x
1−x = e−1 =

1
e
≈ 0.36788.

Step-by-Step Solution

Calculate the following limit

lim
x→a

x
1− e1/x , where a = 0, 1,±∞.

Solution 8.4.49 For a = 0, we have

lim
x→0+

(
1− e1/x

)
= ”

(
1− ”e+∞”

)
” = ” (1− ” + ∞”) ” = −∞,

so
lim

x→0+

x
1− e1/x =

” 0 ”
−∞

= 0,

and
lim

x→0−

(
1− e1/x

)
= ”

(
1− ”e−∞”

)
” = (1− 0) = 1,

which implies

lim
x→0−

x
1− e1/x =

0
1
= 0.

The result is
lim
x→0

x
1− e1/x =

0
1
= 0.

280



Solutions 8

−6 −4 −2 2 4 6

−10

−5

y =
x

1− e1/x

xy

For a = 1, we have

lim
x→1

x
1− e1/x =

1
1− e1 ≈ −0.58198.

For a = +∞, we have

lim
x→+∞

x
1− e1/x = lim

x→+∞

” + ∞ ”
” 1− e0+ ”

=
” + ∞ ”
” 0− ”

= −∞.

For a = −∞, we have

lim
x→−∞

x
1− e1/x = lim

x→+∞

” −∞ ”
” 1− e0− ”

=
” −∞ ”
” 0 + ”

= −∞.
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8.4.6 Continuity of Functions

Step-by-Step Solution

Decide the continuity of function

f (x) =


sin (8x)
sin (4x)

if x 6= 0

2 if x = 0

.

Solution 8.4.50 As

lim
x→0

sin (8x)
sin (4x)

= lim
x→0

sin (8x)
8x

· 8
4
· 4x

sin (4x)
=

8
4
= 2 = f (0) ,

function f is continuous at a = 0 .

Step-by-Step Solution

Decide the continuity of function

f (x) =


x2 − x− 6

x2 − 2x− 3
if x 6= 3

5
4

if x = 3

.

Solution 8.4.51 As

lim
x→3

x2 − x− 6
x2 − 2x− 3

= lim
x→3

(x− 3) (x + 2)
(x− 3) (x + 1)

= lim
x→3

x + 2
x + 1

=
5
4
= f (3) ,

function f is continuous at a = 3 .

Step-by-Step Solution

Decide the continuity of function

f (x) =


2x−1 if x ≤ 0

√
x + 1− 1

x
if x > 0

.

Solution 8.4.52 As

lim
x→0−

2x−1 = 20−1 =
1
2
= f (0) ,
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and

lim
x→0+

√
x + 1− 1

x
= lim

x→0+

√
x + 1− 1

x
·
√

x + 1 + 1√
x + 1 + 1

=

= lim
x→0

(x + 1)− 1
x ·
(√

x + 1 + 1
) = lim

x→0

x
x ·
(√

x + 1 + 1
) =

= lim
x→0

1√
x + 1 + 1

=
1√

1 + 1
=

1
2

,

function f is continuous at a = 0 .

Step-by-Step Solution

Decide the continuity of function

f (x) =


x2 − x
2− 2x

if x < 1

log 1
2
(2x + 1) if x ≥ 1

.

Solution 8.4.53 As

lim
x→1+

log 1
2
(2x + 1) = log 1

2

(
21 + 1

)
= log 1

2
(3) = f (1) ≈ −1.5850,

and

lim
x→1−

x2 − x
2− 2x

= lim
x→1

x (x− 1)
2 (1− x)

= lim
x→1

−x
2

=
−1
2

,

function f is not continuous at a = 1.
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8.5 Derivatives of Real Functions

Step-by-Step Solution

Derivate the following function.

F(x) =
√

x +
√

x

9

Solution 8.5.1 First, we use Theorem 5.5 with the usual notation

F (x) = f (g (x)) ,

where

f (x) =
√

x ,

and

g (x) = x +
√

x.

Using Theorem 5.1 and some basic mathematics, all the derivations can be evaluated using
5.3 Table of Derivatives, that is

F′ (x) = f ′ (g (x)) · g′ (x) .

f ′ (x) =
1

2
√

x
,

so
f ′ (g (x)) = f ′

(
x +
√

x
)
=

1

2
√

x +
√

x
,

and
g′ (x) = 1 +

1
2

x(
−1
2 ).

This follows

F′(x) =
1
2
(
x +
√

x
)(−1

2 )
(

1 +
1
2

x(
−1
2 )
)
=

2 + 1√
x

4
√

x +
√

x
.

Step-by-Step Solution

Derivate the following function.

F(x) =
ln
(
2x− 4x3)

3
√

4x + 1
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Solution 8.5.2 Let N(x) be the numerator.

N (x) = ln
(

2x− 4x3
)

First, we calculate the derivative of the numerator using Theorem 5.5 with the usual nota-
tion

N (x) = f (g (x)) ,

where

f (x) = ln(x),

and

g (x) = 2x− 4x3.

Using the differentiation rules, 5.3 Table of Derivatives and some basic mathematics, all
the derivations can be evaluated.

N′ (x) = f ′ (g (x)) · g′ (x) .

and
f ′ (x) =

1
x

,

so
f ′ (g (x)) = f ′

(
2x− 4x3) = ( 1

2x− 4x3

)
.

As
g′ (x) = 2− 12x2,

we get

N′(x) =
1

2x− 4x3

(
2− 12x2

)
=

2− 12x2

2x− 4x3 .

Second, we calculate the derivative of the denominator. Let M(x) be the denominator.

M (x) = 3
√

4x + 1

We use Theorem 5.5 again with the usual notation.

M (x) = f (g (x)) ,

where

f (x) = 3
√

x,

and

g (x) = 4x + 1.

With the same method as above, all the derivations can be evaluated.

M′ (x) = f ′ (g (x)) · g′ (x) ,
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and
f ′ (x) =

1
3

3√x2,

so
f ′ (g (x)) = f ′ (4x + 1) =

1
3

3
√
(4x + 1)2.

As
g′ (x) = 4,

we get

M′(x) =
4

3 3
√
(4x + 1)2

.

From Theorem 5.4, we have

F′(x) =
(

ln(2x− 4x3)
3
√

4x + 1

)′
=

(
ln(2x− 4x3)

)′ 3
√

4x + 1− ln(2x− 4x3)
(

3
√

4x + 1
)′(

3
√

4x + 1
)2

so the result is

F′(x) =

2− 12x2

2x− 4x3
3
√

4x + 1− ln(2x− 4x3)
4

3 3
√
(4x + 1)2(

3
√

4x + 1
)2 .

Step-by-Step Solution

Derivate the following function.

F(x) =
ln(x2 + 2x)

sin(ex)

Solution 8.5.3 Let N(x) be the numerator.

N (x) = ln
(

x2 + 2x
)

First, we calculate the derivative of the numerator using Theorem 5.5 with the usual nota-
tion

N (x) = f (g (x)) ,

where

f (x) = ln(x)

and

g (x) = x2 + 2x.

Using the differentiation rules, 5.3 Table of Derivatives and some basic mathematics, all
the derivations can be evaluated.

N′ (x) = f ′ (g (x)) · g′ (x) .

286



Solutions 8

and
f ′ (x) =

1
x

,

so
f ′ (g (x)) = f ′

(
x2 + 2x

)
=

(
1

x2 + 2x

)
.

As
g′ (x) = 2x + 2,

we get

N′(x) =
1

x2 + 2x
(2x + 2) =

2x + 2
x2 + 2x

.

Second, we calculate the derivative of the denominator. Let M(x) be the denominator.

M (x) = sin (ex)

We use Theorem 5.5 again with the usual notation.

M (x) = f (g (x)) ,

where

f (x) = sin(x)

and

g (x) = ex.

With the same method as above, all the derivations can be evaluated.

M′ (x) = f ′ (g (x)) · g′ (x) ,

and
f ′ (x) = cos (x) ,

so
f ′ (g (x)) = f ′ (ex) = cos (ex) .

As
g′ (x) = ex,

we get
M′(x) = cos (ex) · ex.

From Theorem 5.4, we have

F′(x) =
(

ln(x2 + 2x)
sin (ex)

)′
=

(
ln(x2 + 2x)

)′ sin (ex)− ln(x2 + 2x) (sin (ex))′

(sin (ex))2 ,

so the result is

F′(x) =

2x + 2
x2 + 2x

sin (ex)− ln(x2 + 2x) cos (ex) ex

sin2 (ex)
.
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Step-by-Step Solution

Derivate the following function.

F(x) = sin2(x) tan(x3 − 5x)

Solution 8.5.4 Let M(x) be the first member of product.

M (x) = sin2(x)

First, we calculate the derivative of M using Theorem 5.5 with the usual notation

M (x) = f (g (x)) ,

where

f (x) = x2

and

g (x) = sin(x).

Using the differentiation rules, 5.3 Table of Derivatives and some basic mathematics, all
the derivations can be evaluated.

M′ (x) = f ′ (g (x)) · g′ (x) .

and
f ′ (x) = 2x,

so
f ′ (g (x)) = f ′ (sin(x)) = (2 sin(x)) .

As
g′ (x) = cos(x),

we get
M′(x) = 2 sin(x) cos(x).

Second, we calculate the derivative of the second member. Let

N (x) = tan(x3 − 5x).

We use Theorem 5.5 again with the usual notation.

N (x) = f (g (x)) ,

where

f (x) = tan(x)

and

g (x) = x3 − 5x.
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With the same method as above, all the derivations can be evaluated.

N′ (x) = f ′ (g (x)) · g′ (x) ,

and
f ′ (x) =

1
cos2 (x)

,

so
f ′ (g (x)) = f ′

(
x3 − 5x

)
=

1
cos2 (x3 − 5x)

.

As
g′ (x) = 3x2 − 5,

we get

N′(x) =
1

cos2 (x3 − 5x)
·
(

3x2 − 5
)
=

3x2 − 5
cos2 (x3 − 5x)

.

From Theorem 5.3, we have

F′(x) =
(

sin2(x) tan(x3 − 5x)
)′

=
(

sin2(x)
)′

tan(x3− 5x)− sin2(x)
(

tan(x3 − 5x)
)′

,

so the result is

F′(x) = 2 sin(x) cos(x) tan(x3 − 5x) + sin2(x)
3x2 − 5

cos2(x3 − 5x)
.

Step-by-Step Solution

Derivate the following function.

F(x) =
e2−3x4

4
√

cot(x)

Solution 8.5.5 Let N(x) be the numerator.

N (x) = e2−3x4

First, we calculate the derivative of the numerator using Theorem 5.5 with the usual nota-
tion

N (x) = f (g (x)) ,

where

f (x) = ex

and

g (x) = 2− 3x4.

Using the differentiation rules, 5.3 Table of Derivatives and some basic mathematics, all
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the derivations can be evaluated.

N′ (x) = f ′ (g (x)) · g′ (x) .

and
f ′ (x) = ex,

so
f ′ (g (x)) = f ′

(
2− 3x4

)
=
(

e2−3x4
)

.

As
g′ (x) = −12x3,

we get
N′(x) = e2−3x4

(
−12x3

)
.

Second, we calculate the derivative of the denominator. Let M(x) be the denominator.

M (x) = 4
√

cot(x),

We use Theorem 5.5 again with the usual notation.

M (x) = f (g (x)) ,

where

f (x) = 4
√

x

and

g (x) = cot(x).

With the same method as above, all the derivations can be evaluated.

M′ (x) = f ′ (g (x)) · g′ (x) ,

and
f ′ (x) =

1(
4 4
√

x3
) ,

so
f ′ (g (x)) = f ′ (cot(x)) =

1(
4 4
√

cot3(x)
) .

As
g′ (x) =

−1
sin2(x)

,

we get

M′(x) =
1(

4 4
√

cot3(x)
) · −1

sin2(x)
.
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From Theorem 5.4, we have

F′(x) =

(
e2−3x4

4
√

cot(x)

)′
=

(
e2−3x4

)′
4
√

cot(x)− e2−3x4
(

4
√

cot(x)
)′

(
4
√

cot(x)
)2 ,

so the result is

F′(x) =

e2−3x4 (−12x3) 4
√

cot(x)− e2−3x4 1(
4 4
√

cot3(x)
) · −1

sin2(x)(
4
√

cot(x)
)2 .

F′(x) =

e2−3x4 (−12x3) 4
√

cot(x) +
e2−3x4(

4 4
√

cot3(x)
)

sin2(x)(
4
√

cot(x)
)2 .

Step-by-Step Solution

Derivate the following function.

F(x) =
tan(ex)

ln(x2)

Solution 8.5.6 Let N(x) be the numerator.

N (x) = tan(ex)

First, we calculate the derivative of the numerator using Theorem 5.5 with the usual nota-
tion

N (x) = f (g (x)) ,

where

f (x) = tan(x)

and

g (x) = ex.

Using the differentiation rules, 5.3 Table of Derivatives and some basic mathematics, all
the derivations can be evaluated.

N′ (x) = f ′ (g (x)) · g′ (x) .

and
f ′ (x) =

1
cos2(x)

,

so
f ′ (g (x)) = f ′ (ex) =

(
1

cos2(ex)

)
.
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As
g′ (x) = ex,

we get

N′(x) =
1

cos2(ex)
ex =

ex

cos2(ex)
.

Second, we calculate the derivative of the denominator. Let M(x) be the denominator.

M (x) = ln(x2),

We use Theorem 5.5 again with the usual notation.

M (x) = f (g (x)) ,

where

f (x) = ln(x)

and

g (x) = x2.

With the same method as above, all the derivations can be evaluated.

M′ (x) = f ′ (g (x)) · g′ (x) ,

and
f ′ (x) =

1
x

,

so
f ′ (g (x)) = f ′

(
x2) = 1

x2 .

As
g′ (x) = 2x,

we get

M′(x) =
1
x2 2x =

2x
x2 =

2
x

.

From Theorem 5.4, we have

F′(x) =
(

tan(ex))

ln(x2)

)′
=

(tan(ex))′ ln(x2)− tan(ex)
(
ln(x2)

)′
(ln(x2))

2 ,

so the result is

F′(x) =

ex

cos2(ex)
ln(x2)− tan(ex)

2
x

ln2(x2)
=

ex ln(x2)

cos2(ex)
− 2 tan(ex)

x
ln2(x2)

.
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Step-by-Step Solution

Derivate the following function.

F(x) = cos(x3 − 2x2) ln(sin(x))

Solution 8.5.7 Let M(x) the first member of product.

M (x) = cos(x3 − 2x2)

First, we calculate the derivative of the numerator using Theorem 5.5 with the usual nota-
tion

M (x) = f (g (x)) ,

where

f (x) = cos(x)

and

g (x) = x3 − 2x2.

Using the differentiation rules, 5.3 Table of Derivatives and some basic mathematics, all
the derivations can be evaluated.

M′ (x) = f ′ (g (x)) · g′ (x) .

and
f ′ (x) = − sin (x) ,

so
f ′ (g (x)) = f ′

(
x3 − 2x2) = − sin

(
x3 − 2x2).

As
g′ (x) = 3x2 − 4x,

we get
M′(x) = − sin

(
x3 − 2x2

) (
3x2 − 4x

)
.

Second, we calculate the derivative of the second member. Let N(x)

N (x) = ln(sin(x)),

We use Theorem 5.5 again with the usual notation.

N (x) = f (g (x)) ,

where

f (x) = ln(x)

and

g (x) = sin(x).
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With the same method as above, all the derivations can be evaluated.

N′ (x) = f ′ (g (x)) · g′ (x) ,

and
f ′ (x) =

1
x

,

so
f ′ (g (x)) = f ′ (sin(x)) =

1
sin(x)

.

As
g′ (x) = cos(x),

we get

N′(x) =
1

sin(x)
· cos(x) =

cos(x)
sin(x)

.

From Theorem 5.3, we have

F′(x) =
(

cos(x3 − 2x2) ln(sin(x))
)′

=

=
(

cos(x3 − 2x2)
)′

ln(sin(x)) + cos(x3 − 2x2) (ln(sin(x)))′ ,

so the result is

F′(x) = − sin
(

x3 − 2x2
) (

3x2 − 4x
)

ln(sin(x)) + cos(x3 − 2x2)
cos(x)
sin(x)

.

Step-by-Step Solution

Derivate the following function.

F(x) =
35x+2

ln(x2 + x)

Solution 8.5.8 Let N(x) the numerator.

N (x) = 35x+2

First, we calculate the derivative of the numerator using Theorem 5.5 with the usual nota-
tion

N (x) = f (g (x)) ,

where

f (x) = 3x

and

g (x) = 5x + 2.

Using the differentiation rules, 5.3 Table of Derivatives and some basic mathematics, all
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the derivations can be evaluated.

N′ (x) = f ′ (g (x)) · g′ (x) .

and
f ′ (x) = 3x ln(3),

so
f ′ (g (x)) = f ′ ((5x + 2)) ln(3) = 3(5x+2) ln(3).

As
g′ (x) = 5,

we get
N′(x) = 3(5x+2) ln(3) · 5 = 5 ln(3)3(5x+2).

Second, we calculate the derivative of the denominator. Let M(x) the denominator.

M (x) = ln(x2 + x),

We use Theorem 5.5 again with the usual notation.

M (x) = f (g (x)) ,

where

f (x) = ln(x)

and

g (x) = x2 + x.

With the same method as above, all the derivations can be evaluated.

M′ (x) = f ′ (g (x)) · g′ (x) ,

and
f ′ (x) =

1
x

,

so
f ′ (g (x)) = f ′

(
x2 + x

)
=

1
x2 + x

.

As
g′ (x) = 2x + 1,

we get

M′(x) =
1

x2 + x
(2x + 1) =

2x + 1
x2 + x

.

From Theorem 5.4, we have

F′(x) =

(
3(5x+2)

ln(x2 + x)

)′
=

(
3(5x+2)

)′
ln(x2 + x)− 3(5x+2) (ln(x2 + x)

)′
(ln(x2 + x))2 ,
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so the result is

F′(x)
5 ln(3)3(5x+2) ln(x2 + x)− 3(5x+2)(2x + 1)

x2 + x
ln2(x2 + x)

.

Step-by-Step Solution

Derivate the following function.

F(x) = e3 ln(x) cot(x3 − 5x)

Solution 8.5.9 Let M(x) the first member of product.

M (x) = e3 ln(x)

Notice
M (x) = e3 ln(x) = (eln(x))3 = x3,

becasuse of this
M′ (x) = 3x2,

Second, we calculate the derivative of the second member. Let N(x)

N (x) = cot(x3 − 5x),

We use Theorem 5.5 again with the usual notation.

N (x) = f (g (x)) ,

where

f (x) = cot(x)

and

g (x) = x3 − 5x.

With the same method as above, all the derivations can be evaluated.

N′ (x) = f ′ (g (x)) · g′ (x) ,

and
f ′ (x) =

−1
x

,

so
f ′ (g (x)) = f ′

(
(x3 − 5x)

)
=

−1
sin2(x3 − 5x)

.

As
g′ (x) = 3x2 − 5,
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we get

N′(x) =
−1

sin2(x3 − 5x)
· (3x2 − 5) =

5− 3x2

sin2(x3 − 5x)
.

From Theorem 5.3, we have

F′(x) =
(

e3 ln(x) cot(x3 − 5x)
)′

=
(

e3 ln(x)
)′

cot(x3 − 5x)− e3 ln(x)
(

cot(x3 − 5x)
)′

,

so the result is

F′(x) = 3x2 cot(x3− 5x) + e3 ln(x) 5− 3x2

sin2(x3 − 5x)
= 3x2 cot(x3− 5x) +

x3(5− 3x2)

sin2(x3 − 5x)
.

Step-by-Step Solution

Derivate the following function.

F(x) = (x2 + 1)1974 cos(x5 − 3x2)

Solution 8.5.10 Let M(x) the first member of product.

M (x) = (x2 + 1)1974

First, we calculate the derivative of the numerator using Theorem 5.5 with the usual nota-
tion

M (x) = f (g (x)) ,

where

f (x) = x1974

and

g (x) = x2 + 1.

Using the differentiation rules, 5.3 Table of Derivatives and some basic mathematics, all
the derivations can be evaluated.

M′ (x) = f ′ (g (x)) · g′ (x) .

and
f ′ (x) = 1974

(
x1973

)
,

so
f ′ (g (x)) = f ′

(
x2 + 1

)
= 1974

(
x2 + 1

) 1973.

As
g′ (x) = 2x,

we get
M′(x) = 1973(x2 + 1)1973 · 2x = 3946x(x2 + 1)1973.
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Second, we calculate the derivative of the second member. Let N(x)

N (x) = cos(x5 − 3x2),

We use Theorem 5.5 again with the usual notation.

N (x) = f (g (x)) ,

where

f (x) = cos(x)

and

g (x) = x5 − 3x2.

With the same method as above, all the derivations can be evaluated.

N′ (x) = f ′ (g (x)) · g′ (x) ,

and
f ′ (x) = − sin (x) ,

so
f ′ (g (x)) = f ′

(
x5 − 3x2) = − sin

(
x5 − 3x2

)
.

As
g′ (x) = 5x4 − 6x,

we get
N′(x) = − sin(x5 − 3x2)(5x4 − 6x).

From Theorem 5.3, we have

F′(x) =
(
(x2 + 1)1974 cos(x5 − 3x2)

)′
=

=
(
(x2 + 1)1974

)′
cos(x5 − 3x2)− (x2 + 1)1974

(
cos(x5 − 3x2)

)′
,

so the result is

F′(x) = 3946x(x2 + 1)1973 cos(x5 − 3x2)− (x2 + 1)1974 sin(x5 − 3x2)(5x4 − 6x).

8.5.1 Application I. - The Tangent Line

Step-by-Step Solution

Write the equation of the tangent line of x0 = 4 to the graph of the following
function.

f (x) = 4x− 1
x2 .
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Solution 8.5.11 First we need to compute a following derivative function

f ′(x) =
(

4x− 1
x2

)′
= 4 +

2
x3 .

Then we need to compute a following values:

f (x0) = f (4) = 4 · 4− 1
42 = 16− 1

16
=

255
16

f ′(x0) = f ′(4) = 4 +
2
43 =

44 + 2
43 =

258
64

=
129
32

Finally write the equation of the tangent line.

y =
129
32

(x− 4) +
255
16

y =
129
32

x− 3
16

Step-by-Step Solution

Write the equation of the tangent line of x0 = e to the graph of the following
function.

f (x) = xln(x).

Solution 8.5.12 First we need to compute a following derivative function

f ′(x) = (xln(x))′ = ln(x) + x
1
x
= ln(x) + 1.

Then we need to compute a following values:

f (x0) = f (e) = eln(e) = e

f ′(x0) = f ′(e) = ln(e) + 1 = 2

Finally write the equation of the tangent line.

y = 2(x− e) + e

y = 2x− e

Step-by-Step Solution

Write the equation of the tangent line of x0 = 3 to the graph of the following
function.

f (x) =
√

x + 1.
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Solution 8.5.13 First we need to compute a following derivative function

f ′(x) =
(√

x + 1
)′

=
1

2
√

x + 1
.

Then we need to compute a following values:

f (x0) = f (3) =
√

3 + 1 = 2

f ′(x0) = f ′(3) =
1

2
√

3 + 1
=

1
4

Finally write the equation of the tangent line.

y =
1
4
(x− 3) + 2

y =
1
4

x +
5
4

Step-by-Step Solution

Write the equation of the tangent line of x0 = 2 to the graph of the following
function.

f (x) =
x + 2
x− 3

.

Solution 8.5.14 First we need to compute a following derivative function

f ′(x) =
(

x + 2
x− 3

)′
=

(x− 3)− (x + 2)
(x− 3)2 =

−5
(x− 3)2 .

Then we need to compute a following values:

f (x0) = f (2) =
2 + 2
2− 3

= −4

f ′(x0) = f ′(2) =
−5

(2− 3)2 = −5

Finally write the equation of the tangent line.

y = −5(x− 2)− 4y = −5x + 6

Step-by-Step Solution

Write the equation of the tangent line of x0 = 0 to the graph of the following
function.

f (x) = 2x− 1
x + 1

.

Solution 8.5.15 First we need to compute a following derivative function

f ′(x) =
(

2x− 1
x + 1

)′
= 2 +

1
(x + 1)2 .
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Then we need to compute a following values:

f (x0) = f (0) = 2 · 0− 1
0 + 1

= −1

f ′(x0) = f ′(0) = 2 +
1

(0 + 1)2 = 3

Finally write the equation of the tangent line.

y = 3(x− 0)− 1

y = 3x− 1

8.5.2 Application II. - Extremal Values of Functions and Monotonicity

Step-by-Step Solution

Calculate the intervals, where the following function is monotone increasing /
decreasing and give the extremal points and values of the functions.

f (x) =
x + 1
x− 3

, x ∈ R\{3}.

Solution 8.5.16 This function has one breaking point (x = 3), so we have to calculate the
following limits:

lim
x→−∞

x + 1
x− 3

= 1

lim
x→3−

x + 1
x− 3

= −∞

lim
x→3+

x + 1
x− 3

= ∞

lim
x→∞

x + 1
x− 3

= 1

This follows that there is neither a global maximal nor a global minimal value, just local.
Now, we determine the derivate function.

f ′(x) =
(

x + 1
x− 3

)′
=

(x− 3)− (x + 1)
(x− 3)2 =

−4
(x− 3)2

We use Theorem 5.7 to determine the intervals, where function f is increasing or decreas-
ing. For this, we determine the intervals where the derivative function f ′ is negative,
the intervals where it is positive and examine where function f ′ changes sign. Using the
derivative function we obtain, that

f ′(x) =
−4

(x− 3)2 < 0.
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We use the following table to summarise our results.

x < 3 3 3 < x
f ′(x) − −
f (x) ↘ ↘

3
1

y = x+1
x−3

x

y

Step-by-Step Solution

Calculate the intervals, where the following function is monotone increasing /
decreasing and give the extremal points and values of the functions.

x ∈ [−1; 2] , f (x) = x3 − 6x2.

Solution 8.5.17 In that case we can get eighter global or local extremal points. Firstly we
need to derivate the function.

f ′(x) =
(

x3 − 6x2
)′

= 3x2 − 12x

Using the derivative function, we can give the extremal points. For this, we solve equation

f ′(x) = 0

For x ∈ [−1; 2], we have

f ′(x) = 3x2 − 12x = 0

3x(x− 4) = 0

⇓
x1 = 0, x1 ∈ [−1; 2]

x2 = 4, x2 /∈ [−1; 2]

x = −1 −1 < x < 0 x = 0 0 < x < 2 x = 2

f ′(x) + 0 −
f (x) min ↗ max ↘ min

We have one maximal and two minimal values, so we have to decide, which one is global,
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and which one is local.

f (−1) = (−1)3 − 6(−1)2 = −7, local minimal value

f (0) = 03 − 6 · 02 = 0, global maximal value

f (2) = 23 − 6 · 22 = −16, global minimal value

−1 2

y = x3 − 6x2

xy

Step-by-Step Solution

Calculate the intervals, where the following function is monotone increasing /
decreasing and give the extremal points and values of the functions.

f (x) = x5 + 5x4, x ∈ R

Solution 8.5.18 First, we have to calculate the following limits.

lim
x→−∞

x5 + 5x4 = −∞

lim
x→∞

x5 + 5x4 = ∞

This follows that there is neither a global maximal nor a global minimal value, just local.
Now, we determine the derivate function.

f ′(x) =
(

x5 + 5x4
)′

= 5x4 + 20x3

Using the derivative function, we can give the extremal points. For this, we solve equation

f ′(x) = 0.

f ′(x) = 5x4 + 20x3 = 0

5x3(x + 4) = 0

⇓
x1 = 0,

x2 = −4,

This means that function f can have local extremal value at x1 and x2.
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We use Theorem 5.7 to determine the intervals, where function f is increasing or decreas-
ing. For this, we determine the intervals where the derivative function f ′ is negative, the
intervals where it is positive and examine whether function f ′ changes sign at x1 and x2.
We use the following table to summarise our results.

x < −4 x = −4 −4 < x < 0 x = 0 0 < x
f ′(x) + 0 − 0 +

f (x) ↗ max ↘ min ↗

−4

y = x5 + 5 ∗ x4

x

y

Step-by-Step Solution

Calculate the intervals, where the following function is monotone increasing /
decreasing and give the extremal points and values of the functions.

f (x) = f (x) = x ∈ [−1; 1] , f (x) = 3x3 + 9x2.

Solution 8.5.19 In that case we can get eighter global or local extremal points. Firstly we
need to derivate the function.

f ′(x) =
(

3x3 + 9x2
)′

= 9x2 + 18x

Using the derivative function, we can give the extremal points. For this, we solve equation

f ′(x) = 0

As for x ∈ [−1; 1], we have

f ′(x) = 9x2 + 18x = 0

9x(x + 2) = 0

⇓
x1 = −2, x1 /∈ [−1; 1]

x2 = 0, x2 ∈ [−1; 1]
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x = −1 −1 < x < 0 x = 0 0 < x < 1 x = 1

f ′(x) − 0 +

f (x) max ↘ min ↗ max

We have two maximal and one minimal values, so we have to decide, which one is global,
a which one is local.

f (−1) = 3(−1)3 + 9(−1)2 = 6, local maximal value

f (0) = 3 · 03 + 9 · 02 = 0, global minimal value

f (1) = 3 + 9 = 12, global maximal value

−1 1

y = 3x3 + 9x2

x

y

Step-by-Step Solution

Calculate the intervals, where the following function is monotone increasing /
decreasing and give the extremal points and values of the functions.

f : [0; 4]→ R, f (x) = 2x3 − 3x2 − 12x.

Solution 8.5.20 In that case we can get eighter global or local extremal points. Firstly we
need to derivate the function.

f ′(x) =
(

2x3 − 3x2 − 12x
)′

= 6x2 − 6x− 12 = 6(x2 − x− 2).

Using the derivative function, we can give the extremal points. For this, we solve equation

f ′(x) = 0

As for x ∈ [0; 4], we have

f ′(x) = 6(x2 − x− 2) = 0

6(x− 2)(x + 1) = 0

⇓
x1 = 2, x1 ∈ [0; 4]

x2 = −1, x2 /∈ [0; 4]
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x = 0 0 < x < 2 x = 2 2 < x < 4 x = 4

f ′(x) − 0 +

f (x) max ↘ min ↗ max

We have two maximal and one minimal values, so we have to decide, which one is global,
a which one is local.

f (0) = 0, local maximal value

f (2) = 2 · 23 − 3 ·2 −12 · 2 = −8, global minimal value

f (4) = 2 · 43 − 3 · 42 − 12 · 4 = 32, global maximal value

4y = 2x3 − 3x2 − 12x
x

y

Step-by-Step Solution

Calculate the intervals, where the following function is monotone increasing /
decreasing and give the extremal points and values of the functions.

x ∈ [−2; 6] , f (x) = 2x3 − 3x2 − 120x.

Solution 8.5.21 In that case we can get eighter global or local extremal points. Firstly we
need to derivate the function.

f ′(x) =
(

2x3 − 3x2 − 120x
)′

= 6x2 − 6x− 120 = 6(x2 − x− 20).

Using the derivative function, we can give the extremal points. For this, we solve equation

f ′(x) = 0

As for x ∈ [−2; 6], we have

f ′(x) = 6(x2 − x− 20) = 0

6(x− 5)(x + 4) = 0

⇓
x1 = 5, x1 ∈ [−2; 6]

x2 = −4, x2 /∈ [−2; 6]
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x = −2 −2 < x < 5 x = 5 5 < x < 6 x = 6

f ′(x) − 0 +

f (x) max ↘ min ↗ max

We have two maximal and one minimal values, so we have to decide, which one is global,
a which one is local.

f (−2) = 2x3 − 3x2 − 120x = 212, global maximal value

f (5) = 2x3 − 3x2 − 120x = −425, global minimal value

f (6) = 2x3 − 3x2 − 120x = −396, local maximal value

−2 5 6

y = 2x3 − 3x2 − 120x
x

y

Step-by-Step Solution

Calculate the intervals, where the following function is monotone increasing /
decreasing and give the extremal points and values of the functions.

f (x) =
x3

3
+ x2 − 15x, x ∈ R.

Solution 8.5.22 First, we have to calculate the following limits.

lim
x→−∞

x3

3
+ x2 − 15x = −∞

lim
x→∞

x3

3
+ x2 − 15x = ∞

This follows that there is neither a global maximal nor a global minimal value, just local.
Now, we determine the derivate function.

f ′(x) =
(

x3

3
+ x2 − 15x

)′
= x2 + 2x− 15

Using the derivative function, we can give the extremal points. For this, we solve equation

f ′(x) = 0.
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f ′(x) = x2 + 2x− 15 = 0

(x− 3)(x + 5) = 0

⇓
x1 = 3,

x2 = −5,

This means that function f can have local extremal value at x1 and x2.
We use Theorem 5.7 to determine the intervals, where function f is increasing or decreas-
ing. For this, we determine the intervals where the derivative function f ′ is negative, the
intervals where it is positive and examine whether function f ′ changes sign at x1 and x2.
We use the following table to summarise our results.

x < −5 x = −5 −5 < x < 3 x = 3 3 < x
f ′(x) + 0 − 0 +

f (x) ↗ max ↘ min ↗

−5 3

y =
x3

3
+ x2 − 15x

x

y

8.5.3 Application III. - Convexity of Functions and Points of Inflection

Step-by-Step Solution

Determine all intervals where f is convex / concave and list all inflection points..

f (x) =
x + 1
x− 3

, x ∈ R\{3}.

Solution 8.5.23 We use the second derivative function to determine the inflection points.
For this, we calculate the first derivate function

f ′(x) =
(

x + 1
x− 3

)′
=

(x− 3)− (x + 1)
(x− 3)2 =

−4
(x− 3)2 ,
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and then we give the second derivative function.

f ′′(x) =
(

x + 1
x− 3

)′′
=

(
−4

(x− 3)2

)′
=

4 · 2(x− 3)
(x− 3)4 =

8
(x− 3)3 .

This means that function f hasn’t got any inflection point ( f ′′(x) 6= 0). We use Theorem
5.10 to determine the intervals, where function f is convex or concave. For this, we
determine the intervals where the derivative function f ′′ is negative, the intervals where it
is positive .Now, we see, that f ′′ positive, when the denominator of the function is positive,
so

f ′′ (x) =
8

(x− 3)3 > 0

(x− 3)3 > 0

⇓

x > 3.

Similarly the f ′′ < 0 when x < 3.
For function f we get the following table.

x < 3 x = 3 3 < x
f ′′(x) − +

f (x) ∩ ∪

3
1

y = x+1
x−3

x

y

Step-by-Step Solution

Determine all intervals where f is convex / concave and list all inflection points..

f (x) =
1− x

ex , x ∈ R.
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Solution 8.5.24 We use the second derivative function to determine the inflection points.
For this, we calculate the first derivate function

f ′(x) =
(

1− x
ex

)′
=
−ex − (1− x)ex

(ex)2 =
x− 2

ex ,

and then we give the second derivative function.

f ′′(x) =
(

1− x
ex

)′′
=

(
x− 2

ex

)′
=

ex − (x− 2)ex

(ex)2 =
3− x

ex .

Now, we solve the following equation.

f ′′ (x) =
3− x

ex = 0

As ex > 0, we have

3− x = 0.

So the solution is
x = 3.

This means that function f can have inflection point at x = 3.
We use Theorem 5.10 to determine the intervals, where function f is convex or concave.
For this, we determine the intervals where the derivative function f ′′ is negative, the
intervals where it is positive and examine whether function f ′′ changes sign at x = 3.
For function f we get the following table.

x < 3 x = 3 3 < x
f ′′(x) + 0 −
f (x) ∪ inflexion point ∩

3

y =
1− x

ex x

y
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Step-by-Step Solution

Determine all intervals where f is convex / concave and list all inflection points..

f (x) =
x + 1

ex , x ∈ R.

Solution 8.5.25 We use the second derivative function to determine the inflection points.
For this, we calculate the first derivate function

f ′(x) =
(

x + 1
ex

)′
=

ex − (x + 1)ex

(ex)2 =
−x
ex ,

and then we give the second derivative function.

f ′′(x) =
(

x + 1
ex

)′′
=

(
−x
ex

)′
=
−ex − (−x)ex

(ex)2 =
x− 1

ex .

Now, we solve the following equation.

f ′′ (x) =
x− 1

ex = 0

As ex > 0, we have

x− 1 = 0.

So the solution is
x = 1.

This means that function f can have inflection point at x = 1.
We use Theorem 5.10 to determine the intervals, where function f is convex or concave.
For this, we determine the intervals where the derivative function f ′′ is negative, the
intervals where it is positive and examine whether function f ′′ changes sign at x = 1.
For function f we get the following table.

x < 1 x = 1 1 < x
f ′′(x) − 0 +

f (x) ∩ inflexion point ∪

1

y =
x + 1

ex

x

y
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Step-by-Step Solution

Determine all intervals where f is convex / concave and list all inflection points..

f (x) =
x4

12
+

x3

3
− 4x2 + 6x , x ∈ R.

Solution 8.5.26 We use the second derivative function to determine the inflection points.
For this, we calculate the first derivate function

f ′(x) =
(

x4

12
+

x3

3
− 4x2 + 6x

)′
=

x3

3
+ x2 − 8x + 6,

and then we give the second derivative function.

f ′′(x) =
(

x4

12
+

x3

3
− 4x2 + 6x

)′′
=

(
x3

3
+ x2 − 8x + 6

)′
= x2 + 2x− 8.

Now, we solve the following equation.

f ′′ (x) = x2 + 2x− 8 = 0

(x− 2)(x + 4) = 0

⇓

x1 = 2, x2 = −4.

This means that function f can have two inflection points at x1 = 2 and x2 = −4.
We use Theorem 5.10 to determine the intervals, where function f is convex or concave.
For this, we determine the intervals where the derivative function f ′′ is negative, the
intervals where it is positive and examine whether function f ′′ changes sign at that points.
For function f we get the following table.

x < −4 x = −4 −4 < x < 2 x = 2 2 < x
f ′′(x) + 0 − 0 +

f (x) ∪ inflexion point ∩ inflexion point ∪

−4 2

y =
x4

12
+

x3

3
− 4x2 + 6x

x

y
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Step-by-Step Solution

Determine all intervals where f is convex / concave and list all inflection points..

f (x) =
x4

12
+

x3

6
− 3x2 + 12x , x ∈ R.

Solution 8.5.27 We use the second derivative function to determine the inflection points.
For this, we calculate the first derivate function

f ′(x) =
(

x4

12
+

x3

6
− 3x2 + 12x

)′
=

x3

3
+

x2

2
− 6x + 12,

and then we give the second derivative function.

f ′′(x) =
(

x4

12
+

x3

6
− 3x2 + 12x

)′′
=

(
x3

3
+

x2

2
− 6x + 12

)′
= x2 + x− 6.

Now, we solve the following equation.

f ′′ (x) = x2 + x− 6 = 0

(x− 2)(x + 3) = 0

⇓

x1 = 2, x2 = −3.

This means that function f can have two inflection points at x1 = 2 and x2 = −3.
We use Theorem 5.10 to determine the intervals, where function f is convex or concave.
For this, we determine the intervals where the derivative function f ′′ is negative, the
intervals where it is positive and examine whether function f ′′ changes sign at that points.
For function f we get the following table.

x < −3 x = −3 −3 < x < 2 x = 2 2 < x
f ′′(x) + 0 − 0 +

f (x) ∪ inflexion point ∩ inflexion point ∪

−3 2

y =
x4

12
+

x3

6
− 3x2 + 12x

x

y
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8.5.4 Application IV. - L’Hospital’s Rule

Step-by-Step Solution

Evaluate the following limit.

lim
x→0

arctan(x)− x
1− cos(x)

Solution 8.5.28 First, we substitute x = 0 to the fraction, that is

arctan(0)− 0
1− cos(0)

=
0
0

We obtain that the limit is type of "
(

0
0

)
" and we have differentiable functions in the

numerator and in the demoninator, so we can apply L’Hospital’s rule.

lim
x→0

arctan(x)− x
1− cos(x)

= lim
x→0

1
1 + x2 − 1

sin(x)

Substitute x = 0 again.
1

1 + 02 − 1

sin(0)
.

We get, that the limit is type of "
(

0
0

)
" and we still have differentiable functions in the

numerator and in the demoninator, so we can apply L’Hospital’s rule again.

lim
x→0

1
1 + x2 − 1

sin(x)
= lim

x→0

−2x
(1 + x2)2

cos(x)

Substiting x = 0 again, we have
−2 · 0

(1 + 02)2

cos(0)
= 0,

so the result is
lim
x→0

arctan(x)− x
1− cos(x)

= 0.

Step-by-Step Solution

Evaluate the following limit.

lim
x→1

cos(x− 1) + ln(x)− x
(x− 1)2 ,
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Solution 8.5.29 First, we substitute x = 1 to the fraction.

cos(1− 1) + ln(1)− 1
(1− 1)2

We obtain, that the limit is type of "
(

0
0

)
" and we have differentiable functions in the

numerator and in the demoninator, so we can apply L’Hospital’s rule.

lim
x→1

cos(x− 1) + ln(x)− x
(x− 1)2 = lim

x→1

− sin(x− 1) +
1
x
− 1

2(x− 1)
.

Substitute x = 1 again.

− sin(1− 1) +
1
1
− 1

2(1− 1)
.

We get, that the limit is type of "
(

0
0

)
" and we still have differentiable functions in the

numerator and in the demoninator, so we can apply L’Hospital’s rule again.

lim
x→1

− sin(x− 1) +
1
x
− 1

2(x− 1)
= lim

x→1

− cos(x− 1)− 1
x2

2
.

Substiting x = 1 again, we have

− cos(1− 1)− 1
12

2
=
−2
2

,

so the result is
lim
x→1

cos(1− 1) + ln(1)− 1
(1− 1)2 = −1.

Step-by-Step Solution

Evaluate the following limit.

lim
x→0

arctan(x) + 2x2 + x
cos(x)− 1

,

Solution 8.5.30 First, we substitute x = 0 to the fraction.
arctan(0) + 2 · 02 + 0

cos(0)− 1

We obtain, that the limit is type of "
(

0
0

)
" and we have differentiable functions in the

numerator and in the demoninator, so we can apply L’Hospital’s rule.

lim
x→0

arctan(x) + 2x2 + x
cos(x)− 1

= lim
x→0

1
1 + x2 + 4x + 1

− sin(x)
.
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Substitute x = 0 again.
1

1 + 02 + 4 · 0 + 1

− sin(0)
.

We get, that the limit is type of "
(

0
0

)
" and we still have differentiable functions in the

numerator and in the demoninator, so we can apply L’Hospital’s rule again.

lim
x→0

1
1 + x2 + 4x + 1

− sin(x)
= lim

x→0

−2x
(1 + x2)2 + 4

− cos(x)
.

Substiting x = 1 again, we have
−2

(1 + 12)2 + 4

− cos(1)
=

2
−1

,

so the result is

lim
x→0

arctan(x) + 2x2 + x
cos(x)− 1

= −2.

Step-by-Step Solution

Evaluate the following limit

lim
x→−1−

tan(x + 1)

(x + 1)2 .

Solution 8.5.31 First, we substitute x = 0 to the fraction.

tan(−1 + 1)

(−1 + 1)2

We obtain, that the limit is type of "
(

0
0

)
" and we have differentiable functions in the

numerator and in the demoninator, so we can apply L’Hospital’s rule.

lim
x→−1−

tan(x + 1)

(x + 1)2 = lim
x→−1−

1
cos2(x + 1)

2 (x + 1)
.

We get the result is

lim
x→−1−

1
cos2(x + 1)

2 (x + 1)
= lim

x→−1−

1
2 cos2(x + 1) (x + 1)

= −∞.
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Step-by-Step Solution

Evaluate the following limit.

lim
x→2

ln(x− 1)− sin(x− 2)
(x− 2)2 .

Solution 8.5.32 First, we substitute x = 2 to the fraction.

ln(2− 1)− sin(2− 2)
(2− 2)2

We obtain, that the limit is type of "
(

0
0

)
" and we have differentiable functions in the

numerator and in the demoninator, so we can apply L’Hospital’s rule.

lim
x→2

ln(x− 1)− sin(x− 2)
(x− 2)2 = lim

x→2

1
x− 1

− cos(x− 2)

2(x− 2)
.

Substitute x = 2 again.
1

2− 1
− cos(2− 2)

2(2− 2)
.

We get, that the limit is type of "
(

0
0

)
" and we still have differentiable functions in the

numerator and in the demoninator, so we can apply L’Hospital’s rule again.

lim
x→2

1
x− 1

− cos(x− 2)

2(x− 2)
= lim

x→2

−1
(x− 1)2 + sin(x− 2)

2
.

Substiting x = 2 again, we have
−1

(2− 1)2 + sin(2− 2)

2
=
−1
2

,

so the result is
lim
x→2

ln(x− 1)− sin(x− 2)
(x− 2)2 =

−1
2

.
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8.6 Antiderivatives and Indefinite Integrals of Real Functions

Step-by-Step Solution

Evaluate the following indefinite integral.∫ √
x
√

xdx.

Solution 8.6.1 Integration is the reverse process of differentiation. We are really just
asking what we differentiated to get the given function.
We use the linear proprety of the indefinite integral (Theorem 6.2) and some basic mathe-
matics. ∫ √

x
√

xdx =
∫ (

x (x)
1
2
) 1

2
dx =

∫ (
x

3
2

) 1
2 dx =

∫
x

3
4 dx.

Using the 6.2 Table of Standard Indefinite Integrals, we get∫ √
x
√

xdx =
x

3
4+1

3
4 + 1

+ C =
x

7
4

7
4
+ C.

Step-by-Step Solution

Evaluate the following indefinite integral.∫ x2 + 5
x

dx.

Solution 8.6.2 Integration is the reverse process of differentiation. We are really just
asking what we differentiated to get the given function.
We use the linear proprety of the indefinite integral (Theorem 6.2) and some basic mathe-
matics. ∫ x2 + 5

x
dx =

∫ (
x +

5
x

)
dx =

∫
xdx + 5

∫ 1
x

dx.

Using the 6.2 Table of Standard Indefinite Integrals, we get∫ x2 + 5
x

dx =
x2

2
+ 5 ln |x|+ C.

Step-by-Step Solution

Evaluate the following indefinite integral.∫ (
2x − 5

x2 + 1

)
dx.
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Solution 8.6.3 Integration is the reverse process of differentiation. We are really just
asking what we differentiated to get the given function.
We use the linear proprety of the indefinite integral (Theorem 6.2) and some basic mathe-
matics. ∫ (

2x − 5
x2 + 1

)
dx =

∫
2xdx + 5

∫ 1
x2 + 1

dx.

Using the 6.2 Table of Standard Indefinite Integrals, we get∫ (
2x − 5

x2 + 1

)
dx =

2x

ln (2)
+ 5 arctan (x) + C.

Step-by-Step Solution

Evaluate the following indefinite integral.∫
e2x+3dx.

Solution 8.6.4 Integration is the reverse process of differentiation. We are really just
asking what we differentiated to get the given function.
We use the linear proprety of the indefinite integral (Theorem 6.2) and some basic mathe-
matics. ∫

e2x+3dx =
∫ (

e2
)x
· e3dx = e3

∫ (
e2
)x

dx.

Using the 6.2 Table of Standard Indefinite Integrals, we get∫
e2x+3dx = e3

(
e2)x

ln (e2)
+ C = e3 e2x

2 ln (e)
+ C =

e2x+3

2
+ C.

8.6.1 Integration by Parts

Step-by-Step Solution

Evaluate the following indefinite integral.∫
x2 sin (x) dx.

Solution 8.6.5 To use this technique we need to identify candidates for functions f ′ (x)

and g (x) . We wish to replace integral
∫

f ′g with another (
∫

f g′) , which can be easier
to evaluate. Let

f ′ (x) = sin (x)
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and
g (x) = x2.

We have to calculate function f (x) and g′ (x) . For this we determine functions f ′ (x)

and g (x) and we integrate function f ′ (x) and differentiate function g (x) .

f (x) =
∫

sin (x) dx = − cos (x) ,

and
g′ (x) = 2x .

or shortly

Given Calculated

I f ′ (x) = sin (x) f (x) = − cos (x)

D g (x) = x2 g′ (x) = 2x

from Theorem 6.4, we obtain∫
x2 sin (x) dx = − cos (x) · x2 −

∫ (
− cos (x)

)
· 2x dx =

= −x2 cos (x) + 2
∫

x cos (x) dx.

Note that ∫
x cos (x) dx

is not a standard integral. We calculate this integral by repeated integration by parts.
From

Given Calculated

I f ′ (x) = cos (x) f (x) =
∫

cos (x) dx = sin (x)

D g (x) = x g′ (x) = 1
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we obtain∫
x cos (x) dx = x sin (x)−

∫
1 · sin (x) dx = x sin (x)− (− cos (x)).

Combining this with the previous result, we get∫
x2 sin (x) dx = −x2 cos (x) + 2 (x sin (x) + cos (x)) + C.

Step-by-Step Solution

Evaluate the following indefinite integral.∫
(x− 1) cos (x) dx.

Solution 8.6.6 We wish to replace integral
∫

f ′g with another (
∫

f g′) , which can be
easier to evaluate. First, we need to identify candidates for functions f and g. Let

f ′ (x) = cos (x)

and
g (x) = x− 1.

Now we determine functions f and g′. For this we integrate function f ′, and differentiate
function g.

f (x) =
∫

cos (x) dx = sin (x) ,

and
g′ (x) = 1,

or shortly

Given Calculated

I f ′ (x) = cos (x) f (x) =
∫

cos (x) dx = sin (x)

D g (x) = x − 1 g′ (x) = 1

From Theorem 6.4, we obtain∫
(x− 1) cos (x) dx = sin (x) · (x− 1)−

∫
1 · sin (x) dx =

= sin (x) · (x− 1)−
∫

sin (x) dx.
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As ∫
sin (x) dx = − cos (x) + C,

the solution is ∫
(x− 1) cos (x) dx = sin (x) · (x− 1) + cos (x) + C.

Step-by-Step Solution

Evaluate the following indefinite integral.∫
x · 2xdx.

Solution 8.6.7 We wish to replace integral
∫

f ′g with another (
∫

f g′) , which can be
easier to evaluate. To use this technique we need to identify candidates for functions f and
g. Let

f ′ (x) = 2x

and
g (x) = x.

Now we determine functions f and g′. For this we integrate function f ′, and differentiate
function g.

f (x) =
∫

2xdx =
2x

ln (2)
,

and
g′ (x) = 1.

or shortly

Given Calculated

I f ′ (x) = 2x f (x) =
∫

2xdx = 2x

ln(2)

D g (x) = x g′ (x) = 1
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from Theorem 6.4, we obtain∫
x · 2xdx =

2x

ln (2)
· x−

∫
1 · 2x

ln (2)
dx =

=
2x

ln (2)
· x− 1

ln (2)

∫
2xdx,

so the solution is ∫
x · 2xdx =

2x

ln (2)
· x− 1

ln2 (2)
2x + C.

Step-by-Step Solution

Evaluate the following indefinite integral.∫
ln (x) dx.

Solution 8.6.8 Using the idea of Theorem 6.4, we need production of functions. For this
we rewrite the integrand ∫

ln (x) dx =
∫

1 · ln (x) dx.

So let
f ′ (x) = 1

and
g (x) = ln (x) .

Using the idea of Theorem 6.4, we intregrate function f ′

f (x) =
∫

1dx = x,

and differentiate function g

g′ (x) =
1
x

.

Thus

Given Calculated

I f ′ (x) = 1 f (x) =
∫

1dx = x

D g (x) = ln (x) g′ (x) =
1
x
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and from Theorem 6.4, we get∫
ln (x) dx = x ln (x)−

∫
x · 1

x
dx.

Next, we must simplify x · 1
x

. That is

x · 1
x
= 1

so we get the original
∫

1dx integral back. Hence∫
ln (x) dx = x ln (x)−

∫
1dx = x ln (x)− x + C.

Step-by-Step Solution

Evaluate the following indefinite integral.∫ √
x ln (x) dx.

Solution 8.6.9 We wish to replace integral
∫

f ′g with another (
∫

f g′) , which can be
easier to evaluate. To use this technique we need to identify candidates for functions f and
g. Let

f ′ (x) =
√

x

and
g (x) = ln (x) .

Using the idea of Theorem 6.4, we intregrate function f ′

f (x) =
∫ √

xdx =
∫

x
1
2 dx =

x
3
2

3
2

,

and differentiate function g

g′ (x) =
1
x

.

Thus

Given Calculated

I f ′ (x) =
√

x f (x) =
∫ √

xdx = x
3
2

3
2

D g (x) = ln (x) g′ (x) =
1
x

324



Solutions 8

and from Theorem 6.4, we get∫ √
x ln (x) dx =

x
3
2

3
2

ln (x)−
∫ x

3
2

3
2
· 1

x
dx.

Next, we must simplify x
3
2

3
2
· 1

x
. That is

x
3
2

3
2
· 1

x
=

x
1
2

3
2

so we get the original
∫

x
1
2 dx integral back, but with another coefficient. Hence∫ √

x ln (x) dx =
x

3
2

3
2

ln (x)−
∫ x

1
2

3
2

dx =
2x

3
2

3
ln (x)− 2

3

∫
x

1
2 ,

so the solution is∫ √
x ln (x) dx =

2x
3
2

3
ln (x)− 2

3
· x

3
2

3
2
+ C =

2x
3
2

3
ln (x)−

(
2
3

)2

· x 3
2 + C.

Step-by-Step Solution

Evaluate the following indefinite integral.∫ 1√
x

ln (x) dx.

Solution 8.6.10 We wish to replace integral
∫

f ′g with another (
∫

f g′) , which can be
easier to evaluate. To use this technique we need to identify candidates for functions f and
g. Let

f ′ (x) =
1√
x

and
g (x) = ln (x) .

Using the idea of Theorem 6.4, we intregrate function f ′

f (x) =
∫ 1√

x
dx =

∫
x−

1
2 dx =

x
1
2

1
2

,

and differentiate function g

g′ (x) =
1
x

.

Thus
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Given Calculated
I f ′ (x) = 1√

x f (x) =
∫ 1√

x dx = x
1
2

1
2

D g (x) = ln (x) g′ (x) =
1
x

and from Theorem 6.4, we get∫ 1√
x

ln (x) dx =
x

1
2

1
2

ln (x)−
∫ x

1
2

1
2

· 1
x

dx.

Next, we must simplify x
1
2

1
2
· 1

x
. That is

x
1
2

1
2

· 1
x
=

x−
1
2

1
2

so we get the original
∫

x−
1
2 dx integral back, but with another coefficient. Hence∫ 1√

x
ln (x) dx =

x
1
2

1
2

ln (x)−
∫ x−

1
2

1
2

dx = 2x
1
2 · ln (x)− 2

∫
x−

1
2 ,

so the solution is∫ 1√
x

ln (x) dx = 2x
1
2 · ln (x)− 2 · x

1
2

1
2

+ C = 2x
1
2 · ln (x)− 22 · x 1

2 + C.

Step-by-Step Solution

Evaluate the following indefinite integral.∫ (
x2 + 1

)
ln (x) dx.

Solution 8.6.11 We wish to replace integral
∫

f ′g with another (
∫

f g′) , which can be
easier to evaluate. To use this technique we need to identify candidates for functions f and
g. Let

f ′ (x) = x2 + 1

and
g (x) = ln (x) .
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Using the idea of Theorem 6.4, we intregrate function f ′

f (x) =
∫ (

x2 + 1
)

dx =
∫

x2dx +
∫

1dx =
x3

3
+ x,

and differentiate function g

g′ (x) =
1
x

.

Thus

Given Calculated

I f ′ (x) =
(
x2 + 1

)
f (x) =

∫ (
x2 + 1

)
dx = x3

3 + x

D g (x) = ln (x) g′ (x) =
1
x

and from Theorem 6.4, we get∫ (
x2 + 1

)
ln (x) dx =

(
x3

3
+ x
)

ln (x)−
∫ (x3

3
+ x
)
· 1

x
dx.

Next, we must simplify
(

x3

3 + x
)
· 1

x
. That is(

x3

3
+ x
)
· 1

x
=

x2

3
+ 1,

so we got the original x2 + 1 integrand back, but with another coefficients. Hence∫ (
x2 + 1

)
ln (x) dx =

(
x3

3
+ x
)

ln (x)−
∫ (x2

3
+ 1
)

dx =

=

(
x3

3
+ x
)

ln (x)−
(

1
3

∫
x2dx +

∫
1dx

)
,

so the solution is∫ (
x2 + 1

)
ln (x) dx =

(
x3

3
+ x
)

ln (x)−
(

1
3
· x3

3
+ x
)
+ C =

=

(
x3

3
+ x
)

ln (x)−
(

1
3

)2

· x3 + C.
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Step-by-Step Solution

Evaluate the following indefinite integral.∫
2x log2 (x) dx.

Solution 8.6.12 We wish to replace integral
∫

f ′g with another (
∫

f g′) , which can be
easier to evaluate. To use this technique we need to identify candidates for functions f and
g. Let

f ′ (x) = 2x

and
g (x) = log2 (x) .

Using the idea of Theorem 6.4, we intregrate function f ′

f (x) =
∫

2xdx = 2
∫

xdx = 2
x2

2
= x2,

and differentiate function g

g′ (x) =
1

x ln (2)
.

Thus

Given Calculated

I f ′ (x) = 2x f (x) =
∫

2xdx = x2

D g (x) = log2 (x) g′ (x) =
1

x ln (2)

and from Theorem 6.4, we get∫
2x log2 (x) dx = x2 log2 (x)−

∫
x2 · 1

x ln (2)
dx.

Next, we must simplify x2 · 1
x ln (2)

. That is

x2 · 1
x ln (2)

= x · 1
ln (2)

so we got the original x integrand back, but with another coefficient. Hence∫
2x log2 (x) dx = x2 log2 (x)−

∫
x · 1

ln (2)
dx =

(
x3

3
+ x
)

ln (x)− 1
ln (2)

∫
xdx,
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so the solution is∫
2x log2 (x) dx = x2 log2 (x)− 1

ln (2)
· x2

2
+ C = x2 log2 (x)− 1

2 ln (2)
· x2 + C.

Step-by-Step Solution

Evaluate the following indefinite integral.∫
(x + 2) ln (x + 2) dx.

Solution 8.6.13 Let
f ′ (x) = 2x + 2

and
g (x) = ln (x + 2) .

Using the idea of the previous example, we intregrate function f ′

f (x) =
∫

(2x + 2) dx =
∫

2xdx +
∫

2dx = 2
x2

2
+ 2x = x2 + 2x,

and differentiate function g

g′ (x) =
1

x + 2
.

Thus

Given Calculated

I f ′ (x) = 2x + 2 f (x) =
∫
(2x + 2) dx = x2 + 2x

D g (x) = ln (x + 2) g′ (x) =
1

x + 2

and from Theorem 6.4, we get∫
(2x + 2) ln (x + 2) dx =

(
x2 + 2x

)
ln (x + 2)−

∫ (
x2 + 2x

)
· 1

x + 2
dx.

Next, we simplify
(
x2 + 2x

)
· 1

x + 2
, that is(

x2 + 2x
)
· 1

x + 2
= x (x + 2)

1
x + 2

= x.

Hence ∫
(2x + 2) ln (x + 2) dx =

(
x2 + 2x

)
ln (x + 2)−

∫
xdx.
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This yields ∫
(2x + 2) ln (x + 2) dx =

(
x2 + 2x

)
ln (x + 2)− x2

2
+ C.

Step-by-Step Solution

Evaluate the following indefinite integral.∫
xe2x+3dx.

Solution 8.6.14 First, we need to identify candidates for functions f and g. So let

Given Calculated

I f ′ (x) = e2x+3 f (x) =
∫

e2x+3dx

D g (x) = x g′ (x) = 1

As ∫
e2x+3dx = e3

∫ (
e2
)x

dx = e3
(
e2)x

ln (e2)
+ C = e3 e2x

2 ln (e)
+ C =

e2x+3

2
+ C,

using Theorem 6.4, we get∫
xe2x+3dx = x · e2x+3

2
−
∫ e2x+3

2
· 1dx = x · e2x+3

2
− 1

2

∫
e2x+3dx.

We got the original e2x+3 integrand back, but with another coefficient. Hence∫
xe2x+3dx = x · e2x+3

2
− 1

2

∫
e2x+3dx =

=
xe2x+3

2
− 1

2
· e2x+3

2
+ C =

xe2x+3

2
− e2x+3

4
+ C.
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8.6.2 Integration by Substitution

Step-by-Step Solution

Evaluate the following indefinite integral.∫
x2ex3

dx.

Solution 8.6.15 As (
x3
)′

= 3x2

rewriting the integrand as ∫
x2ex3

dx =
1
3

∫
3x2ex3

dx

the integral contains a composite function and the derivative of its inner function. We use
Theorem 6.5 and make the substitution

x3 = y.

Then
3x2dx = dy.

This allows us to change variable from x to y, that is∫
x2ex3

dx =
1
3

∫
eydy.

Using 6.2 Table of Standard Indefinite Integrals, we get∫
x2ex3

dx =
1
3

∫
eydy =

1
3

ey + C =
1
3

ex3
+ C.

Step-by-Step Solution

Evaluate the following indefinite integral.∫
x sin

(
x2
)

dx.

Solution 8.6.16 As (
x2
)′

= 2x

rewriting the integrand as∫
x sin

(
x2
)

dx =
1
2

∫
2x sin

(
x2
)

dx

the integral contains a composite function and the derivative of its inner function. We use
Theorem 6.5 and make the substitution

x2 = y.
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Then
2xdx = dy.

This allows us to change variable from x to y, that is∫
x sin

(
x2
)

dx =
1
2

∫
2x sin

(
x2
)

dx =
1
2

∫
sin (y) dy.

Using 6.2 Table of Standard Indefinite Integrals, we get∫
x sin

(
x2
)

dxx =
1
2

∫
sin (y) dy =

1
2
(− cos (y)) + C = −1

2
cos

(
x2
)
+ C.

Step-by-Step Solution

Evaluate the following indefinite integral.∫ etan(x)

cos2 (x)
dx.

Solution 8.6.17 As

(tan (x))′ =
1

cos2 (x)

rewriting the integrand as∫ etan(x)

cos2 (x)
dx =

∫
etan(x) · 1

cos2 (x)
dx

the integral contains a composite function and the derivative of its inner function. We use
Theorem 6.5 and make the substitution

tan (x) = y.

Then
1

cos2 (x)
dx = dy.

This allows us to change variable from x to y, that is∫ etan(x)

cos2 (x)
dx =

∫
etan(x) · 1

cos2 (x)
dx =

∫
eydy.

Using 6.2 Table of Standard Indefinite Integrals, we get∫ etan(x)

cos2 (x)
dx =

∫
eydy = ey + C = etan(x) + C.
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Step-by-Step Solution

Evaluate the following indefinite integral.

∫
sin
(

1
2

x + 3
)

dx.

Solution 8.6.18 The integral contains a composite function and its inner function is a
linear function. So the result can be obtained by using∫

f (ax + b) dx =
1
a

F (ax + b) + C =
F (ax + b)

a
+ C.

Let
f (x) = sin (x)

and
a =

1
2

.

Using 6.2 Table of Standard Indefinite Integrals, we get∫
sin (x) dx = − cos (x) + C.

Combining this with the Theorem 6.6, the result is

∫
sin
(

1
2

x + 3
)

dx =
− cos

(
1
2 x + 3

)
1
2

+ C.

Step-by-Step Solution

Evaluate the following indefinite integral.∫
e7x+1dx.

Solution 8.6.19 The integral contains a composite function and its inner function is a
linear function. So the result can be obtained by using∫

f (ax + b) dx =
1
a

F (ax + b) + C =
F (ax + b)

a
+ C.

Let
f (x) = ex

and
a = 7.

Using 6.2 Table of Standard Indefinite Integrals, we get∫
exdx = ex + C.
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Combining this with the Theorem 6.6, the result is∫
e7x+1dx =

e7x+1

7
+ C.

Step-by-Step Solution

Evaluate the following indefinite integral.∫
53x−9dx.

Solution 8.6.20 The integral contains a composite function and its inner function is a
linear function. So the result can be obtained by using∫

f (ax + b) dx =
1
a

F (ax + b) + C =
F (ax + b)

a
+ C.

Let
f (x) = 5x

and
a = 3.

Using 6.2 Table of Standard Indefinite Integrals, we get∫
5xdx =

5x

ln (5)
+ C.

Combining this with the Theorem 6.6, the result is∫
53x−9dx =

53x−9

ln(5)

3
+ C.

Step-by-Step Solution

Evaluate the following indefinite integral.∫
sin (2− 3x) dx.

Solution 8.6.21 The integral contains a composite function and its inner function is a
linear function. So the result can be obtained by using∫

f (ax + b) dx =
1
a

F (ax + b) + C =
F (ax + b)

a
+ C.

Let
f (x) = sin (x)

and
a = −3.
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Using 6.2 Table of Standard Indefinite Integrals, we get∫
sin (x) dx = − cos (x) + C.

Combining this with the Theorem 6.6, the result is∫
sin (2− 3x) dx =

− cos (2− 3x)
−3

+ C =
F (ax + b)

a
+ C.

Step-by-Step Solution

Evaluate the following indefinite integral.∫
cos

(
1− 1

2
x
)

dx.

Solution 8.6.22 The integral contains a composite function and its inner function is a
linear function. So the result can be obtained by using∫

f (ax + b) dx =
1
a

F (ax + b) + C.

Let
f (x) = cos (x)

and
a = −1

2
.

Using 6.2 Table of Standard Indefinite Integrals, we get∫
cos (x) dx = sin (x) + C.

Combining this with the Theorem 6.6, the result is

∫
cos

(
1− 1

2
x
)

dx =
sin
(

1− 1
2 x
)

− 1
2

+ C.

Step-by-Step Solution

Evaluate the following indefinite integral.∫
e5−xdx.

Solution 8.6.23 The integral contains a composite function and its inner function is a
linear function. So the result can be obtained by using∫

f (ax + b) dx =
1
a

F (ax + b) + C =
F (ax + b)

a
+ C.

Let
f (x) = ex
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and
a = −1.

Using 6.2 Table of Standard Indefinite Integrals, we get∫
exdx = ex + C.

Combining this with the Theorem 6.6, the result is∫
e5−xdx =

e5−x

−1
+ C.

Step-by-Step Solution

Evaluate the following indefinite integral.∫
tan (x) dx.

Solution 8.6.24 We need to rewrite the integral∫
tan (x) dx =

∫ sin (x)
cos (x)

dx = −
∫ − sin (x)

cos (x)
dx.

As
(cos (x))′ = − sin (x) ,

the result can be obtained by using∫ f ′ (x)
f (x)

dx = ln | f (x)|+ C.

Let
f (x) = cos (x) ,

so from Theorem 6.7, we get∫
tan (x) dx = −

∫ − sin (x)
cos (x)

dx = − ln (|cos (x)|) + C.

Step-by-Step Solution

Evaluate the following indefinite integral.∫ e2x

e2x + 4
dx.

Solution 8.6.25 We need to rewrite the integral∫ e2x

e2x + 4
dx =

1
2

∫ 2e2x

e2x + 4
dx.
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As (
e2x + 4

)′
= 2e2x,

the result can be obtained by using∫ f ′ (x)
f (x)

dx = ln | f (x)|+ C.

Let
f (x) = e2x + 4,

so from Theorem 6.7, we get∫ e2x

e2x + 4
dx =

1
2

∫ 2e2x

e2x + 4
dx =

1
2

ln
(∣∣∣e2x + 4

∣∣∣)+ C.

Step-by-Step Solution

Evaluate the following indefinite integral.∫ sin (x)
1 + cos (x)

dx.

Solution 8.6.26 We need to rewrite the integral∫ sin (x)
1 + cos (x)

dx = −
∫ − sin (x)

1 + cos (x)
dx.

As
(1 + cos (x))′ = − sin (x) ,

the result can be obtained by using∫ f ′ (x)
f (x)

dx = ln | f (x)|+ C.

Let
f (x) = −

∫ − sin (x)
1 + cos (x)

,

so from Theorem 6.7, we get∫ sin (x)
1 + cos (x)

dx = −
∫ − sin (x)

1 + cos (x)
dx = − ln (|1 + cos (x)|) + C.
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Step-by-Step Solution

Evaluate the following indefinite integral.∫ 4
7x + 5

dx.

Solution 8.6.27 We need to rewrite the integral∫ 4
7x + 5

dx =
4
7

∫ 7
7x + 5

dx.

As
(7x + 5)′ = 7,

the result can be obtained by using∫ f ′ (x)
f (x)

dx = ln | f (x)|+ C.

Let
f (x) = 7x + 5,

so from Theorem 6.7, we get∫ 4
7x + 5

dx =
4
7

∫ 7
7x + 5

dx =
4
7

ln (|7x + 5|) + C.

Step-by-Step Solution

Evaluate the following indefinite integral.∫ x− 2
x2 − 4x + 1

dx.

Solution 8.6.28 We need to rewrite the integral∫ x− 2
x2 − 4x + 1

dx =
1
2

∫ 2 (x− 2)
x2 − 4x + 1

dx.

As (
x2 − 4x + 1

)′
= 2x− 4 = 2 (x− 2) ,

the result can be obtained by using∫ f ′ (x)
f (x)

dx = ln | f (x)|+ C.

Let
f (x) = x2 − 4x + 1,

so from Theorem 6.7, we get∫ x− 2
x2 − 4x + 1

dx =
1
2

∫ 2 (x− 2)
x2 − 4x + 1

dx =
1
2

ln
(∣∣∣x2 − 4x + 1

∣∣∣)+ C.
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Step-by-Step Solution

Evaluate the following indefinite integral.∫ x2 + 1
x3 + 3x + 4

dx.

Solution 8.6.29 We need to rewrite the integral∫ x2 + 1
x3 + 3x + 4

dx =
1
3

∫ 3
(
x2 + 1

)
x3 + 3x + 4

dx.

As (
x3 + 3x + 4

)′
= 3x2 + 3 = 3

(
x2 + 1

)
,

the result can be obtained by using∫ f ′ (x)
f (x)

dx = ln | f (x)|+ C.

Let
f (x) = x3 + 3x + 4,

so from Theorem 6.7, we get∫ x2 + 1
x3 + 3x + 4

dx =
1
3

∫ 3
(
x2 + 1

)
x3 + 3x + 4

dx =
1
3

ln
(∣∣∣x3 + 3x + 4

∣∣∣)+ C.

Step-by-Step Solution

Evaluate the following indefinite integral.∫ 1
tan (x) cos2 (x)

dx.

Solution 8.6.30 We need to rewrite the integral∫ 1
tan (x) cos2 (x)

dx =
∫ 1

cos2(x)

tan (x)
dx.

As
(tan (x))′ =

1
cos2 (x)

,

the result can be obtained by using∫ f ′ (x)
f (x)

dx = ln | f (x)|+ C.

Let
f (x) = tan (x) ,

so from Theorem 6.7, we get∫ 1
tan (x) cos2 (x)

dx =
∫ 1

cos2(x)

tan (x)
dx = ln (|tan (x)|) + C.

339



8 Solutions

Step-by-Step Solution

Evaluate the following indefinite integral.∫ tan (x)
cos2 (x)

dx.

Solution 8.6.31 We need to rewrite the integral∫ tan (x)
cos2 (x)

dx =
∫

tan (x) · 1
cos2 (x)

dx.

As
(tan (x))′ =

1
cos2 (x)

,

the result can be obtained by using∫
f (x) · f ′ (x) dx =

f 2 (x)
2

+ C.

Let
f (x) = tan (x) ,

so from Theorem 6.8, we get ∫ tan (x)
cos2 (x)

dx =
tan2 (x)

2
+ C.

Step-by-Step Solution

Evaluate the following indefinite integral.∫
x
(

x2 + 5
)10

dx.

Solution 8.6.32 We need to rewrite the integral∫
x
(

x2 + 5
)10

dx =
1
2

∫ (
x2 + 5

)10
· 2xdx.

As (
x2 + 5

)′
= 2x,

the result can be obtained by using∫
f α (x) · f ′ (x) dx =

f α+1 (x)
α + 1

+ C.

Let
f (x) = x2 + 5,

and α = 10, so from Theorem 6.8, we get∫
x
(

x2 + 5
)10

dx =
1
2

∫ (
x2 + 5

)10
· 2xdx =

1
2
·
(
x2 + 5

)11

11
+ C =

(
x2 + 5

)11

22
+ C.
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Step-by-Step Solution

Evaluate the following indefinite integral.∫ √
(2x + 5)3dx.

Solution 8.6.33 We need to rewrite the integral∫ √
(2x + 5)3dx =

∫
(2x + 5)

3
2 dx =

1
2

∫
(2x + 5)

3
2 · 2dx.

As
(2x + 5)′ = 2,

the result can be obtained by using∫
f α (x) · f ′ (x) dx =

f α+1 (x)
α + 1

+ C.

Let
f (x) = 2x + 5,

and α = 3
2 , so from Theorem 6.8, we get∫ √

(2x + 5)3dx =
1
2

∫
(2x + 5)

3
2 · 2dx =

1
2
· (2x + 5)

3
2+1

3
2 + 1

+ C =
(2x + 5)

5
2

5
+ C.

Step-by-Step Solution

Evaluate the following indefinite integral.∫
sin (x) cos (x) dx.

Solution 8.6.34 As
(sin (x))′ = cos (x) ,

the result can be obtained by using∫
f (x) · f ′ (x) dx =

f 2 (x)
2

+ C.

Let
f (x) = sin (x) ,

so from Theorem 6.8, we get∫
sin (x) cos (x) dx =

sin2 (x)
2

+ C.
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Step-by-Step Solution

Evaluate the following indefinite integral.∫ √
ln (x)
x

dx.

Solution 8.6.35 We need to rewrite the integral∫ √
ln (x)
x

dx =
∫

ln
1
2 (x) · 1

x
dx.

As
(ln (x))′ =

1
x

,

the result can be obtained by using∫
f α (x) · f ′ (x) dx =

f α+1 (x)
α + 1

+ C.

Let
f (x) = ln (x) ,

and α = 1
2 , so from Theorem 6.8, we get∫ √

ln (x)
x

dx =
∫

ln
1
2 (x) · 1

x
dx =

ln
3
2 (x)
3
2

+ C.

Step-by-Step Solution

Evaluate the following indefinite integral.∫ 1
x
√

ln (x)
dx.

Solution 8.6.36 We need to rewrite the integral∫ 1
x
√

ln (x)
dx =

∫
ln−

1
2 (x) · 1

x
dx.

As
(ln (x))′ =

1
x

,

the result can be obtained by using∫
f α (x) · f ′ (x) dx =

f α+1 (x)
α + 1

+ C.

Let
f (x) = ln (x) ,

and α = − 1
2 , so from Theorem 6.8, we get∫ 1

x
√

ln (x)
dx =

∫
ln−

1
2 (x) · 1

x
dx =

ln
1
2 (x)
1
2

+ C.
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Step-by-Step Solution

Evaluate the following indefinite integral.∫ 1
4
√

tan (x) cos2 (x)
dx.

Solution 8.6.37 We need to rewrite the integral∫ 1
4
√

tan (x) cos2 (x)
dx =

∫
tan−

1
4 (x) · 1

cos2 (x)
dx.

As
(tan (x))′ =

1
cos2 (x)

,

the result can be obtained by using∫
f α (x) · f ′ (x) dx =

f α+1 (x)
α + 1

+ C.

Let
f (x) = tan (x) ,

and α = − 1
4 , so from Theorem 6.8, we get∫ 1

4
√

tan (x) cos2 (x)
dx =

∫
tan−

1
4 (x) · 1

cos2 (x)
dx =

tan
3
4 (x)
3
4

+ C.

Step-by-Step Solution

Evaluate the following indefinite integral.∫ cos (x)
3
√

sin (x)
dx.

Solution 8.6.38 We need to rewrite the integral∫ cos (x)
3
√

sin (x)
dx =

∫
sin−

1
3 (x) · cos (x) dx.

As
(sin (x))′ = cos (x) ,

the result can be obtained by using∫
f α (x) · f ′ (x) dx =

f α+1 (x)
α + 1

+ C.

Let
f (x) = sin (x) ,
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and α = − 1
3 , so from Theorem 6.8, we get∫ cos (x)

3
√

sin (x)
dx =

∫
sin−

1
3 (x) · cos (x) dx =

sin
2
3 (x)
2
3

+ C.

Step-by-Step Solution

Evaluate the following indefinite integral.∫ x√
x2 + 1

dx.

Solution 8.6.39 We need to rewrite the integral∫ x√
x2 + 1

dx =
1
2

∫ (
x2 + 1

)− 1
2 · 2xdx.

As (
x2 + 1

)′
= 2x,

the result can be obtained by using∫
f α (x) · f ′ (x) dx =

f α+1 (x)
α + 1

+ C.

Let
f (x) = x2 + 1,

and α = − 1
2 , so from Theorem 6.8, we get

∫ x√
x2 + 1

dx =
1
2

∫ (
x2 + 1

)− 1
2 · 2xdx =

1
2

(
x2 + 1

) 1
2

1
2

+ C =
(

x2 + 1
) 1

2
+ C.

Step-by-Step Solution

Evaluate the following indefinite integral.∫ 1

(3x + 1)2 dx.

Solution 8.6.40 We need to rewrite the integral∫ 1

(3x + 1)2 dx =
1
3

∫
(3x + 1)−2 · 3dx.

As
(3x + 1)′ = 3,

the result can be obtained by using∫
f α (x) · f ′ (x) dx =

f α+1 (x)
α + 1

+ C.
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Let
f (x) = 3x + 1,

and α = −2, so from Theorem 6.8, we get∫ 1

(3x + 1)2 dx =
1
3

∫
(3x + 1)−2 · 3dx =

1
3
(3x + 1)−1

−1
+ C.

Step-by-Step Solution

Evaluate the following indefinite integral.∫ 1
4
√

3x + 1
dx.

Solution 8.6.41 We need to rewrite the integral∫ 1
4
√

3x + 1
dx =

1
3

∫
(3x + 1)−

1
4 · 3dx.

As
(3x + 1)′ = 3,

the result can be obtained by using∫
f α (x) · f ′ (x) dx =

f α+1 (x)
α + 1

+ C.

Let
f (x) = 3x + 1,

and α = − 1
4 , so from Theorem 6.8, we get∫ 1

4
√

3x + 1
dx =

1
3

∫
(3x + 1)−

1
4 · 3dx =

1
3
(3x + 1)

3
4

3
4

+ C.

Step-by-Step Solution

Evaluate the following indefinite integral.∫ x2

4
√

x3 + 1
dx.

Solution 8.6.42 We need to rewrite the integral∫ x2

4
√

x3 + 1
dx =

1
3

∫ (
x3 + 1

)− 1
4 · 3x2dx.

As (
x3 + 1

)′
= 3x2,
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the result can be obtained by using∫
f α (x) · f ′ (x) dx =

f α+1 (x)
α + 1

+ C.

Let
f (x) = x3 + 1,

and α = − 1
4 , so from Theorem 6.8, we get

∫ x2

4
√

x3 + 1
dx =

1
3

∫ (
x3 + 1

)− 1
4 · 3x2dx =

1
3

(
x3 + 1

) 3
4

3
4

+ C.
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8.7 Definite Integrals of Real Functions

Step-by-Step Solution

Evaluate the following definite integral.
1∫

0

√
x
√

xdx.

Solution 8.7.1 From Solution 8.6.1, we have∫ √
x
√

xdx =
x

3
4+1

3
4 + 1

+ C =
x

7
4

7
4
+ C.

So from Theorem 7.1 with F (x) = x
7
4

7
4

, we get

1∫
0

√
x
√

xdx = [F (x)]10 =

[
x

7
4

7
4

]1

0

=
1

7
4

7
4
− 0 =

4
7

.

Step-by-Step Solution

Evaluate the following definite integral.
π∫

0

(x− 1) cos (x) dx.

Solution 8.7.2 From Solution 8.6.6, we have∫
(x− 1) cos (x) dx = sin (x) · (x− 1) + cos (x) + C.

So from Theorem 7.1 with F (x) = sin (x) · (x− 1) + cos (x) , we get
π∫

0

(x− 1) cos (x) dx = [F (x)]π0 = [sin (x) · (x− 1) + cos (x)]π0 =

= sin (π) · (π − 1) + cos (π)− (sin (0) · (0− 1) + cos (0)) =

= −2.
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Step-by-Step Solution

Evaluate the following definite integral.
1∫

0

x · 2xdx.

Solution 8.7.3 From Solution 8.6.7, we have∫
x · 2xdx =

2x

ln (2)
· x− 1

ln2 (2)
2x + C.

So from Theorem 7.1 with F (x) = 2x

ln(2) · x−
1

ln2(2)
2x, we get

1∫
0

x · 2xdx = [F (x)]10 =

[
2x

ln (2)
· x− 1

ln2 (2)
2x

]1

0

=

=
21

ln (2)
· 1− 1

ln2 (2)
21 − (

20

ln (2)
· 0− 1

ln2 (2)
20) =

=
2

ln (2)
− 2

ln2 (2)
+

1
ln2 (2)

.

Step-by-Step Solution

Evaluate the following definite integral.
e∫

1

ln (x) dx.

Solution 8.7.4 From Solution 8.6.8, we have∫
ln (x) dx = x ln (x)−

∫
1dx = x ln (x)− x + C.

So from Theorem 7.1 with F (x) = x ln (x)− x, we get
e∫

1

ln (x) dx = [F (x)]e1 = [x ln (x)− x]e1 = e ln (e)− e− (1 ln (1)− 1) = 1.
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Step-by-Step Solution

Evaluate the following definite integral.
0∫
−1

e5−xdx,

Solution 8.7.5 From Solution 8.6.23, we have∫
e5−xdx =

e5−x

−1
+ C.

So from Theorem 7.1 with F (x) = e5−x

−1 , we get

0∫
−1

e5−xdx = [F (x)]0−1 =

[
x

e5−x

−1

]0

−1
=

e5−(−1)

−1
− (

e5−0

−1
) = −e6 + e5.

Step-by-Step Solution

Evaluate the following definite integral.
π
4∫

0

tan (x) dx.

Solution 8.7.6 From Solution 8.6.24, we have∫
tan (x) dx = −

∫ − sin (x)
cos (x)

dx = − ln (|cos (x)|) + C.

So from Theorem 7.1 with F (x) = − ln (|cos (x)|) , we get
π
4∫

0

tan (x) dx = [F (x)]
π
4
0 = [− ln (|cos (x)|)]

π
4
0 =

= − ln
(∣∣∣cos

(π

4

)∣∣∣)− (− ln (|cos (0)|)) = − ln(
1√
2
) + 0.

Step-by-Step Solution

Evaluate the following definite integral.
π∫

0

sin (x) cos (x) dx.

Solution 8.7.7 From Solution 8.6.34, we have∫
sin (x) cos (x) dx =

sin2 (x)
2

+ C.
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So from Theorem 7.1 with F (x) = sin2(x)
2 , we get

π∫
0

sin (x) cos (x) dx = [F (x)]π0 =

[
sin2 (x)

2

]π

0

=
sin2 (π)

2
− sin2 (0)

2
= 0.
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8.7.1 Areas Under, Above and Between Curves

Step-by-Step Solution

Find the area of the indicated region.

Between the vertical lines x = 0 , x = 1 , the x -axis and the graph of f (x) = x3.

Solution 8.7.8 For 0 ≤ x ≤ 1, we have 0 ≤ x3 ≤ 1. Rectangle [0, 1]× [0, 1] is a suitable
enclosing rectangle.

0 1

y = x3

x

y

The required area is

A =

1∫
0

x3dx =

[
x4

4

]1

0
=

14

4
− 04

4
=

1
4

.

Back to Exercise 7.2 1
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Step-by-Step Solution

Find the area of the indicated region.

Above the graph of f (x) =
√

x , below the line y = 2 and between x = 0 and
x = 4.

Solution 8.7.9 For 0 ≤ x ≤ 4, we have 0 ≤
√

x ≤ 2 , so the region is above tha graph of
function f . Rectangle [0, 4]× [0, 2] is a suitable enclosing rectangle.

0 4

y =
√

x

y = 2

x

y

Its area is

A =

4∫
0

(
2−
√

x
)

dx =

4∫
0

(
2− x1/2

)
dx =

[
2x− x3/2

3/2

]4

0

=

=

(
2 · 4− 2 ·

√
43

3

)
−
(

2 · 0− 2 · 0
3

)
=

8
3

.

Back to Exercise 7.2 2
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Step-by-Step Solution

Find the area of the indicated region.

Above the x -axis and below the graph of f (x) = x2 − x3 .

Solution 8.7.10 Equation

f (x) = x2 − x3 = x2 (1− x) = 0

has solutions x1 = 0 and x2 = 1.
For 0 ≤ x ≤ 1 each x2, x3 and 1− x are between 0 and 1, so f (x) = x2 (1− x) is also
between 0 and 1. This means that rectangle [0, 1]× [0, 1] is a suitable enclosing rectangle.

0 1

y = x2 − x3

x

y

The required area is

A =

1∫
0

x2 − x3dx =

[
x3

3
− x4

4

]1

0
=

(
13

3
− 14

4

)
−
(

03

3
− 04

4

)
=

1
12

.

NOTE:
d

dx

(
x2 − x3

)
= −x · (3x− 2) = 0

⇓

xmax =
2
3

⇓

f (xmax) =

(
2
3

)2

−
(

2
3

)3

=
4

27
≈ 0.14815

Back to Exercise 7.2 3
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Step-by-Step Solution

Find the area of the indicated region.

Above the x -axis and below the graph of f (x) = 4x2 − x4 .

Solution 8.7.11 Equation

f (x) = 4x2 − x4 = x2
(

4− x2
)
= 0

has solutions x1 = −2, x2 = 0 and x3 = +2. For −2 ≤ x ≤ 2, both x2 and 4− x2 are
nonnegative, so 0 ≤ f (x) for −2 ≤ x ≤ 2 .

−2 0 2

y = 4x2 − x4

x

y

Now the required area is

A =

2∫
−2

(
4x2 − x4

)
dx =

[
4 · x3

3
− x5

5

]2

−2
=

=

(
4 · 23

3
− 25

5

)
−
(

4 · (−2)3

3
− (−2)5

5

)
=

128
15

≈ 8.533̇.

Back to Exercise 7.2 4
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Solutions 8

Step-by-Step Solution

Find the area of the indicated region.

Above the x -axis and below the graph of f (x) =
1

1 + x2 between x = 0 and x = 1.

Solution 8.7.12 Clearly 0 < f (x) for x ∈ R.

0 1

y = 1
x2+1

x

y

So the area is
1∫

0

1
1 + x2 = [arctan (x)]10 = arctan (1)− arctan (0) =

π

4
.

NOTE: f (x) is an even function, i.e. f (−x) = f (x) for all x ∈ dom ( f ) = R.
Back to Exercise 7.2 5
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8 Solutions

Step-by-Step Solution

Find the area of the indicated region.

The region between the x -axis and the graph of f (x) =
1

1 + x
+

x
2
− 1 .

Solution 8.7.13 First we find the roots of f (x) = 0.

f (x) =
1

1 + x
+

x
2
− 1 =

2 + (1 + x) · x− 2 · (1 + x)
2 (1 + x)

=
x (x− 1)
2 (1 + x)

= 0

m
x1 = 0, x2 = 1.

For 0 < x < 1, this fraction has negative enumerator and positive denumerator, so
f (x) < 0.

0 1

y = 1
x+1 +

x
2 − 1

x

y

The signed area is
1∫

0

(
1

1 + x
+

x
2
− 1
)

dx =

[
ln (x + 1) +

x2

4
− x
]1

0
= ln (2)− 3

4
≈ −0.05685.

This signed area is negative since f (x) < 0 for 0 ≤ x ≤ 1, i.e. (the graph of) f (x) is
below the x axis. The area is

A = −
1∫

0

(
1

1 + x
+

x
2
− 1
)

dx = −
(

ln (2)− 3
4

)
≈ 0.05685.

Back to Exercise 7.2 6
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Solutions 8

Step-by-Step Solution

Find the area of the region bounded by the given curves.

y = x2 − x and y = 5x− 5.

Solution 8.7.14 The intersection points of the curves are the solutions of

x2 − x = 5x− 5⇐⇒ x2 − 6x + 5 = 0,

that are x1 = 1 and x2 = 5.

1 5

y = 5x− 5

y = x2 − x

x

y

Since f (x) = x2 − x is convex and g (x) = 5x− 5 is a straight line, for x1 ≤ x ≤ x2,
we have f (x) ≤ g (x). From Theorem 7.2, the area is

A =

5∫
1

(
(5x− 5)−

(
x2 − x

))
dx =

=

5∫
1

(
−x2 + 6x− 5d

)
x =

[
−x3

3
+ 6 · x2

2
− 5x

]5

1
=

=

(
−53

3
+ 6 · 52

2
− 5 · 5

)
−
(
−13

3
+ 6 · 12

2
− 5 · 1

)
=

32
3

≈ 10.6667 .

Back to Exercise 7.3 1
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8 Solutions

Step-by-Step Solution

Find the area of the region bounded by the given curves.

y = x2 − 6 and y = x + 6.

Solution 8.7.15 The intersection points of the curves are the solutions of

x2 − 6 = x + 6⇐⇒ x2 − x− 12 = 0,

that are x1 = −3 and x2 = 4.

−3 4

y = x + 6

y = x2 − 6

x

y

Since f (x) = x2 − 6 is convex and g (x) = x + 5 is a straight line, for x1 ≤ x ≤ x2 we
have f (x) ≤ g (x). From Theorem 7.2, the area is

A =

4∫
−3

(
(x + 6)−

(
x2 − 6

))
dx =

=

4∫
−3

(
−x2 + x + 12

)
dx =

[
−1

3
x3 +

1
2

x2 + 12x
]4

−3
=

=

(
−1

3
· 43 +

1
2
· 42 + 12 · 4

)
−
(
−1

3
· (−3)3 +

1
2
· (−3)2 + 12 · (−3)

)
=

=
343
6

≈ 57.16667 .

Back to Exercise 7.3 2
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Solutions 8

Step-by-Step Solution

Find the area of the region bounded by the given curves.

y = −(x + 1)2 and y = 5x + 11.

Solution 8.7.16 The intersection points of the curves are the solutions of

−(x + 1)2 = 5x + 11⇐⇒ −x2 − 7x− 12 = 0,

that are x1 = −4 and x2 = −3.

−4 −3

y = − (x + 1)2

y = 5x + 11

x
y

Since f (x) = − (x + 1)2 is concave and g (x) = 5x + 11 is a straight line, for x1 ≤ x ≤
x2, we have g (x) ≤ f (x). From Theorem 7.2, the area is

A =

−3∫
−4

(
− (x + 1)2 − (5x + 11)

)
dx =

−3∫
−4

(
−x2 − 7x− 12

)
dx =

=

[
−1

3
x3 − 7

2
x2 − 12x

]−3

−4
=

(
−1

3
· (−3)3 − 7

2
· (−3)2 − 12 · (−3)

)
−

−
(
−1

3
· (−4)3 − 7

2
· (−4)2 − 12 · (−4)

)
=

=
1
6
≈ 0.16667 .

Back to Exercise 7.3 3
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8 Solutions

Step-by-Step Solution

Find the area of the region bounded by the given curves.

y = x2 − 12 and y = 2x− x2.

Solution 8.7.17 The intersection points of the curves are the solutions of

x2 − 12 = 2x− x2 ⇐⇒ 2x2 − 2x− 12 = 0,

that are x1 = −2 and x2 = 3.

−2 3

y = 2x− x2
y = x2 − 12

x

y

Since f (x) = x2 − 12 is convex and g (x) = 2x − x2 is concave, for x1 ≤ x ≤ x2, we
have f (x) ≤ g (x). From Theorem 7.2, the area is

A =

3∫
−2

((
2x− x2

)
−
(

x2 − 12
))

dx =

=

3∫
−2

−2x2 + 2x + 12 dx =

[
−2

3
x3 + x2 + 12x

]3

−2
=

=

(
−2

3
· 33 + 32 + 12 · 3

)
−
(
−2

3
· (−2)3 + (−2)2 + 12 · (−2)

)
=

=
125
3

≈ 41.6667 .

Back to Exercise 7.3 4
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Solutions 8

Step-by-Step Solution

Find the area of the region bounded by the given curves.

y = (x− 1)2 and y = 1− x2.

Solution 8.7.18 The intersection points of the curves are the solutions of

(x− 1)2 = 1− x2 ⇐⇒ 2x2 − 2x = 0,

that are x1 = 0 and x2 = 1.

1

y = 1− x2

y = (x− 1)2
x

y

Since f (x) = (x− 1)2 is convex and g (x) = 1− x2 is concave, for x1 ≤ x ≤ x2 we
have f (x) ≤ g (x). From Theorem 7.2, the area is

A =

1∫
0

((
1− x2

)
− (x− 1)2

)
dx =

1∫
0

(
−2x2

)
dx =

[
x2 − 2

3
x3
]1

0
=

=

(
12 − 2

3
· 13
)
− 0 =

1
3
≈ 0.3333 .

Back to Exercise 7.3 5
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8 Solutions

Step-by-Step Solution

Find the area of the region bounded by the given curves.

y2 = 4x and y = 2x.

Solution 8.7.19 The system of equations{
y2 = 4x , y = 2x

}
⇐⇒ 4x = (2x)2

has the solutions x1 = 0 , x2 = 1. However, the implicit equation y2 = 4x hides two
functions

f1 (x) =
√

4x,

and
f2 (x) = −

√
4x.

Equation y = 2x implies that y1 = 0 and y2 = 2, so the intersection points are P1 = (0, 0)
and P2 = (1, 2). One can easily check that P2 satisfies only y = f1 (x) , so the required
area is between f1 (x) and g (x) = 2x .

1

y =
√

4x

y = 2x
x

y

Since f1 (x) =
√

4x = 2
√

x is concave and g (x) is a straight line, for x1 ≤ x ≤ x2, we
have g (x) ≤ f (x). From Theorem 7.2, the area is

A =

1∫
0

2
√

x− 2x dx =

[
2 · x3/2

3/2
− x2

]1

0

=

[
4
3
·
√

x3 − x2
]1

0
=

=

(
4
3
· 1− 12

)
− 0 =

1
3
≈ 0.3333 .

Back to Exercise 7.3 6
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Solutions 8

Step-by-Step Solution

Find the area of the region bounded by the given curves.

y = x(2− x) and x = 2y.

Solution 8.7.20 The two functions are f (x) = x (2− x) = 2x − x2 and g (x) = x/2
(!). The intersection points of the graphs of the functions are the solutions of

2x− x2 = x/2⇐⇒ 3x− 2x2 = 0,

that are x1 = 0 and x2 = 3
2 .

3
2

y = 2x− x2

y = x
2

x

y

Since f (x) = 2x− x2 is concave and g (x) is a straight line, for x1 ≤ x ≤ x2, we have
g (x) ≤ f (x). From Theorem 7.2, the area is

A =

3/2∫
0

((
2x− x2

)
− x

2

)
dx =

3/2∫
0

(
3
2

x− x2
)

dx =

[
3
4

x2 − x3

3

]3/2

0
=

=

(
3
4
·
(

3
2

)2

−
(3

2

)3

3

)
− 0 =

9
16

= 0.5625 .

Back to Exercise 7.3 7
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8 Solutions

Step-by-Step Solution

Find the area of the region bounded by the given curves.

x2 = 4y and x = 4y− 2.

Solution 8.7.21 Solving the equations x2 = 4y and x = 4y − 2 to y, we get the two

functions: y = f (x) =
x2

4
and y = g (x) =

1
4

x +
1
2

.
Equation

x2

4
=

1
4

x +
1
2
⇐⇒ x2 − x− 2 = 0,

has the solutions x1 = −1 and x2 = 2.

−1 2

y = 1
4 x + 1

2

y = x2

4 x

y

Since f (x) is convex and g (x) is a straight line, for x1 ≤ x ≤ x2, we have f (x) ≤ g (x).
From Theorem 7.2, the area is

A =

2∫
−1

((
1
4

x +
1
2

)
− x2

4

)
dx =

2∫
−1

(
−1

4
x2 +

1
4

x +
1
2

)
dx =

=

[
− 1

12
x3 +

1
8

x2 +
1
2

x
]2

−1
=

=

(
− 1

12
· 23 +

1
8
· 22 +

1
2
· 2
)
−
(
− 1

12
· (−1)3 +

1
8
· (−1)2 +

1
2
· (−1)

)
=

=
9
8
= 1.125 .

Back to Exercise 7.3 8
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Solutions 8

Step-by-Step Solution

Find the area of the region bounded by the given curves.

x = y2 and y = x2.

Solution 8.7.22 System of equations{
x = y2 , y = x2

}
=⇒ x = x4 ⇐⇒ x

(
x3 − 1

)
= 0

has the (real) solutions x1 = 0, x2 = 1 and y1 = 0, y2 = 1, so the intersection points are
P1 = (0, 0) and P2 = (1, 1). This means, that we have to choose the function f (x) =

√
x

from the implicit equation y2 = x.

1

y =
√

x y = x2

x

y

Since f (x) is concave and g (x) = x2 is convex, for x1 ≤ x ≤ x2 we have g (x) ≤ f (x).
From Theorem 7.2, the area is

A =

1∫
0

(√
x− x2

)
dx =

[
x3/2

3/2
− x3

3

]1

0

=

[
2
3

√
x3 − x3

3

]1

0
=

=

(
2
3
·
√

13 − 13

3

)
− 0 =

1
3
≈ 0.3333 .

Back to Exercise 7.3 9

Step-by-Step Solution

Find the area of the region bounded by the given curves.

y2 = x and x + y = 2.

Solution 8.7.23 System of equations{
y2 = x , x + y = 2

}
⇒ (2− x)2 = x ⇐⇒ x2 − 5x + 4 = 0

has the (real) solutions x1 = 1, x2 = 4 and by y = 2− x , y1 = 1 , y2 = −2 , so the
intersection points are P1 = (1, 1) and P2 = (4,−2).
The implicit equation y2 = x hides two functions: f1 (x) =

√
x and f2 (x) = −

√
x .

365



8 Solutions

The problem is, that P1 is on the graph of f1 while P2 is on the graph of f2 . This means,
that the borders of the closed region we are looking for can not be only the straight line
x + y = 2 (i.e. g (x) = 2− x) and only one of the functions f1 , f2 . In other words all of
f1 , f2 and g limit the region - but how? We must make a drawing (see below).

1 4

y = 2− x

y = −
√

x

y =
√

x

x

y

Since for the integral we need vertical lines x = c for some c , we have to cut this region
into two parts with the vertical line x = 1 (crossing P1), and investigate the convex-
concave properties of the functions. From Theorem 7.2, the area is

A =

1∫
0

( f1 (x)− f2 (x)) dx +

4∫
1

(g (x)− f2 (x)) dx =

=

1∫
0

(√
x−

(
−
√

x
))

dx +

4∫
1

(
(2− x)−

(
−
√

x
))

dx =

= 2
[

2
3

√
x3
]1

0
+

[
2x− x2

2
+

2
3

√
x3
]4

1
=

= 2 ·
(

2
3
·
√

13 − 0
)
+

[(
2 · 4− 42

2
+

2
3
·
√

43
)
−
(

2 · 1− 12

2
+

2
3
·
√

13
)]

=

=
9
2
= 4.5 .

Back to Exercise 7.3 10

366



Solutions 8

Step-by-Step Solution

Find the area of the region bounded by the given curves.

y =
√

x and y = x.

Solution 8.7.24 The intersection points of the curves are the solutions of
√

x = x ⇐⇒ x2 = x,

that are x1 = 0 and x2 = 1.

1

y =
√

x

y = x

x

y

Since f (x) =
√

x is concave and g (x) = x is a straight line, for x1 ≤ x ≤ x2, we have
g (x) ≤ f (x). From Theorem 7.2, the area is

A =

1∫
0

(√
x− x

)
dx =

[
2
3

√
x3 − x2

2

]1

0
=

(
2
3
·
√

13 − 12

2

)
− 0 =

1
6
≈ 0.16667 .

Back to Exercise 7.3 11

Step-by-Step Solution

Find the area of the region bounded by the given curves.

y = x2 and y = 3/(2 + x2).

Solution 8.7.25 The intersection points of the curves are the solutions of

x2 =
3

2 + x2 ⇐⇒ x2 ·
(

2 + x2
)
= 3⇐⇒ x4 + 2x2 − 3 = 0.

Let a = x2, then
x4 + 2x2 − 3 = 0⇐⇒ a2 + 2a− 3 = 0,

and the solutions are a1 = 1 and a2 = −3. As a ≥ 0, we get that x1 = −1 and x2 = 1

are the solution of equation x2 =
3

2 + x2 .
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8 Solutions

−1 1

y =
3

2 + x2

y = x2

x

y

Since f (x) = x2 is convex and g (x) =
3

2 + x2 is concave, for x1 ≤ x ≤ x2 we have

f (x) ≤ g (x). From Theorem 7.2, the area is

A =

1∫
−1

(
3

2 + x2 − x2
)

dx

The primitive function of g is (using arctan′ (x) = 1
1+x2 )∫ 3

2 + x2 dx =
3
2

∫ 1

1 + x2

2

dx =
3
2

∫ 1

1 +
(

x√
2

)2 dx =

=
3
2
·

arctan
(

x/
√

2
)

1/
√

2
+ C =

3 ·
√

2
2
· arctan

(
x√
2

)
+ C ,

so the area is

A =

1∫
−1

(
3

2 + x2 − x2
)

dx =

[
3 ·
√

2
2
· arctan

(
x√
2

)
− x3

3

]x=1

x=−1

=

=

(
3 ·
√

2
2
· arctan

(
1√
2

)
− 13

3

)
−
(

3 ·
√

2
2
· arctan

(
−1√

2

)
− (−1)3

3

)
=

= 2 · 3 ·
√

2
2
· arctan

(
1√
2

)
− 2

3
≈ 1.9446 .

Note: f is an even function ( f (−x) = f (x)) so
+a∫
−a

f (x) dx = 2
+a∫
0

f (x) dx .

Back to Exercise 7.3 12
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Solutions 8

Step-by-Step Solution

Find the area of the region bounded by the given curves.

y = (1/2) · x2 + 1 and y = x + 1.

Solution 8.7.26 The intersection points of the curves are the solutions of
1
2
· x2 + 1 = x + 1⇐⇒ x2 − 2x = 0.

that are x1 = 0 and x2 = 2.

2

y = x + 1
y = 1

2 · x2 + 1

x

y

Since f (x) = 1
2 · x2 + 1 is convex and g (x) = x + 1 is a straight line, for x1 ≤ x ≤ x2

we have f (x) ≤ g (x). From Theorem 7.2, the area is

A =

2∫
0

(
(x + 1)−

(
1
2
· x2 + 1

))
dx =

[
x2

2
− 1

2
· x3

3

]2

0
=

(
22

2
− 1

2
· 23

3

)
− 0 =

2
3

.

Back to Exercise 7.3 13

Step-by-Step Solution

Find the area of the region bounded by the given curves.

y2 = x and x2 = 16y.

Solution 8.7.27 From
y2 = x , x2 = 16y,

we have
y4 = 16y⇐⇒ y ·

(
y3 − 16

)
= 0.

Equation
y ·
(

y3 − 16
)
= 0

has (real) solutions y1 = 0 , y2 = 3
√

16 ≈ 2.5198. This follows x1 = 0 and x2 = (y2)
2 =(

3
√

16
)2

= 3
√

256 ≈ 6.3496.
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8 Solutions

The the implicit equation y2 = x means the two functions y = f1 (x) =
√

x and y =

f2 (x) = −
√

x , but the solution y2 = 3
√

16 requires the function y = f1 (x). So the
region is between y = f1 (x) and y = g (x) = x2/16.

3
√

256

y =
√

x

y = x2

16
x

y

Since f1 (x) is concave and g (x) is convex, for x1 ≤ x ≤ x2 we have g (x) ≤ f (x), and
the area is

A =

3√256∫
0

(√
x− x2

16

)
dx =

[
x3/2

3/2
− 1

16
· x3

3

] 3√256

0

=

=


(

3
√

256
)3/2

3/2
− 1

16
·

(
3
√

256
)3

3

− 0 =
16
3

≈ 5.3333.

Back to Exercise 7.3 14

Step-by-Step Solution

Find the area of the region bounded by the given curves.

y2 = 4ax and y = mx.

Solution 8.7.28 We handle the case 0 < a and 0 < m only, the other similar cases are
left to the Reader (both a and m may be negative but nonzero).
From

y2 = 4ax , y = mx,

we have
(mx)2 = 4ax ⇐⇒ x ·

(
m2x− 4a

)
= 0.

Equation
x ·
(

m2x− 4a
)
= 0

has the solutions x1 = 0 and x2 = 4a/m2. From this, we get y1 = 0 and y2 = mx2 =

4a/m, so the intersection points are P1 (0, 0) and P2

(
4a
m2 , 4a

m

)
.
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Solutions 8

Using 0 < a, m we have 0 < y2 and so the region is between the functions y = f (x) =√
4ax and y = g (x) = mx. Since f (x) is concave and g (x) is a straight line, for

x1 ≤ x ≤ x2 we have g (x) ≤ f (x), and the area is

A =

4a
m2∫

0

(√
4ax−mx

)
dx =

[
(4ax)3/2

4a · 3/2
−m · x2

2

] 4a
m2

0

=

=

2
3
·

√(
4a · 4a

m2

)3

4a
−m ·

(
4a
m2

)2

2

− 0 =

=
2

12a
·
(

4a
m

)3

− 1
2
· (4a)2

m3 =
1
6
· (4a)2

m3 =
8
3
· a2

m3 .

Back to Exercise 7.3 15

Step-by-Step Solution

Use integration to find the area of the triangular region bounded by the given
lines:

y = 2x + 1, y = 3x + 1 and x = 4.

Solution 8.7.29 To find the intersection points of lines y = 2x + 1 and y = 3x + 1, we
need to solve equation 2x + 1 = 3x + 1. The solution is x = 0, and from this, we get
y = 1, so the intersection point is P (0, 1). So, the interval for our region is [a, b] = [0, 4].

4

1

y = 3x + 1

y = 2x + 1

x = 4

x

y

Since the line y = 3x + 1 is above of y = 2x + 1, the area is

A =

4∫
0

((3x + 1)− (2x + 1)) dx =

4∫
0

xdx =

[
x2

2

]4

0
=

42

2
− 0 = 8 .

Back to Exercise 7.4 1
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8 Solutions

Step-by-Step Solution

Use integration to find the area of the triangular region bounded by the given
lines:

y = x + 3, y = 2x + 1 and andy = 4− x.

Solution 8.7.30 Call the three lines

a : y = a (x) = x + 3

b : y = b (x) = 2x + 1

c : y = c (x) = 4− x

The pairwise intersection points are the following:

a∩b: y = x + 3 = 2x + 1⇐⇒ x = 2 , y = 5 , C = (2, 5),
a∩c: y = x + 3 = 4− x ⇐⇒ x = 0.5 , y = 3.5 , B = (0.5, 3.5),
b∩c: y = 2x + 1 = 4− x ⇐⇒ x = 1 , y = 3 , A = (1, 3).

0.5 1 2

3
3.5

5

y = 2x + 1

y = x + 3

y = 4− x

x

y

Considering the x coordinates of these intersection points we have the order Bx < Ax <

Cx, which means that the integrals for the area of the region (i.e. the triangle ABC) have
the intervals [Bx , Ax] = [0.5, 1] and [Ax , Cx] = [1, 2]. Now we have to decide, which
function (line) is above and below on these intervals.
The interval [Bx , Ax] starts with B = a ∩ c , so on the interval [Bx , Ax] lines a and c
are present. Since a (Ax) = 1 + 3 > c (Ax) = 4− 1 , in the whole interval [Bx , Ax]

the relation a (x) > c (x) must hold.
The interval [Ax , Cx] ends with C = a ∩ b , so on this interval a és b are present. Since
a (Ax) = 1 + 3 > b (Ax) = 2 · 1 + 1 , in the whole interval [Ax , Cx] the relation
a (x) > b (x) must hold.
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Now the area is

A =

Ax∫
Bx

(a (x)− c (x)) dx +

Cx∫
Ax

(a (x)− b (x)) dx

=

1∫
0.5

((x + 3)− (4− x)) dx +

2∫
1

((x + 3)− (2x + 1)) dx

=

1∫
0.5

(2x− 1) dx +

2∫
1

(2− x) dx =
[

x2 − x
]1

0.5
+
[
2x− x2

2

]2

1
=

=
(

12 − 1
)
−
(

0.52 − 0.5
)
+
(

2 · 2− 22

2

)
−
(

2 · 1− 12

2

)
.

Back to Exercise 7.4 2
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Step-by-Step Solution

Find a so that the curves y = x2 and y = a cos x intersect at the points (x, y) =(
π/4, π2/16

)
. Then find the area between these curves.

Solution 8.7.31 For any function y = h (x) "to meet the point" P0 = (x0, y0) means the
equality

y0 = h (x0) .

In our problem y = f (x) = x2 , y = g (x) = a cos x and P0 =
(
π/4, π2/16

)
, so we

must have
π2

16
=
(π

4

)2
and

π2

16
= a · cos

(π

4

)
= a ·

√
2

2
which implies

a =

√
2

16
π2 ≈ 0.87236.

Since both functions are even, the other intersecting point is

P1 = (−x0, y0) =
(
−π/4, π2/16

)
.

−π
4

π
4

y = a cos (x)

y = x2

x

y

Since f is convex and g is concave, for −x0 ≤ x ≤ x0 we have f (x) ≤ g (x), and the
area is

A =

+π/4∫
−π/4

(
a cos x− x2

)
dx =

[
a sin (x)− x3

3

]+π/4

−π/4
=

=

(√
2π2

16
· sin

(π

4

)
−
(

π
4

)3

3

)
−
(√

2π2

16
· sin

(
−π

4

)
−
(
−π

4

)3

3

)

=
π2

8
− π3

96
≈ 0.91072 .

Back to Exercise 7.4 3
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Step-by-Step Solution

Write a definite integral whose value is the area of the region between the two
circles x2 + y2 = 1 and (x− 1)2 + y2 = 1.

Solution 8.7.32 Circle x2 + y2 = 1 can be drawn with functions

y = f1 (x) =
√

1− x2

and
y = f2 (x) = −

√
1− x2.

Similarly (x− 1)2 + y2 = 1 can be drawn with functions

y = g1 (x) =
√

1− (x− 1)2

and
y = g2 (x) = −

√
1− (x− 1)2.

−1 1 2

y = f1 (x)

y = f2 (x)

y = g1 (x)

y = g2 (x)

x

y

The horizontal endpoints of the region are (see figure above) a = x0 = 0 and b = x1 = 1 ,
but the limiting function curves change at an intermediate position x2 we have to determine
from the system of equations {

x2 + y2 = 1 (I)
(x− 1)2 + y2 = 1 (II)

Subtracting (II) from (I) we get 2x− 1 = 0 i.e. x = 1/2 . So, the area is

A =

1/2∫
0

(g1 (x)− g2 (x)) dx +

1∫
1/2

( f1 (x)− f2 (x)) dx.

First, we evaluate
1∫

1/2

( f1 (x)− f2 (x)) dx =

1∫
1/2

2 ·
√

1− x2 dx.
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For ∫ √
1− x2 dx, |x| ≤ 1,

we use substitution
x = sin (t) .

As
dx
dt

= cos (t) , |t| ≤ π

2
,

we get∫ √
1− x2 dx =

∫ √
1− (sin t)2 · cos (t) dt =

∫
cos2 (t) dt =

∫ 1 + cos (2t)
2

dt =

=
1
2
·
(

t +
sin (2t)

2

)
+ C =

=
1
2
·
(

arcsin (x) +
sin (2 · arcsin (x))

2

)
+ C

=
1
2

(
arcsin (x) + x

√
1− x2

)
+ C.

So from Theorem 7.1, we get

A1 =

1∫
1/2

2 ·
√

1− x2 dx =
2
2

[
arcsin (x) + x

√
1− x2

]1

1/2
=

=
(

arcsin (1) + 1 ·
√

1− 12
)
−

arcsin
(

1
2

)
+

1
2
·

√
1−

(
1
2

)2
 =

=
π

3
−
√

3
4

.

Now, we evaluate
1/2∫
0

(g1 (x)− g2 (x)) dx =

1/2∫
0

2 ·
√

1− (x− 1)2 dx.

Similarly, to evaluate ∫ √
1− (x− 1)2 dx,

we use substitution
x− 1 = sin (t) .

As
dx
dt

= cos (t) , |t| ≤ π

2
,
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we get∫ √
1− (x− 1)2 dx =

1
2

(
arcsin (x− 1) + (x− 1) ·

√
1− (x− 1)2

)
+ C.

So from Theorem 7.1, we get

A2 =

1/2∫
0

2 ·
√

1− (x− 1)2 dx =
2
2

[
arcsin (x− 1) + (x− 1) ·

√
1− (x− 1)2

]1/2

0
=

=

arcsin
(
−1
2

)
+
−1
2
·

√
1−

(
−1
2

)2
−

−
(

arcsin (−1) + (−1) ·
√

1− (−1)2
)
=

π

3
−
√

3
4

.

The area is

A = A1 + A2 =
2
3

π −
√

3
2

≈ 1.22837.

Back to Exercise 7.4 4
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8.7.2 Volume of Revolution

Step-by-Step Solution

Calculate the volume of the solid over the given interval, when f is revolved
around the x -axis.

f (x) = x, 0 ≤ x ≤ 2.

Solution 8.7.33

Vx = π

2∫
0

x2dx = π

[
x3

3

]2

0
=

23

3
π − 0 ≈ 8.37758.

Back to Exercise 7.5 1

Step-by-Step Solution

Calculate the volume of the solid over the given interval, when f is revolved
around the x -axis.

f (x) =
√

2− x, 0 ≤ x ≤ 2.

Solution 8.7.34

Vx = π

2∫
0

(2− x) dx = π

[
2x− x2

2

]2

0
=

= π

(
2 · 2− 22

2

)
− 0 = 2π ≈ 6.283185.

Back to Exercise 7.5 2

Step-by-Step Solution

Calculate the volume of the solid over the given interval, when f is revolved
around the x -axis.

f (x) =
(

1 + x2
)−1/2

, |x| ≤ 1.

Solution 8.7.35

Vx = π

1∫
−1

1
1 + x2 dx = [π arctan (x) ]+1

−1 =

= π · (arctan (1)− arctan (−1)) =
1
2

π2 ≈ 4.9348.

Back to Exercise 7.5 3
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Step-by-Step Solution

Calculate the volume of the solid over the given interval, when f is revolved
around the x -axis.

f (x) = sin(x), 0 ≤ x ≤ π.

Solution 8.7.36

Vx = π

π∫
0

sin2 (x) dx = π

π∫
0

1− cos (2x)
2

dx =
π

2

π∫
0

(1− cos (2x)) dx =

=
π

2

[
x− sin (2x)

2

]π

0
=

π

2

(
π − sin (2π)

2
− 0
)
=

1
2

π2 ≈ 4.9348.

Back to Exercise 7.5 4

Step-by-Step Solution

Calculate the volume of the solid over the given interval, when f is revolved
around the x -axis.

f (x) = 1− x2, |x| ≤ 1.

Solution 8.7.37

Vx = π

+1∫
−1

(
1− x2

)2
dx = π

+1∫
−1

x4 − 2x2 + 1 dx = π

[
x5

5
− 2

x3

3
+ x
]+1

−1
=

= π

(
15

5
− 2 · 13

3
+ 1
)
− π

(
(−1)5

5
− 2 · (−1)3

3
+ (−1)

)
=

16
15

π ≈ 3.35103.

Back to Exercise 7.5 5

Step-by-Step Solution

Calculate the volume of the solid over the given interval, when f is revolved
around the x -axis.

f (x) = cos(x), 0 ≤ x ≤ π.

Solution 8.7.38

Vx = π

π∫
0

cos2 (x) dx = π

π∫
0

1 + cos (2x)
2

dx =
π

2

π∫
0

(1 + cos (2x)) dx =

=
π

2

[
x +

sin (2x)
2

]π

0
=

π

2

(
π +

sin (2π)

2
− 0
)
=

1
2

π2 ≈ 4.9348.
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Back to Exercise 7.5 6

Step-by-Step Solution

Calculate the volume of the solid over the given interval, when f is revolved
around the x -axis.

f (x) =
1

cos(x)
, 0 ≤ x ≤ π/4.

Solution 8.7.39

Vx = π

π/4∫
0

1
cos2 (x)

dx = π [tan (x) ]π/4
0 = π

(
tan

(π

4

)
− 0
)
=

= π ≈ 3.14159.

Back to Exercise 7.5 7

Step-by-Step Solution

Calculate the volume of the solid over the given interval, when f is revolved
around the x -axis.

f (x) =
√

r2 − x2, 0 ≤ x ≤ r. (semicircle)

Solution 8.7.40

Vx = π

+r∫
−r

(
r2 − x2

)
dx = π

[
r2x− x3

3

]+r

−r
=

= π

(
r2 · r− r3

3

)
− π

(
r2 · (−r)− (−r)3

3

)
=

4
3

πr3 .

This is the well known volume of the sphere.
Back to Exercise 7.5 8

Step-by-Step Solution

Calculate the volume of the solid over the given interval, when f is revolved
around the x -axis.

f (x) =
√
(5x + 1) · ex, 0 ≤ x ≤ 1.
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Solution 8.7.41 First we compute the primitive function, using integration by parts∫
f 2 (x) dx =

∫
(5x + 1) · exdx = ex · (5x + 1)−

∫
ex · 5dx =

= ex · (5x + 1)− 5 · ex = ex · (5x− 4) + C,

then the volume is

Vx = π · [ex · (5x− 4) ]10 = π ·
[
e1 · (5 · 1− 4)− e0 · (5 · 0− 4)

]
=

= π (e + 4) ≈ 21.1061.

Back to Exercise 7.5 9

Step-by-Step Solution

Calculate the volume of the solid over the given interval, when f is revolved
around the x -axis.

f (x) =
√
(x + 1) · ln(x), 1 ≤ x ≤ e.

Solution 8.7.42 First we compute the primitive function, using integration by parts∫
f 2 (x) dx =

∫
(x + 1) · ln (x) dx =

=

(
x2

2
+ x
)

ln (x)−
∫ (x2

2
+ x
)
· 1

x
dx =

=

(
x2

2
+ x
)

ln (x)−
∫ (x2

2
+ x
)
· 1

x
dx =

=

(
x2

2
+ x
)

ln (x)−
∫ (x

2
+ 1
)

dx =

=

(
x2

2
+ x
)

ln (x)−
(

x2

4
+ x
)
+ C.

So the volume is

Vx = π ·
[(

x2

2
+ x
)

ln (x)−
(

x2

4
+ x
)]e

1
=

= π ·
[(

e2

2
+ e
)

ln (e)−
(

e2

4
+ e
)
−
(

12

2
+ 1
)

ln (1) +
(

12

4
+ 1
)]

=

= π · e2 + 5
4

≈ 9.73034.

Back to Exercise 7.5 10
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Step-by-Step Solution

Calculate the volume of the solid over the given interval, when f is revolved
around the x -axis.

f (x) = 3
√

x, 0 ≤ x ≤ 1.

Solution 8.7.43

Vx = π

1∫
0

(
3
√

x
)2 dx = π

1∫
0

x2/3dx = π

[
x2/3+1

2
3 + 1

]1

0

=

=
3
5

π ·
(

15/3 − 0
)
=

3
5

π ≈ 1.884 95.

Back to Exercise 7.5 11

Step-by-Step Solution

Calculate the volume of the solid over the given interval, when f is revolved
around the x -axis.

f (x) =
√

sin(x), 0 ≤ x ≤ π/2.

Solution 8.7.44

Vx = π

π/2∫
0

(√
sin x

)2
dx = π

π/2∫
0

sin x dx = π · [− cos x]π/2
0 =

= π ·
(
− cos π

2 + cos 0
)
= π ≈ 3.14159

Back to Exercise 7.5 12

Step-by-Step Solution

Calculate the volume of the barrel, i.e. when the ellipse below is revolved around
the x -axis.

( x
80

)2
+
( y

50

)2
= 1

Solution 8.7.45 Equality ( x
80

)2
+
( y

50

)2
= 1

can be transformed into the functions

y = f1,2 (x) = ±50 ·
√

1−
( x

80

)2
,
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so the volume of the barrel is

Vx = π

+60∫
−60

502
(

1−
( x

80

)2
)

dx = 502π

+60∫
−60

(
1− x2

802

)
dx =

= 502π

[
x− x3

3 · 802

]+60

−60
= 502π · 2 ·

(
60− 603

3 · 802

)
=

= 502 · 2 · 60 · π · 13
16

≈ 765763.21cm3 ≈ 765.76 `itres .

Back to Exercise 7.5 13
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8.7.3 Improper Integrals over Infinite Interval

Step-by-Step Solution

Calculate the following improper integral.
−4∫
−∞

x + 1
x2 + 2x− 3

dx.

Solution 8.7.46 Using Definition 7.3 first, we rewrite the improper integral as a limit.
That is

−4∫
−∞

x + 1
x2 + 2x− 3

dx = lim
ω→−∞

 −4∫
ω

x + 1
x2 + 2x− 3

dx

 .

Next, we evaluate the indedinite integral, that is∫ x + 1
x2 + 2x− 3

dx =
1
2

∫ 2x + 2
x2 + 2x− 3

dx =
1
2

ln
∣∣∣x2 + 2x− 3

∣∣∣+ C.

Now, we evaluate the definite integral. From Theorem 7.1 with F (x) =
1
2

ln
∣∣x2 + 2x− 3

∣∣ , we get

−4∫
ω

x + 1
x2 + 2x− 3

dx =

[
1
2

ln
∣∣∣x2 + 2x− 3

∣∣∣]−4

ω

=

=
1
2

(
ln
∣∣∣(−4)2 + 2 · (−4)− 3

∣∣∣− ln
∣∣∣(ω)2 + 2 · (ω)− 3

∣∣∣) =

=
1
2

(
ln 5− ln

∣∣∣(ω)2 + 2 · (ω)− 3
∣∣∣).

Finally, we evaluate the limit, that is
−4∫
−∞

x + 1
x2 + 2x− 3

dx = lim
ω→−∞

−4∫
ω

x + 1
x2 + 2x− 3

dx =

= lim
ω→−∞

(
1
2

(
ln 5− ln

∣∣∣(ω)2 + 2 · (ω)− 3
∣∣∣)) = −∞.

So the improper integral is infinite (divergent).
Back to Exercise 7.6 1
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Step-by-Step Solution

Calculate the following improper integral.
−4∫
−∞

7
x2 + 2x− 3

dx.

Solution 8.7.47 As
7

x2 + 2x− 3
=

7
(x + 3) (x− 1)

=
7/4

x− 1
− 7/4

x + 3
,

and ∫ 7
x2 + 2x− 3

dx =
7
4

∫ 1
x− 1

dx− 7
4

∫ 1
x + 3

dx =

=
7
4
(ln |x− 1| − ln |x + 3| ) + C =

7
4

ln
∣∣∣∣x− 1
x + 3

∣∣∣∣+ C,

we get
−4∫
−∞

7
x2 + 2x− 3

dx = lim
ω→−∞

−4∫
ω

7
x2 + 2x− 3

dx =

=
7
4

lim
ω→−∞

[
ln
∣∣∣∣x− 1
x + 3

∣∣∣∣]−4

ω

=

=
7
4

lim
ω→−∞

(
ln
∣∣∣∣−4− 1
−4 + 3

∣∣∣∣− ln
∣∣∣∣ω− 1
ω + 3

∣∣∣∣) =

=
7
4
(ln 5− ln 1) =

7
4
· ln 5 ≈ 2.8165.

See also Excercise 7.9 1.
Back to Exercise 7.6 2

Step-by-Step Solution

Calculate the following improper integral.
∞∫
√

2

2x− 3
x2 + 1

dx.

Solution 8.7.48 As∫ 2x− 3
x2 + 1

dx =
∫ 2x

x2 + 1
dx−

∫ 3
x2 + 1

dx = ln
(

x2 + 1
)
− 3 arctan (x) + C,
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we get

∞∫
√

2

2x− 3
x2 + 1

dx = lim
ω→∞

 ω∫
√

2

2x− 3
x2 + 1

dx

 = lim
ω→∞

[
ln
(

x2 + 1
)
− 3 arctan (x)

]ω
√

2
=

= lim
ω→∞

[(
ln
(

ω2 + 1
)
− 3 arctan (ω)

)]
−

− lim
ω→∞

[(
ln
((√

2
)2

+ 1
)
− 3 arctan

(√
2
))]

=

= ∞− 3 · π

2
− ln (3) + 3 arctan

(√
2
)
= ∞.

So the improper integral is infinite (divergent).
Back to Exercise 7.6 3

Step-by-Step Solution

Calculate the following improper integral.
∞∫

0

e−x dx

Solution 8.7.49
∞∫

0

e−x dx = lim
ω→∞

 ω∫
0

e−x dx

 = lim
ω→∞

[
e−x

−1

]ω

0
=

= − lim
ω→∞

(
e−ω − e−0

)
= − (0− 1) = 1.

Back to Exercise 7.6 4

Step-by-Step Solution

Calculate the following improper integral.
∞∫

0

2
ex + e−x dx.

Solution 8.7.50 We use Theorem 6.5 and make the substitution

ex = t.

Then
x = ln (t) ,
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and
dx
dt

=
1
t

.

This allows us to change variable from x to t, that is∫ 2
ex + e−x dx =

∫ 2
t + 1

t
· 1

t
dt = 2

∫ 1
t2 + 1

dt =

= 2 arctan (t) + C = 2 arctan (ex) + C.

This follows
∞∫

0

2
ex + e−x dx = lim

ω→∞

ω∫
0

2
ex + e−x dx = 2 lim

ω→∞
[arctan (ex) ]ω0 =

= 2
[π

2
− arctan (1)

]
= 2 · π

4
=

π

2
≈ 1.5708.

Back to Exercise 7.6 5

Step-by-Step Solution

Calculate the following improper integral.
∞∫

1

1
x3 · exp

(
−1
x2

)
dx.

Solution 8.7.51 Since (
−1
x2

)′
=

2
x3 ,

we have ∫ 1
x3 · exp

(
−1
x2

)
dx =

1
2

exp
(
−1
x2

)
+ C.

This follows
∞∫

1

1
x3 · exp

(
−1
x2

)
dx = lim

ω→∞

 ω∫
1

1
x3 · exp

(
−1
x2

)
dx

 = lim
ω→∞

[
1
2

exp
(
−1
x2

)]ω

1
=

=
1
2

lim
ω→∞

[
exp

(
−1
ω2

)
− exp (−1)

]
=

=
1
2
(exp (0)− exp (−1)) =

1
2

(
1− 1

e

)
=

e− 1
2e

.

Back to Exercise 7.6 6
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Step-by-Step Solution

Calculate the following improper integral.
∞∫

1

dx
arctan (x) · (x2 + 1)

.

Solution 8.7.52 Since

arctan′ (x) =
1

x2 + 1
,

we have∫ dx
arctan (x) · (x2 + 1)

=
∫ 1

arctan (x)
· 1

x2 + 1
dx = ln |arctan (x)|+ C.

This follows
∞∫

1

dx
arctan (x) · (x2 + 1)

= lim
ω→∞

ω∫
1

dx
arctan (x) · (x2 + 1)

= lim
ω→∞

[ln |arctan (x)| ]ω1 =

= lim
ω→∞

[ln |arctan (ω)| − ln |arctan (1)|] =

= ln
π

2
− ln

π

4
= ln 2 ≈ 0.69315.

Back to Exercise 7.6 7

Step-by-Step Solution

Calculate the following improper integral.
7∫

−∞

1
x2 + 2x + 10

dx.

Solution 8.7.53 As∫ 1
x2 + 2x + 10

dx =
∫ 1

(x + 1)2 + 9
dx =

=
1
9

∫ 1
(x+1)2

9 + 1
dx =

1
9

∫ 1(
x+1

3

)2
+ 1

dx =

=
1
9
·

arctan
(

x+1
3

)
1/3

+ C =
3
9
· arctan

(
x + 1

3

)
+ C,
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Solutions 8

we have
7∫

−∞

1
x2 + 2x + 10

dx = lim
ω→−∞

7∫
ω

1
x2 + 2x + 10

dx =
1
3

lim
ω→−∞

[
arctan

(
x + 1

3

)]7

ω

=

=
1
3

lim
ω→−∞

[
arctan

(
8
3

)
− arctan

(
ω + 1

3

)]
=

=
1
3

(
arctan

(
8
3

)
−
(
−π

2

))
=

=
1
3

arctan
(

8
3

)
+

π

6
≈ 0.92761.

Back to Exercise 7.6 8

Step-by-Step Solution

Calculate the following improper integral.
∞∫

0

1
x2 + 4x + 6

dx.

Solution 8.7.54 As∫ 1
x2 + 4x + 6

dx =
∫ 1

(x + 2)2 + 2
dx =

1
2

∫ 1
(x+2)2

2 + 1
dx =

=
1
2

∫ 1(
x+2√

2

)2
+ 1

dx =
1
2

arctan
(

x+2√
2

)
1/
√

2
+ C =

=

√
2

2
· arctan

(
x + 2√

2

)
+ C,

we have
∞∫

0

1
x2 + 4x + 6

dx = lim
ω→∞

ω∫
0

1
x2 + 4x + 6

dx =

√
2

2
lim

ω→∞

[
arctan

(
x + 2√

2

)]ω

0
=

=

√
2

2
lim

ω→∞

(
arctan

(
ω + 2√

2

)
− arctan

(
2√
2

))
=

=

√
2

2

(π

2
− arctan

(√
2
))

≈ 0.43521.

Back to Exercise 7.6 9
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8 Solutions

Step-by-Step Solution

Calculate the following improper integral.
∞∫
−∞

1
x2 + 4x + 8

dx,

Solution 8.7.55 As∫ 1
x2 + 4x + 8

dx =
∫ 1

(x + 2)2 + 4
dx =

1
4

∫ 1
(x+2)2

4 + 1
dx =

=
1
4

∫ 1( x+2
2

)2
+ 1

dx =
1
4

arctan
( x+2

2

)
1/2

+ C =

=
2
4

arctan
(

x + 2
2

)
+ C,

we have
∞∫
−∞

1
x2 + 4x + 8

dx =

a∫
−∞

1
x2 + 4x + 8

dx +

∞∫
a

1
x2 + 4x + 8

dx =

= lim
ω→−∞

a∫
ω

1
x2 + 4x + 8

dx + lim
ω→∞

ω∫
a

1
x2 + 4x + 8

dx =

=
1
2

lim
ω→−∞

[
arctan

(
x + 2

2

)]a

ω

+
1
2

lim
ω→∞

[
arctan

(
x + 2

2

)]ω

a
=

=
1
2

lim
ω→−∞

[
arctan

(
a + 2

2

)
− arctan

(
ω + 2

2

)]
+

+
1
2

lim
ω→∞

[
arctan

(
ω + 2

2

)
− arctan

(
a + 2

2

)]
=

=
1
2

arctan
(

a + 2
2

)
− 1

2
· −π

2
+

+
1
2
· π

2
− 1

2
arctan

(
a + 2

2

)
=

π

2
≈ 1.5708,

where a ∈ R is any fixed number.
Back to Exercise 7.7 1

390



Solutions 8

Step-by-Step Solution

Calculate the following improper integral.
∞∫
−∞

1
x2 + 2x + 5

,

Solution 8.7.56 First we evaluate the indefinite integral, that is∫ 1
x2 + 2x + 5

dx =
∫ 1

(x + 1)2 + 4
dx =

1
4
·
∫ 1

(x+1)2

4 + 1
dx =

=
1
4
·

arctan
(

x+1
2

)
1
2

+ C =
1
2
· arctan

(
x + 1

2

)
+ C.

From this, we have (choosing c = 3 in Theorem 7.7.1)
+∞∫
−∞

1
x2 + 2x + 5

dx =

3∫
−∞

1
x2 + 2x + 5

dx +

+∞∫
3

1
x2 + 2x + 5

dx =

= lim
ω→−∞

3∫
ω

1
x2 + 2x + 5

dx + lim
ω→∞

ω∫
3

1
x2 + 2x + 5

dx =

=
1
2

lim
ω→−∞

[
arctan

(
x + 1

2

)]3

ω

+
1
2

lim
ω→∞

[
arctan

(
x + 1

2

)]ω

3
=

=
1
2

lim
ω→−∞

[
arctan

(
3 + 1

2

)
− arctan

(
ω + 1

2

)]
+

+
1
2

lim
ω→∞

[
arctan

(
ω + 1

2

)
− arctan

(
3 + 1

2

)]
=

=
1
2

(
arctan (2)−

(
−π

2

))
+

1
2

(π

2
− arctan (2)

)
=

π

2
.

Back to Exercise 7.7 2
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8 Solutions

Step-by-Step Solution

Calculate the following improper integral.
∞∫
−∞

arctan (x)
x2 + 1

dx,

Solution 8.7.57 Observe, that

arctan (x)
x2 + 1

= arctan (x) · arctan′ (x) ,

so ∫ arctan (x)
x2 + 1

dx =
arctan2 (x)

2
+ C.

Choosing c = 3 in Theorem 7.7.1, we obtain
∞∫
−∞

arctan (x)
x2 + 1

dx =

3∫
−∞

arctan (x)
x2 + 1

dx +

+∞∫
3

arctan (x)
x2 + 1

dx =

= lim
ω→−∞

3∫
ω

arctan (x)
x2 + 1

dx + lim
ω→∞

ω∫
3

arctan (x)
x2 + 1

dx =

=
1
2

lim
ω→−∞

[
arctan2 (x)

]3

ω
+

1
2

lim
ω→∞

[
arctan2 (x)

]ω

3
=

=
1
2

[
arctan2 (3)−

(
−π

2

)2
]
+

1
2

[(π

2

)2
− arctan2 (3)

]
= 0.

Back to Exercise 7.7 3

Step-by-Step Solution

Calculate the following improper integral.
+∞∫
−∞

8a3

x2 + 4a2 dx.

Solution 8.7.58 First we evaluate the indefinite integral, that is∫ 8a3

x2 + 4a2 dx =
8a3

4a2

∫ 1( x
2a
)2

+ 1
dx =

8a3

4a2 ·
arctan

( x
2a
)

1/ (2a)
+ C =

=
8a3

4a2 · 2a · arctan
( x

2a

)
+ C = 4a2 · arctan

( x
2a

)
+ C.
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Solutions 8

For each a ∈ R

fa (x) =
8a3

x2 + 4a2

is even (symmetric to the y axis, i.e. f (−x) = f (x) for all x ∈ R). So choosing c = 0 in
Theorem 7.7.1, we obtain

+∞∫
−∞

8a3

x2 + 4a2 dx = 2 ·
+∞∫
0

8a3

x2 + 4a2 dx = 2 · lim
ω→∞

ω∫
0

8a3

x2 + 4a2 dx =

= 2 · 4a2 · lim
ω→∞

[
arctan

( x
2a

)]ω

0
=

= 8a2 · lim
ω→∞

[
arctan

(ω

2a

)
− arctan (0)

]
=

= 8a2 ·
(π

2
− 0
)
= 4πa2.

Back to Exercise 7.7 4

8.7.4 Integrating Discontinuous Functions

Step-by-Step Solution

Calculate the following improper integral. Find all the points in the interval where
the function is discontinuous.

1∫
0

2x
1− x2 dx.

Solution 8.7.59 First, we evaluate the indefinite integral, that is∫ 2x
1− x2 dx = −

∫ −2x
1− x2 = − ln

∣∣∣1− x2
∣∣∣+ C.

As function

f (x) =
2x

1− x2

is continuous on all intervals [a, b] & (−1, 1), i.e. for −1 < a < b < 1, the value of the
improper integral is

1∫
0

2x
1− x2 dx = lim

ω→1−

ω∫
0

2x
1− x2 dx = lim

ω→1−

[
− ln

∣∣∣1− x2
∣∣∣ ]ω

0

= lim
ω→1−

[
− ln

∣∣∣1−ω2
∣∣∣+ ln |1|

]
= − (−∞) + 0 = ∞.

Back to Exercise 7.8 1
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8 Solutions

Step-by-Step Solution

Calculate the following improper integral. Find all the points in the interval where
the function is discontinuous.

1∫
0

ex + 1
e2x − 1

dx.

Solution 8.7.60 We use Theorem 6.5 and make the substitution

ex = t.

Then
x = ln (t) ,

and
dx
dt

=
1
t

.

This allows us to change variable from x to t, that is∫ ex + 1
e2x − 1

dx =
∫ t + 1

t2 − 1
· 1

t
dt =

∫ t + 1
(t− 1) (t + 1)

· 1
t

dt =
∫ 1

(t− 1) t
d =

=
∫ 1

t− 1
− 1

t
dt = ln |t− 1| − ln |t|+ C = ln

∣∣∣∣ t− 1
t

∣∣∣∣+ C =

= ln
∣∣∣∣1− 1

t

∣∣∣∣+ C = ln
∣∣∣∣1− 1

ex

∣∣∣∣+ C.

As function

f (x) =
ex + 1
e2x − 1

is defined ("meaningful", i.e. can be computed) and continuous for all 0 < x ≤ 1, we have
1∫

0

ex + 1
e2x − 1

dx = lim
ω→0+

1∫
ω

ex + 1
e2x − 1

dx = lim
ω→0+

[
ln
∣∣∣∣1− 1

ex

∣∣∣∣]1

x=ω

= lim
ω→0+

[
ln
∣∣∣∣1− 1

e

∣∣∣∣− ln
∣∣∣∣1− 1

eω

∣∣∣∣] = [ln
(

1− 1
e

)
− (−∞)

]
= ∞,

i.e. the improper integral is divergent.
Back to Exercise 7.8 2
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Solutions 8

Step-by-Step Solution

Calculate the following improper integral. Find all the points in the interval where
the function is discontinuous.

1∫
0

ln (x)
2
√

x
dx.

Solution 8.7.61 We use Theorem 6.4 to evaluate the indefinite integral, that is∫ ln (x)
2
√

x
dx =

∫ 1
2
√

x
· ln (x) dx =

√
x · ln (x)−

∫ √
x · 1

x
dx =

=
√

x · ln (x)− 2
∫ 1

2
√

x
dx =

√
x · ln (x)− 2

√
x + C =

=
√

x · (ln (x)− 2) + C.

As function

f (x) =
ln (x)
2
√

x
is continuous for 0 < x ≤ 1, we get

1∫
0

ln (x)
2
√

x
dx = lim

ω→0+

1∫
ω

ln (x)
2
√

x
dx = lim

ω→0+

[√
x · (ln (x)− 2)

]1
ω
=

= lim
ω→0+

[√
1 · (ln (1)− 2)−

√
ω · (ln (ω)− 2)

]
=

= −2− lim
ω→0+

√
ω · ln (ω) + 0.

For this latter limit, we use L’Hospital’s rule, that is

lim
ω→0+

√
ω · ln (ω) = lim

ω→0+

ln (ω)

ω−1/2 = lim
ω→0+

1
ω

−1
2 ω−3/2

=

= 2 lim
ω→0+

ω−1+3/2 = −2 lim
ω→0+

√
ω = 0;

i.e. the final result is
1∫

0

ln (x)
2
√

x
dx = −2 + 0 = −2.

Back to Exercise 7.8 3
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8 Solutions

Step-by-Step Solution

Calculate the following improper integral. Find all the points in the interval where
the function is discontinuous.

1∫
0

ln (x)
x3 dx.

Solution 8.7.62 We use Theorem 6.4 to evaluate the indefinite integral, that is∫ ln (x)
x3 dx =

∫
x−3 · ln (x) dx =

x−2

−2
· ln (x)−

∫ x−2

−2
· 1

x
dx =

=
x−2

−2
· ln (x) +

1
2

∫
x−3 dx =

x−2

−2
· ln (x) +

1
2
· x−2

−2
+ C =

= =
x−2

−2
·
(

ln (x) +
1
2

)
+ C.

As function

f (x) =
ln (x)

x3

is continuous for 0 < x ≤ 1, we get
1∫

0

ln (x)
x3 dx = lim

ω→0+

1∫
ω

ln (x)
x3 dx = lim

ω→0+

[
x−2

−2
·
(

ln (x) +
1
2

)]1

ω

=

= lim
ω→0+

[
1−2

−2
·
(

ln (1) +
1
2

)
− ω−2

−2
·
(

ln (ω) +
1
2

)]
=

=
−1
4

+ lim
ω→0+

[
−ω−2

−2
·
(

ln (1) +
1
2

)
− ω−2

−2
·
(

ln (ω) +
1
2

)]
.

Since
lim

ω→0+
ω−2 = +∞

and
lim

ω→0+
ln (ω) = −∞,

the final answer is
1∫

0

ln (x)
x3 dx = −∞.

Back to Exercise 7.8 4
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Solutions 8

Step-by-Step Solution

Calculate the following improper integral. Find all the points in the interval where
the function is discontinuous.

1∫
0

ln (x)
3
√

x
dx.

Solution 8.7.63 We use Theorem 6.4 to evaluate the indefinite integral, that is∫ ln (x)
3
√

x
dx =

∫
x−1/3 · ln (x) dx =

3
2

x2/3 · ln (x)−
∫ 3

2
x2/3 · 1

x
dx =

=
3
2

x2/3 · ln (x)− 3
2

∫
x−1/3 dx =

3
2

x2/3 · ln (x)− 3
2
· 3

2
x2/3 + C =

=
3
2

x2/3 ·
(

ln (x)− 3
2

)
+ C.

As function

f (x) =
ln (x)

3
√

x
is continuous for 0 < x ≤ 1, we get

1∫
0

ln (x)
3
√

x
dx = lim

ω→0+

1∫
ω

ln (x)
3
√

x
dx =

3
2

lim
ω→0+

[
x2/3 ·

(
ln (x)− 3

2

)]1

ω

=

= lim
ω→0+

[√
1 · (ln (1)− 2)−

√
ω · (ln (ω)− 2)

]
=

=
3
2

lim
ω→0+

[
12/3 ·

(
ln (1)− 3

2

)
−ω2/3 ·

(
ln (ω)− 3

2

)]
=

= −
(

3
2

)2

+ lim
ω→0+

(
ω2/3 · ln (ω)

)
+ 0.

For this latter limit, we use L’Hospital’s rule, that is

lim
ω→0+

ω2/3 · ln (ω) = lim
ω→0+

ln (ω)

ω−2/3 = lim
ω→0+

1
ω

ω−5/3 =
−2
3

lim
ω→0+

ω5/3−1 =

=
−2
3

lim
ω→0+

ω2/3 = 0;

i.e. the final result is
1∫

0

ln (x)
3
√

x
dx = −

(
3
2

)2

+ 0 = −9
4

.

Back to Exercise 7.8 5
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8 Solutions

Step-by-Step Solution

Calculate the following improper integral. Find all the points in the interval where
the function is discontinuous.

1∫
0

1
x · ln2 (x)

dx.

Solution 8.7.64 Observe, that
1
x
= (ln (x))′ ,

so ∫ 1
x · ln2 (x)

dx =
∫ 1

x
· ln−2 (x) dx =

(ln (x))−1

−1
+ C =

−1
ln (x)

+ C.

Function
f (x) =

1
x · ln2 (x)

is continuous for all x such that 0 < x < 1, however this means that we have to calculate
limits at both ends of the interval (0, 1), so we have to cut this interval at an intermediate
place c (e.g. c = 1

2 ).
So

1∫
0

1
x · ln2 (x)

dx =

c∫
0

1
x · ln2 (x)

dx +

1∫
c

1
x · ln2 (x)

dx.

c∫
0

1
x · ln2 (x)

dx = lim
ω→0+

c∫
ω

1
x · ln2 (x)

dx = lim
ω→0+

[
−1

ln (x)

]c

ω

=

= lim
ω→0+

[
−1

ln (c)
− −1

ln (ω)

]
=
−1

ln (c)
− 0 =

−1
ln (c)

.

1∫
c

1
x · ln2 (x)

dx = lim
ω→1−

ω∫
c

1
x · ln2 (x)

dx = lim
ω→1−

[
−1

ln (x)

]ω

c
=

= lim
ω→1−

[
−1

ln (ω)
− −1

ln (c)

]
= +∞.

This means, that the improper integral
1∫

0

1
x · ln2 (x)

dx =
−1

ln (c)
+ ∞ = ∞

is divergent.
Back to Exercise 7.8 6
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Solutions 8

Step-by-Step Solution

Calculate the following improper integral. Find all the points in the interval where
the function is discontinuous.

1∫
0

1√
x− 1

dx.

Solution 8.7.65 First, we evaluate the indefinite integral. For this, we use the substitu-
tion

√
x = t,

x = t2,

dx
dt

= 2t.

This follows∫ 1√
x− 1

dx =
∫ 1

t− 1
· 2t dt = 2

∫ t− 1 + 1
t− 1

dt = 2
∫ (

1 +
1

t− 1

)
dt =

= = 2 (t + ln |t− 1|) + C = 2
(√

x + ln
∣∣√x− 1

∣∣)+ C.

As function

f (x) =
1√

x− 1

is continuous for all 0 ≤ x < 1, we have to calculate
1∫

0

1√
x− 1

dx = lim
ω→1−

ω∫
0

1√
x− 1

dx = 2 lim
ω→1−

[√
x + ln

∣∣√x− 1
∣∣ ]ω

0 =

= 2 lim
ω→1−

[(√
ω + ln

∣∣√ω− 1
∣∣)− (√0 + ln

∣∣∣√0− 1
∣∣∣) ] =

= 2 ·
[(√

1−∞
)
− (0 + 0)

]
= −∞,

which means that the improper integral is divergent.
Back to Exercise 7.8 7
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8 Solutions

Step-by-Step Solution

Calculate the following improper integral. Find all the points in the interval where
the function is discontinuous.

2∫
1

1√
x− 1

dx.

Solution 8.7.66 First, we evaluate the indefinite integral.∫ 1√
x− 1

dx = 2
∫ 1

2
√

x− 1
dx = 2

√
x− 1 + C.

1 2

y = 1√
x−1

x

y

As function

f (x) =
1√

x− 1
is continuous for all 1 < x ≤ 2, we have to calculate

2∫
1

1√
x− 1

dx = lim
ω→1+

2∫
ω

1√
x− 1

dx = 2 lim
ω→1+

[√
x− 1

]2

ω
=

= 2 lim
ω→1+

[√
2− 1−

√
ω− 1

]
= 2 · 1 = 2.

Back to Exercise 7.8 8

Step-by-Step Solution

Calculate the following improper integral. Find all the points in the interval where
the function is discontinuous.

9∫
0

1√
x · (x− 9)

dx.

Solution 8.7.67 First, we evaluate the indefinite integral. For this, we use the substitu-
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Solutions 8

tion
√

x = t,

x = t2,

dx
dt

= 2t.

This follows∫ 1√
x · (x− 9)

dx =
∫ 2t

t · (t2 − 9)
dt = 2

∫ 1
t2 − 9

dt =

= 2
∫ ( 1/6

t− 3
− 1/6

t + 3

)
dt =

2
6
(ln |t− 3| − ln |t + 3| ) + C =

=
2
6
(
ln
∣∣√x− 3

∣∣− ln
∣∣√x + 3

∣∣ )+ C.

Function
f (x) =

1√
x · (x− 9)

0 < x < 9, however this means that we have to calculate limits at both ends of the

interval (0, 9), so we have to cut this interval at an intermediate place c (e.g. c =
9
2

).

9∫
0

1√
x · (x− 9)

dx =

c∫
0

1√
x · (x− 9)

dx +

9∫
c

1√
x · (x− 9)

dx.

So
c∫

0

1√
x · (x− 9)

dx = lim
ω→0+

c∫
ω

1√
x · (x− 9)

dx =

=
2
6

lim
ω→0+

[
ln
∣∣√x− 3

∣∣− ln
∣∣√x + 3

∣∣ ]c
ω
=

=
2
6

lim
ω→0+

(
ln
∣∣√c− 3

∣∣− ln
∣∣√c + 3

∣∣)−
− 2

6
lim

ω→0+

(
ln
∣∣√ω− 3

∣∣− ln
∣∣√ω + 3

∣∣) =
=

2
6
[(

ln
∣∣√c− 3

∣∣− ln
∣∣√c + 3

∣∣)− (ln 3− ln 3)
]
=

=
2
6
(
ln
∣∣√c− 3

∣∣− ln
∣∣√c + 3

∣∣),
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8 Solutions

and
9∫

c

1√
x · (x− 9)

dx = lim
ω→9−

ω∫
c

1√
x · (x− 9)

dx =

=
2
6

lim
ω→9−

[
ln
∣∣√x− 3

∣∣− ln
∣∣√x + 3

∣∣ ]ω

c =

=
2
6

lim
ω→9−

(
ln
∣∣√ω− 3

∣∣− ln
∣∣√ω + 3

∣∣)−
− 2

6
lim

ω→9−

(
ln
∣∣√c− 3

∣∣− ln
∣∣√c + 3

∣∣) =
=

2
6
[
(−∞− ln 6)−

(
ln
∣∣√c− 3

∣∣− ln
∣∣√c + 3

∣∣)] =
= −∞.

This means, that the improper integral
9∫

0

1√
x · (x− 9)

dx =
2
6
(
ln
∣∣√c− 3

∣∣− ln
∣∣√c + 3

∣∣)−∞ = −∞

is divergent.
Back to Exercise 7.8 9

Step-by-Step Solution

Calculate the following improper integral. Find all the points in the interval where
the function is discontinuous.

0∫
−2

−x2 + x− 3
(x2 + 5) (x + 2)

dx.

Solution 8.7.68 As
−x2 + x− 3

(x2 + 5) (x + 2)
=

1
x2 + 5

− 1
x + 2

,

we get ∫ −x2 + x− 3
(x2 + 5) (x + 2)

dx =
∫ ( 1

x2 + 5
− 1

x + 2

)
dx.

First we evaluate the indefinite integrals. Since

∫ 1
x2 + 5

dx =
1
5

∫ 1(
x√
5

)2
+ 1

dx =
1
5

arctan
(

x/
√

5
)

1/
√

5
+C =

√
5

5
arctan

(
x√
5

)
+C,
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so ∫ ( 1
x2 + 5

− 1
x + 2

)
dx =

√
5

5
arctan

(
x√
5

)
− ln |x + 2|+ C.

As function

f (x) =
−x2 + x− 3

(x2 + 5) (x + 2)

is continuous for −2 < x ≤ 0, we get
0∫
−2

−x2 + x− 3
(x2 + 5) (x + 2)

dx = lim
ω→−2+

0∫
ω

−x2 + x− 3
(x2 + 5) (x + 2)

dx =

= lim
ω→−2+

[√
5

5
arctan

(
x√
5

)
− ln |x + 2|

]0

ω

=

= lim
ω→−2+

(√
5

5
arctan

(
0√
5

)
− ln |0 + 2|

)
−

− lim
ω→−2+

(√
5

5
arctan

(
ω√

5

)
− ln |ω + 2|

)
=

= (0− ln 2)−
(√

5
5

arctan
(
−2√

5

)
− (−∞)

)
= −∞.

So the improper integral is divergent.
Back to Exercise 7.8 10

Step-by-Step Solution

Calculate the following improper integral. Find all the points in the interval where
the function is discontinuous.

0∫
−1

x2 − x + 1
(x2 + 2) (x + 1)

dx.

Solution 8.7.69 Similarly to the previous exercise

x2 − x + 1
(x2 + 2) (x + 1)

=
1

x + 1
− 1

x2 + 2
,

and ∫ x2 − x + 1
(x2 + 2) (x + 1)

dx =
∫ ( 1

x + 1
− 1

x2 + 2

)
dx.
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This follows∫ ( 1
x + 1

− 1
x2 + 2

)
dx = ln |x + 1| −

√
5

5
arctan

(
x√
5

)
+ C.

As function

f (x) =
x2 − x + 1

(x2 + 2) (x + 1)

is continuous for −1 < x ≤ 0, we get
0∫
−1

x2 − x + 1
(x2 + 2) (x + 1)

dx = lim
ω→−1+

0∫
ω

x2 − x + 1
(x2 + 2) (x + 1)

dx =

= lim
ω→−1+

[
ln |x + 1| −

√
5

5
arctan

(
x√
5

)]0

ω

=

= lim
ω→−1+

(
ln |0 + 1| −

√
5

5
arctan

(
0√
5

))
−

− lim
ω→−1+

(
ln |ω + 1| −

√
5

5
arctan

(
ω√

5

))
=

= (0− 0)−
(
−∞−

√
5

5
arctan

(
−1√

5

))
= ∞.

Back to Exercise 7.8 11

Step-by-Step Solution

Calculate the following improper integral. Find all the points in the interval where
the function is discontinuous.

5∫
0

3x
x2 − x− 2

dx.

Solution 8.7.70 As

x2 − x− 2 = 0⇐⇒ x1 = −1 and x2 = 2,

so
3x

x2 − x− 2
=

3x
(x + 1) (x− 2)

=
1

x + 1
+

2
x− 2

.

This follows∫ 3x
x2 − x− 2

dx =
∫ 1

x + 1
+

2
x− 2

dx = ln |x + 1|+ 2 ln |x− 2|+ C.
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However,
f (x) =

3x
x2 − x− 2

does not exist at x2, which is an internal point of interval [0, 3].
Since f (x) is continuous for all other points in [0, 3], the improper integral is

5∫
0

3x
x2 − x− 2

dx =

2∫
0

3x
x2 − x− 2

dx +

5∫
2

3x
x2 − x− 2

dx,

where
2∫

0

3x
x2 − x− 2

dx = lim
ω→2−

ω∫
0

3x
x2 − x− 2

dx = lim
ω→2−

[ln |x + 1|+ 2 ln |x− 2| ]ω0 =

= lim
ω→2−

[(ln |ω + 1|+ 2 ln |ω− 2|)− (ln |0 + 1|+ 2 ln |0− 2|)] =

= [(ln (3)−∞)− (0 + 2 ln (2))] = −∞,

and (though the following, second term is useles to calculate since the first is divergent)
5∫

2

3x
x2 − x− 2

dx = lim
ω→2+

5∫
ω

3x
x2 − x− 2

dx = lim
ω→2+

[ln |x + 1|+ 2 ln |x− 2| ]5ω =

= lim
ω→2+

[(ln |5 + 1|+ 2 ln |5− 2|)− (ln |ω + 1|+ 2 ln |ω− 2|)] =

= [(ln (6) + 2 ln (3))− (ln (3)−∞)] = ∞,

Since both improper integrals are divergent, the original integral
5∫

0

3x
x2 − x− 2

dx

is ("twice") divergent.

Remark 8.7.1 Let us highlight that −∞ + ∞ 6= 0 , so, despite to the above calculations,
we can not write

5∫
0

3x
x2 − x− 2

dx =

2∫
0

3x
x2 − x− 2

dx+
5∫

2

3x
x2 − x− 2

dx = −∞+∞ 6= 0 ( FALSE! )

Moreover, if the disturbating point x2 = 2 is not detected, the automatic Newton-Leibniz
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Rule would give the wrong result

5∫
0

3x
x2 − x− 2

dx = [ln |x + 1|+ 2 ln |x− 2| ]50 =

= (ln |5 + 1|+ 2 ln |5− 2|)− (ln |0 + 1|+ 2 ln |0− 2|) =

= ln (6) + 2 ln (3)− 2 ln (2) = ln
(

6 · 32

22

)
(FALSE!).

Back to Exercise 7.8 12

Step-by-Step Solution

Calculate the following improper integrals. Be aware of the critical inner points,
too!

0∫
−∞

7
x2 + 2x− 3

dx.

Solution 8.7.71 Recall from Exercise 7.6 2 that∫ 7
x2 + 2x− 3

dx =
7
4

ln
∣∣∣∣x− 1
x + 3

∣∣∣∣+ C.

Observe that
x2 + 2x− 3 = 0⇐⇒ x1 = −3 and x2 = 1,

which means that the integral
0∫

−∞

7
x2 + 2x− 3

dx

has problems at −∞ and at x1 = −3. So we have to cut this interval at an intermediate
place c (e.g. c = −4)

0∫
−∞

7
x2 + 2x− 3

dx =

c∫
−∞

7
x2 + 2x− 3

dx +

−3∫
c

7
x2 + 2x− 3

dx +

0∫
−3

7
x2 + 2x− 3

dx.

c∫
−∞

7
x2 + 2x− 3

dx = lim
ω→−∞

c∫
ω

7
x2 + 2x− 3

dx =
7
4

lim
ω→−∞

[
ln
∣∣∣∣x− 1
x + 3

∣∣∣∣]c

ω

=
7
4

lim
ω→−∞

(
ln
∣∣∣∣ c− 1
c + 3

∣∣∣∣− ln
∣∣∣∣ω− 1
ω + 3

∣∣∣∣) =

=
7
4

(
ln
∣∣∣∣ c− 1
c + 3

∣∣∣∣− ln (1)
)
=

7
4

ln
∣∣∣∣ c− 1
c + 3

∣∣∣∣.
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−3∫
c

7
x2 + 2x− 3

dx = lim
ω→−3−

ω∫
c

7
x2 + 2x− 3

dx =
7
4

lim
ω→−3−

[
ln
∣∣∣∣x− 1
x + 3

∣∣∣∣]ω

c

=
7
4

lim
ω→−3−

(
ln
∣∣∣∣ω− 1
ω + 3

∣∣∣∣− ln
∣∣∣∣ c− 1
c + 3

∣∣∣∣) =

=
7
4

(
ln ”∞”− ln

∣∣∣∣ c− 1
c + 3

∣∣∣∣) = ∞.

0∫
−3

7
x2 + 2x− 3

dx = lim
ω→−3+

0∫
ω

7
x2 + 2x− 3

dx =
7
4

lim
ω→−3+

[
ln
∣∣∣∣x− 1
x + 3

∣∣∣∣]0

ω

=
7
4

lim
ω→−3+

(
ln
∣∣∣∣0− 1
0 + 3

∣∣∣∣− ln
∣∣∣∣ω− 1
ω + 3

∣∣∣∣) =

=
7
4

lim
ω→−3+

(
ln
(

1
3

)
− ln ”∞”

)
= −∞.

That is, the integral
0∫

−∞

7
x2 + 2x− 3

dx =
7
4

ln
∣∣∣∣ c− 1
c + 3

∣∣∣∣+ ∞−∞

is ("twice") divergent.
Back to Exercise 7.9 1

Step-by-Step Solution

Calculate the following improper integrals. Be aware of the critical inner points,
too!

∞∫
−∞

1
x2 + x

dx.

Solution 8.7.72 Since
1

x2 + x
=

1
x (x + 1)

=
1
x
− 1

x + 1
,

the primitive function is∫ 1
x2 + x

dx =
∫ 1

x
− 1

x + 1
dx = ln |x| − ln |x + 1|+ C = ln

∣∣∣∣ x
x + 1

∣∣∣∣+ C.

As function

f (x) =
1

x2 + x
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has discontinuities at the points x1 = −1 and x2 = 0, we we have to cut this interval at
two intermediate places (one can choose e.g. c1 = −2, c2 = −0.5 and c3 = 3).

∞∫
−∞

1
x2 + x

dx =

c1∫
−∞

1
x2 + x

dx +

−1∫
c1

1
x2 + x

dx +

c2∫
−1

1
x2 + x

dx +

+

0∫
c2

1
x2 + x

dx +

c3∫
0

1
x2 + x

dx +

∞∫
c3

1
x2 + x

dx.

In detail,
c1∫
−∞

1
x2 + x

dx = lim
ω→−∞

[
ln
∣∣∣∣ x
x + 1

∣∣∣∣]c1

ω

= lim
ω→−∞

[
ln
∣∣∣∣ c1

c1 + 1

∣∣∣∣− ln
∣∣∣∣ ω

ω + 1

∣∣∣∣] =
= ln

∣∣∣∣ c1

c1 + 1

∣∣∣∣− ln (1) = ln
∣∣∣∣ c1

c1 + 1

∣∣∣∣.
−1∫

c1

1
x2 + x

dx = lim
ω→−1−

[
ln
∣∣∣∣ x
x + 1

∣∣∣∣]ω

c1

= lim
ω→−1−

[
ln
∣∣∣∣ ω

ω + 1

∣∣∣∣− ln
∣∣∣∣ c1

c1 + 1

∣∣∣∣] =
= ln ”∞”− ln

∣∣∣∣ c1

c1 + 1

∣∣∣∣ = ∞.

From this point we know, that the original integral
∞∫
−∞

1
x2+x dx is divergent, but we demon-

strate the further calculations, too.
c2∫
−1

1
x2 + x

dx = lim
ω→−1+

[
ln
∣∣∣∣ x
x + 1

∣∣∣∣]c2

ω

= lim
ω→−1+

[
ln
∣∣∣∣ c2

c2 + 1

∣∣∣∣− ln
∣∣∣∣ ω

ω + 1

∣∣∣∣] =
= ln

∣∣∣∣ c2

c2 + 1

∣∣∣∣− ln ”∞” = −∞.

0∫
c2

1
x2 + x

dx = lim
ω→0−

[
ln
∣∣∣∣ x
x + 1

∣∣∣∣]ω

c2

= lim
ω→0−

[
ln
∣∣∣∣ ω

ω + 1

∣∣∣∣− ln
∣∣∣∣ c2

c2 + 1

∣∣∣∣] =
= ln ”0”− ln

∣∣∣∣ c2

c2 + 1

∣∣∣∣ = −∞.

c3∫
0

1
x2 + x

dx = lim
ω→0+

[
ln
∣∣∣∣ x
x + 1

∣∣∣∣]c3

ω

= lim
ω→0+

[
ln
∣∣∣∣ c3

c3 + 1

∣∣∣∣− ln
∣∣∣∣ ω

ω + 1

∣∣∣∣] =
= ln

∣∣∣∣ c3

c3 + 1

∣∣∣∣− ln ”0” = ∞.
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∞∫
c3

1
x2 + x

dx = lim
ω→∞

[
ln
∣∣∣∣ x
x + 1

∣∣∣∣]ω

c3

= lim
ω→∞

[
ln
∣∣∣∣ ω

ω + 1

∣∣∣∣− ln
∣∣∣∣ c3

c3 + 1

∣∣∣∣] =
= ln (1)− ln

∣∣∣∣ c3

c3 + 1

∣∣∣∣ = − ln
∣∣∣∣ c3

c3 + 1

∣∣∣∣.
The final result in one word is: the integral

∞∫
−∞

1
x2+x dx is ("four times") divergent.

Back to Exercise 7.9 2
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Ci (x), 125

Φ (x), 125

Li (x), 125

Si (x), 125

Agnesi’s curve ("witch"), 167

Agnesi, Maria, 167

antiderivative, 123

area, 147, 153, 154

signed, 163

area of revolution, 156

Bernoulli, Johann, 116

cabbage rule, 90

chain rule, 90

composite function, 5

concave function, 109

convex function, 109

critical points, 102

definite integral, 147

Fundamental Theorem of Calculus,
148

deleted neighbourhood of a, 62

derivative, 88

of higher order, 89

derivative function, 88

difference fraction, 88

differential fraction, 88

Eulerian number, 26

extrema, 101

extremal value, 101

extremal values, 99

extremum, 101

f prime, 88

f ′ (x0), 88

famous limits
for functions, 66

formal derivative calculus, 90

function
limit of a function, 62

composite, 5

concave, 109

convex, 109

inverse, 11

maximum, global, 101

maximum, local, 100

minimum, global, 101

minimum, local, 101

monotone decreasing, 99

monotone increasing, 99

not decreasing, 99

not increasing, 99

one-to-one, 11

power of, 89

rational, 69

strictly monotone decreasing, 99

strictly monotone increasing, 99
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8 Index

Fundamental Theorem of Calculus, 148

geometric sequence, 26, 32

higher order derivatives, 89

iff, 99

improper integral, 172, 173

indefinite integral, 124

integration by parts, 129

linear substitution, 138

linearity, 124

standard integral, 125

substitution rule, 137

indeterminate form, 23

inflection point, 110

injective, 11

integrand, 129

integration by parts, 129

inverse function, 11

L’Hospital’s Rule, 116

L’Hospital, Guillaume, 116

lathe, 155

Leibniz, Gottfried Wilhelm, 148

length of a curve, 156

limit
of a function, 62

of a sequence, 24

famous functions, 66

linear substitution, 138

maximum of a function, 100, 101

minimum of a function, 101

monotone decreasing function, 99

monotone increasing function, 99

monotonicity, 99

neighbourhood of a, 62

Newton’s Theorem, 124

Newton, Isaac, 148

Newton-Leibniz Rule, 148

not decreasing function, 99

not increasing function, 99

onion rule, 90

ono-to-one function, 11

point of inflection, 110

potter’s wheel, 155

power of a function, 89

prime
f , 88

primitive function, 123

rational function, 69

secant line, 87

sequence
limit ∞

∞ , 29

limit ∞−∞, 37

convergent, 24

divergent, 24

diverges to infinity, 25

finite limit, 24

geometric, 26, 32

rational fraction, 29

Squeeze Theorem, 28, 43

subsequence, 25

signed area, 163

slope, 87

sphere,
volume of ~, 383

spot of the extremum, 101

Squeeze Theorem, 28, 43

standard integral, 125
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stationary points, 102

strictly monotone decreasing function,
99

strictly monotone increasing function,
99

subsequence, 25

substitution rule, 137

tangent line, 87, 96

treshold, 24

truncated cone, 164

volume of revolution, 155

w.r.t., 89
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