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I.

Simplexes
(definitions)
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2 H2 + 2 CO = CH4 + CO2

H:    |2|     |0|   |4|   |0|   |0|

C:  2*|0| + 2*|1| - |1| - |1| = |0|

O:    |0|     |1|   |0|   |2|   |0|

(1) Chemical reactions :

<=> Linear combination of vectors
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2 H2 + 2 CO = CH4 + CO2

H:    |2|     |0|   |4|   |0|   |0|

C:  2*|0| + 2*|1| - |1| - |1| = |0|

O:    |0|     |1|   |0|   |2|   |0|

(1) Chemical reactions :

<=> Linear combination of vectors

No kinetics, chemics, graphs (at the end), 
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Tóth,J., Nagy,A., Papp,D.: Reaction Kinetics: Exercises, Prog-

rams and Theorems: Mathematica for Deterministic and Stochas-

tic Kinetics, Springer, New York, NY, 2018.
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2 H2 + 2 CO = CH4 + CO2

H:    |2|     |0|   |4|   |0|   |0|

C:  2*|0| + 2*|1| - |1| - |1| = |0|

O:    |0|     |1|   |0|   |2|   |0|

(1) Chemical reactions :

<=> Linear combination of vectors

Minimal: none of them can be omitted.
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2 H2 + 2 CO = CH4 + CO2

H:    |2|     |0|   |4|   |0|   |0|

C:  2*|0| + 2*|1| - |1| - |1| = |0|

O:    |0|     |1|   |0|   |2|   |0|

(1) Chemical reactions :

<=> Linear combination of vectors

Minimal: none of them can be omitted.

(also for ions, e-,  cathalysts, etc.)
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2 H2 + 2 CO = CH4 + CO2

H:    |2|     |0|   |4|   |0|   |0|

C:  2*|0| + 2*|1| - |1| - |1| = |0|

O:    |0|     |1|   |0|   |2|   |0|

(1) Chemical reactions :

<=> Linear combination of vectors

Minimal: none of them can be omitted.

(also for ions, e-,  cathalysts, etc.)

R
C,O,H,e-,...



Question:

Can we distinguish the reactions    u: X+Y2X and  v: YX ?



Question:

Can we distinguish the reactions    u: X+Y2X and  v: YX ?

Answer: The above model does not distinguish them: reduces to 0

and uses the vector  w = [1,-1,0,...]T for both. 



Question:

Can we distinguish the reactions    u: X+Y2X and  v: YX ?

Answer: The above model does not distinguish them: reduces to 0

and uses the vector  w = [1,-1,0,...]T for both. 

Idea: work in double dimension.  Imagine for all species  (X,Y, ...)   

two variants  "in"  and  "out"   and use the vectors: 

u' = [-1,-1,0,...,2,0,0,...]T ,   v': [0,-1,0,...,1,0,0,...]T , 

and introduce the reactions   "in  out"   as: 

x = [1,0,0, ..., -1,0,0,...]T ,   y = [0,1,0, ...,0,-1,0,...]T , 

then clearly u  u'+2x and   v  v' + x ,

and modify the original  "start"  and "goal"  reactions corres-

ponding this idea. 

v' + x



13

. . . there are several more minor observations and tricks . . . 



14

1: C + O = CO X1 = [1,1,-1,0]

2: C + 2 O =  CO2 X2 =  [1,2,0,-1]

( 3: O + CO =  CO2 X3 =  [0,1,1,-1] )

4: C + CO2= 2CO X4 =  [1,0,-2,1]

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

2*X1 - X2  = X4 

2*X1 - X2 - X4 = 0

(2) Mechanisms :

Linear combination

Minimal: none of them can be omitted.
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1: C + O = CO X1 = [1,1,-1,0]

2: C + 2 O =  CO2 X2 =  [1,2,0,-1]

( 3: O + CO =  CO2 X3 =  [0,1,1,-1] )

4: C + CO2= 2CO X4 =  [1,0,-2,1]

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

2*X1 - X2  = X4 

2*X1 - X2 - X4 = 0

(2) Mechanisms :

Linear combination

Minimal: none of them can be omitted.

R
C,O,CO,CO2
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1: C + O = CO X1 = [1,1,-1,0]T

2: C + 2 O =  CO2 X2 =  [1,2,0,-1]T

( 3: O + CO =  CO2 X3 =  [0,1,1,-1]T)

4: C + CO2= 2CO X4 =  [1,0,-2,1]T

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

in general:                         Y = α1X1+α2X2+...αnXn (M)

α1X1+α2X2+...αnXn – Y = 0

(2) Mechanisms :

Y:= R(M) = the final reaction, determined by the mechanism (M)

+ given start materials and final products  . . .
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1: C + O = CO X1 = [1,1,-1,0]T

2: C + 2 O =  CO2 X2 =  [1,2,0,-1]T

( 3: O + CO =  CO2 X3 =  [0,1,1,-1]T)

4: C + CO2= 2CO X4 =  [1,0,-2,1]T

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

in general:                         Y = α1X1+α2X2+...αnXn (M)

α1X1+α2X2+...αnXn – Y = 0

(2) Mechanisms :

Y:= R(M) = the final reaction, determined by the mechanism (M)

+ given start materials and final products  . . .

Minimal: none of them can be omitted.
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(3) Physical quantities (measure units/”dimension analysis”):

[ 1, 0, 0, 0, 0, 0 ]

[ 0, 1,-1, 0, 0, 0 ]

[-3, 0, 0, 1, 0, 0 ]

[-1, 0,-1, 1, 0, 0 ]

[ 0, 0,-2, 0, 1,-1 ]

[ 0, 0,-3, 1, 0,-1 ]

[ 1, 0,-3, 1, 0,-1 ]

Minimal connection:          υ·κ = μ ·c    /for some cR/
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(3) Physical quantities (measure units/”dimension analysis”):

[ 1, 0, 0, 0, 0, 0 ]T

[ 0, 1,-1, 0, 0, 0 ]T

[-3, 0, 0, 1, 0, 0 ]T

[-1, 0,-1, 1, 0, 0 ]T

[ 0, 0,-2, 0, 1,-1 ]T

[ 0, 0,-3, 1, 0,-1 ]T

[ 1, 0,-3, 1, 0,-1 ]T

Minimal connection:          υ·κ = μ ·c    /for some cR/

<=> linear combination of the exponents

exponents

R
exponents
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(4) In General : Main Definition:

S = {s1 , s2 ,… , sk }  Rn is an  (linear) algebraic simplex

iff S is minimal dependent.                                                        
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(4) In General :           Main Definition:

S = {s1 , s2 ,… , sk }  Rn is an  (linear) algebraic simplex

iff S is minimal dependent.                                                        

i.e.

S is dependent  and S\{si}  is independent      for all i < k .   
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(4) In General :           Main Definition:

S = {s1 , s2 ,… , sk }  Rn is an  (linear) algebraic simplex

iff S is minimal dependent.                                                        

i.e.

S is dependent  and S\{si}  is independent      for all i < k .   

i.e.

1·s1 + 2·s2 +… + k·sk = 0

and none of them can be omitted :  i ≠ 0 for all i < k .   
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(4) In General :           Main Definition:

S = {s1 , s2 ,… , sk }  Rn is an  (linear) algebraic simplex

iff S is minimal dependent.                                                        

i.e.

S is dependent  and S\{si}  is independent      for all i < k .   

i.e.

1·s1 + 2·s2 +… + k·sk = 0

and none of them can be omitted :  i ≠ 0 for all i < k .   

(minimal reactions, mechanisms, etc. )



24



25

II.

System of 

equations
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(0) Homogeneous linear equations:

A·x = 0

Find the structure of minimal solutions



Question: Assuming    AX = 0 ,    what information could be 

extracted from the linear  /in/dependency of the rows and columns

of  A and of  X and of  rank(A)  ?  



Question: Assuming    AX = 0 ,    what information could be 

extracted from the linear  /in/dependency of the rows and columns

of  A and of  X and of  rank(A)  ?  

Answer: 

columns of  A are the  "contents"  of the species, 

columns of  X are the  reactions, 

generating/independent columns of  X  denote generating / 

independent reactions. 



Question: Assuming    AX = 0 ,    what information could be 

extracted from the linear  /in/dependency of the rows and columns

of  A and of  X and of  rank(A)  ?  

Answer: 

columns of  A are the  "contents"  of the species, 

columns of  X are the  reactions, 

generating/independent columns of  X  denote generating / 

independent reactions. 

rows, rank(A),  rank(X) = ?  



Observations (reducing the dimension) 

a) If a column of  A  (a species/reaction)  is linearly  independent

fom the others, then it can be omitted,

since it plays no role in any reaction/ mechanism.



Observations (reducing the dimension) 

a) If a column of  A  (a species/reaction)  is linearly  independent

fom the others, then it can be omitted,

since it plays no role in any reaction/ mechanism.

b) If one column of  A is parallel to another column,   

then  one of these columns can be omitted,

since they denote the same species/reaction in multiple dose.



Observations (reducing the dimension) 

a) If a column of  A  (a species/reaction)  is linearly  independent

fom the others, then it can be omitted,

since it plays no role in any reaction/ mechanism.

b) If one column of  A is parallel to another column,   

then  one of these columns can be omitted,

since they denote the same species/reaction in multiple dose.

c) If a column of  A  (a reaction) contains exactly two nonzero 

coordinates, then this column can be omitted,

since in this reaction the two species are equivalent.



Observations (reducing the dimension) 

a) If a column of  A  (a species/reaction)  is linearly  independent

fom the others, then it can be omitted,

since it plays no role in any reaction/ mechanism.

b) If one column of  A is parallel to another column,   

then  one of these columns can be omitted,

since they denote the same species/reaction in multiple dose.

c) If a column of  A  (a reaction) contains exactly two nonzero 

coordinates, then this column can be omitted,

since in this reaction the two species are equivalent.

Perhaps they are important in chemistry. 

NOT the Gauss elminination method. 
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x is minimal if for  no y we have    supp(y)  supp(x)
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supp(x) = {ai1,ai2,...,aik : xij0}

x is minimal if for  no y we have    supp(y)  supp(x)
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III.

Algorithm
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(0) Homogeneous linear equations:

A·x = 0

Find all minimal solutions



Happel-Sellers-Otarod [HOS,1990]  's algorithm for reaction-

mechanisms uses : 

- mainly elementary matrix row-column operations 

- eliminating equations.  

after reductions: 

- determine the bases of the solutions with heuristic methods. 

Their method is mainly theoretical, non automatic.  

No further details are published. 
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Reminder:  S={s1 , s2 ,… , sk} Rn is an algebraic simplex iff S is dependent 

and   S\{si}  is independent for all i < k  .   

i.e. 1·s1 + 2·s2 +… + k·sk = 0 and none of them can be omitted. 

(minimal reactions, mechanisms, etc. )

Our TASK 1:

Algorithm for generating all simplexes SH  in a given HRn.

(all reactions, mechanisms, etc.)   

+ Applications
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Reminder:  S={s1 , s2 ,… , sk} Rn is an algebraic simplex iff S is dependent 

and   S\{si}  is independent for all i < k  .   

i.e. 1·s1 + 2·s2 +… + k·sk = 0 and none of them can be omitted. 

(minimal reactions, mechanisms, etc. )

Our TASK 1:

Algorithm for generating all simplexes SH  in a given HRn.

(all reactions, mechanisms, etc.)   

+ Applications

Result: polynomial algorithm

 [1991] Hung. J. Ind.Chem. 289-292.

 [2000] J. Math. Chem.1-34. 
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J.Tóth,  A.Nagy, D.Papp: 

Reaction Kinetics: Exercises, Programs and Theorems:  

Mathematica for  Deterministic and Stochastic Kinetics. 

Springer, New York, NY, 2018.  ISBN:9781493986415, 
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IV.

Examples
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E.g.

=>
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V.

Number of 

simplexes
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Reminder:  S={s1 , s2 ,… , sk} Rn is an algebraic simplex iff S is dependent 

and   S\{si}  is independent for all i < k  .   

i.e. 1·s1 + 2·s2 +… + k·sk = 0 and none of them can be omitted. 

(minimal reactions, mechanisms, etc. )

Task 2:  

Question: For given  HRn how many simplexes  SH  could be  

in H  if   |H|=m is given and  H  spans  Rn  ?

(how many reactions, mechanisms, etc. )
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Reminder:  S={s1 , s2 ,… , sk} Rn is an algebraic simplex iff S is dependent 

and   S\{si}  is independent for all i < k  .   

i.e. 1·s1 + 2·s2 +… + k·sk = 0 and none of them can be omitted. 

(minimal reactions, mechanisms, etc. )

Task 2:  

Question: For given  HRn how many simplexes  SH  could be  

in H  if   |H|=m is given and  H  spans  Rn  ?

(how many reactions, mechanisms, etc. )

Notation:

simp(H) :=   the number of simplexes SH     .     
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Theorem 1 [1995] (Laflamme-Szalkai)

= O(mn+1) 

and simp(H) is maximal iff every n  -element subset

of H  is independent.  













1
)(

n

m
Hsimp

Assuming:  |H|=m ,   H  spans  Rn  
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Theorem 1 [1995] (Laflamme-Szalkai)

= O(mn+1) 

and simp(H) is maximal iff every n  -element subset

of H  is independent.  

Notes:   

- Sperner’s  theorem  is not enough: what is the structure of H ?

- Vandermonde determinant:   xi = [1,i,...,i
n-1]T (i=1,...,m) 

- species are built from n particles and any n species are 

independent   (and any n+1 are dependent)  .













1
)(

n

m
Hsimp

Assuming:  |H|=m ,   H  spans  Rn  
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)(
2

/
Hsimp

nm
n 










|H|=m ,   H  spans  Rn  

Theorem 2 [1995] (Laflamme-Szalkai)

O(m2) =

and simp(H) is minimal iff m/n  elements

of H  are parallel to bi where {b1,…,bn}  is any base of .  

(parallel = isomers, multiple doses,…)
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)(
2

/
Hsimp

nm
n 










|H|=m ,   H  spans  Rn  

Theorem 2 [1995] (Laflamme-Szalkai)

O(m2) =

and simp(H) is minimal iff m/n  elements

of H  are parallel to bi where {b1,…,bn}  is any base of .  

Proof: similar packing vectors to parallel sets to a base 

to reduce  simp(H) . 
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)(
2

/
Hsimp

nm
n 










|H|=m ,   H  spans  Rn  

Theorem 2 [1995] (Laflamme-Szalkai)

O(m2) =

and simp(H) is minimal iff m/n  elements

of H  are parallel to bi where {b1,…,bn}  is any base of .  

More precisely:
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)(
2

/
Hsimp

nm
n 










|H|=m ,   H  spans  Rn  

Theorem 2 [1995] (Laflamme-Szalkai)

O(m2) =

and simp(H) is minimal iff m/n  elements

of H  are parallel to bi where {b1,…,bn}  is any base of .  

Open Question:

if   no parallel elements are in H ?
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?  1) If  n is even => H contains n linearly independent vectors

{ui : i = 1,…,n} and the remaining of  H is divided as evenly as 

possible between the planes  [ui , ui+1]   for  i = 1, 3, …, n - 1 .  

?  2) If  n is odd  => H again contains n linearly independent vectors

{ui : i = 1,…,n},  one extra vector in the plane [un-1 ,un] and finally the 

remaining vectors are divided as evenly as possible between the 

planes  [ui , ui+1]   for  i = 1, 3, …, n - 2 with lower indices having 

precedence. 

LATER !

General Conjecture (1998) (Laflamme, Meng, Szalkai)

no parallel => the minimal configurations in Rn are:
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Reducing the dimension (n=3):

vectors => points,  2D-planes => lines

R3 R2



81

So, after the reduction we get:

Definition: (affine) simplexes in R2 are 

i)   3 colinear points, 

ii)   4 general points: no three colinear,



Elementary question in R2 :

What is the minimal number of (total) simplexes

if the number of points (spanning  R2)  is m ? 
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Theorem 3 [1998] (Laflamme-Szalkai)  

For H  R3

and for m>8 :   simp(H)  is  minimal iff

|H|=m ,   H  spans  Rn ,  no parallel elements

H = 


( vectors = points,   planes = lines )

m-2

3

n=3
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Theorem 3 [1998] (Laflamme-Szalkai)  

Proof: packing points to lines to reduce simp(H), 

many subcases,  14 pp long. 
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Reducing the dimension (n=4):

vectors => points,  2D-planes => lines, h.-planes => 2D-planes
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So, after the reduction we get:

Definition: (affine) simplexes in R3 are 

i)   3 colinear points, 

ii)   4 coplanar, no three colinear,

iii) 5 general points: no three or four as above.   


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So, after the reduction we get:

Definition: (affine) simplexes in R3 are 

i)   3 colinear points, 

ii)   4 coplanar, no three colinear,

iii) 5 general points: no three or four as above.   



Still elementary question in R3 :

What is the minimal number of (total) simplexes

if the number of points (spanning  R3)  is m ? 
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Theorem 4 [2010] (Balázs Szalkai - I.Szalkai) 

For H  R4

and for m>24   simp(H)   is minimal iff H  is 

placed into two (skew) detour line

|H|=m ,   H  spans  Rn ,  no parallel elements



n=4
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Theorem 4 [2010] (Laflamme-Szalkai)  

Proof: packing points to planes to reduce simp(H), 

using the infinite sides of a tetrahedron 

many subcases,  10 pp long. 
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?  1) If  n is even => H contains n linearly independent vectors

{ui : i = 1,…,n} and the remaining of  H is divided as evenly as 

possible between the planes  [ui , ui+1]   for  i = 1, 3, …, n - 1 .  

General Conjecture (1998) (Laflamme, Meng, Szalkai)

no parallel => the only minimal configurations in Rn are:

[u1, u2]       [u3, u4]          . . . [ui, ui+1]     . . . [un-1, un]
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?  2) If  n is odd => H contains n linearly independent vectors

{ui : i = 1,…,n} ,  one extra vector in the plane [un-1 ,un] and finally 

the remaining vectors are divided as evenly as possible between the 

planes  [ui , ui+1]   for  i = 1, 3, …, n - 2 with lower indices having 

precedence. 

General Conjecture (1998) (Laflamme, Meng, Szalkai)

no parallel => the only minimal configurations in Rn are:

[u1, u2]       [u3, u4]          . . . [ui, ui+1]   . . . [un-2, un-1] , [un-1, un]
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VI.

Matroids



93

Matroids (hypergraphs) :

What is the minimal and maximal number of cycles and bases

in a matroid of size m and given rank n ?
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 [2006] (Laflamme, Dósa, Szalkai) : 

Matroids (hypergraphs) :

What is the minimal and maximal number of cycles and bases

in a matroid of size m and given rank n ?

Theorem 5 If  m > n+1 then only the uniform matroid  Um,n contains 

the maximum number of circuits: 

If  m = n+1 then all matroids of size m and of rank n contain exactly 1

circuit.  
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 [2006] (Laflamme, Dósa, Szalkai) : 

Matroids (hypergraphs) :

What is the minimal and maximal number of cycles and bases

in a matroid of size m and given rank n ?

Theorem 5 If  m > n+1 then only the uniform matroid  Um,n contains 

the maximum number of circuits: 

If  m = n+1 then all matroids of size m and of rank n contain exactly 1

circuit.  

Theorem 6 If  m > n then only the uniform matroid  Um,n contains 

the maximum number of bases: 











m

n
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 [2006] (Laflamme, Dósa, Szalkai) : 

Matroids (hypergraphs) :

What is the minimal and maximal number of cycles and bases

in a matroid of size m and given rank n ? 

Theorem 7 For each m and n there is a unique matroid Mo of size m

and of rank n containing the minimum number of bases, namely 1 when 

we allow loops in the matroid.  
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 [2006] (Laflamme, Dósa, Szalkai) : 

Matroids (hypergraphs) :

What is the minimal and maximal number of cycles and bases

in a matroid of size m and given rank n ? 

Theorem 7 For each m and n there is a unique matroid Mo of size m

and of rank n containing the minimum number of bases, namely 1 when 

we allow loops in the matroid.  

Theorem 8   Any matroid M of size m and of rank n contains the  

minimum number m-n circuits if and only if the circuits of the 

matroid are pairwise disjoint. 
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THM: For each m and n each matroid M contains the minimum

number of bases iff it has a base {a₁,a₂,…,an} such that all other 

elements in M are parallel to a₁ .
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THM: For each m and n each matroid M contains the minimum

number of bases iff it has a base {a₁,a₂,…,an} such that all other 

elements in M are parallel to a₁ .

PROBLEM Characterize the matroids with the minimum 

number of circuits and bases, when neither parallel elements nor 

loops are allowed.
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THM: For each m and n each matroid M contains the minimum

number of bases iff it has a base {a₁,a₂,…,an} such that all other 

elements in M are parallel to a₁ .

PROBLEM Characterize the matroids with the minimum 

number of circuits and bases, when neither parallel elements nor 

loops are allowed.

Conjecture [Oxley, 1997]  For matroids with k  girth(M)

the uniform  matroid Um-3,k has minimal number of circuits, 

namely
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THM. [2015]  (Alahmadi,Aldred,Cruz,Ok,Solé,Thomassen) :   

Any loopless matroid M of size μ and rank ν without parallel 

elements has at least μ cocircuits .
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VII.

Codes, 

Families, ...
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DEF: For n,kN and CC[n,k]  linear code (length n dimension k)

M(C)    :=   number of minimal codewords in C 

and      M(n,k)  :=   max { M(C) |  CC[n,k]  }  .
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DEF: For n,kN and CC[n,k]  linear code (length n dimension k)

M(C)    :=   number of minimal codewords in C 

and      M(n,k)  :=   max { M(C) |  CC[n,k]  }  .

THM. [2013]  (Alahmadi,Aldred,Cruz,Solé,Thomassen) :   (1nk) 

circles of matroids   =>    M(n,k)  
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DEF: For n,kN and CC[n,k]  linear code (length n dimension k)

M(C)    :=   number of minimal codewords in C 

and      M(n,k)  :=   max { M(C) |  CC[n,k]  }  .

THM. [2013]  (Alahmadi,Aldred,Cruz,Solé,Thomassen) :   (1nk) 

circles of matroids   =>    M(n,k)  

THM. [2015]  (Alahmadi,Aldred,Cruz,Ok,Solé,Thomassen) :   

circles of matroids   =>    k   M(n,k)  
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DEF: For n,kN and CC[n,k]  linear code (length n dimension k)

M(C)    :=   number of minimal codewords in C 

and      M(n,k)  :=   max { M(C) |  CC[n,k]  }  .

THM. [2013]  (Alahmadi,Aldred,Cruz,Solé,Thomassen) :   (1nk) 

circles of matroids   =>    M(n,k)  

THM. [2015]  (Alahmadi,Aldred,Cruz,Ok,Solé,Thomassen) :   

circles of matroids   =>    k   M(n,k)  

THM. [2015]  (Alahmadi,Aldred,Cruz,Ok,Solé,Thomassen) : 

C has distances  2, circles of matroids  => 

 M(n,k)            / n = a (n-k)+b /
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Corollary [2015]  (Alahmadi,Aldred,Cruz,Ok,Solé,Thomassen, 

Kashyap) :   

For any [n,k] code C of dual distance at least 3 :  M(C)  n
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G is a connected graph (allowing multiple edges but no loops), 

p vertices, q edges.

QUESTION [1981] (Entringer and Slater):  

How many cycles #CG a graph with p vertices and q edges can have?

Trivial: #CG < 2q−p+1
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G is a connected graph (allowing multiple edges but no loops), 

p vertices, q edges.

QUESTION [1981] (Entringer and Slater):  

How many cycles #CG a graph with p vertices and q edges can have?

Trivial: #CG < 2q−p+1

Cycle code C(G) has length n=q, dimension k = q−p+1.

Note: The minimal codewords of C(G) are exactly the incidence 

vectors of cycles, that is, circuits in the cycle matroid in G. 

THM. [2013]  (Aldred,Alahmadi,Cruz,Solé,Thomassen) :   

If q>2p+O(log(p))   then #CG < 2q−p .
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THM. [2015]  (Alahmadi,Aldred,Cruz,Ok,Solé,Thomassen) :  

matroids   =>  In any 2-edge-connected graph with p vertices and 

q edges the number of cycles is (the bound is tight) /q=a(p-1)+b/

 #CG
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THM. [2015]  (Alahmadi,Aldred,Cruz,Ok,Solé,Thomassen) :  

matroids   =>  In any 2-edge-connected graph with p vertices and 

q edges the number of cycles is (the bound is tight) /q=a(p-1)+b/

 #CG

THM. [2015]  (Alahmadi,Aldred,Cruz,Ok,Solé,Thomassen) :  

matroids   =>  

Any 3-edge-connected graph with q edges contains at least q cycles ,

the bound is sharp:    q  #CG
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THM. [2015]  (Alahmadi,Aldred,Cruz,Ok,Solé,Thomassen) :  

matroids   =>  In any 2-edge-connected graph with p vertices and 

q edges the number of cycles is (the bound is tight) /q=a(p-1)+b/

 #CG

THM. [2015]  (Alahmadi,Aldred,Cruz,Ok,Solé,Thomassen) :  

matroids   =>  

Any 3-edge-connected graph with q edges contains at least q cycles ,

the bound is sharp:    q  #CG

THM. [2015]  (Alahmadi,Aldred,Cruz,Ok,Solé,Thomassen) :  

Any 2-connected graph with q edges and p vertices contains at least

 #CG
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VIII.

Hypergraphs
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1'st  version
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1'st  version
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1'st  version
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1'st  version
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1'st  version
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1'st  version

(Zs.Tuza, I.Szalkai, 2013)
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2'nd version
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2'nd version
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2'nd version
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Definition: (affine) simplexes in R3 are 

i)   3 colinear points, 

ii)   4 coplanar, no three colinear,

iii) 5 general points: no three or four as above.   



2'nd version
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Definition: (affine) simplexes in R3 are 

i)   3 colinear points, 

ii)   4 coplanar, no three colinear,

iii) 5 general points: no three or four as above.   



2'nd version
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Theorem 3 [1998] (Laflamme-Szalkai)    For H  R3

m-2 3

Theorem 4 [2010] (Balázs Szalkai - I.Szalkai)    For H  R4

Mostly contain (affine) simplexes of three points.
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?  1) If  n is even => H contains n linearly independent vectors

{ui : i = 1,…,n} and the remaining of  H is divided as evenly as 

possible between the planes  [ui , ui+1]   for  i = 1, 3, …, n - 1 .  

General Conjecture (1998) (Laflamme, Meng, Szalkai)

no parallel => the only minimal configurations in Rn are:

[u1, u2]       [u3, u4]          . . . [ui, ui+1]     . . . [un-1, un]
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?  2) If  n is odd => H contains n linearly independent vectors

{ui : i = 1,…,n} ,  one extra vector in the plane [un-1 ,un] and finally 

the remaining vectors are divided as evenly as possible between the 

planes  [ui , ui+1]   for  i = 1, 3, …, n - 2 with lower indices having 

precedence. 

General Conjecture (1998) (Laflamme, Meng, Szalkai)

no parallel => the only minimal configurations in Rn are:

[u1, u2]       [u3, u4]          . . . [ui, ui+1]   . . . [un-2, un-1] , [un-1, un]
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2'nd version

New: no three points are collinear (or:  k|S| )
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2'nd version

New: no three points are collinear (or:  k|S| )
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2'nd version

New: no three points are collinear (or:  k|S| )

k = d := D-1
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Zs.Tuza, I.Szalkai (2014)

2'nd version
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Zs.Tuza, I.Szalkai (2014)

2'nd version

(asymptotically tight)
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2'nd version
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2'nd version
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2'nd version
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Zs.Tuza, I.Szalkai (2014)

2'nd version
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2'nd version
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2'nd version

Yamamoto [1954],  Bollobás [1965],  Lubell [1966],  

Meshalkin [1963]   

 Hungarian architect    Ybl Miklós (1814-1891) 

https://en.wikipedia.org/wiki/Mikl%C3%B3s_Ybl
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2'nd version

we let
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2'nd version

Zs.Tuza (2014)
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2'nd version
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2'nd version
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IX.

General 

Hierarchy
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X.

Valuation 

Operator
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XI.

Graphs



Petri-graph (P-graph),  Volpert-graph, 

Feinberg–Horn–Jackson-graph
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Dealing with the  chemical structure (an idea) :
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cut

glue
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Many thanks to

You


