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A Bnite set of vectors § o & is called a simplex If § is Yinearly dependent but ali its proper subsets are independent. If we
denote the number of siroplexes contained in 3¢ & by simp(30), then our main results can be formulated as:
THEQREM: For any K¢ & of fixed size, simp{3) is maximal if any n vectors of I are lineardy independant.
THEOREM: For any X g &, of fized size so that % spans R, simp(H) is miniraal if % consists of n collections of
paraliel vectors of sizes dxffmng by at most one from each other.
CORGLLARY: Let X ¢ ®° so that 8 spans & and 140 = m. Then writing m = an + b where § sb < n, we have:

{5 o],

The releted problem regarding the minimus valuse of strplK) under the condition that parailai vecioss are not allowed in

I remains apen.

Introduction

Definition 1.1, A collection § ¢ & is called a simplex if
§ is linearly dependent but every proper subset is linear-
iy independent. A k-simplex denotes a simplex of size k.

Therefore a 2-simplex is just a pair of parallel vec.
tors and in general a k+i-simplex is a collection of k+1
vectors which span a subspace of dimension .

Simplexes are widely used c.g. in stoichiometry
when finding minimal reactions and mechanisms (which
have further important applications in chemistey), or for
finding dirmenstonless group in dimensional analysis {2].

Consider the notion of minimal reactions. Let the
chemical species A1, Ap, .., Ap consist of clements Fj,
By, . Eyas

n

Aj=Y a; K, (% ENYforj=1,2,.

tml

Writing Aq for the vector [arj, @y - Gajl', we
know that there (perhaps) exists a chemical reaction be-
tween the species {A;:jed} forany SC {1, 2, ..om} i
and only if the horeogeneous linear equation:

TxA=0 W
jes

has a non trivial solution for some x; € &, j € &, that 15 if
the vector set {A; : j € 8} is Unearly dependent. Further,
the reaction is called minimal if for po T ¢ & mught
there be any reaction among the species {4; : j € T}
that is if the vector set {A; 1 j € T} is linearly inde-
pendent for any T & 8 Of course the reactions obtained
n the above way are only possibilities, ¢.g. the reaction

2 Au+ 6 HCI - 2 AuCly + 3 1,

dees not ooy wader normal conditions,

As a specific example, the species A, = C, A7 = G,
A3 = CO anéd A4 = CO» determine the vectors &g = [1,
01, Az = [0, 1], As = [}, 1] and Au = {1, 2], using the
“base” {C, O} in @°. The vector set = (A1, Ay, A
Ag) contains the simplexes

{AL Az Asl, {Ar A Add {AL A Ag)
and {Ag, As. Al
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After selving the corresponding Eq.(7), we have the
following (compiete} Hst of minimal reactions: C+ O =
CO,C+202C0y, 0+ CO=COyand Cu COyp =
2CO. We can build up (minimal) mechanisms from the
above reactions in a similar way, which also have impor-
tant applications {3].

For further details and examples see Refs. 1] and
[3]. This last zeference further provides a computer algo-
rithmn for the pure algebraic problem of finding all the
simplexes in a given set of vectors in &, without repeti-
ton, In Ref. [1}, the author presents a theoretical ap-
proach of the probiern.

The main guestion of the present work is:

"How many simplexes {minimum or maximum) can be
found in a given set of yectors K. " if n and the size
of H are fixed?”

in other words, we want bounds for simplexes
(minimal reactions) whenever the dimension (ournber of
possible atoms} and the size of the given vector set
{number of species) are given.

Pefinjtion 1.2. For X C K", we write

simp(30 =1 { §C 3. Sis astmplex}l.

I this paper, we explicitly calewate both the pos-
sible raxirnum and minsmum values of samp(30 for all
ICs of a fixed sive, Our main results are the following:

Theorem 1.3. For any X ¢ K" of fixed size (so that
I spans R%), simp(X) is maximal if and only if agy n
veetors of I are linearly independent.

Theorem 14, For any X < R° of fixed size so that
I spans K, simp(3) is minimal if and only if 3 consists
of n coilections of paraliel vectors of sizes differing by
at most one from each other.

Corollary 1.5. Let ¢ &° so that I spans K” and
B0 =m. Then, writngm=an+ bwhere 0 § b < n, we

kave:
b(“f): 1}4» (n—b}(;}s simp(30) < (;‘1) .

Unfortunately our methods in the minimum case
only work if we allow parallel vectors {(i.e. to use the
sarne species more thaa one tme). So lower bound couid
be much bigger when excluding paratlel vectors and this
+ problem remains open. (This restriction is ielevant in
the maxirmum case.}

However we conjecture that in the case of 23 the
minimurm is attained when

M= {oy, uy, ws) A v} fwy ri<m—3}

where {1y, s, u3} are Hnearly independent, v € {uy, ),
and {w; : § < m)} ¢ [w, ug]. Thus we conjecture that the
3
minital number of sirplexes is (m;"] + 1+ (ﬂgﬂ in
this case. ~
The authors are grateful to Professor ARPAD PETHS
for drawing their attention to this problem.

Upper Bound

Proof of Theorem 1.3: Fix X ¢ & of size 1. Choose T
= {V1, V2, v Vp} & K spanning &7, and suppose ¥ € K\
7 belongs to a linearly dependent subset of 20 of size at
most 2. Chose « € & not In any subspace generated by
any n-1 elements of 3 Define now

3 = OO {up W (@}

Then 301 = 30 and we first show that simp(3C) 2
simp(3. '

Solet §= {ug, wy, ... ik} beasimplex of I u g
& then § is still a simplex of 3C. H u is an element of §,
say u = i, then §\ {14} is linearly independent, and so
we cant chouse T ¢ of size n-k+1 sothar §\ {ug} UJ
U is again linearly independent but also spans ®”. But
then & =8{u 0N} is 2 new simplex of 3,

Moreover, the map 5 —» 5 is one-to-one, and heunce
Simp(3C ) 2 simp{30) as desired.

Thus simp(3) is maximal when any £ element of X
are Hinearly independent; we gow show that no other
configuration may have so many simplexes.

For this, let § ¢ 30 be a fixed simplex of { element.
Using the above construction repeatedly m-! many
times, we can assume that no vector 4 of 3U \ 8 belongs
to any subspace generated by n-1 eletnents of 30\ ().

However it is now casy to obtain an upper bound
for the aumber of simpiexes in X ndeed we have § it-
seif which is preserved and then there are only #+1 ¢le-
ment shnplexes which must ccataln at most [
elements of §. That is

-

‘ (DY e m (-l

simp(30 €1 *Z (;JI :.}1:;‘): ! ~j'lnwhl}w n?;#)
P AWAN ~
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But this quantity is strictly less than L’::I) when-




ever i+ 2 £ m. For m = p, there are no simplexes and
for m = n + 1, there is a configuration with exactly one
k-simplex for every 2 £ k £ m+1. This completes the
proof.

Lower Bound

In this section we give a lower bound for the number of
simplexes contained in colisction of vectors 1 ¢ a2 of
fixed size. We show that this bound is sharp when we

allow paralle]l vectors in ¥ namely we provide a con-

strucion which attains this minimal number of
simplexes for each prescribed size of 3 It turng out that,
as for the maximal case above, this construction is uai-
gue {in terms if the number of linear independent or
parailel vectors in J0).

Proof of Theorem 1.4. Fix 1 and m and consider a
collection 3¢ & of size m which also spans &” and for
whick gimp(30) is minirnal

Let 81, 8y, ..., B, be the distinet collections of paral-
lel vectors of X, and abusing notation, et 81, &, ..., 6
be members of each class, which we use as repre-
sentatives of the classes. We shall aiso vse 8 to denote
igi, the size of the collection &,

For any set of vectors § ¢ &7, [8] denotes the linear
hudl of $. We call a simplex large if it contains at least 3
elersents. N

Lemma 3.1, ¥ X containg a minimal number of
simplexes, then all vectars contained in large simplexes
are contained in no other simplex; therefore we may as.
surne that 30 has no larpe simplexes.

p
Proof. Let 30=1_,9; and suppose that K contains
i=1
a large simplex §; this forces p 2 n+ 1. By relabeling, we
may assume that 8 and 8 are members of § and that ac-
tually § = {6;: { € 9}. We define:
s k= the number of large simplexes that contain
both @1 and 62,
+ ki = the number of large simplexes containing 63
but not 89,
* k2 = the number of large simplexes containing 6;
but not 8;
and suppose without loss of generality that &; 2 k.

Take note that k 2] | 8

=t s
MNow we form X by deleting all elements of the
collection 8; and replacing each of them by a new vector
inn the collection of &, Observe that 3¢ still spans R* as
01 was a linear combination of the other members of any
large sirnplex containing it Further, this modification

only affects the simplexes containing at least one mem-
berof 8) or 8;.
Before this modification, S contained

[91]4- kiel + (92]‘1' k292 + kﬁléz.
2 |\2

many stmplexes contaiﬁing a memnber of either ) or 8,.
After this construction, 3 will have

e L
( 1;‘32}+k2(82+@1)

of such simplexes. The remaining simpiexes are un-
changed.
By minimality of simp(30, we must have

{321}_ E.8, + (?22) +kyBy + k8,8, € (31;32]+ ky(82481)

which, after an elementary caleulation, reduces to

'kl*-'kzﬁez(l"k}

and therefore ¥ = L {as k2 Dyand &y = &5 Thus 1 = &

= Hai

e 1,2}

foreachied.
But now, if a vector v belongs to two different large

simplexes 5 and 8§, then (8; \J &) \ {v} is a linearly

dependent collection on- non-parallel vectors which
therefore must coniain a large simplex &. But 8 must
confain ai jeast 2 clements from either $; or & which
contradicts the previeus paragraph. This proves the first
part of the Lemma. '

Finally, without changing simp(30, we may replace
one vector of a large simplex 3 by one parallel 1o another
member of § which i effect replaces a large simplex of
K by a 2-simplex. This completes the proof.

Now we tumn to vectors contained only in “small”
simplexes, i.e. in pairs of pagallel vectors.

Lemma 3.2, If 38 = m and simp(30 is minimal,
then all vectors must belong to a collection of parailel
vectors of sizes differing by atmost .

Proof. By Lemma 3.1, we can assume that 30 con-
tins no large sinoplex. Obviously, each collection 8; of
8;
2

If ;> 8+ 1, then putting one vector from 6 1o §
decreases the nuraber of simplexes in W as shows the in-
ecquality

which forces (by symmetry) that 8, = 1

parallel vectors accounts for | ' Isuch simpiexes.

9
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This completes the proof,

These Lemmas essentially prove Theorern 1.4. In- s desired. The strict inequality in Lemma 3 2 shows
deed, given a collection 3 < &” of size m which spans  (hat this configuration is vnique.
%? and for which simp(X) is minimal, we can write

-
=18

fl
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