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(1) Chemical reactions :

2H, + 2CO = CH, + CO,

<=> |_Inear combination of vectors

o
>
o

H: 2
C: 2% + 2%
O: 0 1 0 2

o
=
|
=
|
=
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(1) Chemical reactions :

2H, + 2CO = CH, + CO,

<=> |_Inear combination of vectors

H: 2 0 4 0
C: 2*|0| + 2*|1| - |1]| - |1
O: 0 1 0 2

No kinetics, chemics, graphs (at the end),

o
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(1) Chemical reactions :

2H, + 2CO = CH, + CO,

<=> |_Inear combination of vectors

H: 2 0 4 0
C: 2*|0| + 2*|1| - |1]| - |1
O: 0 1 0 2

Minimal: none of them can be omitted.
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(1) Chemical reactions :

2H, + 2CO = CH, + CO,

<=> |_Inear combination of vectors

H: 2 0 4 0
C: 2*|0| + 2*|1| - |1]| - |1
O: 0 1 0 2
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(1) Chemical reactions :

2H, + 2CO = CH, + CO,

<=> |_Inear combination of vectors

H: 2 0 4 0 0
C: 2*|0| + 2*|1| - |1| - |1| = |0
O: 0 1 0 2 0

OH.e....

Minimal: none of them can be omitted.

(also for ions, e, cathalysts, etc.)



Question:
Can we distinguish the reactions u: X+Y—2X and v: Y—>X ?



Question:
Can we distinguish the reactions u: X+Y—2X and v: Y—>X ?

Answer: The above model does not distinguish them: reduces to 0
and uses the vector w =[1,-1,0,...]" for both.



Question:
Can we distinguish the reactions u: X+Y—2X and v: Y—>X ?

Answer: The above model does not distinguish them: reduces to 0
and uses the vector w =[1,-1,0,...]" for both.

Idea: work in double dimension. Imagine for all species (XY, ...)
two variants "in" and "out" and use the vectors:

u' = [-1,-1,0,...,2,0,0,...]\4' er\_/ [0,-1,0,...,1,0,0,...]" ,
and introduce the reactions "in < out" as:

x=1[10,0,..-100,..]", y=1[01,0,..0,-1,0,..17 ,
thenclearly u=u'+2x and v=Vv'+Xx,

and modify the original "start" and "goal” reactions corres-
ponding this idea.



.. . there are several more minor observations and tricks . . .
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(2) Mechanisms :

1: C+ O=CO X, = [1,1,-1,0]
2: C+20= CO, X, = [1,2,0,-1]
(3: 0+CO= CO, X, = [0,1,1,-1]
4: C+CO0,=2CO X, = [1,0,-2,1]

P Pt P P P P P P P P P P Pt P P P P P P P Pt Pt P Pt P P P P P P P P Pt Pt Pt Pt P P

Linear combination

2*%;, - X - X% =0

Minimal: none of them can be omitted.

)
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(2) Mechanisms

1: C+ O=CO X, =
2: C+20= CO, X, =
( 3: 0+CO= CO, X, =
4: C+CO0O,=2CO X, =

P Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt P Pt P

Linear combination

2*X, - X - X,

Il
o

Minimal: none of them can be omitted.

[1/11_1/0]
[1/2/01_1]
[(0,1,1,-1]1 )
[1/01_2/1]

Pt Pt Pt Pt Pt Pt Pt

0,CO,CO,
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(2) Mechanisms :

1: C+ 0O=CO X, = [1,1,-1,0]"
2: C+20= CO, X, = 11,2,0,-117

( 3: O+CO= CO, X5 [0,1,1,-117)
4: C+CO,=2CO X, = 1[1,0,-2,117
In general: Y = o X;+ouX+. . Lo X (M)
a1§1+a2§2+. . .dnzn - X - 9

Y:= R (M) =the final reaction, determined by the mechanism ()

+ given start materials and final products . ..
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(2) Mechanisms :

1: C+ 0O=CO X, = [1,1,-1,0]"
2: C+20= CO, X, = 11,2,0,-117

( 3: O+CO= CO, X5 [0,1,1,-117)
4: C+CO,=2CO X, = 1[1,0,-2,117
In general: Y = o X;+ouX+. . Lo X (M)
d1§1+d2§2+. . .dnzn - X - 9

Minimal: none of them can be omitted.

Y:= R (M) =the final reaction, determined by the mechanism ()

+ given start materials and final products . ..
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(3) Physical guantities (measure units/”’dimension analysis™):

tube diameter

linear velocity

fluid density
vIScosity

heat capacity

heat transfer coef!.
thermal conductivity

Minimal connection:

= d () _  [10,00,00]
= v (s/t) _  [01-1,0,0,0]
= p {ﬂll,n'rfﬂ} — [3,0,0,1,0,0]
= v (m/ft) = [10-1100]
= x (A/t*T) = 100-201-1]
= A (m/t*T) = 1[00-310-1]
= pu (mf/P*T) = [1,0-310-1]

v'k=p-c [forsomeceR/

18



(3) Physical guantities (measure units/”’dimension analysis™):

exponents

tube diameter = d (f) = [1000 O’O]:
linear velocity = v (s/t) [0.1-1.0.0.0]
fluid density =p (m/¢*) = [300L00]
viscosity = v (mj/ft) = [101100]
heat capacity = x (A/*T) = 1[00-201-1]
heat transfer coeff. = A (m/t'T) = 1[00310-1]
thermal conductivity = p (mf/*T) =  [10-310-1]
Minimal connection: v'k=p-c [forsomeceR/

<=> linear combination of the exponents exponents

R

19



(4) In General : Main Definition:

S={8;,5%,...,8 yR"

Iff S is minimal dependent.

Is an (linear) algebraic simplex

20



(4) In General : Main Definition:

S={8;,5,...,8 < R" isan (linear) algebraic simplex

Iff S is minimal dependent.

l.e.
S is dependent and S\{s;} is independent

for all

I<k. [

21



(4) In General : Main Definition:

S={8;,5,...,8 < R" isan (linear) algebraic simplex

Iff S is minimal dependent. (]

l.e.
S is dependent and S\{s;} isindependent forall i<k. [

l.e.
08+ 0y Sy F... + oy 5 =0

and none of them can be omitted : o; # 0 forall 1<k. [J
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(4) In General : Main Definition:

S={8;,5,...,8 < R" isan (linear) algebraic simplex

Iff S is minimal dependent. (]

l.e.
S is dependent and S\{s;} isindependent forall i<k. [

l.e.
08+ 0y Sy F... + oy 5 =0

and none of them can be omitted : o; # 0 forall 1<k. [J

(minimal reactions, mechanisms, etc. )
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1.
System of
equations



(0) Homogeneous linear eguations:

A-x=0

Find the structure of minimal solutions

26



Question: Assuming A-X=0, what information could be
extracted from the linear /in/dependency of the rows and columns
of A andof X andof rank(A) ?



Question: Assuming A-X=0, what information could be
extracted from the linear /in/dependency of the rows and columns
of A andof X andof rank(A) ?

Answer:
columns of A are the "contents" of the species,

columns of X are the reactions,
generating/independent columns of X denote generating /
Independent reactions.



Question: Assuming A-X=0, what information could be
extracted from the linear /in/dependency of the rows and columns
of A andof X andof rank(A) ?

Answer:
columns of A are the "contents" of the species,

columns of X are the reactions,
generating/independent columns of X denote generating /
Independent reactions.

rows, rank(A), rank(X) =72



Observations (reducing the dimension)

a) If acolumn of A (aspecies/reaction) is linearly independent
fom the others, then it can be omitted,
since it plays no role in any reaction/ mechanism.




Observations (reducing the dimension)

a) If acolumn of A (aspecies/reaction) is linearly independent
fom the others, then it can be omitted,
since it plays no role in any reaction/ mechanism.

b) If one column of A is parallel to another column,
then one of these columns can be omitted,
since they denote the same species/reaction in multiple dose.




Observations (reducing the dimension)

a) If acolumn of A (aspecies/reaction) is linearly independent
fom the others, then it can be omitted,
since it plays no role in any reaction/ mechanism.

b) If one column of A is parallel to another column,
then one of these columns can be omitted,
since they denote the same species/reaction in multiple dose.

c) If acolumn of A (areaction) contains exactly two nonzero
coordinates, then this column can be omitted,
since In this reaction the two species are equivalent.




Observations (reducing the dimension)

a) If acolumn of A (aspecies/reaction) is linearly independent
fom the others, then it can be omitted,
since it plays no role in any reaction/ mechanism.

b) If one column of A is parallel to another column,
then one of these columns can be omitted,
since they denote the same species/reaction in multiple dose.

c) If acolumn of A (areaction) contains exactly two nonzero
coordinates, then this column can be omitted,
since In this reaction the two species are equivalent.

Perhaps they are important in chemistry.

NOT the Gauss elminination method.



Acta Mathematica Academiae Scientiarum Hungaricae
Tomus 18 (1—2), 1967, pp. 19—23.

ON A CLASS OF SOLUTIONS OF ALGEBRAIC
HOMOGENEQOUS LINEAR EQUATIONS

By
A. PETHO (Budapest)

On solving algebraic homogeneous linear equations by Cramer’s rule, solutions
can automatically be obtained in which the number of zero elements is maximal
in a sense {2}—{3]. In the present communication, these so-called ,,simple” solutions
are defined more simply, in a combinatorial manner, and their properties are formu-
lated more generally. The necessity of introducing simple solutions emerged orig-
inally in connection with a chemical problem {2].
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|82

ai,l a2 a13 ... Qlk

az a?,? asz ... Qg

Gpn1 Qn2 Q2 ... Qngk
U £L9 U £

aLi
az.(

Alm-1 Qlm T U

Am-1 Gm| %2 _ 0
0

Gn.m—1 an.m_ _mm_ _U_

. z; # 0} 1= supp ()

x Isminimal if for no y we have supp(y) < supp(x)
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|82

a,l a2 a13 ... Qg --- a1 f --- aArm-1 Qa1m T U

@1 @22 @3 .. Q2k ... Q@ ... Gm-1 Gam| (X2 _ U

0

Apn1 QQnr2 Qp3 ... Quk --- Qunf ... CQunm-—1 a?t.m_ _mm_ _U_
0 2 0 2 0 zo 1 0 ]

{t <m:x; # 0} := supp (x)

x Isminimal if for no y we have supp(y) < supp(x)
supp(x) = {a;1 /850, - - - s@5 ¢ X370}
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Notation

Map
Ax=0b

and Ma
and A-x =20

denote the sets of solutions of

[]
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Notation Mayp and Mygy denote the sets of solutions of

Axz=b and Az=0
Condition
0) Mao # {0} and [May| > 1,
i) A has no parallel columns, especially

it) A has no column 0 ,
11t) A has no column parallel to b . [

[]

38



Notation May and My denote the sets of solutions of

Az=b and Az =0 L]
Condition
0) Mao # {0} and [May| > 1,
i) A has no parallel columns, especially

it) A has no column 0 ,
11t) A has no column parallel to b . [

Definition (7) For any xz € R™
supp (z) := {t <m:xz; # 0}
the support of x , especially supp (0) =0 .
(it) For M CR™ thevector z€ M .,z#0

has a_minimal support with respect to M (z is minimal to M )

if there isnoy € M , y # 0 such that supp (g) S supp (z) .
(iit) For any M C R™
M™ = {z¢c M : z is minimal to M } .




Proposition  For any z € MY} . Az

the relevant set of column vectors of A

S.:={a; 11 € supp(2)} CR"

15 a simplex  (minimal dependent set) .

0,

40



Connection of mimmimal- and base solutions:

Inhomogeneous systems:

A base solution x corresponds to a base of A

but some components of x may be 0 .

z 1s minimal iff ¢ s nondegenerate.

41



Connection of mimmimal- and base solutions:

Inhomogeneous systems:

A base solution x corresponds to a base of A

but some components of x may be 0 .

z 1s minimal iff ¢ s nondegenerate.

Homogeneous systems:

each base solution refers to a base of A and a further column of A,

this is an v + 1 -element dependent vectorset , r =rank(A) .
Such set need not be a simplex

On the other hand: minimal solutions x correspond to simplexes,

they are base solutions <=> supp(z)=r+1. ]

42



homogeneous systems

Theorem ]Umm C R™ generates Mag & R™ for any A € R™™, []

Corollary For any xz € Map
supp(z) S |J{swp(2):z€ MIg} . O

Remark M7T2 may contain dependent but not parallel elements.

min

To ?et,real a base of ]1[40 would be interesting. [

43



Inhomogeneous systems

has the only solution Yy ==z |H , L]

Problem Can all solutions of A-x = b be generated
from the minimal solutions, 1.e. from M\ [j‘ﬂbﬂ 2

44



Theorem  Each solution x € May

I
1=1

where Z; e M ;Eibn} Z ; = 1} g € AJA;Q U {Q} ]

i.e. 1s an affine linear combination of the elements M3y

plus one solution of Myo . []

45



Theorem  Each solution x € May

I
1=1

where z; € MYy, S a; =1, y € MyoU{0}

i.e. i1s an affine linear combination of the elements M3:®

plus one solution of Myo . D

Corollary ﬂ[ mm y U ﬂ[ mm generates M4y, . L

This is a generalization of the wellknown
AJA,Q — Z —+ ﬂ"'fﬂ,g .

46
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11,
Algorithm



(0) Homogeneous linear eguations:

A-x=0

Find all minimal solutions

49



Happel-Sellers-Otarod [HOS,1990] 's algorithm for reaction-
mechanisms uses :
- mainly elementary matrix row-column operations
- eliminating equations.
after reductions:
- determine the bases of the solutions with heuristic methods.

Their method is mainly theoretical, non automatic.
No further details are published.



Reminder: S={s,,s,,..., S R" Isan algebraic simplex iff Sis dependent
and S\{s;} isindependentforall i<k . [

l.e. oS, + 0,8, +... + s, =0 and none of them can be omitted.
(minimal reactions, mechanisms, etc. )

Our TASK 1:

Algorithm for generating all simplexes ScH in a given HcR".
(all reactions, mechanisms, etc.)

+ Applications

o1



Reminder: S={s,,s,,..., S R" Isan algebraic simplex iff Sis dependent
and S\{s;} isindependentforall i<k . [

l.e. oS, + 0,8, +... + s, =0 and none of them can be omitted.
(minimal reactions, mechanisms, etc. )

Our TASK 1:

Algorithm for generating all simplexes ScH in a given HcR".
(all reactions, mechanisms, etc.)

+ Applications

Result: polynomial algorithm

v [1991] Hung. J. Ind.Chem. 289-292.
v [2000] J. Math. Chem.1-34.
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The algorithm

Each simplex in R™ has size at most n + 1 .

|H| =m => H has at most
n+1 4
™" m 7
). (?,) — (n—l—Z) —1=0(m"")
i=1

such subsets.

53



The algorithm

Each simplex in R™ has size at most n + 1 .

|H| =m => H has at most
n+1 4
™" m 7
). (?,) — (n—l—Z) —1=0(m"")
i=1

such subsets.

However we do not have to check these m™*? subsets.

since
Proposition All subsets of independent sets are

independent, too. []
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PROCEDURE MODIFY

szimplex| |
while not end do begin

if
if

if
if
if
if

szimplex|
szimplex| |

={1};

| ={k,k+1,...,M,c} and ¢ # ”d” then END;
_—{]{:kj—l—l ﬂj:?d??}

then S :={k k+1,. ﬂf—Q M,” 7}

end ;

_ —{Ttﬂf c} then S:={T,t+1,”"7};

szimplex| |

| = {T,t,”"} then S:={T,t,t+1, 7"}

szimplex| |

| ={T,t,”d"} then S:={T,t+1, 7"}

szimplex| |

| ={T1,t,”s”} then S ={T,t+1,7 7}

szimplex| |
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Definition 13 (PhD 2.4.D.) (i) A hypergraph H = (V, ) is descending
itE.FCV, Ec& and F C E implies F € £ ,

(it1) H is not deformed if {v} € £ for eachv €V,

(1it) assumed (i) and (ii), the elements of £ are called independent,

(iv) S €V is a simplex if S ¢ & but for each T'G S we have T € € . [

56



Definition 13 (PhD 2.4.D.) (i) A hypergraph H = (V, ) is descending
itE.FCV, Ec& and F C E implies F € £ ,

(it1) H is not deformed if {v} € £ for eachv €V,

(1it) assumed (i) and (ii), the elements of £ are called independent,

(iv) S €V is a simplex if S ¢ & but for each T'G S we have T € € . [

Theorem 14 (PhD 2.2.7T.) (i) The algorithm does not miss any simplex
and does not check any subset twice.

(it) The running time of the algorithm is the best possible for any dataset,
that is it checks the neccessary ones only. LI

Theorem 15 (PhD 2.3.T.) For any H C R", |H| = m the algorithm
checks at most m™™ subsets of H , so the time elapsed is O (m"™*1), the
algorithm is polynomaal in time. [

Computer examples are shown in the last Section of the dissertation: for
some dozens of vectors in dimension 10 — 20 we have result in some seconds.

The time O (m™"!) can not be decreased in general, by Theorem 32 and
Corollary 33.
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J. Toth, A.Nagy, D.Papp:

Reaction Kinetics: Exercises, Programs and Theorems:
Mathematica for Deterministic and Stochastic Kinetics.

Springer, New York, NY, 2018. ISBN:9781493986415,
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AV
Examples



E.Q.

The species:
Ist speci: Hy
2nd speci: (7
3st speci: HO
41h speci: HO,
Sth speci: H20
6th speci: Ha(On

el i I Tl S

Pk ek ek ek e
il S i

13,

i
e " 3

+ Yoy 4+ %0y - THO =0
+ Vaify + 10n -—]HOZ =)
+ 1 + W0y, - 1H;O =0
+ IHy; + 10y - 1H;04=0
—WH, + JHO, - 1HO, =0
+ ¥2H; + THO - 1H;0 =0
+ Vay 4+ ¥oHO, « 2H 0 =0
+ VaH: + FHO; ~ 1H0: =0
+ 2H,0 —IHEDE a2 )
+ 1HO - 1HO, =0
+ ZHO -~ 1H;O =0
+ 300+ 2ZHO; ~ IHO =0
+ THO ~ 1H,0h =0
+ 1H20+"*1Hg{} = {}
+ 30H -~ 1HOp « 1H;( =0

.+ 20H ~ 1H.0q 2= ()
.+ #OH;+ 7HO — 10 =0
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"Amundson" ([A66], [P90])
CO,C09,09,Hy, CHyO,CH30H,CyH;OH,(CH3)2CO, CHy,
CH;CHO,H>O = 11 vektor 3 -dim, 213 szimplex 0.22 mp.

—200 +2C09 — 09 =0,

3C0 —COy +3Hy — CoH;0OH =0,
5CO —2C02 +3Hy — CoHgCO =0,
200 —COy +2Hy —CHy4 =0,

3CO —COy+2Hy —CH3CHO =0,
—1CO +~ COy + Hy — HO =0,

N (vektortér dimenzidja) 3

n (a H altal kifeszitett altér dimenzidja) 3

M (input vektorok szama: |H|) 11
simp(H) (szimplexek tényleges szdma) 213
1+ (7% + (7,°) (alsé becslés) 113 <
(,2,) (felsé becslés) < 330
t (futédsidé [mp)) 0.22 mp
H vizsgdlt részhalmazainak szdama 502




"Metan" ([B99], [HS83])
szintézise szénmonoxidbdl és vizbol, Sy reakciot kell
elédllitant S — S5 -bél (£ a katalizator):

Sg: 2H, +2CO — CH,+CO, .

S1:COL+{(=Cl+ 01, So:Cl+H(=CH(+
Sy CHO+H=CHyl+ 0, S,:CHyl+ Hl=CHsl+ (.
S5CH3€+H€:CH4+2€ SSO.HE?_F_HE:HQO‘I_QE..

S:: COy+ € =COsL Sg: CO+ (= COC

So: Hy + 20 — 2H( . S10 :CO2l + HE —=CHOOL+ {
Si1 : CHOOL + Ht = CHOC + OHY |

Sio: Ol + HC=0Hl+ (., Sy3:CO0+00=COx0+(

S14: CHOOU+ E=0H(+COL, S5 : COl+ Hl = CHOC + (

62



Az 6sszes minimdalis mechanizmus (output):

]_ #gl —I_ AgQ —I_ Agg —I_ 54 —I_ 55 - S'}' —I_ 288 _|_ 2!5‘9 - S]_U - S]_]_ —I_ 8]_2 _|_ A915 — Agﬁ

)

#gl —I_ 82 _|_ Agg —I_ 84 _|_ Ag5 — ST _|_ 258 —I_ 2!5‘9 — S]_{] —I_ S]_Q — Ag14 — Agﬁ

%)

S1+ 55+ 53+ 54+ S5 —S7+ 255+ 259 + S13 = Sk
S10 + S11 — S12 + S13 — S15 =0

T =

Slg — 812 + 513 + 514 =0

)
)
)
)
)
) Sll _814_815 =0

-p)

(Az utolsé harom csak ciklus.)

63



Osazezen

Csak Sg -t tartalmazdk

N (vektortér dimenzidja) 17 17

n (a H altal kifeszitett altér dimenzidja) 13 13

M (input vektorok szdma: |H|) 16 16
simp(H) (szimplexek szdma) 6 3

b - (”’5]} +(n—b)-(5) (alsé becslés) 1< 1 <

(Z)) (felsé becslés) < 120 < 105
t (futédsidé [mp)) T8.60 s 4328 5

H wizsgalt részhalmazainak szama 6.5 429 31 697

“Metan”

7.3. Tablazat

64
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V.
Number of
simplexes



Reminder: S={s,,s,,..., S R" Isan algebraic simplex iff Sis dependent
and S\{s;} isindependentforall i<k . [
l.e. oS, + 0,8, +... + s, =0 and none of them can be omitted.

(minimal reactions, mechanisms, etc. )

Task 2:

Question: For given HcR" how many simplexes ScH could be
iInH iIf |H=m isgivenand H spans R" ?

(how many reactions, mechanisms, etc. )

67



Reminder: S={s,,s,,..., S R" Isan algebraic simplex iff Sis dependent
and S\{s;} isindependentforall i<k . [

l.e. oS, + 0,8, +... + s, =0 and none of them can be omitted.
(minimal reactions, mechanisms, etc. )

Task 2:

Question: For given HcR" how many simplexes ScH could be
iInH iIf |H=m isgivenand H spans R" ?

(how many reactions, mechanisms, etc. )

Notation:
simp(H) := the number of simplexes ScH . [J

68



Assuming: |H|=m, H spans R"
Theorem 1 [1995] (Laflamme-Szalkal)
sim (H)< m = O(mn+!
PR =1 h 41 = O(m™)

and simp(H) is maximal iff every n -element subset
of H is independent. []
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Assuming: |H|=m, H spans R"
Theorem 1 [1995] (Laflamme-Szalkal)
sim (H)< m = O(mn+!
PR =1 h 41 = O(m™)

and simp(H) is maximal iff every n -element subset
of H is independent. []

Notes:

- Sperner’s theorem 1is not enough: what is the structure of H ?
- Vandermonde determinant: x; = [1,A;,...,.A"]" (i=1,...,m)

- species are built from n particles and any n species are
Independent (and any n+1 are dependent) .

70



Proof. |H| =m, [H| =R", V CH is a base.
If w e H\V and u € D C'H dependent, [D| < n then

choose ' € R"™ s.t. v’ & |hq, ..., hp—1] for any {hy,....,h,—1} C 'H and let

H' = (H\{u}) U{u'}

71



Proof. [H| =m, [H| =R", V C'H is a base.
If w e H\V and u € D C'H dependent, [D| < n then

choose ' € R"™ s.t. v’ & |hq, ..., hp—1] for any {hq,....,h,—1} C 'H and let

H = (H\{u}) U{u'}
Then for any simplex & = {uy, us,...,ux} CH (k< n+1):
- it u ¢ § then § is still a simplex of 'H’,
-ifu e S, say u = u; , then S\{u;} is independent,
so S\{u;} UV’ is independent, too, and spans R" for some V' C V' .

Now
S =S\ {w} uV U {u}
i1s a new simplex of ‘H'.
The map & — &' is one-to-one, so simp(H') > simp(H) .
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No other configuration has so many simplexes:

S C 'H be fixed, |S| =1,

the above construction repeatedly m — { many times —

no u € ‘H'\& belongs to any subspace generated my n—1 elements of H\{u}.
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No other configuration has so many simplexes:

S C 'H be fixed, |S| =1,

the above construction repeatedly m — ¢ many times —
no u € ‘H'\& belongs to any subspace generated my n—1 elements of H\{u}.
Now simplexes in 'H : & itself,

and only n + 1 element simplexes which contain at most £ — 1 elements of &

mp{Tl) < Hi ()G ) =) G ) < Gy

whenever n+2<m . (n+1>measy). B
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Theorem 2 [1995]

Hl=m, H spans R"

(Laflamme-Szalkal)

O(m?) = n-

/
r; nj < simp(H)

and simp(H) is minimal iff m/n elements

of H are parallel

to b; where {b,,...,b,} Is any base of .

(parallel = isomers, multiple doses,...)
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Hl=m, H spans R"
Theorem 2 [1995] (Laflamme-Szalkal)

O(m?) = n- r;/nj < simp(H)

and simp(H) is minimal iff m/n elements
of H are parallel to b; where {b,,...,.b,} Isany base of . [

Proof: similar packing vectors to parallel sets to a base
to reduce simp(H) .
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Hl=m, H spans R"
Theorem 2 [1995] (Laflamme-Szalkal)

O(m?) = n- r;/nj < simp(H)

and simp(H) is minimal iff m/n elements
of H are parallel to b; where {b,,...,.b,} Isany base of . [

More precisely:

b- (a ; 1) + (n—0b) - (;) < simp(H)

where
m=an—+b , 0<b<n, a=>1.
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Hl=m, H spans R"
Theorem 2 [1995] (Laflamme-Szalkal)

O(m?) = n- r;/nj < simp(H)

and simp(H) is minimal iff m/n elements
of H are parallel to b; where {b,,...,.b,} Isany base of . [

Open Question:

If no parallel elementsare in H ?
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General Conjecture (1998) (Laflamme, Meng, Szalkail)
no parallel => the minimal configurations in R" are:

? 1) If niseven=>H contains n linearly independent vectors
{u; :i=1,...,n} and the remaining of H is divided as evenly as
possible between the planes [u;, u;,,] for i=1,3,...,n-1. []

? 2) If nisodd => H again contains n linearly independent vectors
{u; :i=1,...,n}, one extra vector in the plane [u,_, ,u,] and finally the
remaining vectors are divided as evenly as possible between the
planes [u;, u.,,] for i=1,3,...,n-2 with lower indices having
precedence. [

LATER!
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Reducing the dimension (n=3):

R3

vectors => points, 2D-planes => lines

RZ
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So, after the reduction we get: /

Definition: (affine) simplexes in R? are

. . ®
) 3 colinear points, /:/
I1) 4 general points: no three colinear, °

L]

Elementary question in R? :

What is the minimal number of (total) simplexes
If the number of points (spanning R?) ism ?
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IHl=m, H spans R", no parallel elements
n=3
Theorem 3 [1998] (Laflamme-Szalkai)

For Hc RS
m— 2 m—3
(m 3 j 14 (m 5 ) < simp(H)

and for m>8 : simp(H) is minimal Iff

( vectors = points, planes = lines)
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Theorem 3 [1998] (Laflamme-Szalkai)

Proof: packing points to lines to reduce simp(H),
many subcases, 14 pp long.
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Reducing the dimension (n=4):

vectors => points, 2D-planes => lines, h.-planes => 2D-planes
84



So, after the reduction we get: /

Definition: (affine) simplexes in R3 are —
1) 3 colinear points, /./
11) 4 coplanar, no three colinear, °

1i1) 5 general points: no three or four as above.
L]
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So, after the reduction we get: /

Definition: (affine) simplexes in R3 are —
1) 3 colinear points, /./
11) 4 coplanar, no three colinear, °

1i1) 5 general points: no three or four as above.
L]

Still elementary question in R3:

What is the minimal number of (total) simplexes
if the number of points (spanning R3) ism ?
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IHl=m, H spans R", no parallel elements
n=4

Theorem 4 [2010] (Balazs Szalkai - 1.Szalkai)
For Hc R*

simp(H) > ( L’H{EJ) n (ﬁn{ﬂ )

and for m>24 simp(H) isminimal iff H is
placed into two (skew) detour line

N |
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Theorem 4 [2010] (Laflamme-Szalkai)

Proof: packing points to planes to reduce simp(H),
using the infinite sides of a tetrahedron
many subcases, 10 pp long.
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General Conjecture (1998) (Laflamme, Meng, Szalkar)
no parallel => the only minimal configurations in R" are:

? 1) If niseven=>H contains n linearly independent vectors
{u; 1 i=1,...,n} and the remaining of H is divided as evenly as
possible between the planes [u;, u,,,] for i=1,3,...,n-1. []

NN AN

[uy, U,] [us, uy] e [ui, Uil - [un 1, U] .



General Conjecture (1998) (Laflamme, Meng, Szalkar)
no parallel => the only minimal configurations in R" are:

? 2) If nisodd =>H contains n linearly independent vectors
{u;:i=1,...,n}, one extra vector in the plane [u,, ,u,] and finally
the remaining vectors are divided as evenly as possible between the
planes [u;, u.,] for i=1,3,...,n-2 with lower indices having
precedence. [

ANV AN

[u;, U] [us, Uyl N [ui, Uil -+ [Upor Upal [Qnglé Up]
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V1.
Matroids



Matroids (hypergraphs) :
What is the minimal and maximal number of cycles and bases
In a matroid of size m and given rank n ?
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Matroids (hypergraphs) :
What is the minimal and maximal number of cycles and bases
In a matroid of size m and given rank n ?

\ [2006] (Laflamme, Désa, Szalkai) :

Theorem 5 If m > n+1 then only the uniform matroid U, , contains
the maximum number of circuits: (| "' )
If m=n+1 then all matroids of size m and of rank n contain exactly 1

circuit. [
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Matroids (hypergraphs) :
What is the minimal and maximal number of cycles and bases
In a matroid of size m and given rank n ?

\ [2006] (Laflamme, Désa, Szalkai) :

Theorem 5 If m > n+1 then only the uniform matroid U, , contains
the maximum number of circuits: (| "' )
If m=n+1 then all matroids of size m and of rank n contain exactly 1

circuit. [

Theorem 6 If m > n then only the uniform matroid U, , contains

the maximum number of bases: (m)
[]

n

95



Matroids (hypergraphs) :
What is the minimal and maximal number of cycles and bases
In a matroid of size m and given rank n ?

\ [2006] (Laflamme, Désa, Szalkai) :

Theorem 7 For each m and n there is a unique matroid M, of size m
and of rank n containing the minimum number of bases, namely 1 when
we allow loops in the matroid. [
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Matroids (hypergraphs) :
What is the minimal and maximal number of cycles and bases
In a matroid of size m and given rank n ?

\ [2006] (Laflamme, Dosa, Szalkai) :

Theorem 7 For each m and n there is a unique matroid M, of size m
and of rank n containing the minimum number of bases, namely 1 when
we allow loops in the matroid. [

Theorem 8 Any matroid M of size m and of rank n contains the
minimum number m-n circuits if and only if the circuits of the
matroid are pairwise disjoint. [
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THM: For each m and n each matroid M contains the minimum
number of bases iff it has a base {a,,a,, ...,a,} such that all other
elements in M are parallel to a,
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THM: For each m and n each matroid M contains the minimum
number of bases iff it has a base {a,,a,, ...,a,} such that all other
elements in M are parallel to a,

PROBLEM Characterize the matroids with the minimum

number of circuits and bases, when neither parallel elements nor
loops are allowed.
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THM: For each m and n each matroid M contains the minimum
number of bases iff it has a base {a,,a,, ...,a,} such that all other
elements in M are parallel to a,

PROBLEM Characterize the matroids with the minimum
number of circuits and bases, when neither parallel elements nor
loops are allowed.

Conjecture [Oxley, 1997] For matroids with k < girth(M)
the uniform matroid U, 5, has minimal number of circuits,

namely
m — 3 m — 3 m — 3
1+3- 3 -
N (P.:—l)+ (Pc—2)+(fg—f%)
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THM. [2015] (Alahmadi,Aldred,Cruz,0Ok,Solé,Thomassen) :
Any loopless matroid M of size p and rank v without parallel
elements has at least p cocircuits .
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VIl

Codes,
Families, ...



DEF: For nkeN and Ce(]n,K] (length n dimension k)

M(C) := number of minimal codewords in C
and M(nk) = max{M(C)| CeC[nk] } .
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DEF: For nkeN and Ce(]n,K] (length n dimension k)

M(C) := number of minimal codewords in C
and M(nk) = max{M(C)| CeC[nk] } .

THM. [2013] (Alahmadi,Aldred,Cruz.Solé. Thomassen) : (1<n<Kk)
circles of matroids => M(n,k) < (J-:El)
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DEF: For nkeN and Ce(]n,K] (length n dimension k)

M(C) := number of minimal codewords in C
and M(nk) = max{M(C)| CeC[nk] } .

THM. [2013] (Alahmadi,Aldred,Cruz.Solé. Thomassen) : (1<n<Kk)
circles of matroids => M(n,k) < (J-:El)

THM. [2015] (Alahmadi,Aldred,Cruz,Ok,Solé, Thomassen) :
circles of matroids => k < M(n,k)
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DEF: For nkeN and Ce(]n,K] (length n dimension k)

M(C) := number of minimal codewords in C
and M(nk) = max{M(C)| CeC[nk] } .

THM. [2013] (Alahmadi,Aldred,Cruz.Solé. Thomassen) : (1<n<Kk)
circles of matroids => M(n,k) < (J-:El)

THM. [2015] (Alahmadi,Aldred,Cruz,Ok,Solé, Thomassen) :
circles of matroids => k < M(n,k)

THM. [2015] (Alahmadi,Aldred,Cruz,Ok,Solé,Thomassen) :
C has distances > 2, circles of matroids =>

a—+ 1 a
b( 5 )+(n—k—b)(2) < M(n,k) In=a-(n-k)+b /
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Corollary [2015] (Alahmadi,Aldred,Cruz,Ok,Solé, Thomassen,
Kashyap) :
For any [n,K] C of dual distance at least 3: M(C) > n
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G is a connected graph (allowing multiple edges but no loops),
p vertices, q edges.

QUESTION [1981] (Entringer and Slater):
How many cycles #C. a graph with p vertices and g edges can have?

Trivial: #Cg < 29p*!
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G is a connected graph (allowing multiple edges but no loops),
p vertices, q edges.

QUESTION [1981] (Entringer and Slater):
How many cycles #C. a graph with p vertices and g edges can have?

Trivial: #Cg < 29p*!

Cycle code C(G) has length n=q, dimension k =q—p+1.

Note: The minimal codewords of C(G) are exactly the incidence
vectors of cycles, that is, circuits in the cycle matroid in G.

THM. [2013] (Aldred,Alahmadi,Cruz,Solé¢, Thomassen) :
If g>2p+O(log(p)) then #C,<24P .
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THM. [2015] (Alahmadi,Aldred,Cruz,Ok,Solé, Thomassen) :
matroids => In any 2-edge-connected graph with p vertices and
g edges the number of cycles is (the bound is tight) /g=a(p-1)+b/

b(ajl)ﬂp—l—b)(j) < #Cg
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THM. [2015] (Alahmadi,Aldred,Cruz,Ok,Solé, Thomassen) :
matroids => In any 2-edge-connected graph with p vertices and
g edges the number of cycles is (the bound is tight) /g=a(p-1)+b/

b(ajl)ﬂp—l—b)(j) < #Cg

THM. [2015] (Alahmadi,Aldred,Cruz,Ok,Solé, Thomassen) :
matroids =>

Any 3-edge-connected graph with q edges contains at least g cycles,
the bound is sharp: g < #Cg
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THM. [2015] (Alahmadi,Aldred,Cruz,Ok,Solé, Thomassen) :
matroids => In any 2-edge-connected graph with p vertices and
g edges the number of cycles is (the bound is tight) /g=a(p-1)+b/

b(a;#)+w—1—bﬂ;)55#%

THM. [2015] (Alahmadi,Aldred,Cruz,Ok,Solé, Thomassen) :
matroids =>

Any 3-edge-connected graph with q edges contains at least g cycles,
the bound is sharp: g < #Cg

THM. [2015] (Alahmadi,Aldred,Cruz,Ok,Solé,Thomassen) :
Any 2-connected graph with q edges and p vertices contains at least

(q_§+2) < #Cq
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DEF: Let m,deN . A, :={1l,...,m} and
P(Xn) = {p: X, = R | pis a probability measure on A, }.
Then, for any fixed ¢ € P (X,,) and A = [a,,...,a,,] € R¥*™ Jet

F ™

q (i) - exp (ﬁTgi)

Eqri=8sEP(Xn) | s(i) =
> q(J)-exp (ﬁTﬁj)
j=1

fori <m., 8 €R?

Y

%

an "exponential family". 0O

THM: [Rauh.Kahle.Ay.2009] Any p € P (A},) is in the closure of &, 4 iff
+ J— —_

p* -¢¢ =p* - q“+ for all u € Ker (A)

T .
wherep” := J[ p (i}ﬁiz) and u™,u~ are the + and - components of u € R™,

NOTE: Using the estimates on the number of circuits of matroids.

" ) where r = dim (€, 4) .

the number of equations above is at most ( 4o
T+ 2
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VIII.
Hypergraphs



Definition For any hypergraph 'H = (V, &), V # 0. ke Nl St version

(i) & ={Fe& . |E|=k},
(i1) any k-element subset of V' is k-vertez,
(i11) S C V is in general position if

SEE foralEe€CE,
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Definition For any hypergraph 'H = (V, &), V # 0. ke Nl St version

(i) & ={Fe& . |E|=k},
(i1) any k-element subset of V' is k-vertez,
(i11) S C V is in general position if
S%E forall E € & .

(iv) S is k-pyramid if it is a k-vertex in general position,
(v) 4-vertices are quads, 4-pyramids are tetrahedrons,
(vi) S CV is a 4-element simplex if it is a quad but not a tetrahedron.:

SCFE forsomeE €& .
Sy 15 the set of the 4-element simplexes,
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Definition For any hypergraph 'H = (V, &), V # 0. ke Nl St version

(i) & ={Fe& . |E|=k},
(i1) any k-element subset of V' is k-vertez,
(i11) S C V is in general position if
S%E forall E € & .

(iv) S is k-pyramid if it is a k-vertex in general position,
(v) 4-vertices are quads, 4-pyramids are tetrahedrons,
(vi) S CV is a 4-element simplex if it is a quad but not a tetrahedron.:

SCFE forsomeE €& .
Sy 15 the set of the 4-element simplexes,

(vit) T CV is a b-element simplex if it is a d-vertex
but no its subset is a 4-element simplex:
FET foral FES, . e |[TNE| <3 forE €&,
S, 1s the set of the 5-element simplexes. L]
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1'st version

Condition
i) E,=0 forl<3,
it) for any By, Ey € £, Ey # Es (E1NEy <2, ]
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1'st version

Condition
i) E,=0 forl<3,
it) for any By, Ey € £, Ey # Es (E1NEy <2, ]

Problem [f |V| =m , what is the minimal value of

Ss| + |8 2 N

5

+

s(m) =
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1'st version

Condition
i) E,=0 forl<3,
it) for any By, Ey € £, Ey # Es (E1NEy <2, ]

Problem [f |V| =m , what is the minimal value of

2 []

Sy

+

S-

s(m) =

Theorem 65 Under Condition and m > b8
we have a constant C'; < 17

1
(T)qu:s@ (m*) < s(m) O

(Zs.Tuza, 1.Szalkai, 2013) 122



Recall: 2'nd version

Problem 2  What is min simp (V) and the structure of V

if [V]=RP, |V|=m and no parallel vectors in V ¢

(S¢ © V linear algebraic simplexes)

123



Recall: 2'nd version

Problem 2  What is min simp (V) and the structure of V

if [V]=RP, |V|=m and no parallel vectors in V ¢

(S¢ © V linear algebraic simplexes)
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'nd version

Alternatively: Se = {51, ..., Sk} Is an affine simplex <=
= {sy — Sy, S3— 8, ... ,S, — S} Is a linear algebraic simplex

(:any s1 €S5,) .
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2'nd version

\

Definition: (affine) simplexes in R? are

1) 3 colinear points, . ©

11) 4 coplanar, no three colinear, / ./
1i1) 5 general points: no three or four as above
L]
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2'nd version
Definition: (affine) simplexes in R? are
1) 3 colinear points, . ©

11) 4 coplanar, no three colinear, / R /
1i1) 5 general points: no three or four as above
L]

\

Definition: S, C RP1 is an affine simplexr if 3 </,
L a

Sq 1s contained in a (|9,

)-dimensional hyperplane
but no proper subset 9"' Sq 18 contained

in a hyperpl: S| — 2.
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Theorem 3 [1998] (Laflamme-Szalkai) For H < R3

m— 2 m — 3 _ 3
(m;g ) 14 (m . ) < simp(H) m-2

Theorem 4 [2010] (Balazs Szalkai - I1.Szalkai) For H < R*

(") 4 ("1 < simpco /\

Mostly contain (affine) simplexes of three points.
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General Conjecture (1998) (Laflamme, Meng, Szalkar)
no parallel => the only minimal configurations in R" are:

? 1) If niseven=>H contains n linearly independent vectors
{u; 1 i=1,...,n} and the remaining of H is divided as evenly as
possible between the planes [u;, u,,,] for i=1,3,...,n-1. []

NN AN

[uy, U] [ug, uy] e Ui Uia] - L1, Uy 129



General Conjecture (1998) (Laflamme, Meng, Szalkar)
no parallel => the only minimal configurations in R" are:

? 2) If nisodd =>H contains n linearly independent vectors
{u;:i=1,...,n}, one extra vector in the plane [u,, ,u,] and finally
the remaining vectors are divided as evenly as possible between the
planes [u;, u.,] for i=1,3,...,n-2 with lower indices having
precedence. [

ANV AN

[u;, U] [us, Uyl N [ui, Yieg] -0 [Uno U] s [Un g, U]
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2'nd version
New: no three points are collinear (or: k<|S|)

131



New: no three points are collinear (or: k<|S|)

Definition: S, C RP~! is an affine simplex if 3 <

S is contained in a (|S,| — 2)-dimensional hyperplane

but no proper subset S’ & S, is contained

=
S’ — 2.

in a hyperplane of dimension

Sal,

2'nd version
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2'nd version
New: no three points are collinear (or: k<|S|)

Definition: S, C R”~" is an affine simplex it 3 <|S,|,

S is contained in a (|S,| — 2)-dimensional hyperplane
but no proper subset S’ ; Sq 1S contained

in a hyperplane of dimension |S’| — 2.

k=d:=D-1

Remark: T'wo kinds of subsets of H{ form an affine simplex:
d + 1 points on a hyperplane of dimension d — 1, or

d + 2 points, no d + 1 of which lie on a common hyperplane

of dimension d — 1.
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Zs. Tuza, 1.Szalkai (2014)
Theorem 3 Vd > 3 dc; constant:
IfHCRY [H|=n and

no d points from ‘H lie on a hyperplane

of dimension d — 2,

then (dil) —cq-n? < simp, (H)

Corollary 4 For H C R, [H|=n .

no three collinear

(") — O(n?) < simp, (H) as n — oco.

2'nd version
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2'nd version
Zs. Tuza, 1.Szalkai (2014)

Theorem 3 Vd > 3 dc; constant:
IfHCRY [H|=n and

no d points from ‘H lie on a hyperplane

of dimension d — 2,

then (dil) —cq-n? < simp, (H)

Corollary 4 For H C R®, [H|=n, /o/

no three collinear

(1) — O(n®) < simp, (H) as n— oo.
(asymptotically tight)
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2'nd version

Proposition 7 There is an arrangement of n points in R>,

such that the number of affine simplexes determined by them

18 only

(") - (n—2)(n=5) if n is even,
2 ' "

(n—l) B (n—3)2(ﬂ—5) ?,f n 18 Odd;'

that is, on* — 2n®+0(n?) .
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2'nd version
Combinatorial formulation
Definition 5 A hypergraph 'H = (X, &) is g-linear (¢ > 1)
if |E'NE"|<q fordl E,E"cE, E'+E".

E.g. in a 1-linear hypergraph any two edges are disjoint,
"2-linear" coincides with "linear" hypergraphs in the usual sense

(in Euclidean spaces any two points uniquely determine a line).
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2'nd version
Combinatorial formulation
Definition 5 A hypergraph 'H = (X, &) is g-linear (¢ > 1)
if |E'NE"|<q fordl E,E"cE, E'+E".

E.g. in a 1-linear hypergraph any two edges are disjoint,
"2-linear" coincides with "linear" hypergraphs in the usual sense
(in Euclidean spaces any two points uniquely determine a line).

H .

(7)) = { k -element subsets of H } ,

’ [ E . > ‘_1 . »

Ep = UE&_S(,%) . (X, &) is the k-section hypergraph of H .

0 . - X F\ ~ ¢

Evn={F € () [ () Né =0}

members of &, U &), | are the (k — 1)-dimensional

semi-simplexes in H (k=d+ 1)
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2'nd version
Zs. Tuza, 1.Szalkai (2014)

Theorem 6 For k > 3 there i1s a constant ¢ = ¢, such that

Enl+1E | > " — enfl
k+1 L

for all (k — 1) -linear hypergraphs H = (X, &), | X|=n .

T'his result implies Theorem 3.
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. 2'nd version
Sperner families

For any 'H = (X, &) (not necessarily g-linear) and k

Sp(H) =& UE)., isaSperner family,

YBLM inequality” 9
n
<1
> ()

SES
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. 2'nd version
Sperner families

For any ‘H = (X, &) (not necessarily g-linear) and k

Sp(H) =& UE)., isaSperner family,

YBLM inequality” 9
n
<1
> ()

Yamamoto [1954], Bollobas [1965], Lubell [1966],
Meshalkin [1963]

— Hungarian architect Ybl Miklos (1814-1891)
https://en.wikipedia.org/wiki/Mikl%C3%B3s_ YDl
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Sperner families

2'nd version

For any 'H = (X, &) (not necessarily g-linear) and k

Sp(H) =& UE
YBLM inequality”

we let
s(n, k) = min

H 1s (k—1)-linear, |X|=n
s'(n,k):= min

1s a Sperner family,

2 (EJI =

SES

—1
Z n
SeS,(H)

8
SeSk(H) 142



2'nd version
Zs. Tuza (2014)

Theorem 8 For every fixed k > 2, the limits

s, := lim s(n, k) and s, = lim s§'(n, k)

exist and satisfy 0<sh <sp<l1

strict inequality at both ends.
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2'nd version

Turan numbers
For fixed k-uniform hypergraph F

ex(n,F) := Turdn number = the maximum number of edges

in a k-uniform hypergraph of order n
which does not contain any subhypergraph isomorphic to .
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2'nd version

Turan numbers
For fixed k-uniform hypergraph F

ex(n, F) := Turdn number = the maximum number of edges

in a k-uniform hypergraph of order n
which does not contain any subhypergraph isomorphic to .

KE = (X&) . |Xel=k+1, |E|=kfor Ec&

(=the complete k-uniform hypergraph of order k).

4

E.g. KIS) = K3, ex(n, K;3) = VZJ well known.

for 2 < k ex(n, K )

ki1 1S open.
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Remark12 If 'H = (X,&) is a k-uniform hypergraph of order n sucl
that each (k + 1)-tuple of wvertices contains at least one edge of H,
then ‘512+1 = ().
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Remark12 If 'H = (X,&) is a k-uniform hypergraph of order n sucl
that each (k + 1)-tuple of wvertices contains at least one edge of H,
then &), =0.

In particular, taking 'H as the complement of a hypergraph extremal

for ex(n, K:gfﬂl), we obtain:

(k)
e:z:(n, ka_|_1) and S';ﬂ S 1 — lim

0 A

s(n, k) <1-—
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Remark12 If 'H = (X,&) is a k-uniform hypergraph of order n sucl
that each (k + 1)-tuple of wvertices contains at least one edge of H,
then & L=

In par t?,cula?, taking ‘H as the complement of a hypergraph extremal

for ex(n, K:,,S‘f@l), we obtain:

(k)
ea:(n,i(,kﬂj and sp < 1— lim ———
() = ()

Hence, any lower bound on the Turdn density of K\ o +1

s(n, k) <1-—

implies an upper bound on s,.
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Definitions

A chemical (stoichiometric) system is made up of an infinite hierarchy of
disjoint finite sets:

Definition 2 We introduce the (arbitrary) nonempty disjoint finite sets sets
Ay forz =0,1,... ¢ N as (A, M,E,C are special notations for Ao, ..., As3):
o) A:=Ay={A1, .., A} called atoms,

i) M:=A,={M, .. M,} called molecules or species,

i) & = Ay = {F,...,E.} called elementary mechanistic steps or
reactions,

11) C:= A3 ={Cy,...,C.} called (elementary) mechanisms or catal-
1zatinos,

z) A, — {445‘”’;),..._4;2)} called the = -th level of hierarchy, ... . [
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Definition 3 We define the algebras L, := (L,,+,-) forx = 0,1,... € N
as the ground sets

L, = Z QL -AE,-I) o €Ly (3)
abbreviating fol) oy A% s [C]:’l_, s ad($)] . equipped with the usual opera-

' J
tions

[Ct’l_, cees Cld($)] —+ [%6)13 ey 603(@] s — [C‘fl + /6)]__1 ooy Qg(a) + ﬁd(m)] (4)

and

A - [051, s ad(m)] — [/\ SOy ey A ad($)] for N € 7 . (5)
Clearly the bases of L, are the sets A, . [
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Al (ﬂ[j) = Z k- 44,143 . Ag (Eft) = Z lu’-i,j . ﬂ[j (1 g 7 S 6)
k=1 Jj=1

m
as Y miyrar=0 forl<i<e.l<k<a.
j=1

Using matrices (7) can be written as

[P‘J"’:rﬁ"] e,m ' [@jrk]m:a — [O]e,a, )

or in the language of the linear mappings

AioAy =0 e Im(Ay) < Ker(A;)

where, of course

No: Lo — L1 and AN{:[L1— Lg.

(9)

(10)

([”'irj]e._m is called stoichiometric while ||, , is the composition matriz.)
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in general:

Definition 4 Ffor xz € N, x # 0 we call the linear mappings
A, L, — Lo (11)
storchiometric connections between L., and L, 1 if

A,oN,.1 =0  for z=1,2,.. (12)

where O = O, : L, — L,_1 is the null-mapping. [
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in general:
Definition 4 For z € N, x # 0 we call the linear mappings
A, L, — Lo (11)
stotchiometric connections between L, and L, if
A,oA,y =0 for z=1,2,.. (12)
where O = O, : L, — L,_1 is the null-mapping. [

Remark 5 The requirement (12) can be written equivalently as

Im (A1) & Ker (Ay)  forxz=1,2,.... (13)
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in general:
Definition 4 Ffor x € N, x # 0 we call the linear mappings
A, L, — Lo (11)
storchiometric connections between L, and L, if
A,oA,y =0 for z=1,2,.. (12)
where O = O, : L, — L,_1 is the null-mapping. [

Remark 5 The requirement (12) can be written equivalently as

Im (A1) & Ker (Ay)  forxz=1,2,.... (13)

Definition 6 We call a system of algebras and mappings
H = (L2 Apsy: 2 €N) (14)
(stoichiometric) hierarchy, if it satisfies Definitions 2 through 4. []



Properties

Forv =>"" 4@) QL -AE,-I) €L, (0<z),ve Ker(A,) we know that

7=1
d(x T d(x d(x—1) (z—1
A (v) =0 a; - A, (4§ )) = ay - (Z g ))
_Zd(m 1) (Zd(m) 35(3)) (55‘ 1) —0

d(z)
which includes Z a; 553 ) —0 for i <d(x—1)

J=1

. T T
since {A(l )_, s A{(i(i)} was assumed to be a base.
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above 1mplies

Im (Ag)= the set of all balanced reactions. (16)

Ker (Ag)= the set of all cycle-mechanisms. (17)

In general

Definition 7 Ffor x > 0 the elements of

Ker(Ag) are called  (generalized) cycle-mechanisms
Im (A,) are called balanced mechanisms. L]

Clearly, by (13) each balanced mechanisms must be cycles.
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We did not prescribe Ker (A;) =0 . so we may use

Definition 8 for x > 0 we call the vectors wy,wy € L, to be equivalent
modulo Ker (A,) if and only if

wy —wy € Ker (A,) . (18)
We shorten _
(IR=T [] (19)
Clearly
wy = w; +y for some y € Ker (A;) . (20)

It is well known, that & 1s an equivalence relation and

Le/— =Tm (A,) . (21
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Dual mappings A*: 2%, -1 (1 <2).

r—1

mathematical definition
Definition 9 Let V' and W be any linear spaces, usually ['=R .

(t) The dual space V* is the set of linear mappings (functions)
f:V — T . The addition and scalar multiplication for fi, fa, f € V*

and A el . . . .
(fi® fo)(v) + = fi(v)+ fa(v)
A f)(v) + =X-f(v) weV,xel). (25)
(i) For any linear mapping M :V — W | the dual mapping

The elements of V* are called also functionals or valuations.
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Dual mappings A*: 2%, -1 (1 <2).

r—1

mathematical definition
Definition 9 Let V' and W be any linear spaces, usually ['=R .

(t) The dual space V* is the set of linear mappings (functions)
f:V — T . The addition and scalar multiplication for fi, fa, f € V*

and A el . . . .
(fi® fo)(v) + = fi(v)+ fa(v)
A f)(v) + =X-f(v) weV,xel). (25)
(i) For any linear mapping M :V — W | the dual mapping

MW SV g f (26)

The elements of V* are called also functionals or valuations.

Definition 10 The dual mappings AL : L: | — L% (1 < z) are called
dual storchiometric connections. [ ]

(the matrices of AY are the transposes of the matrices of A, . ) 162
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X.
Valuation
Operator



Definition 6. 5.

(i) call the elements of an arbitrary set {C4,...,C,} components,

the linear combination S =Y " | s;-C; (s; € R) (chemical) structures,

Vi={>", s-Ci:s € R} are sets of massess.

(it) Any linear functional L :V — R is called evaluating operator. []
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Definition 6. 5.
(i) call the elements of an arbitrary set {C4,...,C,} components,

the linear combination S =Y " | s;-C; (s; € R) (chemical) structures,
T
Vo= {Zizl si-Ci 1 s; € R} are sets of massess.

(it) Any linear functional £ :'V — R is called evaluating operator. [

Theorem 6.6. All the evaluating operators on V' have the form

n

L(S)=> a;-s;

i=1
where the coefficient vector a = [ai, ..., a,]t € R™ is uniquely determined by
L:a;=L(C;). O
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Definition 6. 5.
(i) call the elements of an arbitrary set {C4,...,C,} components,

the linear combination S =Y " | s;-C; (s; € R) (chemical) structures,
T
Vo= {Zizl si-Ci 1 s; € R} are sets of massess.

(it) Any linear functional £ :'V — R is called evaluating operator. [

Theorem 6.6. All the evaluating operators on V' have the form

T
L(S)=> a;-s;
i=1
where the coefficient vector a = [ai, ..., a,]t € R™ is uniquely determined by
L:a;=L(C;). O

Immediately we get
Theorem 6.7. (Hess’ law) If the reactions Xi,..., X, result the zero

mechanism O | then the sum of the heats H(X:),....H(X;) is0. L



The fact V* = V implies

Theorem 77 (PhD 6.8.T.) If V is built up from n components, then there
are at most n linearly independent evaluating operators L4, ..., L, . so all each
other evaluating operator L can be expressed as L = a1 L1+ ... + a, L, . L[]

Cauchy-Bunyakowsky-Schwarz’s mequality:

Theorem 78 (PhD 6.9.T.) For anyV and L :' V — R there is a constant
c € R™ such that

[£(S)|<c-|S|| JorSeV .

where  |IS| = /st +...+s2. c=+al+t...ta} O]
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Theorem 6.10. IfV) and Vs are generated by C ={Cy,...,Cy}
and D ={Dy,....,Dy,}resp, CND=0 and V=V, .

then V' has evaluating operators only:

L= L | B |y,
[ (ﬁ) — Z?:l a;S; + Z?:l bjtj for S = Z?:l s;C; + Zil tij .

Theorem 6.11. For any two scalar products A,B:V xV — R
— V  such that

P

there 1s an continuous automorphism L : 'V

A(w,v) = B(Z(u),Z(v)) (w,v €V). ]

Roughly speaking this means. that all the evaluating operators of
a mass-set differ from a scalar multiplier only.
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Petri-graph (P-graph), Volpert-graph,
Feinberg—Horn—Jackson-graph

CHO CH,OH H,0
Egy P-graf ([B99])



Dealing with the chemical structure (an idea) :
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+2

+1

+1

F

E

A O

+2

B C D

A

+1

+1

+1

+1

< m U0

T kH M
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A B C D E F G H I J K e

A +1 +2
B -1 -1 -2
C +1 % +1

D -1 -2
E * o+l +1
F -1 +2
G -3
H +1 +1 | +2
I -1+ -1

] +1 +2
K -1 -1
= -2 +2 -2 -1 -2 +3 -2 -2 +1

179



A B C D E F G H I J K e
A = +1 +2
B -1 * -1 M(laz) (153) -2
C +1 % +1 M
D _1 & _2 I
E 2,1) | &L 23) | 1

b - we b
| M 1 | M | 2
i

H S 1
. 3,1) M(332) BRESIRE B
J M +1 = +2
K -1 W -1
e -2 +2 -2 -1 -2 +3 -2 -2 +1
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cut

szetvagas:
f) [J (r) REG] Z‘ Z‘ M(I’j)[] C
/?Lif C
osszeillesztés: M) = 7

glue
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