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ON THE EFFECTS OF DELAY PERTURBA-TIONS ON THE STABILITY OF DELAY DIF-FERENCE EQUATIONS
ISTV�AN GY}ORIDepartment of Mathematis and Computing, Universityof Veszpr�em, H-8201 Veszpr�em, HungaryFERENC HARTUNG and JANOS TURIPrograms in Mathematial Sienes, University of Texasat Dallas, Rihardson, TX 75083Abstrat We onsider a lass of linear delay di�erene equations withperturbed time lags and present onditions whih guarantee that theasymptoti stability of the trivial solution of the equation at hand ispreserved under these perturbations. As an appliation of this pertur-bation result, we give suÆient onditions for asymptoti stability ofsalar linear delay di�erene equations.1. IntrodutionIn this paper we study the e�ets of perturbations of time delayson the stability of a lass of linear delay di�erene systems. Our goalis to obtain a \pratial" ondition, i.e., a norm bound on the per-turbations orresponding to the partiular system under onsideration,whih guarantees the preservation of asymptoti stability under per-1



turbations. It turns out that suh ondition an be formulated usingthe in�nite sum of the fundamental solution of the unperturbed system(see Theorem 2.3 below). Sine asymptoti stability of the unperturbedsystem implies that the omponents of its fundamental solution go tozero exponentially at in�nity, it is possible to get \good" numerialestimates of the in�nite sum, and onsequently obtain norm bounds onthe allowable perturbations.We present our main results in Setion 2, and in Setion 3 we on-sider numerial examples. In Setion 4, as an appliation of our pertur-bation result, we obtain suÆient onditions for asymptoti stability ofsalar linear delay di�erene equations.To onlude this setion we note, that perturbation related issuesfor delay di�erential equations, and in partiular, delay perturbations,have been studied by many authors. We refer the interested reader to[3℄, [4℄, [9℄, [10℄, [15℄ and the referenes therein for related artiles, andalso for [5℄, whih ontains the ontinuous ounterpart of the results ofthis paper.2. Main ResultsFirst we introdue some notations used throughout this paper. N ,Z and R denotes the set of nonnegative integers, integers, and realnumbers, respetively. For a sequene, x(n), the forwarded di�ereneis denoted by �x(n) � x(n + 1) � x(n). For future onveniene, wede�ne the ~ operation on vetors and on matries, whih means tak-ing the absolute value of the vetor or matrix omponentwise, i.e., ifx = (x1; x2; : : : ; xn)T , then by de�nition ~x � (jx1j; jx2j; : : : ; jxnj)T , andsimilarly if A = (aij)n�n, then ~A � (jaijj)n�n. The relation � betweenvetors means a omponentwise omparison, i.e., (x1; x2; : : : ; xn)T �(y1; y2; : : : ; yn)T if for all the omponents xi � yi.Consider the delay di�erene equation�x(n) = mXi=0 Aix(n� ki � �i(n)); n 2 N ; (2.1)with initial onditionx(n) = '(n); n = �n0;�n0 + 1; : : : ; 0; (2.2)2



where Ai (i = 0; : : : ; m) denote onstant N � N matries, 0 = k0 �k1 � : : : � km, ' : [�n0; 0℄ \ Z! RN is a given funtion, and we shallassume that the delay perturbations, �i(�) : N ! Z (i = 0; : : : ; m),satisfyn� n0 � n� ki � �i(n) � n for n 2 N (i = 0; : : : ; m): (2.3)Under our assumptions initial value problem (2.1)-(2.2) is a delay dif-ferene equation and has a unique solution.We onsider the orresponding unperturbed system with onstantdelays, i.e., �y(n) = mXi=0 Aiy(n� ki); n 2 N ; (2.4)and we assume that(H) the trivial (y(n) = 0) solution of (2.4) is asymptotially stable.For a �xed T 2 N the fundamental matrix solution of (2.4), V (n), isde�ned as the solution of the following system�V (n) = mXi=0 AiV (n� ki); n 2 N ; n � T; (2.5)and V (n) = � I; n = T;0; n < T; (2.6)where I; 0 2 Rn�n are the identity and the zero matrix, respetively.Remark 2.1 To emphasize the dependene of V (�) on T we use thenotation V (n; T ). Note that V (n; T ) = V (n� T ; 0) for t � T beause(2.4) is autonomous, hene (2.6) yields that1Xn=0 V (n; T ) = 1Xn=0 V (n; 0):We an rewrite (2.1) in the form�x(n) = mXi=0 Aix(n� ki) + f(n); n 2 N ; (2.7)3



where f(n) � mXi=0 Ai�x(n� ki � �i(n))� x(n� ki)�: (2.8)In this setting (2.4) an be onsidered as the homogeneous equationorresponding to (2.7). The variation-of-onstants formula (see e.g. in[6℄) gives the following expression for the solution of the initial valueproblem (2.1)-(2.2):x(n) = y(n) + n�1Xi=T V (n� i� 1)f(i); n 2 N ; n � T; (2.9)where T > 0 is an integer number, and y is the solution of (2.4) withinitial funtion y(n) = x(n) for T � N � t � T and V (�) = V (�;T ) isthe fundamental solution of (2.4).Remark 2.2 Hypothesis (H) implies that there exist onstants 0 � � <1 and K > 0 suh that jvij(n)j � kV (n)k � K�n for n � 0, (where k � kis the matrix norm indued by the vetor norm k(x1; x2; : : : ; xn)k �maxfjx1j; jx2j; : : : ; jxnjg), and therefore every element of the matrixP1n=0 ~V (n) is �nite.The next theorem shows, that if the perturbations of the delays in(2.1) are small enough for large t, then the equation remains asymp-totially stable.Theorem 2.3 Assume (H) and that the matrixM �  1Xn=0 ~V (n)! mXi=0 limn!1j�i(n)j � ~Ai! mXi=0 ~Ai! (2.10)has spetral radius less than 1, i.e., �(M) < 1. Then the trivial solutionof (2.1) is asymptotially stable.Proof: Sine the proof goes analogously to that in the ontinuous ase(see in [5℄), here we show only the main steps of the proof.4



(i) First, we an show, using (2.8) and (2.1), that for some T > 0and n > T , the funtion, f(n), satis�es~f(n) �  mXi=0 j�i(n)j ~Ai! mXi=0 ~Ai! max0�j�n ~x(j); n � T; (2.11)where we use the notationmax0�j�n ~x(j) � �max0�j�n jx1(j)j; max0�j�n jx2(j)j; : : : ; max0�j�n jxN(j)j�T :(ii) De�ne the matrixM0 � 1Xn=0 ~V (n) mXi=0 ~Ai!2: (2.12)(We note, that aording to Remark 2.1, matries M and M0 are in-dependent of the hoie of T .) It is easy to see that �(M) < 1 impliesthat there exists Æ > 0 suh that�(M + ÆM0) < 1: (2.13)With this Æ we an hoose T suh that (2.11) holds and furthermore,we have the following relationsj�i(n)j < limj!1j�i(j)j+ Æ; n � T; i = 0; : : : ; m: (2.14)Then (2.11) yields the following estimate~f(n) �  mXi=0 ( limj!1j�i(j)j+ Æ) ~Ai! mXi=0 ~Ai! max0�j�n ~x(j); n > T:(2.15)(iii) Next we prove that the solution of (2.1) is bounded for allinitial funtions. Choose T > 0 suh that (2.15) holds. For suh T ,formula (2.9) and standard estimates yield the inequality~x(n) � ~y(n) + n�1Xi=T ~V (n� i� 1) ~f(i); n � T: (2.16)5



From this inequality, using the de�nition of M and M0, and estimate(2.15), we an derive thatmax0�j�n ~x(j) � max0�j�n ~y(j) + (M + ÆM0) max0�j�n ~x(j): (2.17)Rearranging (2.17) and using that y(n) is bounded by hypothesis (H),we have that there exists a onstant vetor z � 0 suh that(I � (M + ÆM0)) max0�j�n ~x(j) � max0�j�n ~y(j) � z; n � T: (2.18)Inequality (2.13) and the fat that M + ÆM0 has nonnegative ompo-nents imply that I � (M + ÆM0) is a nonsingular M-matrix, thereforean appliation of Theorem 6.2.3 in [1℄ yields that I � (M + ÆM0) is amonotone matrix, henemax0�j�n ~x(j) � (I � (M + ÆM0))�1z; n � T;i.e., x(n) is bounded for n � 0.(iv) Next we show that x(n) tends to 0 as n!1, i.e., limn!1~x(n) =0. Using that by step (iii) above we have that limn!1~x(n) is �nite, andfrom assumption (H) it follows that limn!1~y(n) = 0, we an show that(2.16) implies limn!1~x(n) �M limn!1~x(n);and hene (I �M) limn!1~x(n) � 0: (2.19)By assumption �(M) < 1, M has nonnegative omponents, and there-fore I�M is a nonsingular M-matrix. Using again Theorem 6.2.3 in [1℄we get that I �M is monotone, hene (2.19) yields that limn!1~x(n) � 0.On the other hand limn!1~x(n) � 0, therefore limn!1~x(n) = 0.This ompletes the proof of the theorem.The following orollary is an easy onsequene of the theorem.Corollary 2.4 Let M0 de�ned by (2.12). Iflimn!1j�i(n)j < 1�(M0) ; i = 0; : : : ; m;then the trivial solution of (2.1) is asymptotially stable.6



If the fundamental solution V (n) of (2.4) is nonnegative, (i.e., eahomponent vij(n) of V (t) is nonnegative and therefore V (n) = ~V (n)),then it is easy to ompute the integral in (2.12). In partiular, we havethe following result.Proposition 2.5 If the trivial solution of (2.4) is asymptotially stable,then the fundamental solution of (2.4) satis�es mXi=0 Ai! 1Xn=0 V (n) = �I;where I is the identity matrix.Proof: Let V (t) be the fundamental solution of (2.4) orresponding toT = 0. By summing (2.5) for 0 to n > 0 we getV (n+ 1)� V (0) = mXi=0 Ai nXj=0 V (j � ki):A hange of variables in the integrals and the assumed initial onditionV (n) = 0 for n < 0 yieldV (n + 1)� V (0) = mXi=0 Ai n�riXj=�ri V (j)= mXi=0 Ai n�riXj=0 V (n):Using V (0) = I and the fat V (t)! 0 as t!1 we obtain the equality�I =  mXi=0 Ai! 1Xj=0 V (j);whih proves the proposition.Remark 2.6 In the ase when V (t) is nonnegative, and Pmi=0Ai isnonsingular, Proposition 2.5 implies thatM0 = � mXi=0 Ai!�1 mXi=0 ~Ai!2; (2.20)therefore our stability ondition in Corollary 2.4 an be evaluated usingthe oeÆient matries related to the di�erene equation.7



In the rest of this setion we state the salar version of our results.Consider the salar linear delay di�erene equation�x(n) = mXi=0 aix(n� ki � �i(n)); n 2 N ; (2.21)and the orresponding onstant delay di�erene equation�y(n) = mXi=0 aiy(n� ki); n 2 N : (2.22)Let v(n) be the fundamental solution of (2.22), i.e., the solution of(2.22) orresponding to initial ondition v(0) = 1 and v(n) = 0 forn < 0. Then the salar version of Theorem 2.3 an be stated as follows.Theorem 2.7 Assume that the trivial solution of (2.22) is asymptoti-ally stable. Then if the perturbations, �i, satisfymXi=0 jaij limn!1j�i(n)j < 1Pmi=0 jaijP1n=0 jv(n)j ; (2.23)then the trivial solution of (2.21) is asymptotially stable.Theorem 2.7 and Proposition 2.5 have the following orollary.Corollary 2.8 Assume that the trivial solution of (2.22) is asymptot-ially stable, and the fundamental solution of (2.22) is nonnegative.Then ondition mXi=0 jaij limn!1j�i(n)j < �Pmi=0 aiPmi=0 jaij :implies that the trivial solution of (2.21) is asymptotially stable.3. Examples and AppliationsExample 3.1 Consider the salar delay di�erene equation�x(n) = �px(n � k � �(n)); n 2 N ; (3.1)8



TABLE 1.k m20 100.0040 99.7660 78.5480 53.59100 34.13120 19.25140 7.71
TABLE 2.k m40 15.3860 15.3880 15.38100 13.74120 8.13140 3.49150 1.51and the orresponding unperturbed equation�y(n) = �py(n� k); n 2 N: (3.2)It is known (see e.g. in [7℄), that the trivial solution of (3.2) is asymp-totially stable if and only if0 < p < 2 os k�2k + 1 : (3.3)It follows from [6℄, that for p > 0 the fundamental solution is nonneg-ative if and only if p < kk(k + 1)k+1 : (3.4)Consider a spei� ase, let p = 0:01. Then (3.3) and (3.4) yield that thetrivial solution of (3.2) is asymptotially stable for k = 0; 1; : : : ; 156,and the orresponding fundamental solution is nonnegative for k =0; 1; : : : ; 36. By Theorem 2.7 and Corollary 2.8 we have that the trivialsolution of (3.1) is asymptotially stable iflimn!1j�(n)j < m � 8>>>><>>>>: 10:01 ; k � 36;1(0:01)2 1Xn=0 jv(n)j ; k > 36:In Table 1 we present some numerial values of the upper bound, m, ofthe perturbations orresponding to several delays. We an observe, that9
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FIGURE 2.as k inreases, i.e., when there is more osillation in the fundamentalsolution, m beomes smaller.Next we examine the in�nite sum of the elements of the fundamen-tal solution of (3.2) as a funtion of k. Let vk(n) be the fundamentalsolution (3.2) orresponding to delay k, and de�new(k) � 1Xn=0 jvk(n)j:By Proposition 2.5 we have that w(k) is onstant, w(k) = 100 for0 � k � 36, and we have that w(k) =1 for k > 156. Numerial study(see on Figure 1) reveals that w(k) is a monotone inreasing funtion ofk. Note, that here and later in all �gures, the disrete funtion valuesare onneted to a ontinuous graph.Example 3.2 Consider the salar delay di�erene equation with twodelayed terms�x(n) = �0:001x(n) + 0:01x(n� 100)� 0:015x(n� k � �(n)); (3.5)where, for simpliity, only the seond delay is perturbed. By Theo-rem 2.7 we have that the trivial solution of the equation is asymptoti-ally stable, iflimn!1j�(n)j < m � 10:015 � 0:026 �P1n=0 jvk(n)j ;where vk(n) is the fundamental solution of the orresponding unper-turbed equation. Table 2 presents numerial values of m orresponding10
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FIGURE 4.to di�erent k values. On Figure 2 we show the fundamental solutionof the unperturbed equation with k = 150. We graph the numeri-al solution of (3.5) (with initial ondition x(0) = 1, x(n) = 0 forn < 0) using perturbation �(n) = 15000=n + 1 on Figure 3, and with�(n) = 15000=n+ 10 on Figure 4.Example 3.3 Consider the two dimensional vetor delay di�ereneequation�x(n) = A0x(n) + A1x(n� 100) + A2x(n� 140� �(n)); (3.6)whereA0 = � �0:001 0:0020:000 �0:003 � ; A1 = � 0:000 0:0010:000 �0:002 � andA2 = � �0:002 0:0000:002 0:000 �Numerial study shows that the fundamental solution of the orre-sponding unperturbed equation is nonnegative (see on Figure 5 theomponents of the fundamental solution). Therefore by Proposition 2.5we have that1Xn=0 ~V (n) = �(A0 + A1 + A2)�1 = � 555:556 333:333222:222 333:333 � ;and heneM = � limn!1j�(n)j(A0 + A1 + A2)�1 ~A2( ~A0 + ~A1 + ~A2)= limn!1j�(n)j� 0:0053 0:00530:0033 0:0033 � :11
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FIGURE 6.It is easy to see that �(M) < 1 if limn!1j�(n)j < 115:385. On Figure 6we plot the numerial solution of (3.6) (orresponding to initial valuesx(0) = 1, x(n) = 0, n < 0) with perturbation �(n) = 20000n + 115.Example 3.4 Finally, onsider the vetor delay di�erene equation�x(n) = A0x(n)+A1x(n�100)+A2x(n�150��(n)); n 2 N ; (3.7)withA0 = � �0:001 0:003�0:005 0:000 � ; A1 = � 0:007 �0:0040:005 �0:008 � andA2 = � �0:01 0:0010:001 0:004 �By approximating P1n=0 V (n) numerially, and applying Theorem 2.3we get that if limn!1j�(n)j < 7:75 then the trivial solution of (3.7) isasymptotially stable. Figure 7 shows the omponents of the funda-mental solution of the unperturbed equation, and Figure 8 ontainsthe omponents of the solution of (3.7) (orresponding to the same ini-tial values) with perturbation �(n) = 200 for n < 1000 and �(n) = 7for n � 1000.
12
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FIGURE 8.4. Stability ResultsIn this setion, using the perturbation result of Setion 2, we obtainsuÆient stability onditions for the salar delay di�erene equation�x(n) = � mXi=0 aix(n� �i(n)); n 2 N ; (4.1)where the delay terms, �i : N ! Z, are bounded funtions. We anthink of �i(n) in (4.1) as perturbations of zero delays, i.e., (4.1) an beonsidered as a perturbed equation orresponding to the unperturbedequation �y(n) = � mXi=0 ai! y(n); n 2 N: (4.2)We would like to apply Theorem 2.7, and in fat, Corollary 2.8 (inorder to use ondition whih an be heked easily), therefore we needto guarantee that the trivial solution of (4.2) is asymptotially stable,and the fundamental solution, v(n), of (4.2) is nonnegative. It is easyto hek, that the inequality 0 < (Pmi=0 ai) < 1 implies both properties.Therefore by Corollay 2.8 the following result follows immediately.Proposition 4.1 Assume that(i) 0 <Pmi=0 ai < 1, and(ii) mXi=0 jaij limn!1j�i(n)j < Pmi=0 aiPmi=0 jaij :13



Then the trivial solution of (4.1) is asymptotially stable.Note, that in ondition (ii) of the previous proposition the righthand side of the inequality is always less or equal to 1, and equal to 1if and only if eah ai is positive.In the rest of this setion we assume that ai > 0 for i = 0; 1; : : : ; m.In this speial ase we shall improve ondition (ii). Rewrite (4.1) in theform �x(n) = � mXi=0 aix(n� k � (�i(n)� k)); (4.3)where k is a positive integer, and onsider�y(n) = � mXi=0 ai! y(n� k); n 2 N : (4.4)Then, again, (4.3), and hene (4.1) an be onsidered as an equationobtained by perturbing the onstant delays of (4.4) by �i(n) � k. Asbefore, if the trivial solution of (4.4) is asymptotially stable, and thefundamental solution of (4.4) is positive, then by applying Corollary 2.8,we an obtain a suÆient ondition for the asymptoti stability of thetrivial solution of (4.1). It is known (see [6℄), that the inequality0 < mXi=0 ai < kk(k + 1)k+1 ;or equivalently, 0 < k mXi=0 ai < kk+1(k + 1)k+1 (4.5)yields both properties. To further simplify ondition (4.5), using thatthe sequene kk+1=(k + 1)k+1 is monotone inreasing, and hene14 � kk+1(k + 1)k+1 ; k = 1; 2; : : : ;we get that if we an selet k suh that0 < k mXi=0 ai � 14 ; (4.6)14



then the trivial solution of (4.4) is asymptotially stable, and the fun-damental solution of (4.4) is nonnegative. (Note, that the equality fork = 1 does not follow from the previous argument, but an easily beproved diretly.) Therefore, by Corollay 2.8, if in addition to (4.6)mXi=0 ai limn!1j�i(n)� kj < 1 (4.7)holds, then the trivial solution of (4.1) is asymptotially stable.In two speial ases, when all delays are \small", or all delays are\large", we an obtain expliit onditions.Case 1: Assume that there exists a T 2 N suh that �i(n) � 14Pmj=0 ajfor n > T and all i = 0; 1; : : : ; m.In this ase selet k = h1=�4Pmi=0 ai�i. With this hoie of k, thefollowing elementary estimatesmXi=0 ai limn!1j�i(n)� kj = � 14Pmi=0 ai� mXi=0 ai � mXi=0 ai limn!1�i(n)� 14 � mXi=0 ai limn!1�i(n)< 1show that (4.7) is always satis�ed.Case 2: Assume that there exist onstants T 2 N and 0 < � � 1 suhthat �i(n) � �4Pmj=0 aj for n > T and all i = 0; 1; : : : ; m; and k � �4Pmi=0 aiis an integer. In this ase we have thatmXi=0 ai limn!1j�i(n)� kj = mXi=0 ai limn!1�i(n)� �4 :We have proved the following result.Proposition 4.2 Assume that ai > 0 for i = 0; 1; : : : ; m. Then eitherone of the following two onditions implies the asymptoti stability ofthe trivial solution of (4.1). 15
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