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Abstract

In this paper we investigate the growth/decay rate of solutions of an abstract inte-
gral equation which frequently arises in quasilinear differential equations applying a
variation-of-constants formula. These results are applicable to some abstract equa-
tions which appear in the theory of age dependent population models and also to
some quasilinear delay differential equations with bounded and unbounded delays.
Examples are given to illustrate the sharpness of the results.
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1 Introduction

Structured population models have been studied at least from the sixties [3],
and it is still an intensively studied area [1,2,12,13,16,23,29]. One important
properties of age-structured population models is the so-called asynchronous
exponential growth/decay property, i.e., when the age distribution tends to a
limit independently of the initial age distribution (see, e.g., [10–13,15,23,30–
32]). In these papers the partial differential equation population model is trans-
formed into an equivalent abstract linear inhomogeneous differential equation,
so the solution is given by the variation-of-constant formula:

x(t) = T (t)u +
∫ t

0
T (t − s)F (x(s)) ds, t ≥ 0, (1.1)
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where u ∈ X, X is a Banach-space with norm ‖ · ‖, T (t) is a strongly con-
tinuous semigroup of bounded operators in X. Gillenberg and Webb [15] and
Webb [30] studied the asynchronous exponential growth in abstract differen-
tial equations originated from age-dependent population models, where the
investigated abstract differential equation can be written in the form of (1.1).
In [30] it has been shown that if limt→∞ e−αtt−kT (t)u exists for all u ∈ X for
some α > 0, k ≥ 1, and

‖F (x)‖ ≤ θ(‖x‖), lim
s→∞

θ(s)

s
= 0,

s 7→ θ(s)
s

is a monotone nonincreasing function on the interval (0,∞), then
limt→∞ e−αtt−kx(t) exists, as well. Therefore the growth rate of the solutions
of the homogeneous equation determines that of the solutions of the inhomo-
geneous equation.

Motivated by this result, in this paper we study the asymptotic behavior of
solutions of a nonlinear Volterra-type abstract integral equation

x(t) = y(t; ϕ) +
∫ t

t0

T (t − s)f(s, x(·)) ds, t ≥ t0. (1.2)

Here f is a Volterra-operator, i.e., f(t, x(·)) = f(t, x̃(·)), if x(s) = x̃(s), t−1 ≤
s ≤ t, where x, x̃ : [t−1,∞) → X, t−1 ≤ t0, and we associate the initial
condition

x(s) = ϕ(s), t−1 ≤ s ≤ t0 (1.3)

to (1.2).

The class of Volterra integral equations of the form (1.2) contains the ordinary
integral equation (1.1) as a special case using f(s, x(·)) = F (x(s)), t−1 = t0,
and in this case the initial condition (1.3) reduces to x(t0) = φ(t0). The class
of Eq. (1.2) also contains, e.g., functional integral equations of the form

x(t) = T (t)φ +
∫ t

t0

T (t − s)F (x(s − τ(s))) ds, t ≥ t0. (1.4)

In this paper we study the asymptotic behavior of solutions of a nonlinear
Volterra-type abstract integral equation of the form (1.2) assuming the knowl-
edge of an asymptotic formula for y(t; ϕ). The function y(t; ϕ) in many appli-
cations is a solution of the linear part of a perturbed linear equation, although
in our case it can be a nonlinear function of the initial function ϕ. In our main
result (Theorem 2.2 below) we give sufficient conditions which imply that the
asymptotic behavior of the “linear part” y(t; ϕ) is preserved for the solution of
the nonlinear equation (1.2). In the case when y(t; ϕ) satisfies an exponential
estimate of the form ‖y(t; ϕ)‖ ≤ m0(ϕ)eα(t−t0), we define a neighborhood of
the zero initial function (see Theorems 2.7 and 2.8 below) such that solutions
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starting from this neighborhood satisfy a similar exponential estimate with
the same exponent. If the exponential growth/decay rate of y(t; ϕ) is known,
then we give sufficient conditions under which the same growth/decay rate is
preserved for the solutions of (1.2). In a special case (see Corollary 2.11 below)
we give necessary and sufficient conditions for preserving this growth/decay
rate for the solutions of (1.2). Our results applied for the “ordinary” integral
equation (1.1) includes the result of Webb [30] under similar, or sometimes
weaker condition (see Theorem 2.12 below) and they are applicable for the
decaying case, as well.

As an application of the main result, in Section 3 first we show the asyn-
chronous exponential growth property of solutions of a nonlinear PDE model
describing an age-dependent population with delayed birth process. Then we
discuss asymptotic behavior of solutions of differential equations with bounded
and unbounded delays. In this example y(t; ϕ) is a solution of an associated
autonomous linear delay equation, where the asymptotic behavior is deter-
mined by the leading characteristic root of the equation. Our result can be
applied in the case when the leading root is a complex number with multiplic-
ity greater than 1. Illustrative examples are given for the pantograph and the
sunflower equations.

The study of asymptotic properties of different classes of integral and differ-
ential equations is an active research area, see, e.g., [6–8,12,14,15,17,24–26,28]
and the references therein. Most of the work in this direction has been done
for linear equations, and guarantees only pure exponential growth/decay of
the solutions. Our method is applicable for nonlinear equations of the form
(1.2) and for the case when y(t; ϕ) = eαttk(d0(ϕ) cos βt + e0(ϕ) sin βt) + o(1),
as t → ∞.

2 Main results

Let −∞ < t−1 < t0 < ∞ be fixed, and C̃ := C([t−1,∞), X) denote the
set of continuous functions mapping [t−1,∞) into the Banach space X. Let
C := C([t−1, t0], X) be the Banach space of continuous functions mapping
[t−1, t0] into X with the norm ‖ϕ‖0 = maxt

−1≤s≤t0 ‖ϕ(s)‖, ϕ ∈ C, where ‖ · ‖
denotes the norm in X. Any fixed norm on R

n and its induced matrix norm
on R

n×n are denoted by ‖ · ‖, as well.

Let B(X) be the space of bounded linear operators mapping X into X, and
R+ = [0,∞). A family T : R+ → B(X) of bounded linear operators is called
strongly continuous if the map R+ ∋ t 7→ T (t)x ∈ X is continuous for any
fixed x ∈ X. For any constant u ∈ R the corresponding constant function will
be denoted by u, as well.
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In this section we consider the Volterra-type integral equation

x(t) = y(t; ϕ) +
∫ t

t0

T (t − s)f(s, x(·)) ds, t ≥ t0 (2.1)

with initial condition

x(s) = ϕ(s), t−1 ≤ s ≤ t0, ϕ ∈ C. (2.2)

We state the following hypotheses:

(H1) For all ϕ ∈ C the function y(·; ϕ) : [t−1,∞) → X is continuous, y(s; ϕ) =
ϕ(s) for s ∈ [t−1, t0], and

‖y(t; ϕ)‖ ≤ m0(ϕ)eα(t−t0)(t − t0 + 1)k, t ≥ t0, (2.3)

where α is a given constant, k is a nonnegative integer, and m0(·) : C → R+

is such that m0(ϕ) → 0 as ‖ϕ‖0 → 0.
(H2) T : R+ → B(X) is a strongly continuous family of bounded linear operators

on X, and
c1 := sup

0≤t

e−αt(t + 1)−k‖T (t)‖ < ∞.

(H3) f : [t0,∞) × C̃ → X is a Volterra-type functional, i.e., for all x ∈ C̃,
the map [t0,∞) ∋ t 7→ f(t, x(·)) ∈ X is continuous, and for all (t, x),
(t, x̃) ∈ [t0,∞) × C̃,

f(t, x(·)) = f(t, x̃(·)), if x(s) = x̃(s), t−1 ≤ s ≤ t.

(H4) For all (t, z) ∈ [t0,∞) × C̃,

‖f(t, eα(·−t0)(· − t−1 + 1)k z(·))‖ ≤ ω
(
t, max

ζ(t)≤s≤t
‖z(s)‖

)
, (2.4)

where ζ : [t0,∞) → R satisfies

t−1 ≤ ζ(t) ≤ t, t ≥ t0, (2.5)

and [t0,∞)×R+ ∋ (t, u) 7→ ω(t, u) ∈ R+ is a continuous function such that
for any fixed t ∈ [t0,∞), the map R+ ∋ u 7→ ω(t, u) ∈ R+ is monotone
nondecreasing, and for a positive constant v0

c1

∫ ∞

t0

e−α(s−t0)ω(s, v0) ds < v0. (2.6)

We define the constant

m1(ϕ) := max
{

max
t
−1≤s≤t0

‖e−α(s−t0)(s − t−1 + 1)−kϕ(s)‖, m0(ϕ)
}

(2.7)
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and the function

H : R+ → R, H(v) = v − c1

∫ ∞

t0

e−α(s−t0)ω(s, v) ds. (2.8)

Assumption (2.6) yields H(v0) > 0 for some v0 > 0, and therefore the constant

ρ := sup {H(v) : v > 0} (2.9)

is well-defined, and it is either positive or +∞. The set U defined by

U :=
{
ϕ ∈ C : m1(ϕ) < ρ

}
(2.10)

is not empty, since m0(ϕ) → 0, and therefore m1(ϕ) → 0 as ‖ϕ‖0 → 0. Hence
the set

M(ϕ) :=

{
m > 0: H(m) > m1(ϕ)

}
(2.11)

is also not empty, and the constant

m(ϕ) := inf M(ϕ) (2.12)

is a well-defined real number for all ϕ ∈ U .

Definition 2.1 A function x is a solution of the initial value problem (IVP)
(2.1)-(2.2) if x ∈ C̃ and it satisfies Eq. (2.1) on [t0,∞) and initial condition
(2.2) on [t−1, t0].

In this paper we do not deal with the existence and uniqueness of solutions.
We assume that some additional conditions are satisfied for f such that the
solutions of the IVP (2.1)-(2.2) exist locally on some interval [t0, t1]. It will
be shown in Theorem 2.2 that (H1)–(H4) imply that any solution will exist
globally on [t0,∞), as well. It is worth to note that the uniqueness of the
solutions is not needed in our results. Any fixed solution of the IVP (2.1)-
(2.2) is denoted by x(·; ϕ).

In the first part of our main result, Theorem 2.2, we give an exponential
upper bound for the solutions of the IVP (2.1)-(2.2), and in the second part of
this theorem we give a limit relation based on the following three additional
hypotheses:

(H5) There exist d0(·), e0(·) : U → X and β ∈ R such that

lim
t→+∞

∥∥∥e−α(t−t0)(t − t−1 + 1)−ky(t; ϕ) − d0(ϕ) cos βt − e0(ϕ) sin βt
∥∥∥ = 0,

for ϕ ∈ U .
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(H6) There exist P,Q ∈ B(X) for which

lim
t→+∞

∥∥∥e−αt(t + 1)−kT (t) − P cos βt − Q sin βt
∥∥∥ = 0.

(H7) There is an initial function ϕ0 ∈ U such that

max
{
‖d0(ϕ0)‖ , ‖e0(ϕ0)‖

}
> (‖P‖ + ‖Q‖)

∫ ∞

t0

e−α(s−t0)ω(s,m(ϕ0)) ds.

(2.13)

Now, we are in a position to state and prove our main result.

Theorem 2.2 Assume that (H1)-(H4) are satisfied.

(i) If ϕ ∈ U , then any solution x(·; ϕ) of the IVP (2.1)-(2.2) exists on [t−1,∞),
and satisfies

‖x(t; ϕ)‖ ≤ m(ϕ)eα(t−t0)(t − t−1 + 1)k, t ≥ t−1, (2.14)

where m(ϕ) is defined in (2.12).
(ii) If in addition (H5)-(H6) hold, then for all ϕ ∈ U there are vectors d(ϕ) and

e(ϕ) in X such that

x(t; ϕ) = eα(t−t0)(t − t−1 + 1)k

(
d(ϕ) cos βt + e(ϕ) sin βt + o(1)

)
, (2.15)

as t → +∞. Moreover, if (H7) holds, then ‖d(ϕ0)‖+‖e(ϕ0)‖ 6= 0, where ϕ0

is given in (2.13).

Relations (2.14) and (2.15) can be reformulated in several forms. For example,
the next result follows immediately from Theorem 2.2.

Corollary 2.3 Assume that (H1)-(H4) are satisfied.

(i) If ϕ ∈ U , then any solution x(·; ϕ) of the IVP (2.1)-(2.2) satisfies

‖x(t; ϕ)‖ ≤ m(ϕ)(t0 − t−1 + 1)keα(t−t0)(t − t0 + 1)k, t ≥ t0, (2.16)

where m(ϕ) is defined in (2.12).
(ii) If in addition (H5)-(H6) hold, then for all ϕ ∈ U there are vectors d̃(ϕ) and

ẽ(ϕ) in X such that

x(t; ϕ) = eα(t−t0)(t−t0)
k

(
d̃(ϕ) cos β(t−t0)+ẽ(ϕ) sin β(t−t0)+o(1)

)
, (2.17)

as t → +∞. Moreover, if (H7) holds, then ‖d̃(ϕ0)‖+‖ẽ(ϕ0)‖ 6= 0, where ϕ0

is given in (2.13).
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To prove Theorem 2.2 we need the following lemma which is interesting in its
own right.

Lemma 2.4 Assume that U(t, s), t0 ≤ s ≤ t < ∞, is a family of linear
bounded operators on X that is jointly strongly continuous in t and s, moreover

M1 := sup
t0≤s≤t<∞

‖U(t, s)‖ < ∞, (2.18)

and there are strongly continuous operators P1, Q1 : R+ → B(X) and a con-
stant β ∈ R such that

lim
t→+∞

‖U(t, s) − P1(s) cos β(t − s) − Q1(s) sin β(t − s)‖ = 0 (2.19)

for any fixed s ∈ [t0,∞), and for some M2 > 0

sup
s≥t0

‖P1(s)‖ ≤ M2, sup
s≥t0

‖Q1(s)‖ ≤ M2. (2.20)

Then for any continuous function g : [t0,∞) → X, relation
∫ ∞
t0

‖g(s)‖ ds < ∞
implies

lim
t→+∞

∥∥∥∥
∫ t

t0

U(t, s)g(s) ds

−
∫ ∞

t0

(
P1(s) cos β(t − s) + Q1(s) sin β(t − s)

)
g(s) ds

∥∥∥∥ = 0. (2.21)

Proof. From (2.20), we find

∫ ∞

t0

∥∥∥∥
(
P1(s) cos β(t−s)+Q1(s) sin β(t−s)

)
g(s)

∥∥∥∥ ds ≤ 2M2

∫ ∞

t0

‖g(s)‖ ds < ∞.

Thus

δ(t) :=
∥∥∥∥
∫ t

t0

U(t, s)g(s) ds

−
∫ ∞

t0

(
P1(s) cos β(t − s) + Q1(s) sin β(t − s)

)
g(s) ds

∥∥∥∥

≤
∫ t1

t0

‖U(t, s) − P1(s) cos β(t − s) − Q1(s) sin β(t − s)‖‖g(s)‖ ds

+
∫ t

t1

‖U(t, s)‖‖g(s)‖ ds

+
∫ ∞

t1

‖P1(s) cos β(t − s) + Q1(s) sin β(t − s)‖‖g(s)‖ ds

for all t ≥ t1 ≥ t0. From (2.18) and (2.20), it follows
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δ(t)≤
∫ t1

t0

‖U(t, s) − P1(s) cos β(t − s) − Q1(s) sin β(t − s)‖‖g(s)‖ ds

+(M1 + 2M2)
∫ ∞

t1

‖g(s)‖ ds,

for all t ≥ t1 ≥ t0, and hence (2.19) and the Lebesgue’s Dominated Conver-
gence Theorem imply

lim sup
t→+∞

δ(t) ≤ (M1 + 2M2)
∫ ∞

t1

‖g(s)‖ ds, t1 ≥ t0.

This yields limt→+∞ δ(t) = 0, as t1 → +∞, and the proof of the lemma is
complete. 2

Remark 2.5 Lemma 2.4 is an essential generalization of a result in [4] which
has been proved when U(t, s) = a(t− s), 0 ≤ s ≤ t, is a scalar function, β = 0
and P1(s) = p1 is a constant.

Proof. of Theorem 2.2

(i) Let ϕ ∈ U be an arbitrarily fixed initial function and x(·; ϕ) denote a
noncontinuable solution of the corresponding IVP (2.1)-(2.2) on [t−1, t1) for
some t1 > t0. Define

z(t) = e−α(t−t0)(t − t−1 + 1)−kx(t; ϕ), t ∈ [t−1, t1)

and

U(t, s) = e−α(t−s)(t − t−1 + 1)−kT (t − s), t ≥ s ≥ t−1. (2.22)

Then it follows from (2.1) for t ∈ [t0, t1)

z(t) = e−α(t−t0)(t − t−1 + 1)−ky(t; ϕ)

+
∫ t

t0

U(t, s)e−α(s−t0)f(s, eα(·−t0)(· − t−1 + 1)kz(·)) ds. (2.23)

We obtain from assumptions (H1) and (H2), respectively

‖e−α(t−t0)(t − t−1 + 1)−ky(t; ϕ)‖

= ‖e−α(t−t0)(t − t0 + 1)−ky(t; ϕ)‖
(

t − t0 + 1

t − t−1 + 1

)k

≤ m0(ϕ)

for t ∈ [t0, t1), and

‖U(t, s)‖ = e−α(t−s)(t − s + 1)−k ‖T (t − s)‖
(

t − s + 1

t − t−1 + 1

)k

≤ c1
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for all t0 ≤ s ≤ t < ∞. Thus (2.23) together with (2.3) and (2.4) implies

‖z(t)‖ ≤ m0(ϕ) + c1

∫ t

t0

e−α(s−t0)ω
(
s, max

ζ(t)≤τ≤s
‖z(τ)‖

)
ds, t ∈ [t0, t1). (2.24)

Relation (2.7) and the definition of z yield

‖z(t)‖ ≤ max
t
−1≤s≤t0

∥∥∥e−α(s−t0)(s − t−1 + 1)−kϕ(s)
∥∥∥ ≤ m1(ϕ), t−1 ≤ t ≤ t0.

(2.25)
Combining (2.24), (2.25) and (2.7) together with the monotonicity of the right-
hand-side of (2.24) and the monotonicity of ω in its second argument we get

w(t) ≤ m1(ϕ) + c1

∫ t

t0

e−α(s−t0)ω(s, w(s)) ds, t ∈ [t0, t1), (2.26)

where
w(t) := max

t
−1≤τ≤t

‖z(τ)‖, t ∈ [t−1, t1).

On the other hand, (2.6) and the definitions of U and m(ϕ) yield (see (2.10)
and (2.12)) that there exists a decreasing sequence vn of nonnegative numbers
such that

vn > m1(ϕ) + c1

∫ ∞

t0

e−α(s−t0)ω(s, vn) ds and lim
n→∞

vn = m(ϕ).

Then for all n

vn > m1(ϕ) + c1

∫ t

t0

e−α(s−t0)ω(s, vn) ds, t ∈ [t0, t1). (2.27)

Since v 7→ ω(t, v) is a monotone nondecreasing function on [0,∞) for any fixed
t ≥ t0, a standard comparison result (see, e.g., [22]) yields from (2.26) and
(2.27) that

e−α(t−t0)(t − t−1 + 1)−k‖x(t; ϕ)‖ ≤ w(t) < vn, t ∈ [t0, t1)

for all n. It follows from (2.12) that m(ϕ) ≥ m1(ϕ), therefore

‖x(t; ϕ)‖ < vne
α(t−t0)(t − t−1 + 1)k, t ∈ [t−1, t1).

Then t1 = +∞, since otherwise limt→t1− ‖x(t; ϕ)‖ < ∞. Statement (i) follows
combining the previous inequality and (2.25), and taking the limit n → ∞.

(ii) From (2.4) and (2.14) and the monotonicity of ω it follows that the
function

g(t) := e−α(t−t0)f(t, x(·; ϕ)) = e−α(t−t0)f(t, eα(·−t0)(·−t−1+1)kz(·)), t ≥ t0,

satisfies
‖g(t)‖ ≤ e−α(t−t0)ω(t,m(ϕ)), t ≥ t0, (2.28)
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and (2.27) yields ∫ ∞

t0

‖g(t)‖ dt < ∞.

On the other hand, U(t, s) defined in (2.22) satisfies

‖U(t, s) − (P cos β(t − s) + Q sin β(t − s))‖

≤
∥∥∥∥∥e

−α(t−s)(t − s + 1)−kT (t − s)




(
t − s + 1

t − t−1 + 1

)k

− 1




∥∥∥∥∥

+‖e−α(t−s)(t − s + 1)−kT (t − s) − P cos β(t − s) − Q sin β(t − s)‖.

Hence (H2) and (H6) yield

lim
t→+∞

‖U(t, s) − (P cos β(t − s) + Q sin β(t − s))‖ = 0

for all fixed s ∈ [t0,∞). Since
∫ ∞
t0

‖g(t)‖ dt < ∞, the integral

I(t) :=
∫ ∞

t0

(
P cos β(t − s) + Q sin β(t − s)

)
g(s) ds

exists, and in virtue of Lemma 2.4, we have

lim
t→+∞

∥∥∥∥
∫ t

t0

U(t, s)g(s) ds − I(t)
∥∥∥∥ = 0.

This, combined with (2.23), (H5) and (H6), yields

z(t) = e−α(t−t0)(t − t−1 + 1)−ky(t; ϕ) +
∫ t

t0

U(t, s)g(s) ds

= d0(ϕ) cos βt + e0(ϕ) sin βt + I(t) + o(1), as t → +∞.

Using the definition of g(t) and trigonometric identities we find

I(t) = d1(ϕ) cos βt + e1(ϕ) sin βt, t ≥ t0,

where
d1(ϕ) =

∫ ∞

t0

(P cos βs − Q sin βs)e−α(s−t0)f(s, x(·; ϕ)) ds

and
e1(ϕ) =

∫ ∞

t0

(P sin βs + Q cos βs)e−α(s−t0)f(s, x(·; ϕ)) ds.

Thus x(t; ϕ) satisfies (2.15) with the constants

d(ϕ) = d0(ϕ) + d1(ϕ) and e(ϕ) = e0(ϕ) + e1(ϕ).

Now, we show that ‖d(ϕ0)‖+‖e(ϕ0)‖ 6= 0 for the initial function ϕ0 satisfying
(2.13). Indeed,
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‖d(ϕ0)‖≥‖d0(ϕ0)‖ − ‖d1(ϕ0)‖
≥‖d0(ϕ0)‖ − (‖P‖ + ‖Q‖)

∫ ∞

t0

e−α(s−t0)‖f(s, x(·; ϕ0))‖ ds,

and

‖e(ϕ0)‖≥‖e0(ϕ0)‖ − ‖e1(ϕ0)‖
≥‖e0(ϕ0)‖ − (‖P‖ + ‖Q‖)

∫ ∞

t0

e−α(s−t0)‖f(s, x(·; ϕ0))‖ ds.

Thus, from (2.13) and (2.28), it follows

‖d(ϕ0)‖ + ‖e(ϕ0)‖
≥max{‖d0(ϕ0)‖, ‖e0(ϕ0)‖}

− (‖P‖ + ‖Q‖)
∫ ∞

t0

e−α(s−t0)‖f(s, x(·; ϕ0))‖ ds

> 0.

The proof of the theorem is complete. 2

If ω(t, u) is linear in u, then Theorem 2.2 yields easily the next result.

Theorem 2.6 Assume (H1)-(H3) are satisfied, and for all (t, z) ∈ [t0,∞)×C̃

‖f(t, eα(·−t0)(· − t−1 + 1)kz(·))‖ ≤ eα(t−t0)a(t) max
ζ(t)≤s≤t

‖z(s)‖, (2.29)

where ζ satisfies (2.5), and a : [t0,∞) → R+ is a continuous function such
that

c1

∫ ∞

t0

a(s) ds < 1, (2.30)

where c1 is defined in (H2). Then

(i) For all ϕ ∈ C the solution x(·; ϕ) of the IVP (2.1)-(2.2) satisfies

‖x(t; ϕ)‖ ≤ m2(ϕ)eα(t−t0)(t − t−1 + 1)k, t ≥ t−1, (2.31)

where

m2(ϕ) =
m1(ϕ)

1 − c1

∫ ∞
t0

a(s) ds
. (2.32)

(ii) If (H5) and (H6) also hold, then for all ϕ ∈ C, there are d(ϕ), e(ϕ) ∈ X
such that (2.15) is satisfied. Moreover, if

max
{
‖d0(ϕ0)‖, ‖e0(ϕ0)‖

}
> m2(ϕ0)(‖P‖ + ‖Q‖)

∫ ∞

t0

a(s) ds,

for some ϕ0 ∈ C, then ‖d(ϕ0)‖ + ‖e(ϕ0)‖ > 0.
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Proof. The result is an easy consequence of Theorem 2.2 and hence its proof
is omitted. 2

In the next results we use the following conditions:

(H8) Suppose α 6= 0, and there exists a continuous and monotone nondecreasing
function bα : R+ → R+ such that b(u) > 0 for u > 0, and the inequality

‖f(t, eα(·−t0)z(·))‖ ≤ bα

(
eα(t−t0) max

ζ(t)≤s≤t
‖z(s)‖

)
, (t, z) ∈ [t0,∞) × C̃

(2.33)
holds, where ζ satisfies (2.5).

(H9) There exists ϕ1 ∈ C such that

lim
t→∞

e−α(t−t0)y(t; ϕ1) 6= 0,

and

y(t; γϕ1) = γy(t; ϕ1), t ≥ t0, γ > 0. (2.34)

In the next result we study the case when k = 0 in (H1) and (H2). In this
case m1(ϕ) defined in (2.7) simplifies to

m̃1(ϕ) := max
{
‖e−α(·−t0)ϕ(·)‖0, m0(ϕ)

}
, (2.35)

where m0(ϕ) is defined in (H1). Note that m̃1(ϕ) = 0, if and only if ϕ = 0
and m0(ϕ) = 0, and hence y(t; ϕ) = 0, t ≥ t−1.

Theorem 2.7 Assume that (H1), (H2) and (H3) are satisfied with k = 0,
moreover (H8) holds with

α > 0 and
∫ ∞

1

bα(u)

u2
du < ∞. (2.36)

Then

(i) for every ϕ ∈ C the equation

m̃1(ϕ) +
c1

α
m

∫ ∞

m

bα(u)

u2
du = m, m ≥ 0 (2.37)

has at most two roots, and any solution x(·; ϕ) of the IVP (2.1)-(2.2) sat-
isfies

‖x(t; ϕ)‖ ≤ mα(ϕ)eα(t−t0), t ≥ t−1, (2.38)

where mα(ϕ) is the largest root of (2.37).
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(ii) If (H5) and (H6) are also satisfied with k = 0, then for every ϕ ∈ C there
are dα(ϕ), eα(ϕ) ∈ X such that

x(t; ϕ) = eα(t−t0)
(
dα(ϕ) cos βt + eα(ϕ) sin βt + o(1)

)
, t → +∞. (2.39)

(iii) If, in addition, (H9) holds, then there exists γ1 > 0 such that

‖dα(γϕ1)‖ + ‖eα(γϕ1)‖ 6= 0, γ ≥ γ1.

Proof. (i) Let ω(t, u) be defined by ω(t, u) = bα(eα(t−t0)u) for all t ≥ t0 and
u ≥ 0. Then for m > 0

∫ ∞

t0

e−α(t−t0)ω(t,m) dt =
∫ ∞

t0

e−α(t−t0)bα(eα(t−t0)m) dt =
m

α

∫ ∞

m

bα(u)

u2
du < ∞,

where we used the substitution u = eα(t−t0)m. Let H be defined by (2.8). Then
H(m) = mH1(m), where

H1(m) = 1 − c1

α

∫ ∞

m

bα(u)

u2
du,

and therefore ρ defined in (2.9) satisfies ρ = limm→+∞ H(m) = +∞, and U
defined in (2.10) equals to C.

Let ϕ ∈ C be fixed, and consider

M̃(ϕ) :=
{
m > 0: H(m) > m̃1(ϕ)

}
.

In view of Theorem 2.2, we have to show that mα(ϕ) := inf M̃(ϕ) satisfies the
statement of the theorem. First note that H1 is a monotone increasing function
satisfying limm→+∞ H1(m) = 1. Since H ′(m) = H1(m)+ c1

α

bα(m)
m

, it follows that
H is monotone increasing for large enough m, and limm→+∞ H(m) = +∞.
Consequently, M(ϕ) is not empty.

We consider three cases. Case 1: Suppose

0 ≤
∫ ∞

0

bα(u)

u2
du ≤ α

c1

.

Then limm→0+ H1(m) ∈ R+, therefore H(0) = 0, and H is monotone increasing
on R+. In this case mα(ϕ) is the unique root of (2.37).

Case 2: Suppose
α

c1

<
∫ ∞

0

bα(u)

u2
du < ∞.

Then H1(m) is negative for small m, and hence there exists m∗ > 0 such that
H1(m

∗) = 0, H1(m) < 0 for m ∈ (0,m∗), and H1(m) > 0 for m ∈ (m∗,∞).
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Moreover, H is monotone increasing on (m∗,∞). Then (2.37) has a unique
root on (m∗,∞) for any m̃1(ϕ) > 0, and (2.37) has two roots, m = 0 and
m = m∗ for m̃1(ϕ) = 0 (i.e., for ϕ = 0).

Case 3: Suppose ∫ ∞

0

bα(u)

u2
du = ∞.

Then L’Hospital’s Rule yields

lim
m→0+

m
∫ ∞

m

bα(u)

u2
du = lim

m→0+

d
dm

∫ ∞
m

bα(u)
u2 du

d
dm

1
m

= bα(0),

therefore

lim
m→0+

H(m) = −c1

α
bα(0) ≤ 0.

Then there exists m∗∗ ≥ 0 such that H(m) < 0 for m ∈ [0,m∗∗), H(m∗∗) = 0,
and H(m) > 0 for m > m∗∗. Then (2.37) has a unique root on [m∗∗,∞) for
any m̃1(ϕ) ≥ 0.

Thus statement (i) is a consequence of statement (i) of Theorem 2.2 with
k = 0. Note that in all cases above we get mα(ϕ) → ∞ as m̃1(ϕ) → ∞.

(ii) In virtue of Theorem 2.2, it is also clear that (2.39) is satisfied with some
suitable dα(ϕ) and eα(ϕ) for all ϕ ∈ C.

(iii) It follows from (2.34) that m0(γϕ1) = γm0(ϕ1) for γ > 0, and so
m̃1(γϕ1) = γm̃1(ϕ1) for γ > 0. The proof of the theorem is complete if we
show that (H7) holds with ϕ0 = γϕ1 for any large enough γ > 0.

First note that ‖d0(γ1ϕ1)‖+‖e0(γ1ϕ1)‖=γA for γ > 0, where A :=‖d0(ϕ1)‖+
‖e0(ϕ1)‖ 6=0. Then inequality (2.13) for ϕ0 = γϕ1 has the form

γA > (‖P‖ + ‖Q‖)
∫ ∞

t0

e−α(t−t0)bα

(
eα(t−t0)mα(γϕ1)

)
dt

=
‖P‖ + ‖Q‖

α
mα(γϕ1)

∫ ∞

mα(γϕ1)

bα(u)

u2
du. (2.40)

Therefore relations γm̃1(ϕ1) = m̃1(γϕ1) = mα(γϕ1)H1(mα(γϕ1)) yield an
equivalent form of (2.40):

A >
(‖P‖ + ‖Q‖)m̃1(ϕ1)

αH1(mα(γϕ1))

∫ ∞

mα(γϕ1)

bα(u)

u2
du,

which holds for γ ≥ γ1 for some γ1 > 0, since mα(γϕ1) → ∞ as γ → ∞.

The proof of the theorem is complete. 2
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The next result deals with the case α < 0.

Theorem 2.8 Assume that (H1), (H2) and (H3) are satisfied with k = 0,
moreover (H8) holds with

α < 0 and
∫ 1

0

bα(u)

u2
du < ∞.

Let m̃1(ϕ) be defined in (2.35),

Uα := {ϕ ∈ C : m̃1(ϕ) < ρα}, (2.41)

where

ρα := sup
0<v

{
v

(
1 − c1

|α|
∫ v

0

bα(u)

u2
du

)}
.

Then

(i) for all initial function ϕ ∈ Uα any corresponding solution x(·; ϕ) of the IVP
(2.1)-(2.2) satisfies (2.38), where m = mα(ϕ) is the smallest root of the
function

H̃(m) := m − c1

|α|m
∫ m

0

bα(u)

u2
du − m̃1(ϕ), (2.42)

where the function H̃ is monotone increasing.
(ii) If (H5) and (H6) are also satisfied with k = 0, then for every ϕ ∈ Uα there

exist dα(ϕ), eα(ϕ) ∈ X such that (2.39) is satisfied.
(iii) If, in addition, (H9) holds, then there exists γ2 > 0 such that

‖dα(γϕ1)‖ + ‖eα(γϕ1)‖ 6= 0, 0 < γ ≤ γ2.

Proof. (i) Let ω(t, u) be defined by ω(t, u) = bα(eα(t−t0)u) for all t ≥ t0 and
u ≥ 0. Then

∫ ∞

t0

e−α(t−t0)ω(t,m) dt =
∫ ∞

t0

e−α(t−t0)bα

(
eα(t−t0)m

)
dt

=
m

|α|
∫ m

0

bα(u)

u2
du

<∞,

where we used the substitution u = eα(t−t0)m. Thus ρ defined in (2.9) is equal
to ρα. We rewrite H̃ in the form

H̃(m) = mH2(m) − m̃1(ϕ), H2(m) = 1 − c1

|α|
∫ m

0

bα(u)

u2
du.

Now H2(0) = 1, and there exists m∗∗ > 0 such that 1/2 ≤ H2(m) ≤ 1
for m ∈ [0,m∗∗]. Therefore it is easy to see that mα(ϕ) → 0 as ‖ϕ‖0 → 0.
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Statement (i) is an easy consequence of statement (i) of Theorem 2.2 with
k = 0.

(ii) The asymptotic formula (2.39) is an immediate consequence of the as-
sumptions and part (ii) of Theorem 2.2 for all ϕ ∈ Uα.

(iii) Similarly to the proof of Theorem 2.7 we can argue that condition (H7)
with ϕ0 = γϕ1 is equivalent to the inequality

A >
(‖P‖ + ‖Q‖)m̃1(ϕ1)

|α|H2(mα(γϕ1))

∫ mα(γϕ1)

0

bα(u)

u2
du,

which holds for 0 < γ ≤ γ2 for some γ2 > 0, since mα(γϕ1) → 0 as γ → 0.

The proof of the theorem is complete. 2

Proposition 2.9 We have ρα = ∞ and Uα = C in Theorem 2.8, if and only
if ∫ ∞

0

bα(u)

u2
du <

|α|
c1

(2.43)

or ∫ ∞

0

bα(u)

u2
du =

|α|
c1

and lim
m→+∞

bα(m) = ∞. (2.44)

Proof. If (2.43) holds, then H2(m) ≥ ε for m > 0 for some ε > 0, and hence
H(m) ≥ εm, m > 0, therefore ρα = ∞.

If ∫ ∞

0

bα(u)

u2
du >

|α|
c1

,

then there exists m∗ > 0 such that H2(m
∗) = 0 and H2(m) < 0 for m > m∗.

This yields ρα < ∞.

If ∫ ∞

0

bα(u)

u2
du =

|α|
c1

,

then

lim
m→+∞

H(m) = lim
m→+∞

H2(m)
1
m

= lim
m→+∞

H ′
2(m)

− 1
m2

= lim
m→+∞

c1

|α|bα(m),

which completes the proof. 2

The sharpness of Theorems 2.7 and 2.8 is analyzed for the following scalar
equation

x(t) = V (t − t0)ϕ(t0) +
∫ t

t0

V (t − s)g(s, x(·))ds, t ≥ t0, (2.45)
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with initial condition

x(s) = ϕ(s), t−1 ≤ s ≤ t0, ϕ ∈ C([t−1, t0], R).

Here

(A1) V : R+ → (0,∞) is a continuous function, and there exists a real number
α such that the limit

P = lim
t→+∞

e−αtV (t)

is a positive number.
(A2) g : [t0,∞) × C([t−1,∞), R) → R is a continuous Volterra-type functional

and there exists a continuous function γα : [t0,∞) × R+ → R+ such that
the map R+ ∋ u 7→ γα(t, u) ∈ R+ is monotone nonincreasing for any fixed
t ∈ [t0,∞), moreover for any (t, y) ∈ [t0,∞) × C([t−1,∞), R+),

g
(
t, eα(·−t0)y(·)

)
≥ γα

(
t, min

ξ(t)≤s≤t
y(s)

)
, (2.46)

where ξ : [t0,∞) → [t−1,∞) is a continuous function satisfying t−1 ≤ ξ(t) ≤
t for t ≥ t0, and ξ(t) → +∞ as t → +∞.

Theorem 2.10 Assume that (A1) and (A2) are satisfied, and there exists an
initial function ϕ0 ∈ C([t−1, t0], R+) such that ϕ0(t0) > 0 and Eq. (2.45) has
a solution x(·; ϕ0) : [t−1,∞) → R for which the limit

c0 := lim
t→+∞

e−α(t−t0)x(t; ϕ0)

exists and is positive. Then there exist v0 > 0 and T0 > 0 satisfying the
inequality

P
∫ ∞

t0+T0

e−α(t−t0)γα(t, v0) dt < v0.

Proof. First we show that the function x0 = x(·; ϕ0) is positive on [t0,∞).
Otherwise there exists a t1 > t0 such that

x0(t) > 0, t0 ≤ t < t1, and x0(t1) = 0.

Then from (2.45) it follows

x0(t1) ≥ V (t1 − t0)ϕ0(t0) > 0,

which is a contradiction. Thus x0(t) > 0, t ≥ t0, and hence the function
y(t) = e−α(t−t0)x0(t), t ≥ t−1, satisfies
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y(t) = e−α(t−t0)V (t − t0)ϕ(t0)

+
∫ t

t0

e−α(t−s)V (t − s)e−α(s−t0)g
(
s, eα(·−t0)y(·)

)
ds

≥ e−α(t−t0)V (t − t0)ϕ(t0)

+
∫ t

t0

e−α(t−s)V (t − s)e−α(s−t0)γα

(
s, min

ξ(s)≤τ≤s
y(τ)

)
ds

for t ≥ t0. But y(t) → c0 > 0 and ξ(t) → +∞, as t → +∞, and hence for an
arbitrarily fixed ε ∈ (0, 1), there exists a T0 = T0(ε) > 0 such that

e−α(t−t0)V (t − t0) ≥ (1 − ε)P

and
(1 + ε)c0 ≥ y(t) ≥ min

ξ(t)≤s≤t
y(s) ≥ (1 − ε)c0, t ≥ t0 + T0.

This yields the inequality

(1 + ε)c0 ≥ (1 − ε)Pϕ(t0) + (1 − ε)P
∫ ∞

t0+T0

e−α(s−t0)γα(s, (1 − ε)c0)ds.

Since Pϕ(t0) > 0, there is a constant ε0 ∈ (0, 1) that satisfies

(1 + ε0)c0 − (1 − ε0)Pϕ(t0) < (1 − ε0)
2c0,

and hence

v0 > P
∫ ∞

t0+T0

e−α(s−t0)γα(s, v0) ds, where v0 = (1 − ε0)c0.

This completes the proof of the theorem. 2

Next we consider a special case of Eq. (2.45).

x(t) = V (t − t0)ϕ(t0) +
∫ t

t0

V (t − s)b(x(s − τ(s))) ds, t ≥ t0. (2.47)

with the initial condition x(s) = ϕ(s), t0−r ≤ s ≤ t0, ϕ ∈ C([t0−r, t0], R).

In the next corollary for α defined in (A1), Sα denotes the set of all initial
functions ϕ ∈ C([t0 − r, t0], R) such that the limit

c := lim
t→+∞

e−α(t−t0)x(t; ϕ) (2.48)

exists and is not zero for a solution x(t; φ) of Eq. (2.47) corresponding to ϕ. It
is easy to see that if b is an odd function and ϕ ∈ Sα, then −ϕ ∈ Sα, as well.

Now we state and prove the next sharp result.
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Corollary 2.11 Assume that V : R+ → (0,∞) satisfies condition (A1), b :
R → R is a continuous, monotone nondecreasing and odd function satisfying
b(u) > 0 for u > 0, τ : [t0,∞) → [0, r] is a continuous function, and r > 0.
Then

(i) If Sα is not empty, then α 6= 0.

(ii) If α < 0, then Sα is not empty if and only if
∫ 1
0

b(u)
u2 du < ∞.

(iii) If α > 0, then Sα is not empty if and only if
∫ ∞
1

b(u)
u2 du < ∞.

Proof. It is easy to check that the assumptions imply (H1)–(H3) and (H5)–
(H6) with X = R, t−1 = t0−r, T (t) = V (t), y(t; ϕ) = V (t− t0)ϕ(t0), f(t, x) =
b(x(t − τ(t))), ζ(t) = t − τ(t), k = 0, c1 = sup0≤t e

−αtV (t), m0(ϕ) = c1‖ϕ‖0,
β = 0, Q = 0, d0(ϕ) = Peαt0ϕ(t0), e0(ϕ) = 0, and (H8) with bα(u) = b(ωαu),
where ωα = sup0≤t e

−ατ(t).

(i) Suppose ϕ ∈ Sα, and let x(t) = x(t; ϕ) be a fixed solution of (2.47) satisfy-
ing (2.48). Without the loss of generality we assume that ϕ is such that c de-
fined in (2.48) is positive. For the sake of contradiction we assume that α = 0.
But in that case there exists a t1 > 0 such that x(t−τ(t)) > c/2, t ≥ t0 + t1,
and hence

∫ t

t0

V (t−s)b(x(s−τ(s))) ds ≥ b
(

c

2

) ∫ t

t0+t1

V (t−s) ds = b
(

c

2

) ∫ t−t0−t1

0
V (u) du

for t ≥ t0 + t1. It follows from (A1) with α = 0 that limt→+∞ V (t) = P > 0,
and hence from (2.47) we obtain limt→+∞ x(t) = +∞. This contradicts to the
definition of Sα, and consequently α 6= 0.

(ii) In virtue of Theorem 2.8, it is clear that
∫ 1
0

b(u)
u2 du < ∞ implies that Sα is

not empty. For the necessary part, assume ϕ ∈ Sα.

Define the functions g : [t0,∞)×C([t−1,∞), R) → R and γα : [t0,∞)×R+ →
R+ by

g(t, x(·)) = b(x(t − τ(t))), (t, x) ∈ [t0,∞) × C([t−1,∞), R),

and
γα(t, u) = b(eα(t−t0)δαu), (t, u) ∈ [t0,∞) × R+,

where δα = inf0≤t e
−ατ(t). Then for any (t, y) ∈ [t0,∞) × C([t−1,∞), R), rela-

tion (2.46) is satisfied, where h(t) = t − τ(t), t ≥ t0. Thus by Theorem 2.10
we have constants v0 > 0 and T0 > 0 such that

v0 > P
∫ ∞

t0+T0

e−α(t−t0)γα(t, v0) dt = P
∫ ∞

t0+T0

e−α(t−t0)b(δαeα(t−t0)v0) dt.

It can be easily seen by using the substitution u = δαeα(t−t0)v0 that the above
inequality implies

∫ 1
0

b(u)
u2 du < ∞.
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Part (iii) can be argued similarly to the proof of (ii). 2

Closing this section we consider Eq. (2.1) in the case when t−1 = t0, i.e.,
consider

x(t) = y(t; ϕ(t0)) +
∫ t

t0

T (t − s)f(s, x(s)) ds, t ≥ t0, (2.49)

and the initial condition

x(t0) = ϕ(t0). (2.50)

We will need the following assumptions.

(H8*) Suppose α 6= 0, and there exists a continuous and monotone nondecreasing
function θ : R+ → R+ such that θ(u) > 0 for u > 0, and

‖f(t, eα(t−t0)(t−t0+1)kz)‖ ≤ θ
(
eα(t−t0)(t−t0+1)k‖z‖

)
, (t, z) ∈ [t0,∞)×X.

(2.51)
(H9*) There exists ϕ1 ∈ C such that

lim
t→∞

e−α(t−t0)(t − t0 + 1)−ky(t; ϕ1(t0)) 6= 0,

and (2.34) holds.

Theorem 2.12 Suppose (H1)-(H3) hold with t−1 = t0, there exists η ≥ 1
such that the function

(0,∞) → (0,∞), u → θ(u)

uη

is monotone nonincreasing, moreover (H8*) holds with

α > 0 and
∫ ∞

1

θ(u)

u2
(log u)kη du < ∞. (2.52)

Then

(i) for every ϕ ∈ C, any solution x(·; ϕ) of the IVP (2.49)-(2.50) satisfies
(2.14), where m = m(ϕ) is the largest root of the equation

m1(ϕ) +
c1

αkη+1
m

∫ ∞

m

θ(u)

u2

(
log

u

m
+ 1

)kη

du = m. (2.53)

(ii) If (H5) and (H6) are also satisfied with t−1 = t0, then for every ϕ(t0) ∈ X
there are dα(ϕ), eα(ϕ) ∈ X such that (2.15) holds.
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(iii) If, in addition, (H9*) holds, then there exists γ1 > 0 such that

‖dα(γϕ1)‖ + ‖eα(γϕ1)‖ 6= 0, γ ≥ γ1.

Proof. Let ω(t, u) be defined by ω(t, u) = θ(eα(t−t0)(t − t0 + 1)ku) for all
t ≥ t0 and u ≥ 0. Then for m ≥ eα

∫ ∞

t0

e−α(t−t0)ω(t,m) dt

=
∫ ∞

t0

e−α(t−t0) θ(e
α(t−t0)(t − t0 + 1)km)

(eα(t−t0)(t − t0 + 1)km)η
(eα(t−t0)(t − t0 + 1)km)η dt

≤
∫ ∞

t0

e−α(t−t0) θ(e
α(t−t0)m)

(eα(t−t0)m)η
(eα(t−t0)(t − t0 + 1)km)η dt

= m
∫ ∞

t0

θ(eα(t−t0)m)

(eα(t−t0)m)
(t − t0 + 1)kη dt

=
m

α

∫ ∞

m

θ(u)

u2

(
1

α
log

u

m
+ 1

)kη

du

≤ m

αkη+1

∫ ∞

m

θ(u)

u2
(log u)kη du

<∞,

where we used the substitution u = eα(t−t0)m and the fact that

t − t0 + 1 =
1

α
log

u

m
+ 1 =

1

α
(log u − log m + α) ≤ 1

α
log u

for log m ≥ α. Therefore ρ defined in (2.9) is +∞ and U defined in (2.10)
equals to C. The rest of the proof is identical to that of Theorem 2.7. 2

In the case α < 0 we have

∫ ∞

t0

e−α(t−t0)ω(t,m) dt ≤ m

|α|kη+1

∫ m

0

θ(u)

u2

(
log

m

u
− α

)kη

du < ∞.

Therefore, analogously to Theorem 2.8 and Theorem 2.12, we can formulate
a result for the case α < 0 using condition

∫ 1

0

θ(u)

u2

(
log

1

u
− α

)kη

du < ∞

instead of (2.52).

We remark that Theorem 2.12 includes the result of Webb [30] using η = 1,
t0 = 0 and y(t; ϕ) = T (t)ϕ(0).
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3 Applications

In this section we apply our main results to a class of age-dependent pop-
ulation models with delayed birth process, to a certain class of differential
equations with bounded and unbounded delays, and also to the pantograph
and sunflower differential equations.

3.1 An age-dependent population with delayed birth process

In [23] the following age-structured population model has been studied:

∂u

∂t
(t, a) =−∂u

∂a
(t, a) − µ(a)u(t, a), t ≥ 0, a ≥ 0, (3.1)

u(t, 0) =
∫ ∞

0

∫ 0

−τ
β(σ, a)u(t + σ, a) dσ da, t ≥ 0, (3.2)

u(s, a) = F0(s, a), s ∈ [−τ, 0), a > 0, (3.3)

u(0, a) = f0(a), a ≥ 0. (3.4)

Here u(t, a) denotes the density of the population at time t and age a, the death
rate of the individuals is described by µ(a). τ > 0 is a constant denoting the
maximal delay and β(σ, a) represents the probability that an individual of age
a reproduces after a time lag −σ starting from conception.

We introduce the Banach-spaces X = L1(R+, R+), E = L1([−τ, 0], X) ∼=
L1([−τ, 0] × R+, R) and Z = E × X with the product norm

∥∥∥∥∥∥


 F

f




∥∥∥∥∥∥
Z

= ‖F‖E + ‖f‖X ,

and define the delay operator

Φ: E → R, ΦF =
∫ ∞

0

∫ 0

−τ
β(σ, a)F (σ, a) dσ da.

We assume

(B1) β ∈ L∞([−τ, 0] × R+, R) and µ ∈ L∞(R+, R) are bounded, nonnegative
functions, and lima→∞ µ(a) > 0, F0 ∈ E, f0 ∈ X.

We use the notations u(t) = u(t, ·) and ut : [−τ, 0] → X, ut(s) = u(t+ s), and
define the function

z : R+ → Z, z(t) =


 ut

u(t)


 .
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It was shown in [23] that the PDE model (3.1)-(3.4) is equivalent to the
abstract Cauchy-problem

z′(t) = A z(t), t ≥ 0, z(0) = z0 :=


 F0

f0


 , (3.5)

where the linear operator A on D(A) ⊂ Z is defined by


A


 F

f





 (σ, a) =




d
dσ

F (σ)
−f ′(a) − µ(a)f(a)


 ,

where

D(A) =






 F

f


 ∈ W 1,1([−τ, 0], X) × W 1,1(R+, R) :


 F (0)

f(0)


 =


 f

ΦF






 .

The following result is a consequence of Theorems 3.3, 4.6 and 4.7 of [23].

Proposition 3.1 Assume (B1). Then A generates a strongly continuous pos-
itive semigroup T (t) on Z, and the population model (3.1)-(3.4) is well-posed.

Moreover, if ∫ ∞

0

∫ 0

−τ
β(σ, a)e−

∫ a

0
µ(s) dsdσ da > 1, (3.6)

then α0 := ω0(A) = s(A) > 0 is an eigenvalue of A with a one dimensional
spectral projection Π and there exist constants M, δ > 0 such that

‖e−α0tT (t) − Π‖ ≤ Me−δt, for all t ≥ 0.

Here ω0(A) denotes the growth bound of T (t), i.e., ω0(A) = limt→+∞
log ‖T (t)‖

t
,

and s(A) is the spectral bound of A, i.e., s(A) = sup{Re λ : λ ∈ σ(A)}, where
σ(A) is the spectrum of A.

Now we consider a nonlinear version of (3.1)

∂u

∂t
(t, a) = −∂u

∂a
(t, a) −

(
µ(a) + G(u(t + ·, a))

)
u(t, a), t ≥ 0, a ≥ 0, (3.7)

where the nonlinear functional G : E → R+ accounts for the loss of individuals
due to crowding. Similar nonlinearity was considered, e.g., in [10] and [12]. It
is easy to see that (3.7) associated with boundary and initial conditions (3.2)-
(3.4) is equivalent to the Cauchy-problem

z′(t) = A z(t) + G(z(t)), t ≥ 0, z(0) = z0, (3.8)
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where 
G


 F

f





 (σ, a) =


 0
−G(F (σ))f(a)


 .

Then the mild solution of (3.8) is the solution of

z(t) = T (t)z0 +
∫ t

0
T (t − s)G(z(s)) ds, t ≥ 0.

We assume on the nonlinearity that

(B2) G : E → R+ is such that
(i) there exist constants M ≥ 0 and −1 < η < 0 satisfying

0 ≤ G(F ) ≤ M‖F‖η
E, F ∈ E,

(ii) G is locally Lipschitz-continuous, i.e., for every K > 0 there exists L =
L(K) such that

|G(F ) − G(F̃ )| ≤ L‖F − F̃‖E, ‖F‖E, ‖F̃‖E ≤ K.

The next result shows that the asynchronous exponential growth of the linear
equation (3.5) is preserved for the mild solution of the nonlinear equation
(3.8).

Theorem 3.2 Assume (B1), (B2) and (3.6). Then (3.8) has a unique mild
solution z(t) on [0,∞), and there exists a one dimensional projection Π such
that the solution satisfies

lim
t→+∞

‖e−α0tz(t) − Πz0‖Z = 0, z0 ∈ Z.

Proof. Assumption (B2) yields easily that G is locally Lipschitz-continuous,
therefore a standard argument (see, e.g., Section 4.3 of [5]) shows the local
existence and also the uniqueness of the mild solution of (3.8).

It follows from Proposition 3.1 that (H1)–(H3), (H5), (H6) and (H9) are sat-
isfied with t0 = t−1 = 0 and k = 0, and (3.6) yields α0 > 0.

Let z =


 F

f


 ∈ Z. Then assumption (B2) (i) yields

∥∥∥G
(
eα0tz

)∥∥∥
Z

= ‖G(eα0tF )eα0tf‖X = G(eα0tF )eα0t‖f‖X

≤Me(1+η)α0t‖F‖η
E‖f‖X ≤ Me(1+η)α0t‖z‖1+η

Z t ≥ 0, z ∈ Z.

Therefore (H8) holds with bα(u) = Mu1+η, which satisfies (2.36), as well.
Therefore, Theorem 2.7 yields the statement of the theorem. 2
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3.2 A system of linear delay differential equations

Consider the system of linear delay equations

ẋ(t) =
N∑

i=0

Aix(t − τi) +
M∑

j=0

Bj(t)x(t − σj(t)), t ≥ t0. (3.9)

We assume

(i) t0 ≥ 0,
(ii) τi ∈ R+ and Ai ∈ R

n×n, 0 ≤ i ≤ N, and
(iii) Bj : R+ → R

n×n and σj : R+ → R+ are continuous functions, limt→+∞(t −
σj(t)) = +∞, 0 ≤ j ≤ M .

Let

τ = max
0≤i≤N

τi and t−1(t0) := min
{
t0 − τ, min

0≤j≤M
{ inf

t0≤t
{t − σj(t)}}

}
.

We associate the initial condition

x(t) = ϕ(t), t−1(t0) ≤ t ≤ t0 (3.10)

to Eq. (3.9). In this section we will consider the initial time t0 as a parameter,
so the solution of the IVP (3.9)-(3.10) will be denoted by x(·; t0, ϕ).

The asymptotic property of the solutions of Eq. (3.9) is given by using our main
results and certain asymptotic properties of the solutions of the autonomous
system

ẏ(t) =
N∑

i=0

Aiy(t − τi), t ≥ t0, (3.11)

and the associated initial condition

y(t) = ϕ(t), t0 − τ ≤ t ≤ t0. (3.12)

By definition, the fundamental solution T (t) to (3.11) is the n × n matrix
valued function satisfying

Ṫ (t) =
N∑

i=0

AiT (t−τi), t ≥ 0, and T (0) = I, T (s) = 0 for −τ ≤ s < 0.

Here I and 0 denote the n × n identity and zero matrices, respectively.

The characteristic equation associated to (3.11) is

∆(λ) := det

(
λI −

N∑

i=0

Aie
−λτi

)
= 0. (3.13)
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A complex number λ is called an eigenvalue of Eq. (3.11) if it is a solution of
Eq. (3.13).

Definition 3.3 λ0 = α0 + β0i (i =
√
−1), is called a dominant eigenvalue of

(3.11) if ∆(λ0) = 0 and Re λ0 > Re λ for λ ∈ C satisfying ∆(λ) = 0, λ 6=
λ0 and λ 6= λ0. The ascent of λ0 is the order of λ0 as a pole of ∆−1(λ) (see
[9], [18]).

It is known ([9], [18]) that the ascent of an eigenvalue λ is less or equal to the
algebraic multiplicity of λ.

We assume

(C) λ0 = α0 + β0i is a dominant eigenvalue of Eq. (3.11), and let k + 1 be its
ascent.

The following result follows from the general theory of the series representation
of the solutions of Eq. (3.11) (see, e.g., [4], [18]).

Proposition 3.4 Assume (C). Then the following statements hold.

(i) For all t0 ≥ 0 and ϕ ∈ C([t0 − τ, t0], R
n) there exist d0(t0, ϕ), e0(t0, ϕ) ∈ R

n

such that the solution y(·; t0, ϕ) of Eq. (3.11) through (t0, ϕ) satisfies

y(t; t0, ϕ) = eα0ttk
(
d0(t0, ϕ) cos β0t + e0(t0, ϕ) sin β0t + o(1)

)
,

as t → ∞.
(ii) There exist constant matrices P,Q ∈ R

n×n for which

T (t) = eα0t(t + 1)k(P cos β0t + Q sin β0t + o(1)), as t → +∞.

In the proof of the next theorem we will need the following estimate which can
be proved using Gronwall’s inequality (see, e.g., [17] for a proof of a similar
result).

Lemma 3.5 The solution x(·; t0; ϕ) of the IVP (3.9)-(3.10) satisfies

‖x(t; t0, ϕ)‖ ≤ e
∑N

i=0
‖Ai‖(t−t0)+

∑M

j=0

∫ t

t0
‖Bj(s)‖ ds

max
t
−1(t0)≤s≤t0

‖ϕ(s)‖, t ≥ t0.

Now, we are in a position to state and prove the following result.
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Theorem 3.6 Assume (C), and

∫ ∞

0
tk

M∑

j=0

‖Bj(t)‖e−α0σj(t)dt < ∞. (3.14)

Then for every t0 ≥ 0 there exists M(t0) ≥ 0 such that for every ϕ ∈
C([t−1(t0), t0], R

n) the solution x(·; t0, ϕ) of Eq. (3.9) through (t0, ϕ) satisfies

‖x(t; t0, ϕ)‖ ≤ M(t0)e
α0(t−t0)(t−t−1(t0)+1)k max

t
−1(t0)≤s≤t0

‖ϕ(s)‖, t ≥ t−1(t0).

(3.15)
Moreover, there are vectors d̃(t0, ϕ) and ẽ(t0, ϕ) in R

n such that

x(t; t0, ϕ) = eα0ttk
(
d̃(t0, ϕ) cos β0t + ẽ(t0, ϕ) sin β0t + o(1)

)
, as t → +∞,

(3.16)
where ‖d̃(t0, ϕ0)‖ + ‖ẽ(t0, ϕ0)‖ 6= 0 for some ϕ0 ∈ C([t−1(t0), t0], R

n).

Proof. From part (c) of Proposition 3.4, it follows that

c1 := sup
0≤t

(t + 1)−ke−α0t‖T (t)‖ < ∞.

Assumption (3.14) yields there exists S > 0 such that

A := max
{
c1, ‖P‖ + ‖Q‖

} ∫ ∞

S
(t − t−1(0) + 1)k

M∑

j=0

‖Bj(t)‖e−α0σj(t) dt < 1.

Since t−1(0) ≤ t−1(t0) for any t0 ≥ 0, it follows

max
{
c1, ‖P‖ + ‖Q‖

} ∫ ∞

t0

(t − t−1(t0) + 1)k
M∑

j=0

‖Bj(t)‖e−α0σj(t) dt ≤ A < 1

(3.17)
for all t0 ≥ S. Let t0 ≥ S be fixed, and f : [t0,∞)×C([t−1(t0),∞), Rn) → R

n

be defined by

f(t, y(·)) =
M∑

j=0

Bj(t)y(t − σj(t)).

Then, by using the variation of constants formula (see, e.g., [18]), we obtain
that the solution x(·; t0, ϕ) of Eq. (3.9) through (t0, ϕ) satisfies

x(t; t0, ϕ) = y(t; t0, ϕ) +
∫ t

t0

T (t − s)f(s, x(·; t0, ϕ)) ds, t ≥ t0,

where y(·; t0, ϕ) denotes the solution of Eq. (3.11) through (t0, ϕ). Moreover,
for all (t, z) ∈ [t0,∞) × C([t−1(t0), t0], R

n) → R
n
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∥∥∥f
(
t, eα0(·−t0)(· − t−1(t0) + 1)kz(·)

)∥∥∥

=

∥∥∥∥∥∥

M∑

j=0

Bj(t)e
α0(t−σj(t)−t0)(t − σj(t) − t−1(t0) + 1)kz(t − σj(t))

∥∥∥∥∥∥

≤ eα0(t−t0)a(t) max
ζ(t)≤s≤t

‖z(s)‖,

where ζ(t) = min{t − σj(t) : j = 0, . . . ,M}, and

a(t) = (t − t−1(t0) + 1)k
M∑

j=0

‖Bj(t)‖e−α0σj(t), t ≥ 0.

Thus it follows from (3.17) that all conditions of Theorem 2.6 hold, therefore
x(·; t0, ϕ) satisfies (2.31), i.e.,

‖x(t; t0, ϕ)‖ ≤ m2(t0, ϕ)eα0(t−t0)(t − t−1(t0) + 1)k, t ≥ t0 ≥ S, (3.18)

where

m2(t0, ϕ) =
max

{
maxt

−1(t0)≤s≤t0 ‖e−α0(s−t0)(s − t−1(t0) + 1)−kϕ(s)‖, m0(ϕ)
}

1 − c1

∫ ∞
t0

a(s) ds
.

Since Eq. (3.11) is autonomous and linear, there exists a constant K ≥ 1 such
that

‖y(t; t0, ϕ)‖ ≤ Keα(t−t0) max
t
−1(t0)≤s≤t0

‖ϕ(s)‖, t ≥ t0 ≥ 0.

Therefore

m0(ϕ) = K max
t
−1(t0)≤s≤t0

‖ϕ(s)‖,

and so

m2(t0, ϕ) ≤ m̂2(t0) max
t
−1(t0)≤s≤t0

‖ϕ(s)‖, t0 ≥ S, ϕ ∈ C([t−1(t0), t0], R
n),

(3.19)
where

m̂2(t0) =





max{eα0(t0−t
−1(t0)), K}

1−A
, α0 > 0,

K
1−A

, α0 ≤ 0.

Now, consider an arbitrarily fixed t̃0 ∈ [0, S) and an initial function ϕ̃ ∈
C([t−1(t̃0), t̃0], R

n). Lemma 3.5 yields there exists a constant m3 ≥ 1 such that

‖x(t; t̃0, ϕ̃)‖ ≤ m3 max
t
−1(t̃0)≤s≤t̃0

‖ϕ̃(s)‖, t0 ≤ t ≤ S. (3.20)

On the other hand, the solution x(·; t̃0, ϕ̃) of Eq. (3.9) is unique on [t0,∞) and

x(t; t̃0, ϕ̃) = x(t; S, ϕ), t ≥ S,
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where ϕ(s) = x(s; t̃0, ϕ̃), t−1(S) ≤ s ≤ S. Consequently, (3.18), (3.19) and
(3.20) yield for t ≥ S

‖x(t; t̃0, ϕ̃)‖= ‖x(t; S, ϕ)‖
≤ m̂2(S)eα0(t−S)(t − t−1(S) + 1)k max

t
−1(S)≤s≤S

‖ϕ(s)‖

≤ m̂2(S)eα0(t̃0−S)eα0(t−t̃0)m3(t − t−1(t̃0) + 1)k max
t
−1(̃t0)≤s≤t̃0

‖ϕ̃(s)‖.

Therefore (3.15) is satisfied with

M(t0) =





m̂2(S)m3e
α0(t0−S), 0 ≤ t0 < S,

m̂2(t0), t0 ≥ S.

The rest of the proof of this theorem is an easy consequence of Theorem 2.6
and the ideas used above, therefore it is omitted. 2

We get immediately from the proof:

Remark 3.7 If α0 ≤ 0 or t0− t−1(t0) is bounded for t0 ≥ 0, then M in (3.16)
is independent of t0.

Now, we give the following definition of stability:

Definition 3.8 We say that the zero solution of Eq. (3.9) is equistable on
R+ if for all t0 ≥ 0 and ϕ ∈ C([t−1(t0), t0], R

n) the solution x(·; t0, ϕ) of
Eq. (3.9) through (t0, ϕ) is bounded on [t0,∞). If for all t0 ≥ 0 and ϕ ∈
C([t−1(t0), t0], R

n) the solution x(·; t0, ϕ) tends to zero as t → +∞, then we
say that the zero solution of Eq. (3.9) is equi-asymptotically stable.

The next stability result is an easy consequence of Theorem 3.6, therefore we
state it without proof.

Theorem 3.9 Assume (C). If (3.14) holds, then

(i) The zero solution of Eq. (3.9) is equistable on R+ if and only if either α0 < 0
or α0 = 0 and k = 0.

(ii) The zero solution of Eq. (3.9) is equi-asymptotically stable if and only if
α0 < 0.

We close this subsection with the following corollary of Theorem 3.6, which
shows the importance of the factor e−α0σj(t) in condition (3.14). We apply our
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results to the pantograph equation (see, e.g., [19]).

Corollary 3.10 Consider the delay differential equation

ẋ(t) =
N∑

i=0

Aix(t − τi) +
M∑

j=0

B̃jx(γjt) (3.21)

where τi ∈ R+, Ai ∈ R
n×n, 0 ≤ i ≤ n, and γj ∈ (0, 1), B̃j ∈ R

n×n, 0 ≤ j ≤ M .

If (C) holds and α0 > 0, then the statements of Theorem 3.6 are valid for
any solution x(·; t0, ϕ) of Eq. (3.21) through (t0, ϕ) where t0 ≥ 0, t−1(t0) =
min{t0 − τ, (min0≤j≤M γj)t0}, and ϕ ∈ C([t−1(t0), t0], R

n).

Proof. Let σj : R+ → R+ and Bj : R+ → R
n×n be defined by

σj(t) = (1 − γj)t and Bj(t) ≡ B̃j, t ≥ 0, 0 ≤ j ≤ M,

and ζ(t) = min{γjt : j = 0, . . . ,M}. Then

∫ ∞

0
tk

M∑

j=0

‖Bj(t)‖e−α0σj(t) dt =
M∑

j=0

‖B̃j‖
∫ ∞

0
tke−α0(1−γj)t dt < ∞,

and hence by Theorem 3.6 the statement of the corollary follows. 2

Remark 3.11 Corollary 3.10 shows that if the zero solution of Eq. (3.11) is
unstable then the zero solution of Eq. (3.21) is also unstable.

3.3 The sunflower equation

In this section we consider the second-order delay differential equation

ẍ(t) + Aẋ(t) + Bg(x(t − r)) = 0, t ≥ 0, (3.22)

where

A,B ∈ R, r ∈ R+, g ∈ C(R, R) is odd satisfying g(u) > 0 for u > 0.
(3.23)

When g(x) = sin x, Eq. (3.22) is the so-called sunflower equation, which was
investigated extensively (see, e.g., [20], [21] and [27] and the references therein).

Consider an associated linear equation

ÿ(t) + Aẏ(t) + By(t − r) = 0, t ≥ 0, (3.24)
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and its characteristic equation

λ2 + Aλ + Be−λr = 0. (3.25)

Theorem 3.12 Assume (3.23), let λ0 = α0+β0i be a simple dominant eigen-
value of Eq. (3.25) and

α0 > 0 and
∫ ∞

1

1

u2
max

0≤|s|≤u
|g(s) − s| du < ∞. (3.26)

Then for all ϕ ∈ C([−r, 0], R) the solution x(·; 0, ϕ) of Eq. (3.24) through
(0, ϕ) satisfies

x(t; 0, ϕ) = eα0t

(
d1(ϕ) cos(β0t + γ1(ϕ)) + o(1)

)
, t → +∞, (3.27)

where d1(ϕ), γ1(ϕ) ∈ R and d1(ϕ0) 6= 0 for some ϕ0 ∈ C([−r, 0], R).

Proof. Set t0 = 0, t−1 = −r, and

f(t, x(·)) = −B
(
g(x(t− r))− x(t− r)

)
, (t, x) ∈ [t0,∞)×C([t−1,∞), R).

Moreover, for all ϕ ∈ C([t−1, t0], R) the solution x(·; 0, ϕ) of Eq. (3.24) through
(0, ϕ) is the unique solution of

ẍ(t) + Aẋ(t) + Bx(t − r) = f(t, x(·)), t ≥ 0.

Thus by the variation of constants formula we find

x(t; 0, ϕ) = y(t; 0, ϕ) +
∫ t

0
T (t − s)f(s, x(·; 0, ϕ)) ds, t ≥ 0, (3.28)

where y(·; 0, ϕ) is the solution of Eq. (3.24) through (0, ϕ) and T (t) is the
unique function satisfying

T̈ (t) + AṪ (t) + BT (t − r) = 0, a.e. t ≥ 0,

and
Ṫ (0) = 1 and T (s) = 0, −r ≤ s ≤ 0.

Since λ0 = α0 + β0i is a simple dominant eigenvalue of Eq. (3.25), from the
series representation of the solutions of Eq. (3.24) (see Proposition 3.4), we
have

y(t; 0, ϕ) = eα0t

(
d0(ϕ) cos β0t + e0(ϕ) sin β0t + o(1)

)
, t → +∞,

where d0, e0 : C([−r, 0], R) → R are such that |d0(ϕ0)|+ |e0(ϕ0)| 6= 0 for some
ϕ0 ∈ C([−r, 0], R), and

T (t) = eα0t

(
P cos β0t + Q sin β0t + o(1)

)
, t → +∞,

31



where P,Q ∈ R and |P | + |Q| 6= 0.

In that case, it can be easily seen that Eq. (3.21) satisfies all of the conditions
of Theorem 2.7, whenever bα0(u) = max0≤|s|≤u |g(s)−s| for all u ≥ 0. Therefore
in virtue of Theorem 2.7, we obtain the following representation of x(·; 0, ϕ):

x(t; 0, ϕ) = eα0t

(
dα0(ϕ) cos β0t + eα0(ϕ) sin β0t + o(1)

)
, t → +∞, (3.29)

where dα0 , eα0 : C([−r, 0], R) → R are such that |dα0(ϕ0)| + |eα0(ϕ0)| 6= 0, for
some ϕ0 ∈ C([−r, 0], R).

Let

d1(ϕ) =
√

(dα0(ϕ))2 + (eα0(ϕ))2

and γ1(ϕ) be such that

d1(ϕ) cos γ1(ϕ) = dα0(ϕ) and − d1(ϕ) sin γ1(ϕ) = eα0(ϕ).

Then d1(ϕ) 6= 0 and (3.29) yields (3.27), and this completes the proof of the
theorem. 2

Similarly to Theorem 3.12, Theorem 2.8 yields the next result.

Theorem 3.13 Assume (3.23), let λ0 = α0+β0i be a simple dominant eigen-
value of Eq. (3.25) and

α0 < 0 and
∫ 1

0

1

u2
max

0≤|s|≤u
|g(s) − s| du < ∞. (3.30)

Then there exists a δ = δ(α0) > 0, such that for all

ϕ ∈ C([−r, 0], R), ‖ϕ‖0 = max
−r≤s≤0

|ϕ(s)| < δ,

the solution x(·; 0, ϕ) of Eq. (3.24) through (0, ϕ) satisfies (3.27), where d1(ϕ),
γ1(ϕ) ∈ R and d1(ϕ0) 6= 0 for some ϕ0 ∈ C([−r, 0], R), and ‖ϕ‖0 < δ.

When g(x) = sin x, i.e., Eq. (3.24) is the so-called sunflower equation then

∫ 1

0

1

u2
max

0≤|s|≤u
|g(s) − s| du =

∫ 1

0

1

u2
max

0≤|s|≤u
| sin s − s| du < ∞,

and therefore Theorem 3.13 is applicable.
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