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Abstract. In this paper we study a parameter estimation method in func-
tional differential equations with state-dependent delays using a quasilineariza-
tion technique. We define the method, prove its convergence under certain

conditions, and test its applicability in numerical examples. We estimate infi-
nite dimensional parameters such as coefficient functions, delay functions and
initial functions in state-dependent delay equations. The method uses the

derivative of the solution with respect to the parameters. The proof of the
convergence is based on the Lipschitz continuity of the derivative with respect
to the parameters.

1. Introduction. Estimation of unknown parameters in various classes of differ-
ential equations, and in particular in FDEs, has been investigated by many authors
(see, e.g., [1, 2, 5, 6, 8, 20, 21, 23, 24, 27, 32]).

In this paper we consider the nonlinear scalar differential equation with state-
dependent delay (SD-DDE)

ẋ(t) = f
(
t, xt, x(t − τ(t, xt, ξ)), θ

)
, t ∈ [0, T ] (1.1)

with the associated initial condition

x(t) = ϕ(t), t ∈ [−r, 0]. (1.2)

Throughout the manuscript r > 0 and T > 0 are fixed constants and xt : [−r, 0] →
R, xt(s) := x(t + s) is the segment function. Let Θ and Ξ be normed linear spaces
with norms | · |Θ and | · |Ξ, respectively, and suppose θ ∈ Θ and ξ ∈ Ξ.

Here we consider the initial function ϕ, θ and ξ as parameters in the initial value
problem (IVP) (1.1)-(1.2). In the next section we will define a parameter space
Γ so that the IVP (1.1)-(1.2) has a unique solution x(t, γ) corresponding to every
γ = (ϕ, θ, ξ) ∈ Γ (see Theorem 2.1 below).

We assume that the parameter γ = (ϕ, ξ, θ) ∈ Γ is unknown, but there are
measurements X0,X1, . . . ,Xl of the solution at the points t0, t1, . . . , tl ∈ [0, T ]. Our
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goal is to find a parameter value which minimizes the least square cost function

J(γ) :=
l∑

i=0

(x(ti, γ) − Xi)
2 (1.3)

over the parameter space Γ. Denote this infinite dimensional minimization problem
by P.

The quasilinearization (QL) method for solving problem P was introduced for
ODEs in [3], and was applied to identify finite dimensional parameters in FDEs in
[5] and [6]. The QL method was extended and numerically tested for SD-DDEs
in [16]. The main goal of this paper is to prove the local convergence of the QL
method for a class of SD-DDEs.

The QL method uses the derivative of the solution x(t, γ) with respect to (wrt) γ,
which is denoted by D2x(t, γ). The existence of this derivative is well-known under
natural conditions for state-independent FDEs for a large class of parameters (see,
e.g., [4, 13, 14, 29]). For SD-DDEs this is proved under restrictive assumptions (see
[15, 17, 26, 27, 34, 35, 36, 37]); moreover, the differentiability was proved typically
for the map γ 7→ xt(·, γ) using certain function norms on the state space. Recently
the differentiability of the solutions x(t, γ) wrt γ was proved in [19] under conditions
which guarantee the existence of the derivative during the QL iteration.

The remaining part of this manuscript is organized as follows. In Section 2 we
introduce our notations and hypotheses, discuss the well-posedness of the IVP (1.1)-
(1.2), recall the results on the differentiability wrt parameters from [19], and show
that under some conditions D2x(t, γ) is Lipschitz continuous in γ. In Section 3 we
define the QL method, and in Section 4 we prove its local convergence. In Section 5
we show the applicability of the QL method for numerical examples in an SD-DDE.

2. Well-posedness and differentiability wrt parameters. A fixed norm on
R

N and its induced matrix norm on R
N×N are both denoted by | · |. C denotes

the Banach space of continuous functions ψ : [−r, 0] → R equipped with the norm
|ψ|C = max{|ψ(ζ)| : ζ ∈ [−r, 0]}. C1 is the space of continuously differentiable func-

tions ψ : [−r, 0] → R where the norm is defined by |ψ|C1 = max{|ψ|C , |ψ̇|C}. L∞

is the space of Lebesgue-measurable functions ψ : [−r, 0] → R which are essentially
bounded. The norm on L∞ is denoted by |ψ|L∞ = ess sup{|ψ(ζ)| : ζ ∈ [−r, 0]}.
W 1,∞ denotes the Banach space of absolutely continuous functions ψ : [−r, 0] → R

of finite norm defined by

|ψ|W 1,∞ := max
{
|ψ|C , |ψ̇|L∞

}
.

We note that W 1,∞ is equal to the space of Lipschitz continuous functions from
[−r, 0] to R. The subset of W 1,∞ consisting of those functions which have absolutely
continuous first derivative and essentially bounded second derivative is denoted by
W 2,∞, where the norm is defined by

|ψ|W 2,∞ := max
{
|ψ|C , |ψ̇|C , |ψ̈|L∞

}
.

If the domain or the range of the functions is different from [−r, 0] and R, respec-
tively, we will use a more detailed notation. E.g., C(X,Y ) denotes the space of
continuous functions mapping from X to Y . Finally, L(X,Y ) denotes the space of
bounded linear operators from X to Y , where X and Y are normed linear spaces.
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An open ball in the normed linear space X centered at a point x ∈ X with radius
δ is denoted by BX(x; δ) := {y ∈ Y : |x − y| < δ}.

We introduce the parameter space

Γ := W 1,∞ × Θ × Ξ

equipped with the product norm |γ|Γ := |ϕ|W 1,∞ + |θ|Θ + |ξ|Ξ for γ = (ϕ, θ, ξ) ∈ Γ.
For the well-posedness and differentiability results we assume

(A1) (i) f : R × C × R × Θ → R is continuous;
(ii) f(t, ψ, u, θ) is Lipschitz continuous in ψ, u and θ, i.e., there exists a con-

stant L1 ≥ 0 such that

|f(t, ψ, u, θ) − f(t, ψ̄, ū, θ̄)| ≤ L1

(
|ψ − ψ̄|C + |u − ū| + |θ − θ̄|Θ

)
,

for t ∈ [0, T ], ψ, ψ̄ ∈ C, u, ū ∈ R and θ, θ̄ ∈ Θ;
(iii) f : R×C×R×Θ → R is continuously differentiable wrt its second, third

and fourth arguments;
(A2) (i) τ : R × C × Ξ → [0, r] ⊂ R is continuous;

(ii) τ(t, ψ, ξ) is Lipschitz continuous in ψ and ξ, i.e., there exists a constant
L2 ≥ 0 such that

|τ(t, ψ, ξ) − τ(t, ψ̄, ξ̄)| ≤ L2

(
|ψ − ψ̄|C + |ξ − ξ̄|Ξ

)

for t ∈ [0, T ], ψ, ψ̄ ∈ C, ξ, ξ̄ ∈ Ξ;
(iii) τ : [0, T ] × C × Ξ → R is continuously differentiable wrt its second and

third arguments.

The well-posedness of several classes of SD-DDEs was studied in many papers,
see, e.g., [10, 25, 26, 36, 37]. The next result is a variant of a result from [17] where
the initial time was also considered as a parameter, but the parameters θ and ξ were
not included in the equation. The proof is similar to that of Theorem 3.1 in [17]
(see also the analogous proof of Theorem 3.2 of the neutral case in [18]), therefore
it is omitted here. Note that in [17] and [18] local Lipschitz continuity was assumed
on f and τ . In this manuscript global Lipschitz continuity is assumed for simplicity
of the presentation.

Theorem 2.1. Assume (A1) (i), (ii), (A2) (i), (ii), and let γ̂ ∈ Γ. Then there
exist δ > 0, 0 < α ≤ T , N and L such that

(i) for all γ = (ϕ, θ, ξ) ∈ P := BΓ(γ̂; δ) the IVP (1.1)-(1.2) has a unique solution
x(t, γ) on [−r, α];

(ii) xt(·, γ) ∈ W 1,∞ for γ ∈ P and t ∈ [0, α], and

|xt(·, γ)|W 1,∞ ≤ N, γ ∈ P, t ∈ [0, α], (2.1)

and

|xt(·, γ) − xt(·, γ̄)|W 1,∞ ≤ L|γ − γ̄|Γ, γ ∈ P, t ∈ [0, α]. (2.2)

We assume that γ̂ = (ϕ̂, θ̂, ξ̂) ∈ Γ is a fixed parameter, and its neighborhood
P and the constant α > 0 defined by Theorem 2.1 are also fixed thoroughout this
paper.

Note that under the conditions of Theorem 2.1 the solutions, in general, are not
C1-functions, they are only W 1,∞-functions. This lack of smoothness makes the
study of differentiability wrt parameters technical.
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We define the parameter set

P1 := {γ = (ϕ, θ, ξ) ∈ P : x(·, γ) ∈ X(α, ξ)}, (2.3)

where P is defined in Theorem 2.1 and

X(α, ξ) :=
{

x ∈ W 1,∞([−r, α], R) : ess inf{
d

dt
(t− τ(t, xt, ξ)) : a.e. t ∈ [0, α∗]} > 0

)
,

where α∗ := min{r, α}. Similar monotonicity condition of the time lag function
was used in several papers in SD-DDEs ([7, 9, 19, 26, 31]), and, in general, it can
be check if we know the solution. On the other hand, in some cases it can be
guaranteed explicitly for large classes of parameters, see, e.g., [11].

We know (see [19] and [26]) that P1 is an open subset of Γ, and it follows from the
next theorem that for every t ∈ [0, α] and γ ∈ P1 the derivative D2x(t, γ) ∈ L(Γ, R)
exists and is continuous.

Let γ = (ϕ, θ, ξ) ∈ P1 be fixed, and let x(t) := x(t, γ). Then for a.e. t ∈ [0, α] we
introduce the linear operator L(t, x) : Γ → R by

L(t, x)(hϕ, hθ, hξ)

:= D2f(t, xt, x(t − τ(t, xt, ξ)), θ)h
ϕ + D3f(t, xt, x(t − τ(t, xt, ξ)), θ)

×
[
−ẋ(t − τ(t, xt, ξ))

(
D2τ(t, xt, ξ)h

ϕ + D3τ(t, xt, ξ)h
ξ
)

+ hϕ(−τ(t, xt, ξ))
]

+D4f(t, xt, x(t − τ(t, xt, ξ)), θ)h
θ, (hϕ, hθ, hξ) ∈ Γ. (2.4)

It can be shown easily (see [19]) that L(t, x) is a bounded linear operator for all t

for which ẋ(t − τ(t, xt, ξ)) exists, i.e., for a.e. t ∈ [0, α].
For γ ∈ P1 we define the variational equation associated to x = x(·, γ) as

ż(t) = L(t, x)(zt, h
θ, hξ) a.e. t ∈ [0, α], (2.5)

z(t) = hϕ(t), t ∈ [−r, 0], (2.6)

where h = (hϕ, hθ, hξ) ∈ Γ is fixed. The IVP (2.5)-(2.6) is a Carathéodory type
linear delay equation. By its solution we mean a continuous function z : [−r, α] → R

that is absolutely continuous on [0, α] and it satisfies (2.5) for a.e. t ∈ [0, α] and
(2.6) for all t ∈ [−r, 0]. It is easy to show that the IVP (2.5)-(2.6) has a unique
solution z(t) = z(t, γ, h) for t ∈ [−r, α], γ ∈ P1 and h = (hϕ, hθ, hξ) ∈ Γ, and that
z(t) is a bounded linear function of h for each fixed t and γ.

The next result shows continuous differentiability of the solution wrt the param-
eters. Note that this property was proved in [19] under a weaker assumption on the
parameter set: instead of the montonicity of the time lag function (γ ∈ P1) it was
assumed a certain piecewise monotonicity property only.

Theorem 2.2 (see [19]). Assume (A1) (i)–(iii), (A2) (i)–(iii), and let P1 be defined
by (2.3). Then the function

R × Γ ⊃ [0, α] × P1 → R, (t, γ) 7→ x(t, γ)

is continuously differentiable wrt γ, and

D2x(t, γ)h = z(t, γ, h), h ∈ Γ, t ∈ [0, α], γ ∈ P1, (2.7)

where z(t, γ, h) is the solution of the IVP (2.5)-(2.6) for t ∈ [0, α], γ ∈ P1 and
h ∈ Γ.

Moreover, there exists a constant N1 ≥ 0 such that

|D2x(t, γ)h| ≤ N1|h|Γ, h ∈ Γ, t ∈ [0, α], γ ∈ P1. (2.8)
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Proof. For the proof of (2.7) we refer to Theorem 4.7 and Remark 4.8 in [19]. For
the proof of (2.8) see Lemma 4.3 in [19].

To show continuity of D2x(t, γ) wrt γ let γ ∈ P1 be fixed, and let hk =

(hϕ
k , hθ

k, h
ξ
k) ∈ Γ (k ∈ N) be a sequence such that |hk|Γ → 0 as k → ∞ and

γ+hk ∈ P1 for k ∈ N. For a fixed h = (hϕ, hθ, hξ) ∈ Γ we define the short notations

xk(t) := x(t, γ+hk), x(t) := x(t, γ), uk(t) := t−τ(t, xk
t , ξ+h

ξ
k), u(t) := t−τ(t, xt, ξ),

zk,h(t) := z(t, γ +hk, h) and zh(t) := z(t, γ, h). It was show in [19] that there exists
a closed subset M1 ⊂ C which is also a bounded and convex subset of W 1,∞ and
M2 ⊂ R closed and bounded interval such that xt, x

k
t ∈ M1 and x(u(t)), xk(uk(t)) ∈

M2 for t ∈ [0, α] and k ∈ N. Let M3 := {θ + νhθ
k : ν ∈ [0, 1], k ∈ N} and

M4 := {ξ + νh
ξ
k : ν ∈ [0, 1], k ∈ N}. Then M1 ⊂ C, M2 ⊂ R, M3 ⊂ Θ and M4 ⊂ Ξ

are compact subsets of the respective spaces.
It was shown in Lemma 4.5 of [19] that the functions zk,h and zh satisfy

|zk,h(t) − zh(t)| ≤ c1,kN1|h|Γ, t ∈ [0, α], (2.9)

where

c1,k := α(N2 + 1)c0,k + L1L2(N2 + 1)

∫ α

0

|ẋ(uk(s)) − ẋ(u(s))| ds,

c0,k := N0Ωf

(
K3|hk|Γ

)
+ L1L2L|hk|Γ + L1NΩτ

(
(L + 1)|hk|Γ

)
+ L1K0|hk|Γ,

Ωf (ε) := max
i=2,3,4

sup
{
|Dif(t, ψ, u, θ) − Dif(t, ψ̃, ũ, θ̃)|L(Yi, R) :

|ψ − ψ̃|C + |u − ũ| + |θ − θ̃|Θ ≤ ε, t ∈ [0, α], ψ, ψ̃ ∈ M1,

u, ũ ∈ M2, θ, θ̃ ∈ M3

}
,

Ωτ (ε) := max
i=2,3

sup
{
|Diτ(t, ψ, ξ) − Diτ(t, ψ̄, ξ̄)|L(Zi, R) : |ψ − ψ̄|C + |ξ − ξ̄|Ξ ≤ ε,

t ∈ [0, α], ψ, ψ̄ ∈ M1, ξ, ξ̄ ∈ M4

}
,

where Y2 := C, Y3 := R, Y4 := Θ, Z2 := C and Z3 := Ξ, and K0 ≥ 0 and N2 ≥ 0
are certain costants. The continuity of the partial derivatives of f and τ yield that
Ωf (ε) → 0 and Ωτ (ε) → 0 as ε → 0+, and hence c0,k → 0 as k → ∞. It was argued
in [19] that the integral in the definition of c1,k goes to 0 as k → ∞, which implies
the continuity of the map Γ ⊃ P1 ∋ γ 7→ D2x(t, γ) ∈ L(Γ, R). The continuity of
D2x(t, γ) wrt to t can also be shown. For the details see [19].

Lemma 2.6 below shows that, under additional conditions, the function Γ ⊃
P1 ∋ γ 7→ D2x(t, γ) ∈ L(Γ, R) is Lipschitz continuous. We will need the following
additional assumptions.

(A1) (iv) we take L1 in (A1) (ii) to also be a Lipschitz constant of f with respect
to t, i.e.,

|f(t, ψ, u, θ) − f(t̄, ψ, u, θ)| ≤ L1|t − t̄|

for t, t̄ ∈ [0, T ], ψ ∈ C, u ∈ R and θ ∈ Θ;
(v) D2f , D3f and D4f are Lipschitz continuous wrt all of their arguments,

i.e., there exists L3 ≥ 0 such that

|Dif(t, ψ, u, θ)−Dif(t̄, ψ̄, ū, θ̄)|L(Yi, R) ≤ L3

(
|t− t̄|+ |ψ − ψ̄|C + |u− ū|+ |θ − θ̄|Θ

)
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for i = 2, 3, 4, t, t̄ ∈ [0, T ], ψ, ψ̄ ∈ C, u, ū ∈ R and θ, θ̄ ∈ Θ, where Y2 := C,
Y3 := R and Y4 := Θ;

(A2) (iv) we take L2 in (A2) (ii) to also be a Lipschitz constant of τ with respect
to t, i.e.,

|τ(t, ψ, ξ) − τ(t̄, ψ, ξ)| ≤ L2|t − t̄|

for t, t̄ ∈ [0, T ], ψ ∈ C, ξ ∈ Ξ;
(v) there exists L4 ≥ 0 such that

∣∣∣
d

dt
τ(t, yt, ξ) −

d

dt
τ(t, ȳt, ξ̄)

∣∣∣ ≤ L4

(
|yt − ȳt|W 1,∞ + |ξ − ξ̄|Ξ

)
, a.e. t ∈ [0, α],

where ξ, ξ̄ ∈ Ξ, and y, ȳ ∈ W 1,∞([−r, α], R);
(vi) D2τ and D3τ are Lipschitz continuous wrt all arguments, i.e., there exists

a constant L5 ≥ 0 such that

|Diτ(t, ψ, ξ) − Diτ(t̄, ψ̄, ξ̄)|L(Zi, R) ≤ L5

(
|t − t̄| + |ψ − ψ̄|C + |ξ − ξ̄|Ξ

)

for i = 2, 3, t, t̄ ∈ [0, T ], ψ, ψ̄ ∈ C, ξ, ξ̄ ∈ Ξ, where Z2 := C and Z3 := Ξ.

First we recall the following technical result from [19].

Lemma 2.3. Assume (A1) (i), (ii), (A2) (i),(ii), γ = (ϕ, ξ, θ) ∈ P , and hk =

(hϕ
k , h

ξ
k, hθ

k) ∈ Γ is a sequence such that γ + hk ∈ P for k ∈ N and |hk|Γ → 0 as

k → ∞. Let x(t) := x(t, γ), xk(t) := x(t, γ + hk) be the corresponding solutions of

the IVP (1.1)-(1.2), and uk(s) := t−τ(t, xk
t , ξ +h

ξ
k) and u(t) := t−τ(t, xt, ξ). Then

there exists K0 ≥ 0 such that

|uk(t) − u(t)| ≤ K0|hk|Γ, t ∈ [0, α], k ∈ N. (2.10)

If, in addition, (A2) (iv) holds, then u, uk ∈ W 1,∞([0, α], R), and if (A2) (v) is also
satisfied, then there exist K1 ≥ 0 and K2 ≥ 0 such that

|uk − u|W 1,∞([0,α],R) ≤ K1|hk|Γ, k ∈ N (2.11)

and

|xk(uk(t)) − x(u(t))| ≤ K2|hk|Γ, k ∈ N, t ∈ [0, α]. (2.12)

Later we will need the following estimate, which is an easy consequence of as-
sumption (A2) (ii) and (2.1):

|x(u(t)) − x(u(t̄))| ≤ N |u(t) − u(t̄)|

≤ NL2(|t − t̄| + |xt − xt̄|C)

≤ NL2(1 + N)|t − t̄|, t, t̄ ∈ [0, T ]. (2.13)

Lemma 2.4. Assume (A1) (i)–(iv), (A2) (i)–(iv) and γ = (ϕ, θ, ξ) ∈ P is such that
ϕ ∈ W 2,∞. Then there exists K4 = K4(γ) ≥ 0 such that the solution x(t) = x(t, γ)
of the IVP (1.1)-(1.2) satisfies

|ẋ(t) − ẋ(t̄)| ≤ K4|t − t̄| for t, t̄ ∈ [−r, 0) and t, t̄ ∈ (0, α]. (2.14)
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Proof. The Mean Value Theorem and the definition of the W 2,∞-norm yield

|ẋ(t) − ẋ(t̄)| = |ϕ̇(t) − ϕ̇(t̄)| ≤ |ϕ|W 2,∞ |t − t̄|, t, t̄ ∈ [−r, 0).

For t, t̄ ∈ (0, α] it follows from (A1) (ii), (iv), (A2) (ii), (iv), (2.1) and (2.13)

|ẋ(t) − ẋ(t̄)| = |f(t, xt, x(u(t)), θ) − f(t̄, xt̄, x(u(t̄)), θ)|

≤ L1

(
|t − t̄| + |xt − xt̄|C + |x(u(t)) − x(u(t̄))|

)

≤ L1

(
1 + N + NL2(1 + N)

)
|t − t̄|.

Hence (2.14) is satisfied with K4 := max{|ϕ|W 2,∞ , L1[1 + N + NL2(1 + N)]}.

We will need the following class of initial functions in the next lemma.

Definition 2.5. Let PW 2,∞ denote the set of functions ϕ ∈ W 1,∞ which are
piecewise W 2,∞-functions, i.e., there exists a finite mesh −r = t0 < t1 < . . . <

tℓ+1 = 0 such that

(i) ϕ̇ is Lipschitz continuous on the intervals (ti, ti+1) for i = 0, . . . , ℓ, and
(ii) ϕ̇ has continuous one-sided derivatives at ti for i = 0, . . . , ℓ + 1.

We define a norm on PW 2,∞ by |ϕ|PW 2,∞ := max{|ϕ|C , |ϕ̇|L∞ , |ϕ̈|L∞}.

Note that any function ϕ ∈ PW 2,∞ is almost everywhere differentiable and twice
differentiable, but ϕ̇ may have discontinuity at the mesh points t1, . . . , tℓ. A typical
example of a PW 2,∞-function is a spline function defined on [−r, 0].

The next lemma gives sufficient conditions under which D2x(t, γ) depends Lip-
schitz continuously on γ. This result will be essential to prove the convergence of
the QL sequence in Section 4.

Lemma 2.6. Assume (A1) (i)–(v), (A2) (i)–(vi), and γ∗ = (ϕ∗, θ∗, ξ∗) ∈ P1.
Then there exists δ∗ > 0 such that for every m ∈ N and K ≥ 0 there exists a
nonnegative constant N3 = N3(γ

∗, δ∗,m,K) such that for every γ = (ϕ, θ, ξ) ∈
BΓ(γ∗; δ∗) satisfying ϕ ∈ PW 2,∞ with |ϕ|PW 2,∞ ≤ K, and the number of points
of discontinuity of ϕ̇ in (−r, 0) is less or equal to m, there exists δ > 0 such that
for every sequence hk ∈ Γ with |hk|Γ ≤ δ for k ∈ N and all h ∈ Γ the functions
zk,h(t) := z(t, γ + hk, h) and zh(t) := z(t, γ, h) satisfy

|zk,h(t) − zh(t)| ≤ |zk,h
t − zh

t |C ≤ N3|hk|Γ|h|Γ, t ∈ [0, α], h ∈ Γ. (2.15)

Proof. Since P1 is an open subset of P (see [26] and [17]), there exists a δ0 > 0
such that BΓ(γ∗; δ0) ⊂ P1. For a fixed γ ∈ BΓ(γ∗; δ0) we define x(t) := x(t, γ),
x∗(t) := x(t, γ∗), u(t) := t − τ(t, xt, ξ) and u∗(t) := t − τ(t, x∗

t , ξ
∗). Introduce

M∗ := min
{

ess inf
s∈[0,α∗]

u̇∗(s), 1
}

.

Then γ∗ ∈ P1 yields M∗ > 0, and u∗ is strictly monotone increasing on [0, α∗]. Let
0 < M < M∗ be fixed. It follows from Lemma 2.3 that there exists 0 < δ∗ ≤ δ0

such that if γ ∈ BΓ(γ∗; δ∗), then u̇(s) ≥ M for a.e. s ∈ [0, α∗], and, in particular, u

is also strictly monotone increasing on [0, α∗].
Fix m ∈ N and γ = (ϕ, θ, ξ) ∈ BΓ(γ∗; δ∗) such that ϕ ∈ PW 2,∞ and the

points of discontinuity of ϕ̇ in (−r, 0) is less or equal to m, and let K be such that
|ϕ|PW 2,∞ ≤ K. Let δ1 ≥ 0 be such that BΓ(γ; δ1) ⊂ BΓ(γ∗; δ∗), and let hk ∈ Γ
(k ∈ N) be a sequence satisfying |hk|Γ ≤ δ1 for k ∈ N. Let xk(t) := x(t, γ + hk)
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and uk(t) := t − τ(t, xk
t , ξ + h

ξ
k). Let −r < t1 < · · · < tℓ < 0 be the points of

discontinuity of ϕ̇ (from Definition 2.5), and define t0 := −r and tℓ+1 := 0. Then
by the assumption on γ we have ℓ ≤ m.

The proof of Lemma 2.4 yields that K∗
4 := max{K,L1[1 + N + NL2(1 + N)]}

satisfies

|ẋ(t)− ẋ(t̄)| ≤ K∗
4 |t− t̄| for t, t̄ ∈ (ti, ti+1), i = 0, . . . , ℓ, t, t̄ ∈ (0, α). (2.16)

Let ε0 := min{ti+1 − ti : i = 0, . . . , ℓ}. Let δ2 := min
{

δ1,
Mε0

K0

}
. Then if

|hk|Γ < δ2 for all k ∈ N, then by (2.10) we have

|uk(s) − u(s)| ≤ K0|hk|Γ ≤ Mε0 ≤ ε0, k ∈ N, s ∈ [0, α∗]. (2.17)

Since u(0) ≤ 0, there exist si ∈ [0, α∗] and j ∈ {0, 1, . . . , ℓ + 1} such that u(si) = ti
for i = j, . . . , ℓ + 1. By the strict monotonicity of u we have 0 ≤ sj < · · · < sℓ+1 ≤
α∗. Similarly, let sk,i and jk be such that uk(sk,i) = ti for i = jk, . . . , ℓ + 1, k ∈ N.
We again have 0 ≤ sk,jk

< · · · < sk,ℓ+1 ≤ α∗.
Next we show that if |hk|Γ < δ2 for k ∈ N, then

|sk,i − si| ≤
K0

M
|hk|Γ ≤ ε0, i = max(j, jk), . . . , ℓ + 1, k ∈ N. (2.18)

First consider the case when sk,i ≥ si for some i ∈ {max(j, jk), . . . , ℓ+1} and k ∈ N.
The definitions of M , δ∗, δ1, δ2, si and sk,i and (2.17) imply

M(sk,i − si) ≤ u(sk,i) − u(si) = u(sk,i) − uk(sk,i) ≤ K0|hk|Γ ≤ Mε0, k ∈ N

for all i = max(j, jk), . . . , ℓ + 1. We have then 0 ≤ sk,i − si ≤ ε0. In the opposite

case when sk,i < si we get the same way that 0 ≤ si − sk,i ≤
K0

M
|hk|Γ ≤ ε0, which

yields (2.18).
We distinguish 3 cases. Case (1): If j = 0, then sj = 0, moreover, jk = 0 and

sk,jk
= 0 for uk(0) = −r, and jk = 1 and sk,jk

> 0 for uk(0) > −r. Case (2): If
sj = 0 and j > 0, then u(0) = tj , moreover, jk = j + 1 and sk,j+1 > 0 for uk(0) >

u(0), and jk = j and sk,j ≥ 0 for uk(0) ≤ u(0). Case (3): sj > 0 and j > 0. Then

tj−1 < u(0) < tj , and let ∆ := min(u(0) − tj−1, tj − u(0)) and δ3 := min{δ2,
∆
K0

}.

Then if |hk|Γ < δ3 for all k ∈ N, then |uk(s) − u(s)| ≤ K0|hk|Γ < ∆ for s ∈ [0, α∗],
and hence jk = j, and uk(s), u(s) ∈ (tj−1, tj) for 0 ≤ s < min(sj , sk,j).

Now we consider Case (3) above. Suppose |hk|Γ < δ3 for all k ∈ N. Define
ak,i := min(si, sk,i) and bk,i := max(si, sk,i) for i = j, . . . , ℓ+1. Then for i = j, . . . , ℓ

and k ∈ N we have

bk,i − ak,i = |si − sk,i| ≤
K0

M
|hk|Γ, (2.19)

bk,i < ak,i+1, and u(s), uk(s) ∈ (ti, ti+1) for s ∈ (bk,i, ak,i+1). For definiteness
suppose (ak,i, bk,i) = (si, sk,i) (the opposite case is similar). Then for s ∈ (ak,i, bk,i)
we have u(s) ∈ (ti, ti+1) and uk(s) ∈ (ti−1, ti). Therefore (2.16) and (2.10) imply

|ẋ(u(s)) − ẋ(uk(s))|

≤ |ẋ(u(s)) − ẋ(ti+)| + |ẋ(ti+) − ẋ(ti−)| + |ẋ(ti−) − ẋ(uk(s))|

≤ K∗
4 (u(s) − ti) + |ẋ(ti+) − ẋ(ti−)| + K∗

4 (ti − uk(s))

≤ K∗
4 |u(s) − uk(s)| + |ẋ(ti+) − ẋ(ti−)|

≤ K∗
4K0|hk|Γ + |ẋ(ti+) − ẋ(ti−)|. (2.20)
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Then (A1) (ii), (2.2) and (2.12) give for t ∈ [0, α]

|ẋ(t)| ≤ |f(t, xt, x(u(t)), θ) − f(t, x∗
t , x

∗(u∗(t)), θ∗)| + |f(t, x∗
t , x

∗(u∗(t)), θ∗)|

≤ L1(|xt − x∗
t |C + |x(u(t)) − x∗(u∗(t))| + |θ − θ∗|Θ)

+ max
t∈[0,α]

|f(t, x∗
t , x

∗(u∗(t)), θ∗)|

≤ L1(L + K2 + 1)|γ − γ∗|Γ + max
t∈[0,α]

|f(t, x∗
t , x

∗(u∗(t)), θ∗)|

≤ K̂,

where K̂ := L1(L+K2+1)δ∗+maxt∈[0,α] |f(t, x∗
t , x

∗u∗(t)), θ∗)|. Then, in particular,

|ẋ(0+)| ≤ K̂ for all γ ∈ BΓ(γ∗; δ∗), and so (2.20) yields for all i = j, . . . , ℓ and k ∈ N

|ẋ(u(s)) − ẋ(uk(s))| ≤ K∗
4K0|hk|Γ + 2K∗, s ∈ (ak,i, bk,i), (2.21)

where K∗ := max{K, K̂}. Note that it is easy to check that (2.21) holds for the
case (ak,i, bk,i) = (sk,i, si), too.

Therefore by (2.10), (2.16), (2.19), (2.21) and ℓ ≤ m we have
∫ α∗

0

|ẋ(u(s)) − ẋ(uk(s))| ds

=

∫ ak,j

0

|ẋ(u(s)) − ẋ(uk(s))| ds +

ℓ∑

i=j

∫ bk,i

ak,i

|ẋ(u(s)) − ẋ(uk(s))| ds

+
ℓ∑

i=j

∫ ak,i+1

bk,i

|ẋ(u(s)) − ẋ(uk(s))| ds +

∫ α∗

bk,ℓ+1

|ẋ(u(s)) − ẋ(uk(s))| ds

≤ ak,jK
∗
4K0|hk|Γ +

ℓ∑

i=j

(bk,i − ak,i)K
∗
4K0|hk|Γ +

ℓ∑

i=j

(bk,i − ak,i)2K
∗

+

ℓ∑

i=j

(ak,i+1 − bk,i)K
∗
4K0|hk|Γ + (α∗ − bk,ℓ+1)K

∗
4K0|hk|Γ

≤
(
α∗K∗

4K0 + m
K0

M
2K∗

)
|hk|Γ. (2.22)

Inequality (2.22) can be obtained similarly for the Cases (1) and (2).
Assumptions (A1) (v) and (A2) (vi) imply that Ωf (ε) ≤ L3ε and Ωτ (ε) ≤ L5ε

for ε ≥ 0. Therefore the definitions of c0,k, c1,k and (2.22) yield the existence of
an L∗ ≥ 0 such that c1,k ≤ L∗|hk|Γ for all hk satisfying |hk|Γ < δ for some δ > 0.
Then (2.15) follows from (2.9) with N3 := L∗N1.

3. Formulation of the quasilinearization method. Following [28], we briefly
show the derivation of the QL method. Let X0,X1, . . . ,Xl be measurements of the
solution corresponding to an unknown parameter at the points t0, t1, . . . , tl ∈ [0, T ].
Let ΓN be an N -dimensional subspace of the parameter space Γ, and let γk =
(ϕk, θk, ξk) ∈ ΓN be fixed, and consider the corresponding solution of the IVP (1.1)-
(1.2), x(t, γk). For a fixed i ∈ {0, 1, . . . , ℓ} take first order Taylor-approximation of
x(ti, γ) around the parameter γk:

x(ti, γ) ≈ x(ti, γk) + D2x(ti, γk)(γ − γk),



10 FERENC HARTUNG

and consider the approximate cost function restricted to the subspace ΓN defined
by

Jk,N (γ) :=

l∑

i=0

(
x(ti, γk) + D2x(ti, γk)(γ − γk) − Xi

)2

, γ ∈ ΓN .

We solve the minimization problem Pk,N :

min
γ∈ΓN

Jk,N (γ).

Fix a basis {χN
1 , . . . , χN

N} for the finite dimensional subspace ΓN , and for γk, γ ∈ ΓN

let

γk :=

N∑

j=1

ck
j χN

j and γ :=

N∑

j=1

cjχ
N
j .

We introduce the vectors ck := (ck
1 , . . . , ck

N )T ∈ R
N and c := (c1, . . . , cN )T ∈ R

N .
Then we can identify the finite dimensional parameters γk and γ ∈ ΓN with the
vectors ck and c ∈ R

N , so we simply write x(ti, c
k) and Jk,N (c) instead of x(ti, γk)

and Jk,N (γ). Then we have

Jk,N (c) =

l∑

i=0

(
x(ti, c

k) + D2x(ti, c
k)

N∑

j=1

(cj − ck
j )χN

j − Xi

)2

=

l∑

i=0

(
x(ti, c

k) − Xi +

N∑

j=1

(cj − ck
j )D2x(ti, c

k)χN
j

)2

.

To find the minimizer of Jk,N (c) first consider

∂

∂cp

Jk,N (c) = 2

l∑

i=0

(
x(ti, c

k) − Xi +

N∑

j=1

(cj − ck
j )D2x(ti, c

k)χN
j

)
D2x(ti, c

k)χN
p .

We introduce the N -dimensional vectors

m(ti, c
k) :=

(
D2x(ti, c

k)χN
1 , . . . ,D2x(ti, c

k)χN
N

)T

, (3.1)

b(ck) :=
l∑

i=0

m(ti, c
k)(x(ti, c

k) − Xi) (3.2)

and the N × N matrix

D(ck) :=
l∑

i=0

m(ti, c
k)mT (ti, c

k). (3.3)

Then ∂
∂cp

Jk,N (c) = 0 for p = 1, . . . , N , if and only if

D(ck)(c − ck) = −b(ck). (3.4)

We note that the Hessian of Jk,N (c) is 2D(ck).

Lemma 3.1. D(ck) is a positive semi-definite N × N matrix, and it is positive
definite if and only if there is no u ∈ R

N such that u 6= 0 and u ⊥ m(ti, c
k) for

i = 0, . . . , ℓ.
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Proof. Let u ∈ R
N and consider

uT D(ck)u =
l∑

i=0

uT m(ti, c
k)mT (ti, c

k)u =
l∑

i=0

(
mT (ti, c

k)u
)T

mT (ti, c
k)u ≥ 0,

which yields the statement of the lemma.

Suppose c0 ∈ R
N is given, and D(ck) is invertible for all k = 0, 1, . . .. Then we

define the QL method by the iteration

ck+1 = ck − D−1(ck)b(ck), k = 0, 1, . . . . (3.5)

Lemma 3.1 and the previous calculation imply that ck+1 is the unique minimizer
of Jk,N (c).

This is the same scheme that was used in [5] and [6] except that there the
parameter space was finite dimensional, and the set {χN

1 , . . . , χN
N} was the canonical

basis of R
N . In our examples the parameter space will be the space of Lipschitz

continuous functions, and therefore D2x(ti, c
k) is a linear functional defined on

the space of W 1,∞-functions, and D2x(ti, c
k)χN

j denotes the value of the linear

functional applied to the function χN
j . For an alternative derivation of the QL

method for ODEs with finite dimensional parameters we refer to [3].

4. Convergence results. In this section we show the local convergence of the
scheme (3.5) supposing the existence of an exact fit solution of the parameter esti-
mation problem P. We assume

(B1) ΓN ⊂ Γ is a finite dimensional subspace for all N ∈ N;
(B2) there exists γ∗ ∈ Γ, for which J(γ∗) = 0.

The next theorem studies the convergence of the QL scheme (3.5) in the case
when γ∗ ∈ ΓN for some N ∈ N.

Definition 4.1. We say that the sequence ck ∈ R
N converges to c∗ ∈ R

N super-
linearly if there exists a sequence εk ≥ 0 such that εk → 0 as k → ∞, and

|ck+1 − c∗| ≤ εk|c
k − c∗|, k ∈ N.

An iterative method is locally convergent to c∗ if there exists a neigborhood V of c∗

with the property that for all initial value from V the method converges to c∗.

Theorem 4.2. Assume (A1) (i)–(iii), (A2) (i)–(iii) and (B1)–(B2). Suppose

γ∗ ∈ P1, and suppose γ∗ =
∑N

j=1 c∗jχ
N
j ∈ ΓN for some N ∈ N, and D(c∗) is

invertible where c∗ := (c∗1, . . . , c
∗
N )T . Then for this N the QL sequence (3.5) is

locally superlinearly convergent to c∗.

Proof. Since P1 is a open set, it follows from Theorem 2.2 that there exists δ1 > 0
such that D2x(t, γ) ∈ L(Γ, R) exists and it is continuous for t ∈ [0, α] and γ ∈
BΓ(γ∗; δ1). Then there exists δ2 > 0 such that for |c − c∗| < δ2 the corresponding

parameter γ =
∑N

j=1 cjχ
N
j ∈ BΓ(γ∗; δ1). Hence D(c) is well-defined and continuous

on BRN (c∗; δ2). Since D(c) is invertible at c∗ and continuous, there exist 0 < δ3 ≤
δ2 and d > 0 such that D(c) is invertible and satisfies

∣∣∣D−1(c)
∣∣∣ ≤ d, for c ∈ BRN (c∗; δ3).
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Then the function

g : R
N ⊃ BRN (c∗; δ3) → R

N , g(c) := c − D−1(c)b(c)

is well-defined. Consider

g(c) − c∗ = c − c∗ − D−1(c)b(c)

= D−1(c)
(
D(c)(c − c∗) − b(c)

)

= D−1(c)

l∑

i=0

m(ti, c)
(
mT (ti, c)(c − c∗) − (x(ti, c) − Xi)

)
. (4.1)

Now using the exact fit-to-data assumption, c∗ satisfies x(ti, c
∗) = Xi for i =

1, . . . , N , hence (4.1) yields

g(c) − c∗ = −D−1(c)

l∑

i=0

m(ti, c)
(
x(ti, c) − x(ti, c

∗) − mT (ti, c)(c − c∗)
)
. (4.2)

It follows from (2.8) that

|D2x(ti, c)χ
N
j | ≤ N1|χ

N
j |Γ for i = 0, . . . , ℓ, c ∈ BRN (c∗; δ3), and j = 1, . . . , N.

Then there exists m0 > 0 such that

|m(ti, c)| ≤ m0, i = 0, . . . , ℓ, c ∈ BRN (c∗; δ3). (4.3)

Hence (4.2) implies

|g(c) − c∗| ≤ dm0

l∑

i=0

∣∣∣x(ti, c) − x(ti, c
∗) − mT (ti, c)(c − c∗)

∣∣∣, c ∈ BRN (c∗; δ3).

We have

mT (ti, c)(c − c∗) = D2x(ti, γ)(γ − γ∗),

where γ :=
∑N

j=1 cjχ
N
j and γ∗ :=

∑N
j=1 c∗jχ

N
j . Therefore

x(ti, c) − x(ti, c
∗) − mT (ti, c)(c − c∗)

= D2x(ti, γ
∗)(γ − γ∗) − D2x(ti, γ)(γ − γ∗) + ω(ti, γ

∗, γ), (4.4)

where

ω(ti, γ
∗, γ) := x(ti, γ) − x(ti, γ

∗) − D2x(ti, γ
∗)(γ − γ∗) (4.5)

satisfies

lim
γ→γ∗

|ω(ti, γ
∗, γ)|

|γ − γ∗|Γ
= 0, i = 0, . . . , ℓ.

Define the vector norm on R
N by

‖c‖ :=
∣∣∣

N∑

j=1

cjχ
N
j

∣∣∣
Γ

= |γ|Γ, c ∈ R
N .

Since all vector norms on R
N are equivalent, there exist positive constants C1 and

C∗
1 such that C∗

1 |c| ≤ ‖c‖ = |γ|Γ ≤ C1|c| for all c ∈ R
N . Then we have

lim
c→c∗

|ω(ti, γ
∗, γ)|

|c − c∗|
= lim

c→c∗

|ω(ti, γ
∗, γ)|

|γ − γ∗|Γ

‖c − c∗‖

|c − c∗|
≤ C1 lim

γ→γ∗

|ω(ti, γ
∗, γ)|

|γ − γ∗|Γ
= 0.
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Hence (4.4) yields

|g(c) − c∗| ≤ dm0

l∑

i=0

∣∣∣x(ti, c) − x(ti, c
∗) − mT (ti, c)(c − c∗)

∣∣∣

≤ w(c∗, c)|c − c∗|, c ∈ BRN (c∗; δ3), (4.6)

where

w(c∗, c) := dm0

l∑

i=0

(
C1|D2x(ti, γ

∗) − D2x(ti, γ)|L(Γ, R) +
|ω(ti, γ

∗, γ)|

|c − c∗|

)
(4.7)

satisfies

lim
c→c∗

w(c∗, c) = 0. (4.8)

Hence for every 0 < ν < 1 there exists 0 < δ4 ≤ δ3 such that |w(c∗, c)| ≤ ν for
c ∈ BRN (c∗; δ4). Then the convergence of the sequence (3.5) follows from (4.6)
for all c0 ∈ BRN (c∗; δ4), and the superlinear speed of the convergence follows from
(4.6) and (4.8).

Next we study the case when γ∗ does not belong to ΓN for any N , but we assume
that for each N the cost function J restricted to the finite dimensional parameter
set ΓN has a local infimum at γN ∈ ΓN . Then

J ′(γN )χN
j = 2

ℓ∑

i=0

(x(ti, γN ) − Xi)D2x(ti, γN )χN
j = 0, j = 1, . . . , N. (4.9)

We assume also that

(B3) for each N ∈ N the basis functions χN
j := (χϕ,N

j , χ
θ,N
j , χ

ξ,N
j ) satisfy χ

ϕ,N
j ∈

PW 2,∞ for j = 1, . . . , N , and there exist mesh points −r < t1 < · · · < tm < 0,

where m = m(N), such that χ̇
ϕ,N
j and χ̈

ϕ,N
j have points of discontinuity only

at ti for all j = 1, . . . , N ;

(B4) for each N ∈ N the fixed basis functions in ΓN satisfy
∑N

j=1 |χ
N
j |Γ ≤ 1;

(B5) for each N ∈ N the cost function J restricted to the finite dimensional param-
eter set ΓN has a local infimum at γN ∈ ΓN .

For the rest of this section, for simplicity, we use the 1-norm on R
N , i.e., |c|1 :=∑N

j=1 |cj |. The corresponding induced matrix norm on R
N×N is denoted also by

| · |1.

Theorem 4.3. Assume (A1) (i)–(v), (A2) (i)–(vi), and (B1)–(B5). Suppose γ∗ in
(B2) satisfies γ∗ ∈ P1. Let δ∗ > 0 be defined by Lemma 2.6, for a fixed N ∈ N let

γN :=
∑N

j=1 cjχ
N
j be defined by (B5), cN := (c1, . . . , cN )T , m = m(N) and χ

ϕ,N
j

(j = 1, . . . , N) be defined by (B3), let

K := max
{
|cN |1 + δ∗, (|cN |1 + δ∗) max

j=1,...,N
|χ̈ϕ,N

j |L∞

}
,

and let N3 = N3(γ
∗, δ∗,m,K) be defined by Lemma 2.6. Then if γN ∈ BΓ(γ∗; δ∗),

the matrix D(cN ) exists, it is invertible and satisfies

|D−1(cN )|1N3

ℓ∑

i=0

|x(ti, c
N ) − Xi| < 1.
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Then for this fixed N the QL sequence (3.5) is locally convergent to cN .

Proof. Througout this proof we associate to the vectors c := (c1, . . . , cN )T ∈ R
N

and cN := (c1, . . . , cN )T ∈ R
N the parameters γc :=

∑N
j=1 cjχ

N
j ∈ ΓN and γN :=

∑N
j=1 cjχ

N
j ∈ ΓN , respectively.

We have by (B4) that |χN
j |Γ ≤ 1 for all j = 1, . . . , N , hence

|γc|Γ ≤

N∑

j=1

|ci||χ
N
j |Γ ≤ |c|1, c ∈ R

N . (4.10)

As in the proof of Theorem 4.2, let δ1 be such that D2x(t, γ) ∈ L(Γ, R) exists
and it is continuous for t ∈ [0, α] and γ ∈ BΓ(γ∗; δ1). Let δ∗ > 0 be defined by

Lemma 2.6, and suppose that γN :=
∑N

j=1 cjχ
N
j ∈ BΓ(γ∗; δ∗). Let δ2 > 0 be

such that BΓ(γN ; δ2) ⊂ BΓ(γ∗; δ∗). Then (4.10) implies that γc ∈ BΓ(γN ; δ2) for
c ∈ BRN

(
cN ; δ2

)
.

We use the notation γc = (ϕc, θc, ξc) ∈ ΓN . Then

|ϕc|W 1,∞ ≤ |γc|Γ ≤ |c|1 ≤ |cN |1 + δ2, c ∈ BRN

(
cN ; δ2

)
.

It follows from assumption (B3) that χ
ϕ,N
j ∈ PW 2,∞, so

|ϕ̈c|L∞ ≤

N∑

j=1

|ci||χ̈
ϕ,N
j |L∞ ≤ |c|1 max

j=1,...,N
|χ̈ϕ,N

j |L∞ ,

and therefore |ϕc|PW 2,∞ ≤ K for c ∈ BRN

(
cN ; δ2

)
.

Let δ > 0 corresponding to γN ∈ BΓ(γ∗; δ∗), m and K be defined by Lemma 2.6.
Then c ∈ BRN

(
cN ; δ

)
implies γc ∈ BΓ(γN ; δ) using (4.10). For every d satisfying

|D(cN )|1N3

ℓ∑

i=0

|x(ti, c
N ) − Xi| < dN3

ℓ∑

i=0

|x(ti, c
N ) − Xi| < 1 (4.11)

there exists 0 < δ3 ≤ δ such that D(c) exists and is invertible for c ∈ BRN

(
cN ; δ3

)
,

and |D−1(c)| ≤ d for c ∈ BRN

(
cN ; δ3

)
.

Then the function g(c) := c − D−1(c)b(c) is well-defined on BRN

(
cN ; δ3

)
, and

similarly to (4.1) it satisfies

g(c) − cN =
(
D(c)

)−1 l∑

i=0

m(ti, c)
(
mT (ti, c)(c − cN ) − (x(ti, c) − Xi)

)
. (4.12)

It follows from (4.9) that

ℓ∑

i=0

(x(ti, c
N ) − Xi)m(ti, c

N ) = 0,

hence combining the above with (4.12) gives

g(c) − cN =
(
D(c)

)−1 l∑

i=0

m(ti, c)
(
mT (ti, c)(c − cN ) − (x(ti, c) − x(ti, c

N )
)

−
(
D(c)

)−1 l∑

i=0

(
m(ti, c) − m(ti, c

N )
)
(x(ti, c

N ) − Xi). (4.13)
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Then using (2.15) and (B4) we get

|m(ti, c) − m(ti, c
N )|1 =

N∑

j=1

|D2x(ti, γc)χ
N
j − D2x(ti, γ

N )χN
j |

≤ N3|γc − γN |Γ

N∑

j=1

|χN
j |Γ

≤ N3|c − cN |1, i = 0, . . . , ℓ, c ∈ BRN

(
cN ; δ3

)
. (4.14)

Let m0, ω and w be defined by (4.3), (4.5) and (4.7), respectively. Then (4.6),
(4.13) and (4.14) yield

|g(c) − cN |1 ≤ dm0

l∑

i=0

∣∣∣mT (ti, c)(c − cN ) − (x(ti, c) − x(ti, c
N ))

∣∣∣
1

+d

l∑

i=0

|m(ti, c) − m(ti, c
N )|1|x(ti, c

N ) − Xi|

≤ (w(cN , c) + AN )|c − cN |1, c ∈ BRN

(
cN ; δ3

)
, (4.15)

where by (4.11)

AN := dN3

l∑

i=0

|x(ti, c
N ) − Xi| < 1.

Let ν be such that AN < ν < 1. Then (4.8) yields that there exists 0 < δ4 ≤ δ3

such that 0 ≤ w(cN , c) < ν − AN for c ∈ BRN

(
cN ; δ4

)
. Therefore (4.15) gives

|ck+1 − cN |1 ≤ ν|ck − cN |1, c0 ∈ BRN

(
cN ; δ4

)
,

which proves the local convergence of (3.5) to cN .

5. Numerical examples. In all the numerical examples we present below only
one component of the parameter vector (ϕ, θ, ξ) is considered to be unknown, the
other two components will be given. So the parameter set Γ will be identified
with either W 1,∞, Θ or Ξ. Also, θ and ξ below will be coefficient functions in
the equations, so we will use W 1,∞([0, α], R) as the parameter set for Θ or Ξ. In
all these three cases we approximate the functions of W 1,∞ or W 1,∞([0, α], R) by
linear splines. Hence in the examples we define ΓN as the space of linear spline
functions with equally distant node points ν1, ν2, . . . , νN of the domain [−r, 0] or
[0, α]. Let {λN

1 , . . . , λN
N} be the usual “hat” functions corresponding to the mesh

{ν1, . . . , νN} satisfying λN
i (νj) = 0 if i 6= j, and λN

i (νi) = 1. Then the basis of ΓN

will be the scaled “hat” functions {χN
1 , . . . , χN

N} defined by χN
i (t) := 1

N |λN
i
|
W1,∞

λN
i

for i = 1, . . . , N . Then ΓN and {χN
1 , . . . , χN

N} satisfy assumptions (B1), (B3) and
(B4).

Example 5.1. Consider the scalar SD-DDE

ẋ(t) = θ(t)x
(
t − ξ2(t)x2(t) − 1

)
, t ∈ [0, 3], (5.1)

x(t) = ϕ(t), t ∈ [−r, 0]. (5.2)
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If we take

ξ(t) :=
20

(t + 4)2
, θ(t) :=

2t + 8

(t + 2)2
and ϕ(t) :=

1

20
(t + 4)2 (5.3)

as the parameters in (5.1)-(5.2), then the solution of the corresponding IVP (5.1)–
(5.2) is

x(t) =
1

20
(t + 4)2. (5.4)

Note that along with the “true“ solution (5.4), the time lag function is t−x2(t)ξ2(t)−
1 = t − 2, so r ≥ 2 is needed in (5.2) to generate solution (5.4).

We used the function (5.4) to generate measurements at the points ti = 0.2i,
i = 0, 1, . . . , 15. In this example let ξ and ϕ be defined by (5.3), and consider θ as
an unknown parameter in the equation. The derivative of the solution x(t, θ) of the
IVP (5.1)–(5.2) with respect to θ applied to a fixed function h ∈ W 1,∞([0, 3], R) is
denoted by z(t) := z(t, θ, h) = D2x(t, θ)h, and it satisfies the variational equation

ż(t) = θ(t)
[
−ẋ

(
t − ξ2(t)x2(t) − 1

)
ξ2(t)2x(t)z(t) + z

(
t − ξ2(t)x2(t) − 1

)]

+h(t)x
(
t − ξ2(t)x2(t) − 1

)
, t ∈ [0, 3], (5.5)

z(t) = 0, t ∈ [−2, 0], (5.6)

where x(t) = x(t, θ). To apply iteration (3.5) we fix N , pick an initial guess for
the unknown parameter, i.e., for c0, and starting with k = 0 we have to compute
x(ti, c

k) and D2x(ti, c
k)χN

j for i = 0, . . . , ℓ and j = 1, . . . , N , since they are needed

to evaluate D(ck) and b(ck). In this (and also in the next examples) we approxi-
mate x(ti, c

k) and D2x(ti, c
k)χN

j by solving the IVP (5.1)-(5.2) and IVP (5.5)-(5.6)
numerically with step size 0.05 by the approximation technique introduced in [12].
We note that despite of this approximation technique is only of first order, our
numerical runnings show that the QL iteration using these approximate function
values gives a good estimate of the true parameter value in a few steps.

First we computed iteration (3.5) starting from the constant 0 initial parameter
value. The numerical results can be seen in Figures 1 and 2 using N = 3 and N = 8
dimensional linear spline approximations of the coefficient function θ. In the figures
the solid curve represents the ”true“ parameter function θ, and the dotted curves
are the spline approximations obtained by the QL sequence (3.5). We observe good
approximation of the ”true” parameter θ in two steps. In Tables 1 and 2 the value
of the least square cost function J(θ(k)) at the kth iteration, and the the error of the

spline iteration function at the node points ∆
(k)
i = |θ(k)(νi) − θ(νi)| are presented.

Let PNf denote the projection of the function f to the space of N -dimensional
linear spline functions (with equi-distant node points). In Figures 3 and 4 and
Tables 3 and 4 the numerical results of the iteration (3.5) can be seen starting
from the initial parameter guess θ(0)(t) = P 3(4 sin 5t) and θ(0)(t) = P 8(4 sin 5t),
respectively. As in the previous running, a quick convergence is observed.

Table 1: θ(0)(t) = 0, N = 3

k J(θ(k)) ∆
(k)
1 ∆

(k)
2 ∆

(k)
3

0: 13.257248 2.00000 0.89796 0.56000
1: 0.583975 0.10736 0.31157 0.41742
2: 0.000202 0.25890 0.04866 0.02411
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Figure 1: θ(0)(t) = 0, N = 3
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Figure 2: θ(0)(t) = 0, N = 8

Table 2: θ(0)(t) = 0, N = 8

k J(θ(k)) ∆
(k)
1 ∆

(k)
2 ∆

(k)
3 ∆

(k)
4 ∆

(k)
5 ∆

(k)
6 ∆

(k)
7 ∆

(k)
8

0: 13.25725 2.00000 1.50173 1.19000 0.97921 0.82840 0.71581 0.62891 0.56000
1: 0.57743 0.01275 0.07210 0.02331 0.16346 0.37610 0.32800 0.35868 0.33955

2: 0.00001 0.01554 0.05837 0.03913 0.01889 0.00730 0.01190 0.00464 0.02400
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Figure 3: θ(0)(t) = P 3(4 sin 5t), N = 3
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Figure 4: θ(0)(t) = P 8(4 sin 5t), N = 8

Table 3: θ(0)(t) = P 3(4 sin 5t), N = 3

k J(θ(k)) ∆
(k)
1 ∆

(k)
2 ∆

(k)
3

0: 10.318073 2.00000 2.85404 2.04115
1: 0.000319 0.24502 0.06980 0.00527
2: 0.000179 0.26077 0.05294 0.01625
3: 0.000177 0.26321 0.05177 0.01668

Table 4: θ(0)(t) = P 8(4 sin 5t), N = 8

k J(θ(k)) ∆
(k)
1 ∆

(k)
2 ∆

(k)
3 ∆

(k)
4 ∆

(k)
5 ∆

(k)
6 ∆

(k)
7 ∆

(k)
8

0: 11.80723 2.00000 1.86142 4.83139 0.39971 2.18554 4.55861 0.51786 2.04115
1: 0.05504 0.04142 0.03820 0.01805 0.23000 0.22969 0.52617 0.04923 0.59118

2: 0.00000 0.05690 0.02693 0.03152 0.01420 0.00792 0.00952 0.00417 0.00684

Example 5.2. In this example we consider again the IVP (5.1)-(5.2), where now
we suppose ϕ and θ are defined by (5.3), and we consider ξ in (5.1) as an unknown
parameter function defined on the interval [0, 3]. We use the same measurement
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generated by the “true solution” (5.4) which was used in Example 5.1. The deriv-
ative of the solution x(t, ξ) of IVP (5.1)–(5.2) with respect to ξ applied to a fixed
function h ∈ W 1,∞([0, 3], R) is denoted by z(t) := z(t, ξ, h) = D2x(t, ξ)h, and it
satisfies the variational equation

ż(t) = θ(t)
[
−ẋ

(
t − ξ2(t)x2(t) − 1

)(
ξ2(t)2x(t)z(t) + 2ξ(t)x2(t)h(t)

)

+z
(
t − ξ2(t)x2(t) − 1

)]
, t ∈ [0, 3], (5.7)

z(t) = 0, t ∈ [−2, 0], (5.8)

where x(t) = x(t, θ). We used the numerical solution of the IVP (5.7)-(5.8) to
compute the QL sequence (3.5). We generated the sequence starting from the
initial parameter value ξ(0)(t) = 1. The first several terms of the corresponding
sequence is illustrated in Figures 5 and 6 and in Tables 5 and 6 using N = 3 and
N = 8 dimensional spline approximation, respectively.
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Figure 5: ξ(0)(t) = 1, N = 3
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Figure 6: ξ(0)(t) = 1, N = 8

Table 5: ξ(0)(t) = 1, N = 3

k J(θ(k)) ∆
(k)
1 ∆

(k)
2 ∆

(k)
3

0: 1.419877 0.56250 0.56287 0.83340

1: 0.080676 0.11016 0.04972 0.13968

2: 0.000964 0.14078 0.02789 0.01848

3: 0.000219 0.14846 0.02439 0.00513

Table 6: ξ(0)(t) = 1, N = 8

k J(θ(k)) ∆
(k)
1 ∆

(k)
2 ∆

(k)
3 ∆

(k)
4 ∆

(k)
5 ∆

(k)
6 ∆

(k)
7 ∆

(k)
8

0: 1.419877 0.56250 0.03993 0.28132 0.48756 0.62484 0.71908 0.78550 0.83340
1: 0.078229 0.03357 0.00237 0.01607 0.01850 0.05421 0.09934 0.12863 0.14326

2: 0.001305 0.02226 0.00555 0.00493 0.00522 0.00288 0.01240 0.01409 0.06391
3: 0.000049 0.00075 0.00574 0.00230 0.00027 0.00042 0.00531 0.00153 0.00614

Example 5.3. Now consider again the IVP (5.1)-(5.2), where the coefficients θ and
ξ are defined by (5.3), and in this example we consider the initial function ϕ as the
unknown parameter in the equation. We use the same measurements that was used
in Examples 5.1 and 5.2, therefore the true parameter value will be the function ϕ

defined in (5.3).
Note that the difficulty to estimate the initial function in SD-DDEs is that the

size of the initial interval depends on the solution, therefore it is not known in
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advance. One simple trick is to handle this difficulty numerically is to modify the
initial condition in the computation of the numerical solution of (5.1). Using the
measurements Xi at the time mesh points ti and the formula of the delay function we
select r so that −r ≥ max(ξ2(ti)X

2
i + 1), consider a function ϕ ∈ W 1,∞([−r, 0], R),

and we replace (5.2) by the initial condition

x(t) =

{
ϕ(t), t ∈ [−r, 0],
ϕ(−r), t < −r.

The derivative of the solution x(t, ϕ) of IVP (5.1)–(5.2) with respect to ϕ applied to
a fixed function h ∈ W 1,∞([−r, 0], R) is denoted by z(t) := z(t, ϕ, h) = D2x(t, ϕ)h,
and it satisfies the variational equation

ż(t) = θ(t)
[
−ẋ

(
t − ξ2(t)x2(t) − 1

)
ξ2(t)2x(t)z(t)

+z
(
t − ξ2(t)x2(t) − 1

)]
, t ∈ [0, 3], (5.9)

z(t) = h(t), t ∈ [−r, 0], (5.10)

where x(t) = x(t, θ). Again, in the numerical computation we replace (5.10) by

z(t) =

{
h(t), t ∈ [−r, 0],
h(−r), t < −r.

In the generation of the iteration (3.5) below we used r = 2 and the projection
of the function cos t to the space of linear spline functions as the initial parameter
value. The numerical results can be seen in Figures 7 and 8 and in Tables 7 and 8 for
N = 3 and N = 8, respectively. We observe quick convergence of the approximating
sequences to the true parameter function ϕ. We note that in this example we
observed convergence of the iteration scheme for picking the initial parameter value
only from a small neighborhood of the true parameter. In the previous two examples
the QL method was convergent in a much larger parameter region.
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Figure 7: ϕ(0)(t) = P 3(cos t), N = 3
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Figure 7: ϕ(0)(t) = P 8(cos t), N = 8

Table 5: ϕ(0)(t) = P 3(cos t), N = 3

k J(θ(k)) ∆
(k)
1 ∆

(k)
2 ∆

(k)
3

0: 0.082319 0.61615 0.09030 0.20000
1: 0.108323 0.10783 0.05159 0.02523
2: 0.000084 0.00364 0.00916 0.01367
3: 0.000011 0.00592 0.01128 0.00583
4: 0.000005 0.00828 0.01205 0.00373
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Table 6: ϕ(0)(t) = P 8(cos t), N = 8

k J(θ(k)) ∆
(k)
1 ∆

(k)
2 ∆

(k)
3 ∆

(k)
4 ∆

(k)
5 ∆

(k)
6 ∆

(k)
7 ∆

(k)
8

0: 0.172338 0.61615 0.40422 0.18887 0.00683 0.16072 0.25337 0.26966 0.20000
1: 0.110547 0.73788 0.01933 0.15739 0.11087 0.02379 0.00866 0.04256 0.25172

2: 0.001212 0.23078 0.02075 0.01854 0.05279 0.00820 0.05878 0.14140 0.05103
3: 0.000005 0.01346 0.00017 0.01250 0.00098 0.00847 0.00407 0.00027 0.00237

We refer to [16] for more numerical examples of the QL method (3.5) for SD-
DDEs. We note that the parameter estimation problem for several classes of state-
dependent and also for state-independent delay and neutral equations was studied
in [1, 2, 8, 20, 21, 23, 24, 27, 32] using direct finite dimensional optimization meth-
ods. Finally note that the identifiability of parameters, i.e., the uniqueness of the
parameter value which generate the same solution is an important issue in the the-
ory of parameter estimation. It is studied for FDEs, e.g., in [30, 33], but similar
studies are missing for SD-FDEs. We refer to Example 5.4 in [24], where the pa-
rameter estimation was numerically investigated in a case when the uniqueness of
the parameter value failed.
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[11] I. Győri and F. Hartung, On the exponential stability of a state-dependent delay equation,

Acta Sci. Math. (Szeged), 66 (2000) 71–84.
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