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1 Introduction

Nonlinear or linear algebraic systems appear as steady-state equations in con-
tinuous and discrete dynamical models (e.g., reaction-diffusion equations [14,19],
neural networks [5,6,15,22] compartmental systems [2,4,11,12,16,17], population
models [13,21]). Next we mention some typical models.

Compartmental systems are used to model many processes in pharmacokinet-
ics, metabolism, epidemiology and ecology. We refer to [16,17] as surveys of basic
theory and applications of linear and nonlinear compartmental system without
and with delays. A standard form of a linear compartmental system with delays
is

q̇i(t) = −kiiqi(t) +
m∑
j=1
j 6=i

kijqj(t− τij) + Ii, i = 1, . . . ,m. (1.1)
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Here qi(t) is the mass of the ith compartment at time t, kij > 0 represent the
transfer or rate coefficients, Ii ≥ 0 is the inflow to the ith compartment. A possible
generalization of (1.1) used in several applications is a compartmental system,
where it is assumed that the intercompartmental flows are functions of the state
of the donor compartments only in the form kijfj(qj) with some positive nonlinear
function fj . So we get the nonlinear donor-controlled compartmental system (see,
e.g., [2,4])

q̇i(t) = −kiifi(qi(t)) +
m∑
j=1
j 6=i

kijfj(qj(t− τij)) + Ii, i = 1, . . . ,m. (1.2)

Next we consider an ecological system of m species which are living in a sym-
biotic relationship with the other species (see [10]):

ẋi = xi

−kiixi +
m∑
j=1
j 6=i

kijxj + bi

 , i = 1, . . . ,m. (1.3)

Here kii > 0 represents the measure of the mortality due to intraspecific compe-
tition, the terms bi ≥ 0 represents the per capita growth due to external (inex-
haustible) sources of energy, and the coefficients kij (j 6= i) are nonnegative due
to the symbiosis.

Cellular neural networks were introduced by Chua and Yang [7] in 1988, and
since then they have been applied in many scientific and engineering applications.
Here we consider the Hopfield neural network studied in [5]

Ciu̇i =
m∑
j=1

Tijgj(uj)−
ui
Ri

+ Ii, i = 1, . . . ,m, (1.4)

where Ci > 0, Ri > 0 and Ii are capacity, resistance, bias, respectively, Tij is the
interconnection weight, and gi is a stricly monotone increasing nonlinear function
with gi(0) = 0.

Finally, we recall the delayed Cohen–Grossberg neural network model from [15]

ẋi(t) = −di(xi(t))

ci(xi(t))− n∑
j=1

aijfj(xj(t))−
n∑
j=1

bijfj(xj(t− τij(t))) + Ji


(1.5)

for i = 1, . . . , n.
A nonzero equilibrium of both (1.1) and (1.3) satisfies a linear system of the

form
Ax = b, (1.6)

where A ∈ Rm×m has elements

aij =

{
kii, j = i,

−kij , j 6= i,

and b ≥ 0, i.e., all coordinates of b are nonnegative. It is known (see, e.g., [1]) that
if A is a nonsingular M-matrix and b � 0, i.e, all coordinates of b are positive,
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then the System (1.6) has a positive solution x � 0. The existence of positive
solutions of various classes of linear systems have been studied in [10,18,20].

The existence and uniqueness of positive solutions of the nonlinear algebraic
system

Au = λg(u) (1.7)

have been investigated in [3,23–27], where A ∈ Rm×m, u = (u1, . . . , um)T ∈ Rm,
λ > 0 and f(u) = (f1(u1), . . . , fm(um))T . It was demonstrated in [26] that positive
solutions of such systems appear in several problems including finding positive
solutions of a finite difference approximation of second-order differential equations
with periodic boundary conditions, periodic solutions of fourth-order difference
equations, second-order lattice dynamic systems, discrete neural networks.

If A is invertible, we can rewrite (1.7) as u = λA−1g(u). Then, assuming g is
also invertible, using fi(u) = g−1

i (u), and introducing the new variables xi = gi(ui),
we get a nonlinear system of the form

fi(xi) =
m∑
j=1

cijxj , 1 ≤ i ≤ m. (1.8)

In many applications (see [28]) we have that A−1 is a positive matrix, i.e., all
its coefficients are positive, hence we assume cij > 0 for all i, j = 1, . . . ,m. The
existence and uniqueness of the positive solutions of the System (1.8) was investi-
gated in [7,28] for the special case fi(u) = uγ , and in [8] for the case when all the
functions fi are equal to a given function f .

Recently, in [9] the existence and uniqueness of positive solutions of the non-
linear system

fi(xi) =
m∑
j=1

cijxj + pi, 1 ≤ i ≤ m (1.9)

was investigated under the conditions cij > 0 for all i, j = 1, . . . ,m and pi ≥ 0. The
main tool used in proving the existence in [9] was Brouwer’s fixed point theorem.

The goal of this manuscript is to study the existence and uniqueness of the
positive solutions of the general nonlinear system

γi(xi) =
m∑
j=1

gij(xj), 1 ≤ i ≤ m. (1.10)

Note that the System (1.10) includes the steady-state equations of a nonzero equi-
librium of the dynamical systems (1.2), (1.4) and (1.5), respectively. Our main
result, Theorem 2.1 below, uses a monotone iterative method to prove existence of
a positive solution, and an extension of the method used in [9] to prove uniqueness
under a weaker condition than that assumed in [9].

The structure of our paper is the following. In Section 2 we formulate our main
results. Theorem 2.1 below gives sufficient conditions to imply the existence and
uniqueness of the positive solutions of the System (1.10). In Section 3 we show
several examples including the Equations (1.6) and (1.9), where Theorem 2.1 is
applicable.
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2 Main results

Consider the nonlinear system

γi(xi) =
m∑
j=1

gij(xj), 1 ≤ i ≤ m, (2.1)

where γi ∈ C(R+,R), gij ∈ C(R+,R+), 1 ≤ i, j ≤ m and R+ := [0,∞). By a
positive solution of the System (2.1) we mean a column vector x := (x1, ..., xm)T

which satisfies (2.1), and x1 > 0, ..., xm > 0.
Next we formulate the main result of this manuscript.

Theorem 2.1 Let γi : R+ → R and gij : R+ → R+, 1 ≤ i, j ≤ m be continuous

functions such that for each 1 ≤ i ≤ m,

(A) there exists a u∗i > 0 satisfying

γi(u)


< 0, if 0 < u < u∗i ,
= 0, if u = u∗i ,
> 0, if u > u∗i ,

(2.2)

and γi is strictly increasing on [u∗i ,∞).

(B) gij , 1 ≤ i, j ≤ m is increasing on R+, and there exists a u∗∗i ≥ u
∗
i such that

m∑
j=1

gij(u) < γi(u), u > u∗∗i , 1 ≤ i ≤ m. (2.3)

Then the System (2.1) has a positive solution.

Moreover, assume that

(C) for each 1 ≤ i, j ≤ m, either gij(u) > 0 for u > 0 or gij(u) = 0 for u > 0;

(D) for each 1 ≤ i, j ≤ m,
γj(u)
gij(u)

is strictly monotone increasing on (0,∞), assuming

gij(u) > 0 for u > 0.

Then the System (2.1) has a unique positive solution.

Proof Let Bi := limu→∞ γi(u), i = 1, . . . ,m. Then either Bi is positive finite or
it is ∞. Note that assumption (2.3) yields that

∑m
j=1 gij(u) ≤ Bi for u ≥ 0 and

i = 1, . . . ,m. Assumption (A) implies that, for each i = 1, ...,m, γi restricted to
[u∗i ,∞) has an inverse, i.e., there exists a continuous strictly increasing function
hi : [0, Bi)→ [u∗i ,∞) satisfying

γi(hi(u)) = u, u ∈ [0, Bi), hi(γi(u)) = u, u ≥ u∗i and hi(0) = u∗i . (2.4)

Now we have from (2.1) and the definition of hi that (2.1) has a positive solution
(x1, ..., xm)T if and only if

xi = hi

 m∑
j=1

gij(xj)

 , 1 ≤ i ≤ m.

Fix any u > 0 and u > 0 such that

u < min
1≤i≤m

u∗i ≤ max
1≤i≤m

u∗∗i < u.
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Then (2.3) and (2.4) yield

u ≤ hi

 m∑
j=1

gij(u)

 ≤ hi
 m∑
j=1

gij(u)

 ≤ u, 1 ≤ i ≤ m. (2.5)

Now, for each i = 1, ...,m, we construct a sequence (x
(0)
i , ..., x

(n)
i , ...) by the defini-

tion

x
(0)
i = u and x

(n+1)
i = hi

 m∑
j=1

gij(x
(n)
j )

 , n ≥ 0, (2.6)

and we prove that the sequence (x
(0)
i , ..., x

(n)
i , ...) is convergent. For this aim, we

prove that the sequence (x
(0)
i , ..., x

(n)
i , ...) is monotone increasing and bounded from

above. First we show, for each fixed i = 1, ...,m, that

x
(n+1)
i ≥ x(n)i , for all n ≥ 0. (2.7)

We use the mathematical induction. At n = 0 we have, by (2.5) and (2.6),

x
(1)
i = hi

 m∑
j=1

gij(x
(0)
j )

 = hi

 m∑
j=1

gij(u)

 ≥ u = x
(0)
i .

Next, we assume that for some n ≥ 1

x
(n)
i ≥ x(n−1)

i . (2.8)

Then, by (2.6) and (2.8) and the monotonicity of gij and hi, we have

x
(n+1)
i = hi

 m∑
j=1

gij(x
(n)
j )

 ≥ hi
 m∑
j=1

gij(x
(n−1)
j )

 = x
(n)
i .

Hence the sequence (x
(0)
i , ..., x

(n)
i , ...) is monotone increasing.

Now to prove that the sequence (x
(0)
i , ..., x

(n)
i , ...) is bounded from above for all

1 ≤ i ≤ m, we show that

x
(n+1)
i ≤ u, for all n ≥ 0, 1 ≤ i ≤ m. (2.9)

Again we use the mathematical induction. So, for a fixed i = 1, ...,m, at n = 0 we
have by (2.5) and (2.6) that

x
(1)
i = hi

 m∑
j=1

gij(x
(0)
j )

 = hi

 m∑
j=1

gij(u)

 ≤ hi
 m∑
j=1

gij(u)

 ≤ u.
Next, we assume for some n ≥ 0 that

x
(n)
i ≤ u. (2.10)
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Then, by (2.5) and (2.10) and the monotonicity of gij and hi, we have

x
(n+1)
i = hi

 m∑
j=1

gij(x
(n)
j )

 ≤ hi
 m∑
j=1

gij(u)

 ≤ u,
and hence the sequence (x

(0)
i , ..., x

(n)
i , ...) is bounded from above for all 1 ≤ i ≤ m.

Now since the sequence is monotone increasing and bounded from above, then it
converges to a finite limit, i.e., there exist positive constants xi such that

lim
n→∞

x
(n)
i = xi, 1 ≤ i ≤ m.

On the other hand,

xi = lim
n→∞

x
(n+1)
i = lim

n→∞
hi

 m∑
j=1

gij(x
(n)
j )

 = hi

 m∑
j=1

gij(xj)

 , 1 ≤ i ≤ m,

and hence (2.1) has a positive solution.
Now, we show the uniqueness of the solution of the System (2.1). Suppose that

(u1, ..., um) and (v1, ..., vm) are two positive solutions of the System (2.1). Then for
each 1 ≤ i ≤ m, we have

γi(ui) =
m∑
j=1

gij(uj), and γi(vi) =
m∑
j=1

gij(vj). (2.11)

Since

γi(ui) =
m∑
j=1

gij(uj) ≥ 0, and γi(vi) =
m∑
j=1

gij(vj) ≥ 0,

it follows from (A) that ui ≥ u∗i and vi ≥ u∗i for i = 1, ...,m. Let H = {(i, j) : 1 ≤
i, j ≤ m, gij(u) > 0 for u > 0}. If the set H is empty, then (2.11) reduces to

γi(ui) = 0, and γi(vi) = 0,

and hence (A) implies that ui = u∗i = vi for i = 1, ...,m, and so the uniqueness
is proved. Therefore, for the rest of the proof, we assume that H 6= ∅. Define
(l, s), (k, r) ∈ H such that

gls(us)

gls(vs)
≤
gij(uj)

gij(vj)
≤ gkr(ur)

gkr(vr)
, (i, j) ∈ H. (2.12)

We consider two cases:
(i) Suppose first that

gls(us)

gls(vs)
=
gkr(ur)

gkr(vr)
.

Then (2.12) yields that there exists a λ > 0 such that gij(uj) = λgij(vj) for
(i, j) ∈ H. But then gij(uj) = λgij(vj) for all 1 ≤ i, j ≤ m. Therefore, from (2.11),
we have

γi(ui)− λγi(vi) =
m∑
j=1

[gij(uj)− λgij(vj)] = 0, 1 ≤ i ≤ m.



Existence and uniqueness of positive solutions in nonlinear algebraic systems 7

It follows that

γj(uj)

γj(vj)
= λ, 1 ≤ j ≤ m, and λ =

gij(uj)

gij(vj)
, (i, j) ∈ H,

which implies that
γj(uj)

gij(uj)
=

γj(vj)

gij(vj)
, (i, j) ∈ H,

and so the strict monotonicity of
γj
gij

yields that uj = vj and thus λ = 1. Hence

γi(ui) = γi(vi), 1 ≤ i ≤ m, which implies ui = vi, 1 ≤ i ≤ m. Therefore the
solution of the System (2.1) is unique.
(ii) Suppose now that

gls(us)

gls(vs)
<
gkr(ur)

gkr(vr)
. (2.13)

Note that (2.12) yields

gij(uj)gls(vs)− gij(vj)gls(us) ≥ 0, 1 ≤ i, j ≤ m, (2.14)

and
gij(vj)gkr(ur)− gij(uj)gkr(vr) ≥ 0, 1 ≤ i, j ≤ m. (2.15)

With i = s, (2.11) implies

γs(us) =
m∑
j=1

gsj(uj), and γs(vs) =
m∑
j=1

gsj(vj),

hence

γs(us)gls(vs)− γs(vs)gls(us) =
m∑
j=1

[gsj(uj)gls(vs)− gsj(vj)gls(us)].

Using (2.14) and that gls(us) > 0, gls(vs) > 0, we get

0 ≤ γs(us)gls(vs)− γs(vs)gls(us) = gls(us)gls(vs)

(
γs(us)

gls(us)
− γs(vs)

gls(vs)

)
.

Since γs(u)
gls(u)

is monotone increasing, it follows us ≥ vs. Similarly, with i = r, (2.11)

implies

γr(ur)gkr(vr)− γr(vr)gkr(ur) =
m∑
j=1

[grj(uj)gkr(vr)− grj(vj)gkr(ur)].

Using (2.15) and that gkr(ur) > 0, gkr(vr) > 0, we get

0 ≥ γr(ur)gkr(vr)− γr(vr)gkr(ur) = gkr(ur)gkr(vr)

(
γr(ur)

gkr(ur)
− γr(vr)

gkr(vr)

)
.

Since γr(u)
gkr(u)

is monotone increasing, we get ur ≤ vr. The monotonicity of the

functions gij implies that gls(us) ≥ gls(vs) and gkr(ur) ≤ gkr(vr), and therefore
gls(vs)gkr(ur)−gls(us)gkr(vr) ≤ 0, which contradicts with (2.13). Hence the System
(2.1) has a unique solution, and the proof is completed. ut
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3 Applications

In this section we investigate special cases of the general System (2.1). We show
several examples which demonstrate that Theorem 2.1 generalizes known existence
and uniqueness results of the literature.

3.1 A linear system

First, we consider a system of linear equations given by

aixi =
m∑
j=1

cijxj + pi, 1 ≤ i ≤ m. (3.1)

We show that Theorem 2.1 is applicable for this linear system, too.

Corollary 3.1 Assume that ai > 0, pi > 0 and cij ≥ 0 for each 1 ≤ i, j ≤ m are

such that ai >
∑m
j=1 cij . Then the System (3.1) has a unique positive solution.

Proof Equation (3.1) can be written in the form (2.1) with γi(u) := aiu − pi and
gij(u) := ciju for each 1 ≤ i, j ≤ m. Now, to prove the existence of a positive
solution for System (3.1), we check that conditions (A) and (B) of Theorem 2.1
are satisfied. Our assumptions yield that u∗i = pi

ai
> 0 satisfies (2.2). Also, it is

clear that γi(u) is strictly increasing on [u∗i ,∞), hence condition (A) holds. To
check condition (B), we see that gij(u) := ciju, 1 ≤ i, j ≤ m, is increasing on R+

and (2.3) is satisfied if and only if

m∑
j=1

gij(u) < γi(u)⇔
m∑
j=1

ciju < aiu− pi ⇔ u >
pi

ai −
∑m
j=1 cij

> 0,

therefore (2.3) holds with u∗∗i = pi
ai−

∑m
j=1 cij

≥ u∗i . Hence (3.1) has a positive

solution.
Now, to show the uniqueness of the positive solution of the System (3.1), we

check that conditions (C) and (D) of Theorem 2.1 are satisfied. By our assumption
that cij ≥ 0 for each 1 ≤ i, j ≤ m, we see that gij(u) = ciju > 0 for u > 0 if cij > 0,
and gij(u) = 0 for u > 0 if cij = 0, and hence condition (C) holds. If cij > 0 for
some 1 ≤ i, j ≤ m, then we have

γj(u)

gij(u)
=
aju− pj
ciju

=
aj
cij
−

pj
ciju

is strictly increasing on (0,∞) and so condition (D) is satisfied. Hence the System
(3.1) has a unique positive solution and the proof is completed. ut

Note that the conditions of Corollary 3.1 imply that the matrix A ∈ Rm×m
with elements

aij =

{
ai − cii, i = j,

−cij , i 6= j,

is positive definite, so A is a nonsingular M-matrix (see [1]). Therefore the existence
and uniqueness of the positive solution of (1.6) with b = (p1, . . . , pm)T follows
immediately using the results of [1].
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3.2 Nonlinear systems

Next we consider the nonlinear system

aix
αi
i =

m∑
j=1

cijx
βij
j + pi, 1 ≤ i ≤ m. (3.2)

If we set βij = 1 for all i, j, then the corresponding Equation (3.2) will be a special
case of (1.8) with fi(u) = aiu

αi . For this case it was shown in [9] that if ai > 0,
αi > 1, pi ≥ 0, βij = 1 and cij > 0 for 1 ≤ i, j ≤ m, then (3.2) has a unique
positive solution. Now in the next result we show the existence and uniqueness
of the solution of (3.2) under weaker assumption even in the above special case,
since cij is allowed to be 0, and we suppose that one of the parameters cii or pi is
positive for all i = 1, . . . ,m.

Corollary 3.2 Assume that ai > 0, pi ≥ 0 and cij ≥ 0 for each 1 ≤ i, j ≤ m are

such that cii + pi > 0 for 1 ≤ i ≤ m. Then the System (3.2) has a unique positive

solution assuming that αi > βij ≥ 0 for all 1 ≤ i, j ≤ m.

Proof Equation (3.2) can be written in the form (2.1) with γi(u) := aiu
αi−ciiuβii−

pi, gij(u) := ciju
βij for each 1 ≤ i 6= j ≤ m and gii(u) = 0. Now, we check that

conditions (A) and (B) of Theorem 2.1 are satisfied. For condition (A), we have
γi(u) = 0, 1 ≤ i ≤ m, if and only if

aiu
(αi−βii) = cii +

pi
uβii

, 1 ≤ i ≤ m. (3.3)

It is clear that the left hand side of (3.3) is an increasing function and the right
hand side of (3.3) is a decreasing function if and only if αi > βii ≥ 0 for all
1 ≤ i ≤ m. So it is easy to see, using the assumed conditions, that their graphs
intersect in a unique point u∗i > 0, therefore there exists a u∗i > 0 which satisfies
(2.2). Note that

γ′i(u) = αiaiu
(αi−1) − ciiβiiu(βii−1) = u(βii−1)

(
αiaiu

(αi−βii) − ciiβii
)
> 0,

if

u > ūi :=

(
ciiβii
aiαi

) 1
αi−βii

≥ 0, 1 ≤ i ≤ m.

Since γi(ūi) < 0, we have u∗i > ūi, and therefore γi(u) is strictly increasing on
[u∗i ,∞) and condition (A) is satisfied. To check condition (B), we see that gij(u) :=

ciju
βij , 1 ≤ i 6= j ≤ m, and gii(u) = 0 are increasing on R+, and (2.3) is satisfied

if and only if

m∑
j=1
j 6=i

ciju
βij < aiu

αi − ciiuβii − pi ⇔
m∑
j=1

ciju
(βij−αi) < ai −

pi
uαi

,

therefore (2.3) is satisfied with a large enough u∗∗i . Therefore (3.2) has a positive
solution.
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Now, we check conditions (C) and (D) of Theorem 2.1. Since cij ≥ 0 for each
1 ≤ i, j ≤ m, then condition (C) holds. If cij = 0 for all 1 ≤ i, j ≤ m, then (D) is
satisfied. Assuming that cij > 0 for some 1 ≤ i, j ≤ m, then

γj(u)

gij(u)
=
aju

αj − cjjuβjj − pj
cijuβij

=
aju

(αj−βij)

cij
−
cjj
cij

u(βjj−βij) −
pj

cijuβij
. (3.4)

If βjj < βij , then each term in (3.4) is strictly monotone increasing on (0,∞), and

hence so is
γj(u)
gij(u)

. If βjj ≥ βij , then it follows from (3.4) that

γj(u)

gij(u)
=
u(βjj−βij)

cij

(
aju

(αj−βjj) − cjj
)
−

pj

cijuβij
,

which is also strictly monotone increasing on (0,∞), so condition (D) is satisfied.
Hence, by Theorem 2.1, the System (3.2) has a unique positive solution, and the
proof is completed. ut

Now we consider the system

fi(xi) =
m∑
j=1

cijxj + pi, 1 ≤ i ≤ m (3.5)

which was studied in [9]. It was assumed in [9] that the function fi(u)
u is strictly

increasing for all i = 1, . . . ,m, cij > 0 for all 1 ≤ i, j ≤ m, and for every i = 1, . . . ,m

and si = ci1 + · · ·+ cim there exists ti > 0 such that fi(ti)
ti

= si. Then the System
(3.5) has a unique positive solution. Our main result of Theorem 2.1 gives back
this results under a weaker assumption that cij can take the values 0, and only
either cii or pi is assumed to be positive for all i = 1, . . . ,m.

Corollary 3.3 Assume that, for each i = 1, ...,m, fi : R+ → R+ is continuous, such

that fi(u)
u is strictly increasing, and

lim
u→0+

fi(u)

u

{
<∞, if pi > 0,
= 0, if pi = 0,

and lim
u→∞

fi(u)

u
>

m∑
j=1

cij , i = 1, ...,m.

Furthermore, assume that pi ≥ 0 and cij ≥ 0 for each 1 ≤ i, j ≤ m are such that

cii + pi > 0 for 1 ≤ i ≤ m. Then the System (3.5) has a unique positive solution.

Proof We can rewrite (3.5) in the form (2.1) with γi(u) := fi(u) − ciiu − pi and
gij(u) := ciju for each 1 ≤ i 6= j ≤ m and gii(u) = 0. Now, we check that conditions
(A) and (B) of Theorem 2.1 are satisfied. For condition (A), we have with u∗i > 0
that γi(u

∗
i ) = 0, if

fi(u
∗
i )

u∗i
=

pi
u∗i

+ cii, 1 ≤ i ≤ m. (3.6)

It is clear that the left hand side of (3.6) is an increasing function and the right
hand side of (3.6) is a decreasing function, so the assumed conditions yield that
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their graphs intersect in a unique point u∗i > 0, therefore there exists a u∗i > 0
satisfying (2.2). We have that

γi(u) = u

[
fi(u)

u
− cii

]
− pi, 1 ≤ i ≤ m,

is strictly increasing on (0,∞), and hence condition (A) is satisfied. To check
condition (B), we see that gij(u) := ciju, 1 ≤ i 6= j ≤ m, and gii(u) = 0 are
increasing on R+, and (2.3) is satisfied if and only if

m∑
j=1
j 6=i

ciju < fi(u)− ciiu− pi ⇔
m∑
j=1

cij <
fi(u)

u
− pi
u
,

therefore (2.3) is satisfied when u is large enough. Hence condition (B) holds.
Therefore (3.5) has a positive solution.

For the proof of the uniqueness of the positive solution of the System (3.5), we
check conditions (C) and (D) of Theorem 2.1. Since cij ≥ 0 for each 1 ≤ i, j ≤ m,
condition (C) is satisfied. Assuming that cij > 0 for some 1 ≤ i, j ≤ m, we get

γj(u)

gij(u)
=
fj(u)− cjju− pj

ciju
=
fj(u)

ciju
−
cjj
cij
−

pj
ciju

is strictly increasing on (0,∞) and so condition (D) is satisfied. Hence the System
(3.5) has a unique positive solution. ut

Now, we consider a more general system of nonlinear algebraic equations

γi(xi) =
m∑
j=1

cijσj(xj), 1 ≤ i ≤ m. (3.7)

The System (3.7) includes the steady-state equations of the donor-controlled com-
partmental system (1.2) and the Cohen–Grossberg neural network model (1.5).

Corollary 3.4 Assume that cij ≥ 0, for each 1 ≤ i, j ≤ m, γi : (0,∞)→ (0,∞) and

σi : (0,∞)→ (0,∞) are continuous and strictly increasing for i = 1, ...,m, such that

(A∗) the function γi, i = 1, ...,m, satisfies condition (A) of Theorem 2.1;

(B∗) the functions γi and σj , 1 ≤ i, j ≤ m satisfy
∑m
j=1 cijσj(u) < γi(u) for large

enough u.

Then the System (3.7) has a positive solution.

Furthermore, assume that γi(u)
σi(u)

is continuous and strictly increasing on (0,∞), for

all 1 ≤ i ≤ m. Then the System (3.7) has a unique positive solution.

Proof Equation (3.7) can be written in the form (2.1) with gij(u) := cijσj(u) for
each 1 ≤ i, j ≤ m. Assumptions (A∗) and (B∗) show that conditions (A) and (B)

of Theorem 2.1 are satisfied. Therefore (3.7) has a positive solution.
Now, we show that the positive solution the System (3.7) is unique. Since

cij ≥ 0 for each 1 ≤ i, j ≤ m, then we see that gij(u) = cijσj(u) > 0 for u > 0 if
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cij > 0 and gij(u) = 0 for u > 0 if cij = 0, and hence condition (C) of Theorem
2.1 is satisfied. Assuming that cij > 0 for some 1 ≤ i, j ≤ m, then

γj(u)

gij(u)
=

γj(u)

cijσj(u)
=

1

cij

γj(u)

σj(u)

is strictly increasing on (0,∞), and so condition (D) of Theorem 2.1 holds. Hence
the System (3.5) has a unique positive solution and the proof is completed. ut

3.3 Two dimensional systems

We consider the System (2.1) in the special case when m = 2:

ψ1(x1) = g11(x1) + g12(x2),
ψ2(x2) = g21(x1) + g22(x2).

(3.8)

Introducing γi(u) = ψi(u)− gii(u), i = 1, 2, we get the equivalent system

γ1(x1) = g12(x2),
γ2(x2) = g21(x1).

(3.9)

The following result shows that in this two dimensional case we can reduce the
study of existence and uniqueness of solutions of the System (3.9) to that of a
scalar equation.

Corollary 3.5 Assume that, for each 1 ≤ i, j ≤ 2, γi, gij ∈ C(R+,R+), such that

(H1) the functions γ1 and γ2 satisfy condition (A) of Theorem 2.1;

(H2) the functions g12 and g21 satisfy condition (B) of Theorem 2.1.

Then

(i) the System (3.9) has a positive solution;

(ii) the positive vector (u1, u2) is a solution of (3.9) if and only if u1 and u2 are the

solutions of the scalar equations

u = h1(g12(h2(g21(u)))) (3.10)

and

u = h2(g21(h1(g12(u)))) (3.11)

respectively, where h1 and h2 are defined by (2.4);

(iii) the positive solution of System (3.9) is unique if at least one of the Equations (3.10)

or (3.11) (or equivalently both of them) has only a unique positive solution.

Proof The proof of (i) is the consequence of Theorem 2.1. For the proof of (ii),
we see that the Equations (3.10) and (3.11) follow from System (3.9) using the
inverse of the functions γi, i = 1, 2. For the proof of (iii) we consider the case
when, e.g., x1 is a unique solution of (3.10), then clearly (x1, h2(g21(h1(g12(x1)))))
is the unique solution of the System (3.9). ut
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Example 3.6 As an example on the two dimensional case, we consider the system

2x1 − 1 = x2,

x2 − 0.5 = g21(x1),
(3.12)

where

g21(u) =


0.5, if u ∈ [0, 1],

2u− 1.5, if u ∈ [1, 2],
2.5, if u ∈ [2,∞).

Define γ1(u) = 2u − 1, γ2(u) = u − 0.5, g12(u) = u. Then, clearly, we can see
that condition (A) of Theorem 2.1 is satisfied with u∗1 = 0.5 and u∗2 = 0.5. Also,
condition (B) of Theorem 2.1 holds for the System (3.12), and so the System
(3.12) has a positive solution. Condition (C) of Theorem 2.1 holds too. We have,
from the definition of γ1 and γ2, that

h1(u) =
u+ 1

2
, u ∈ R+, and h2(u) = u+ 0.5, u ∈ R+.

Then Equation (3.11) reduces to

u = h2(g21(h1(g12(u)))) = h2

(
g21

(
u+ 1

2

))
=


h2(0.5), if u ∈ [0, 1],

h2(u− 0.5), if u ∈ [1, 3],
h2(2.5), if u ∈ [3,∞),

or equivalently,

u =


1, if u ∈ [0, 1],
u, if u ∈ [1, 3],
3, if u ∈ [3,∞).

This shows that (3.11) has infinitely many solutions, say, u2 = t, t ∈ [1, 3], then
( t+1

2 , t), t ∈ [1, 3] is a solution of the System (3.12). On the other hand, we have

γ1(u)

g21(u)
=

2u− 1

2u− 1.5
= 1 +

0.5

2u− 1.5
, u ∈ [1, 2],

which is decreasing on [1, 2]. Also, we have

γ2(u)

g12(u)
=
u− 0.5

u
= 1− 0.5

u
, u ∈ [1, 2],

which is increasing on [1, 2]. So condition (D) of Theorem 2.1 is not satisfied in
this case. This shows that if condition (D) of Theorem 2.1 does not hold, we may
loose the uniqueness.
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