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Abstract

In this paper we consider a class of nonlinear neutral differential equations with state-
dependent delays. We study well-posedness and continuous dependence issues and differen-
tiability of the parameter map with respect to the initial function and other possibly infinite
dimensional parameters in a pointwise sense and also in the C and W 1,∞-norms.

1 Introduction

In this paper we consider state-dependent neutral functional differential equations (SD-NFDEs) of
the form

d

dt

(

x(t) − g(t, x(t− η(t)))
)

= f
(

t, xt, x(t− τ(t, xt, σ)), θ
)

t ∈ [0, T ], (1.1)

with initial condition
x(t) = ϕ(t), t ∈ [−r, 0]. (1.2)

Here θ ∈ Θ and σ ∈ Σ represent parameters in the function f and in the delay function τ , where
Θ and Σ are normed linear spaces with norms | · |Θ and | · |Σ, respectively. The solution segment
function xt is defined by xt(s) = x(t + s), s ∈ [−r, 0]. (See Section 2 below for the detailed
assumptions on the initial value problem (IVP) (1.1)-(1.2).)

The study of state-dependent delay differential equations (SD-DDEs), i.e., the case when g ≡ 0
in (1.1) is an active research area. We refer to [22] for a recent survey on this topic with more than
220 references. In spite of that one of the first model appeared in the literature with state-dependent
delays, the mathematical model for a two-body problem of classical electrodynamics introduced by
Driver [8, 9, 10] involves NFDEs with state-dependent delays, much less work is devoted to SD-
NFDEs [1, 3, 4, 6, 12, 21, 26, 34, 35]. Most of the above papers deal with SD-NFDEs of the
form

x′(t) = h
(

t, x(t), x(t − τ(t, x(t))), x′(t− σ(t, x(t)))
)

. (1.3)

This equation is called in [29] as “explicit” SD-NFDE contrary to the “implicit” SD-NFDE (1.1).
Well-posedness of such “explicit” SD-NFDEs was investigated in [11, 25].

∗This research was partially supported by Hungarian National Foundation for Scientific Research Grant No.

T046929.
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Our equation (1.1) can be considered as a natural “generalization” of the “usual” NFDEs with
time-dependent delays of the form

d

dt
D(t, xt) = f(t, xt), (1.4)

but (1.4) may also contain (1.1) depending on appropriate conditions on D and f , like in [22].
The basic well-posedness theory for several classes of (1.4), especially for the linear case, is well-
developed [2, 5, 14, 16, 31]. Existence, uniqueness and numerical approximation of solutions was
studied in [20] for SD-NFDEs of the form

d

dt

(

x(t) − q(t)x(t− σ(t, x(t)))
)

= f
(

t, x(t), x(t − τ(t, x(t)))
)

,

and numerical approximation issues were discussed in [29] for such equations.
Differentiability of solutions with respect to (wrt) parameters is an important qualitative ques-

tion, but it also has natural application in the problem of identification of parameters (see [19]).
But even for simple constant delay equations this problem leads to technical difficulties if the pa-
rameter is the delay. Namely, at some point in the proof it is needed to compute the derivative
of a composite function when the outer function is not differentiable, it is only Lipschitz continu-
ous. To overcome these technicalities, Hale and Ladeira [15] proved differentiability of the solution
wrt the delay using the W 1,1 norm on the state space of solutions. The W 1,p-norm of a function

ψ : [−r, 0] → R
n is defined by |ψ|W 1,p =

(

∫ 0
−r |ψ(s)|p + |ψ̇(s)|p ds

)1/p
, 1 ≤ p <∞.

The same difficulty arises in SD-DDEs. The case when the solution corresponding to a param-
eter is continuously differentiable can be treated relatively easily, and it was investigated in [18].
Related is the work of Walther [32, 33], where the well-posedness of autonomous SD-DDEs is ob-
tained restricting the state-space of solutions to the space of continuously differentiable functions.
Walther also obtained differentiability of the solution with respect to the initial function in this
space. Differentiability of solutions of SD-DDEs wrt parameters under less restrictive conditions
was investigated in [23] in the case when the solutions are not continuously differentiable, only
Lipschitz continuous functions. In this case differentiability wrt the parameters was obtained in
the W 1,p norm.

The organization of the paper is the following. In Section 2 we introduce some notations,
assumptions and formulate some basic results will be used in the rest of the paper. In Section 3
we discuss well-posedness of the IVP (1.1)-(1.2), and then in Section 4, using and improving the
method of [18] applied for SD-DDEs, we study differentiability of solutions wrt parameters for the
IVP (1.1)-(1.2) in a pointwise-sense and using the C and W 1,∞-norms on the state-space.

The parameters we consider in this paper are restricted to the initial function and other pa-
rameters in the function f and in the delay function τ . The dependence of the solution on η (or
some parts of η) is somewhat more complicated. A simple example was given in [28] to show that
a solution may not be differentiable wrt η even when both delays are constants.

Note that for simplicity we present our results for the single delay case, but all our results can
be easily extended to the multiple delay case.

2 Notations, assumptions and preliminaries

Throughout this paper a fixed norm on R
n and the corresponding matrix norm on R

n×n are both
denoted by | · |.
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In a normed linear space (X, | · |X) the open ball around a point x0 with radius R is denoted
by BX(x0; R), i.e., BX(x0; R) = {x ∈ X : |x − x0|X < R}, and the corresponding closed ball
by BX(x0; R). Similarly, an open neighborhood of a set M ⊂ X with radius R is denoted by
BX(M ; R), i.e., BX(M ; R) = {x ∈ X : there exists y ∈ M such that |x− y|X < R}. The closure
of this neighborhood is denoted by BX(M ; R).

The space of continuous functions from [−r, 0] to R
n and the usual supremum norm on it

are denoted by C and | · |C , respectively. The L∞-norm of an absolutely continuous function
ψ : [−r, 0] → R

n is defined by |ψ|L∞ = ess sup{|ψ̇(s)| : s ∈ [−r, 0]}. The space of absolutely
continuous functions from [−r, 0] to R

n with essentially bounded derivatives is denoted by W 1,∞.
The corresponding norm on W 1,∞ is |ψ|W 1,∞ = max{|ψ|C , |ψ̇|L∞}.

The space of bounded linear operators between normed linear spaces X and Y is denoted by
L(X,Y ), and the norm on it is | · |L(X,Y ).

The partial derivatives of a function F (x1, x2, . . . , xn) wrt its first, second, etc. arguments are
denoted by D1F , D2F , etc., and the derivative of a single variable function v(t) wrt t is denoted
by v̇. Note that all derivatives we use in this paper are Fréchet derivatives.

Next we list our assumptions on the SD-NFDE (1.1) and the associated initial function we will
use throughout this paper.

Let Ω1 ⊂ C, Ω2 ⊂ R
n, Ω3 ⊂ Θ, Ω4 ⊂ Σ, and Ω5 ⊂ R

n be open subsets of the respective spaces.
T > 0 is finite or T = ∞, in which case [0, T ] denotes the interval [0,∞). We assume:

(A1) (i) f :
(

[0, T ] × Ω1 × Ω2 × Ω3 ⊂ R × C × R
n × Θ

)

→ R
n is continuous,

(ii) f(t, ψ, u, θ) is locally Lipschitz continuous in ψ, u and θ in the following sense: for
every finite α ∈ (0, T ], for every compact subsets M1 ⊂ Ω1 and M2 ⊂ Ω2 of C and
R
n, respectively, and for every closed and bounded subset M3 ⊂ Ω3 of Θ there exists a

constant L1 = L1(α,M1,M2,M3) such that

|f(t, ψ, u, θ) − f(t, ψ̄, ū, θ̄)| ≤ L1

(

|ψ − ψ̄|C + |u− ū| + |θ − θ̄|Θ

)

,

for t ∈ [0, α], ψ, ψ̄ ∈M1, u, ū ∈M2 and θ, θ̄ ∈M3,

(iii) f is continuously differentiable wrt its second, third and fourth variables;

(A2) (i) τ :
(

[0, T ] × Ω1 × Ω4 ⊂ R × C × Σ
)

→ R is continuous, and

0 ≤ τ(t, ψ, σ) ≤ r, for t ∈ [0, T ], ψ ∈ Ω1 and σ ∈ Ω4,

(ii) τ(t, ψ, σ) is locally Lipschitz continuous in ψ and σ in the following sense: for every finite
α ∈ (0, T ], for every compact subset M1 ⊂ Ω1 of C, and for every closed and bounded
subset M4 ⊂ Ω4 of Σ there exists a constant L2 = L2(α,M1,M4) such that

|τ(t, ψ, σ) − τ(t, ψ̄, σ̄)| ≤ L2

(

|ψ − ψ̄|C + |σ − σ̄|Σ

)

for t ∈ [0, α], ψ, ψ̄ ∈M1 and σ, σ̄ ∈M4,

(iii) τ is continuously differentiable wrt its second and third variables,
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(iv) D2τ(t, ψ, σ) and D3τ(t, ψ, σ) are locally Lipschitz continuous in ψ and σ, i.e., for every
finite α ∈ (0, T ], for every compact subset M1 ⊂ Ω1 of C, and for every closed and
bounded subset M4 ⊂ Ω4 of Σ there exists L3 = L3(α,M1,M4) such that

∣

∣D2τ(t, ψ, σ) −D2τ(t, ψ̄, σ̄)
∣

∣

L(C,R)
≤ L3

(

|ψ − ψ̄|C + |σ − σ̄|Σ

)

,

and
∣

∣D3τ(t, ψ, σ) −D3τ(t, ψ̄, σ̄)
∣

∣

L(Σ,R)
≤ L3

(

|ψ − ψ̄|C + |σ − σ̄|Σ

)

hold for all t ∈ [0, α], ψ, ψ̄ ∈M1 and σ, σ̄ ∈M4;

(A3) ϕ ∈W 1,∞;

(A4) (i) g :
(

[0, T ] × Ω5 ⊂ R × R
n
)

→ R
n is continuously differentiable wrt its both variables,

(ii) D1g and D2g are locally Lipschitz continuous, i.e., for every α ∈ (0, T ] and compact
subset M5 ⊂ Ω5 of R

n there exists L4 = L4(α,M5) such that |Dig(t, u) − Dig(t, ū)| ≤
L4|u− ū| for i = 1, 2, t ∈ [0, α] and u, ū ∈M5,

(iii) D1g and D2g are continuously differentiable wrt their second variables;

(A5) (i) η : [0, T ] → R is continuous,

(ii) there exists a positive constant η0 such that 0 < η0 ≤ η(t) ≤ r for t ∈ [0, T ], and

(iii) η is locally Lipschitz continuous on [0, T ], i.e., for every finite α ∈ (0, T ] there exists
L5 = L5(α) such that |η(t) − η(t̄)| ≤ L5|t− t̄| for t, t̄ ∈ [0, α],

(iv) η̇(0+) exists.

Note that assumptions (A1)–(A3) are identical to those used in [23] for SD-DDEs, i.e., for the
case when g ≡ 0. (See also [7] or [23] for well-posedness of SD-DDEs.) We refer to [23] for further
comments on the particular definition of local Lipschitz continuity we use in (A1) (ii) and (A2) (ii).

We introduce the following function:

Λ :
(

[0, T ] × Ω1 × Ω4 ⊂ R × C × Σ
)

→ R
n, Λ(t, ψ, σ) = ψ(−τ(t, ψ, σ)). (2.1)

With this notation we can rewrite (1.1) simply as:

d

dt

(

x(t) − g(t, x(t − η(t)))
)

= f(t, xt,Λ(t, xt, σ), θ), t ∈ [0, T ].

Let α > 0, M1 ⊂ Ω1 be a compact subset of C, M4 ⊂ Ω4 be a closed and bounded subset of Σ,
and L2 = L2(α,M1,M4) be the constant from (A2) (ii). It follows from the definition of Λ, (A2)
(ii) and the Mean Value Theorem that

|Λ(t, ψ, σ) − Λ(t, ψ̄, σ̄)| ≤ |ψ̄(−τ(t, ψ, σ)) − ψ̄(−τ(t, ψ̄, σ̄))| + |ψ(−τ(t, ψ, σ)) − ψ̄(−τ(t, ψ, σ))|

≤ L2|ψ̄|W 1,∞(|ψ − ψ̄|C + |σ − σ̄|Σ) + |ψ − ψ̄|C (2.2)

for t ∈ [0, α], ψ, ψ̄ ∈M1, ψ̄ ∈W 1,∞ and σ, σ̄ ∈M4.

We define the parameter space Γ = W 1,∞ × Σ × Θ, and use the notation γ = (ϕ, σ, θ) or
γ = (γϕ, γσ , γθ) for the components of γ ∈ Γ, and |γ|Γ = |ϕ|W 1,∞ + |σ|Σ + |θ|Θ for the norm on Γ.
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The solution of the IVP (1.1)-(1.2) corresponding to a parameter γ and its segment function at t
are denoted by x(t; γ) and x(·; γ)t, respectively.

Introduce the set of feasible parameters

Π =
{

(ϕ, σ, θ) ∈ Γ: ϕ ∈ Ω1, ϕ(−τ(0, ϕ, σ)) ∈ Ω2, θ ∈ Ω3, σ ∈ Ω4, ϕ(−η(0)) ∈ Ω5

}

,

and define the parameter set

M =
{

(ϕ, σ, θ) ∈ Π : ϕ ∈ C1, ϕ̇(0−) = D1g(0, ϕ(−η(0)))

+ D2g(0, ϕ(−η(0)))ϕ̇(−η(0))(1 − η̇(0+)) + f(0, ϕ,Λ(0, ϕ, σ), θ)
}

.

Note that analogous conditions were used for neutral FDEs in order to guarantee the existence of
a continuous semiflow on a subset of C1 in [27].

In the next lemma we formalize a method used frequently in functional inequalities (see, e.g.,
in [13]) and which will be used in the sequel, as well.

Lemma 2.1 Suppose g : [0, α] × [0,∞)3 → [0,∞) is monotone increasing in all variables, i.e., if
0 ≤ ti ≤ si for i = 1, 2, 3, 4, then g(t1, t2, t3, t4) ≤ g(s1, s2, s3, s4); λ : [0, α] → [0,∞) is such that
λ0 ≤ λ(t) for t ∈ [0, α] for some λ0 > 0; u : [−r, α] → [0,∞) is such that

u(t) ≤ g(t, u(t), u(t − λ(t)), |ut|C), t ∈ [0, α], (2.3)

and
|u0|C ≤ g(0, u(0), u(−λ(0)), |u0 |C). (2.4)

Then
v(t) ≤ g(t, v(t), v(t − λ0), v(t)), t ∈ [0, α], (2.5)

where v(t) = sup{u(s) : s ∈ [−r, t]}.

Proof It follows from (2.3), λ0 ≤ λ(t), the definition of v(t) and the monotonicity of g that if
0 ≤ s ≤ t ≤ α, then

u(s) ≤ g(s, u(s), u(s − λ(s)), |us|C)

≤ g(s, v(s), v(s − λ0), v(s))

≤ g(t, v(t), v(t − λ0), v(t)).

Then taking the supremum of the left hand side for s ∈ [0, t] we get

sup{u(s) : s ∈ [0, t]} ≤ g(t, v(t), v(t − λ0), v(t)).

This, combined with (2.4), implies (2.5). �

Finally, we recall the following two results which will be used later.

5



Lemma 2.2 (see [13]) Let a > 0, b ≥ 0, r1 > 0, r2 ≥ 0, r = max{r1, r2}, and v : [0, α] → [0,∞)
be continuous and nondecreasing. Let u : [−r, α] → [0,∞) be continuous and satisfy the inequality

u(t) ≤ v(t) + bu(t− r1) + a

∫ t

0
u(s− r2) ds, t ∈ [0, α].

Then u(t) ≤ d(t)ect for t ∈ [0, α], where c is the unique positive solution of cbe−cr1 + ae−cr2 = c,
and

d(t) = max

{

v(t)

1 − be−cr1
, max
−r≤s≤0

e−csu(s)

}

, t ∈ [0, α].

Lemma 2.3 (see, e.g., [30]) Suppose that X and Y are normed linear spaces, and U is an open
subset of X, and F : U → Y is differentiable. Let x, y ∈ U such that y+ν(x−y) ∈ U for ν ∈ [0, 1].
Then

|F (y) − F (x) − F ′(x)(y − x)|Y ≤ |x− y|X sup
0<ν<1

|F ′(y + ν(x− y)) − F ′(x)|L(X,Y ).

3 Well-posedness and continuous dependence on parameters

In this section we show that under the assumptions listed in the previous section the IVP (1.1)-(1.2)
has a unique solution which depends continuously on the parameters ϕ, σ and θ in the W 1,∞-norm.

By a solution of the IVP (1.1)-(1.2) we mean a continuous function defined on an interval
[−r, α], such that (i) t 7→ x(t) − g(t, x(t − η(t))) is differentiable for t ∈ [0, α], (at the ends of the
interval one sided derivatives exist); (ii) x satisfies (1.1) for t ∈ [0, α], and (iii) x satisfies the initial
condition (1.2).

Theorem 3.1 Assume (A1) (i), (ii), (A2) (i), (ii), (A3), (A4) (i), (ii) and (A5) (i)–(iii), and let
γ̄ ∈ Π. Then there exist δ > 0 and 0 < α ≤ T finite numbers such that

(i) BΓ(γ̄; δ) ⊂ Π;

(ii) the IVP (1.1)-(1.2) has a unique solution x(t; γ) on [0, α] for all γ ∈ BΓ(γ̄; δ);

(iii) there exist M1 ⊂ Ω1, M2 ⊂ Ω2 and M5 ⊂ Ω5, compact subsets of C and R
n, respectively, and

M3 ⊂ Ω3 and M4 ⊂ Ω4 closed and bounded subsets of Θ and Σ, respectively, such that

x(·; γ)t ∈M1, Λ(t, x(·; γ)t, σ) ∈M2, θ ∈M3, σ ∈M4, and x(t− η(t); γ) ∈M5 (3.1)

for t ∈ [0, α], γ = (ϕ, σ, θ) ∈ BΓ(γ̄; δ);

(iv) x(·; γ)t ∈W 1,∞ for t ∈ [0, α], γ ∈ BΓ(γ̄; δ), and there exists L = L(α, δ), such that

|x(·; γ)t − x(·; γ̄)t|W 1,∞ ≤ L|γ − γ̄|Γ for t ∈ [0, α], γ ∈ BΓ(γ̄; δ). (3.2)

(v) Moreover assume (A5) (iv). Then the function x(·; γ) : [−r, α] → R
n is continuously differ-

entiable for γ ∈ M∩ BΓ(γ̄; δ).
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Proof Since ϕ̄ ∈ Ω1 and Ω1 is open in C, there exists ε∗1 > 0 such that BC(ϕ̄; ε∗1) ⊂ Ω1, therefore
BW 1,∞(ϕ̄; ε∗1) ⊂ Ω1, as well. Ω3 and Ω4 are open sets of their respective spaces, hence there exist
ε3 > 0 and ε4 > 0 such that M3 := BΘ

(

θ̄; ε3
)

⊂ Ω3 and M4 := BΣ(σ̄; ε4) ⊂ Ω4. It follows from the
definition of Π that ϕ̄(−τ(0, ϕ̄, σ̄)) ∈ Ω2, moreover, Ω2 is open in R

n, so there exists ε∗2 > 0 such
that BRn(ϕ̄(−τ(0, ϕ̄, σ̄)); ε∗2) ⊂ Ω2. We have that BW 1,∞(ϕ̄; ε∗1) is compact in C by Arsela-Ascoli’s
Theorem since it is a bounded subset of W 1,∞. Let L∗

2 be the Lipschitz constant from (A2) (ii)
corresponding to any α > 0 and to the sets BW 1,∞(ϕ̄; ε∗1) and M4. Then applying (2.2) it follows

|ϕ(−τ(0, ϕ, σ)) − ϕ̄(−τ(0, ϕ̄, σ̄))| ≤ |ϕ− ϕ̄|C + L∗
2|ϕ̄|W 1,∞(|ϕ− ϕ̄|C + |σ − σ̄|Σ)

≤ (L∗
2|ϕ̄|W 1,∞ + 1)(|ϕ − ϕ̄|W 1,∞ + |σ − σ̄|Σ)

for ϕ, ϕ̄ ∈ BW 1,∞(ϕ̄; ε∗1) and σ, σ̄ ∈M4. Let ε∗5 > 0 be such that BRn(ϕ̄(−η(0)); ε∗5) ⊂ Ω5. From the
assumed continuity of η it follows that there exists 0 < α0 ≤ η0 such that |ϕ̄(t−η(t))− ϕ̄(−η(0))| <
ε∗5/2 for t ∈ [0, α0]. Then t− η(t) ≤ 0 and ϕ(t− η(t)) ∈ Ω5 for t ∈ [0, α0], and ϕ ∈ BW 1,∞(ϕ̄; ε∗5/2).
Let

δ1 = min(ε∗1, ε
∗
2/(L

∗
2|ϕ̄|W 1,∞ + 1), ε3, ε4, ε

∗
5/2).

Then (i) holds with δ = δ1.
Fix γ = (ϕ, σ, θ) ∈ BΓ(γ̄; δ1). We can use the method of steps to show that the IVP (1.1)-(1.2)

corresponding to γ has a unique solution. By assumption (A5) (ii) Equation (1.1) is equivalent to

d

dt

(

x(t) − λ(t)
)

= f(t, xt,Λ(t, xt, σ), θ) for t ∈ [0, η0],

where λ(t) = g(t, ϕ(t − η(t))). Assumptions (A3), (A4) (i) and (A5) (iii) yield that λ is Lipschitz
continuous, therefore it is also a.e. differentiable. Then x is also a.e. differentiable, since x − λ is
differentiable. Hence it is easy to see that the equation is equivalent to the SD-DDE

ẋ(t) = λ̇(t) + f(t, xt,Λ(t, xt, σ), θ), a.e. t ∈ [0, η0]. (3.3)

It follows from an obvious generalization of a result in [24] (see also [17]) that the IVP (3.3)-(1.2)
has a unique solution on an interval [−r, α1], α1 ≤ η0. If α1 = η0, repeating the previous step we
can extend the solution to [α1, α2] with α2 ∈ [η0, 2η0], and so on. We get that the IVP (1.1)-(1.2)
corresponding to parameter γ has a unique solution x(t; γ) for t ∈ [−r, α̃] for some α̃ = α̃(γ) > 0.
Moreover, the above method of steps argument yields easily that xt ∈W 1,∞ for t ∈ [0, α̃]. We will
show that α̃(γ) can be selected independently of γ if 0 < δ ≤ δ1 is small enough.

Let γ̄ = (ϕ̄, σ̄, θ̄) ∈ Π, and x(t; γ̄) be the corresponding solution of the IVP (1.1)-(1.2) on an
interval [−r, α] for some α > 0. Define M∗

1 = {x(·; γ̄)t : t ∈ [0, α]}, M∗
2 = {Λ(t, x(·; γ̄)t, σ̄) : t ∈

[0, α]}, and M∗
5 = {x(t − η(t); γ̄) : t ∈ [0, α]}. Clearly M∗

i ⊂ Ωi (i = 1, 2, 5). Moreover, M∗
1 ,

M∗
2 and M∗

5 are compact subsets of C and R
n, respectively, since t 7→ x(·; γ̄)t, t 7→ Λ(t, x(·; γ̄)t, σ̄)

and t 7→ x(t − η(t); γ̄) are continuous functions on [0, α]. Therefore there exist εi > 0 (i = 1, 2, 5)
such that BC(M∗

1 ; ε1) ⊂ Ω1, M2 := BRn(M∗
2 ; ε2) ⊂ Ω2, and M5 := BRn(M∗

5 ; ε5) ⊂ Ω5, since Ωi

(i = 1, 2, 5) are open sets in C and R
n, respectively. Clearly, M2 and M5 are compact subsets

of R
n. Let M1 = BW 1,∞(M∗

1 ; ε1). We have M1 ⊂ Ω1, and it is compact in C by Arsela-Ascoli’s
Theorem.

Let L2 = L2(α,M1,M4) be the constant from (A2) (ii), and define

δ2 = min{δ1, ε1, ε2/(L2|ϕ̄|W 1,∞ + 1), ε5}.
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Let γ = (ϕ, σ, θ) ∈ BΓ(γ̄; δ2). Then, clearly, θ ∈ M3 and σ ∈ M4. We have from (2.2) and the
definition of | · |Γ that |ϕ− ϕ̄|C ≤ |ϕ− ϕ̄|W 1,∞ < ε1, |Λ(0, ϕ, σ)−Λ(0, ϕ̄, σ̄)| ≤ L2|ϕ̄|W 1,∞(|ϕ− ϕ̄|C +
|σ− σ̄|Σ)+ |ϕ− ϕ̄|C < ε2, and |ϕ(−η(0))− ϕ̄(−η(0))| < ε5. Therefore there exists 0 < αγ ≤ α such
that

|x(·; γ)t − x(·; γ̄)t|C < ε1, |Λ(t, x(·; γ)t, σ) − Λ(t, x(·; γ̄)t, σ̄)| < ε2 (3.4)

and
|x(t− η(t); γ) − x(t− η(t); γ̄)| < ε5 (3.5)

for t ∈ [0, αγ ].
Let L1 = L1(α,M1,M2,M3) and L2 = L2(α,M1,M4) be the constants from (A1) (ii) and (A2)

(ii), respectively, and

N1 = max{max{|D1g(t, u)| : t ∈ [0, α], u ∈M5},max{|D2g(t, u)| : t ∈ [0, α], u ∈M5}}. (3.6)

We have for t ∈ [0, αγ ]:

|x(t; γ) − x(t; γ̄)|

≤ |g(t, x(t − η(t); γ)) − g(t, x(t− η(t); γ̄))| + |ϕ(0) − ϕ̄(0)| + |g(0, ϕ(−η(0))) − g(0, ϕ̄(−η(0)))|

+

∫ t

0

∣

∣

∣
f(s, x(·; γ)s,Λ(s, x(·; γ)s, σ), θ) − f(s, x(·; γ̄)s,Λ(s, x(·; γ̄)s, σ̄), θ̄)

∣

∣

∣
ds

≤ N1|x(t− η(t); γ) − x(t− η(t); γ̄)| + (1 +N1)|ϕ− ϕ̄|C

+L1

∫ t

0

(

|x(·; γ)s − x(·; γ̄)s|C + |Λ(s, x(·; γ)s, σ) − Λ(s, x(·; γ̄)s, σ̄)| + |θ − θ̄|Θ

)

ds.

Let
N2 = max{max{|x(t; γ̄)| : t ∈ [−r, α]}, ess sup{|ẋ(t; γ̄)| : t ∈ [−r, α]}}. (3.7)

Then (2.2) yields

|Λ(s, x(·; γ)s, σ) − Λ(s, x(·; γ̄)s, σ̄)| ≤ L2N2(|x(·; γ)s − x(·; γ̄)s|C + |σ − σ̄|Σ) + |x(·; γ)s − x(·; γ̄)s|C
(3.8)

for s ∈ [0, αγ ], therefore

|x(t; γ) − x(t; γ̄)| ≤ N1|x(t− η(t); γ) − x(t− η(t); γ̄)| + (1 +N1)|γ − γ̄|Γ

+ L1

∫ t

0

(

|x(·; γ)s − x(·; γ̄)s|C+L2N2(|x(·; γ)s − x(·; γ̄)s|C

+ |σ − σ̄|Σ) + |x(·; γ)s − x(·; γ̄)s|C + |γ − γ̄|Γ

)

ds.

Lemma 2.1 yields

ξ(t; γ̄, γ) ≤ N1ξ(t− η0; γ̄, γ) +K1|γ − γ̄|Γ +K2

∫ t

0
ξ(s; γ̄, γ) ds, t ∈ [0, αγ ],

where ξ(t; γ̄, γ) = sup{|x(s; γ) − x(s; γ̄)| : s ∈ [−r, t]} and K1 = 1 + N1 + L1α + L1L2N2α and
K2 = L1(2 + L2N2). Applying Lemma 2.2 we get

|x(t; γ) − x(t; γ̄)| ≤ ξ(t; γ̄, γ) ≤ d(γ, γ̄)ect, t ∈ [−r, αγ ], (3.9)
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where c > 0 is the solution of cN1e
−cη0 +K2 = c, and

d(γ, γ̄) = max

{

K1|γ − γ̄|Γ
1 −N1e−cη0

, ecr|ϕ− ϕ̄|C

}

.

Therefore there exists K3 > 0 such that d(γ, γ̄) ≤ K3|γ− γ̄|Γ, so, combining this with (3.9), we get

|x(t; γ) − x(t; γ̄)| ≤ L∗|γ − γ̄|Γ, t ∈ [−r, αγ ], γ ∈ BΓ(γ̄; δ2), (3.10)

where L∗ = K3e
cα. Inequality (3.8) yields

|Λ(s, x(·; γ)s, σ) − Λ(s, x(·; γ̄)s, σ̄)| ≤ (L2N2(L
∗ + 1) + L∗)|γ − γ̄|Γ, s ∈ [0, αγ ],

therefore if define δ = min{δ2, ε1/L
∗, ε2/(L2N2(L

∗ + 1) + L∗), ε5/L
∗}, then αγ = α can be used in

(3.4) and (3.5) for γ ∈ BΓ(γ̄; δ), hence statements (ii) and (iii) of the theorem hold. Then (3.10)
yields

|x(·; γ)t − x(·; γ̄)t|C ≤ L∗|γ − γ̄|Γ for t ∈ [0, α], γ ∈ BΓ(γ̄; δ). (3.11)

As we have seen, x(·; γ) is a.e. differentiable, and (1.1) can be rewritten as

ẋ(t; γ) = D1g(t, x(t− η(t); γ)) +D2g(t, x(t − η(t); γ))ẋ(t− η(t); γ)(1 − η̇(t))

+f
(

t, x(·; γ)t; Λ(t, x(·; γ)t, σ), θ
)

(3.12)

for a.e. t ∈ [0, α]. Let W (γ) = {t ∈ [0, α] : t 7→ x(t − η(t); γ) and η are differentiable at t}. (The
Lebesgue-measure of W (γ) is α.) It follows from (3.12) that

ẋ(t; γ) − ẋ(t; γ̄) = D1g(t, x(t− η(t); γ)) −D1g(t, x(t − η(t); γ̄))

+
(

D2g(t, x(t− η(t); γ)) −D2g(t, x(t − η(t); γ̄))
)

ẋ(t− η(t); γ)(1 − η̇(t))

+ D2g(t, x(t− η(t); γ̄))
(

ẋ(t− η(t); γ) − ẋ(t− η(t); γ̄)
)

(1 − η̇(t))

f(t, x(·; γ)t,Λ(t, x(·; γ)t, σ), θ) − f(t, x(·; γ̄)t,Λ(t, x(·; γ̄)t, σ̄), θ̄)

for t ∈W (γ) ∩W (γ̄). Let L4 = L4(α,M5) be the constant from (A4) (ii), and

N3 = ess sup{|1 − η̇(t)| : t ∈ [0, α]}. (3.13)

Then, using (3.8), (3.11), (A1) (ii) and (A2) (ii), we get

|ẋ(t; γ) − ẋ(t; γ̄)|

≤ L4|x(t− η(t); γ) − x(t− η(t); γ̄)|

+L4N3|x(t− η(t); γ) − x(t− η(t); γ̄)|
(

|ẋ(t− η(t); γ) − ẋ(t− η(t); γ̄)| + |ẋ(t− η(t); γ̄)|
)

+N1N3|ẋ(t− η(t); γ) − ẋ(t− η(t); γ̄)|

+L1

(

|x(·; γ)t − x(·; γ̄)t|C + L2N2(|x(·; γ)t − x(·; γ̄)t|C + |σ − σ̄|Σ)

+ |x(·; γ)t − x(·; γ̄)t|C + |θ − θ̄|Θ

)

≤ L4L
∗(1 +N2N3)|γ − γ̄|Γ + L4N3L

∗|γ − γ̄|Γ|ẋ(t− η(t); γ) − ẋ(t− η(t); γ̄)|

+N1N3|ẋ(t− η(t); γ) − ẋ(t− η(t); γ̄)| + L1(2L
∗ + L2N2(L

∗ + 1) + 1)|γ − γ̄|Γ

≤ K3|γ − γ̄|Γ +K4|ẋ(t− η(t); γ) − ẋ(t− η(t); γ̄)|, t ∈W (γ) ∩W (γ̄), (3.14)
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where K3 = max{L4L
∗(1 +N2N3) + L1(2L

∗ + L2N2(L
∗ + 1) + 1), 1} and K4 = L4N3L

∗δ +N1N3.
Define χ(t; γ̄, γ) = ess sup{|ẋ(s; γ) − ẋ(s; γ̄)| : s ∈ [−r, t]}. Then (3.14) yields

χ(t; γ̄, γ) ≤ K3|γ − γ̄|Γ +K4χ(t− η0; γ̄, γ), t ∈ [0, α]. (3.15)

Let m = [α/η0], where [·] is the greatest integer part function. For t ∈ [0, η0] (3.15) implies
χ(t; γ̄, γ) ≤ (K3 + K4)|γ − γ̄|Γ. Applying (3.15) inductively with the intervals [iη0, (i + 1)η0] for
i = 1, . . . ,m, it is easy to check that

χ(t; γ̄, γ) ≤
(

K3(1 +K4 + · · · +Km
4 ) +Km+1

4

)

|γ − γ̄|Γ, t ∈ [0, α].

Therefore (3.2) holds with L = max
{

L∗,K3(1 +K4 + · · · +Km
4 ) +Km+1

4

}

. This completes the
proof of (iv).

Part (v) is obvious using the method of steps with the intervals [iη0, (i+ 1)η0], i = 1, . . . ,m.

�

4 Differentiability wrt parameters

In this section we study differentiability of solutions of the IVP (1.1)-(1.2) wrt the initial function,
ϕ, the parameter σ of the delay function τ and the parameter θ of the function f .

First we define a few notations will be used throughout this section. Introduce

ωf (t, ψ̄, ū, θ̄;ψ, u, θ) = f(t, ψ, u, θ) − f(t, ψ̄, ū, θ̄) −D2f(t, ψ̄, ū, θ̄)(ψ − ψ̄)

− D3f(t, ψ̄, ū, θ̄)(u− ū) −D4f(t, ψ̄, ū, θ̄)(θ − θ̄)

for t ∈ [0, T ], ψ̄, ψ ∈ Ω1, ū, u ∈ Ω2, and θ̄, θ ∈ Ω3. It follows from (A1) (iii) that

|ωf (t, ψ̄, ū, θ̄;ψ, u, θ)|

|ψ − ψ̄|C + |u− ū| + |θ − θ̄|Θ
→ 0, as |ψ − ψ̄|C + |u− ū| + |θ − θ̄|Θ → 0. (4.1)

Later we will need an explicit estimate of the fraction in (4.1). In order to get it we apply Lemma 2.3
and assumption (A1) (iii):

|ωf (t, ψ̄, ū, θ̄;ψ, u, θ)|

≤ sup
0<ν<1

(
∣

∣

∣
D2f(t, ψ̄ + ν(ψ − ψ̄), ū+ ν(u− ū), θ̄ + ν(θ − θ̄)) −D2f(t, ψ̄, ū, θ̄)

∣

∣

∣

L(C,Rn)
|ψ − ψ̄|C

+
∣

∣

∣
D3f(t, ψ̄ + ν(ψ − ψ̄), ū+ ν(u− ū), θ̄ + ν(θ − θ̄)) −D3f(t, ψ̄, ū, θ̄)

∣

∣

∣
|u− ū|

+
∣

∣

∣
D4f(t, ψ̄ + ν(ψ − ψ̄), ū+ ν(u− ū), θ̄ + ν(θ − θ̄)) −D4f(t, ψ̄, ū, θ̄)

∣

∣

∣

L(Θ,Rn)
|θ − θ̄|Θ

)

(4.2)

for t ∈ [0, α], ψ ∈ BC
(

ψ̄; ε̄
)

, u ∈ BRn(ū; ε̄) and θ ∈ BΘ

(

θ̄; ε̄
)

, where ε̄ > 0 is sufficiently small.
Suppose E := U1 × U2 × U3 ⊂ BC

(

ψ̄; ε̄
)

× BRn(ū; ε̄) × BΘ

(

θ̄; ε̄
)

is a star domain with center at
(ψ̄, ū, θ̄), i.e., such that for any (ψ, u, θ) ∈ U1 ×U2 ×U3 it follows (ψ̄, ū, θ̄)+ ν(ψ− ψ̄, u− ū, θ− θ̄) ∈
U1 × U2 × U3 for any ν ∈ [0, 1]. Then

|ωf (t, ψ̄, ū, θ̄;ψ, u, θ)|≤ Ωf (|ψ− ψ̄|C + |u− ū|+ |θ− θ̄|Θ;α,E)
(

|ψ− ψ̄|C + |u− ū|+ |θ− θ̄|Θ

)

(4.3)
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for t ∈ [0, α], (ψ, u, θ) ∈ U1 × U2 × U3, where

Ωf (ε;α,E) = sup
{

max
(

|D2f(t, ψ, u, θ) −D2f(t, ψ̃, ũ, θ̃)|L(C,Rn),

|D3f(t, ψ, u, θ) −D3f(t, ψ̃, ũ, θ̃)|,

|D4f(t, ψ, u, θ) −D4f(t, ψ̃, ũ, θ̃)|L(Θ,Rn)

)

:

|ψ − ψ̃|C + |u− ũ| + |θ − θ̃|Θ ≤ ε, t ∈ [0, α], (ψ, u, θ), (ψ̃, ũ, θ̃) ∈ E
}

.

We introduce the function

ωg(t, ū;u) = g(t, u) − g(t, ū) − D2g(t, ū)(u− ū), t ∈ [0, α], ū, u ∈ Ω5.

Let M5 be a compact subset of Ω5, and L4 = L4(α,M5) be the Lipschitz constant from (A4) (ii).
Then Lemma 2.3 yields

|ωg(t, ū;u)| ≤ L4|u− ū|2, t ∈ [0, α], u, ū ∈M5. (4.4)

We have seen that in the proof of Theorem 3.1 Λ is used only with second argument of the
form xs, where xs is not only a C-function, but also a W 1,∞-function. Therefore for the rest of the
paper we restrict Λ to this domain, but for simplicity, we use the same notation for the restriction.
So we redefine Λ as

Λ :
(

[0, T ] × (Ω1 ∩W
1,∞) × Ω4 ⊂ R ×W 1,∞ × Σ

)

→ R
n, Λ(t, ψ, σ) = ψ(−τ(t, ψ, σ)). (4.5)

It was shown in [18] that Λ defined by (4.5) is differentiable wrt its second and third variables
at a point (t, ψ, σ) where ψ ∈ C1. Since later in the paper we will need a more careful estimate
than that used in [18], we include the revised proof of this result, as well.

Lemma 4.1 Assume (A2) (i)–(iii), and let Λ be defined by (4.5). Then the partial derivatives
D2Λ(t, ψ, σ) and D3Λ(t, ψ, σ) exist for t ∈ [0, T ], ψ ∈ Ω1 ∩C

1, σ ∈ Ω4, and

D2Λ(t, ψ, σ)h = −ψ̇(−τ(t, ψ, σ))D2τ(t, ψ, σ)h + h(−τ(t, ψ, σ)), h ∈W 1,∞, (4.6)

D3Λ(t, ψ, σ) = −ψ̇(−τ(t, ψ, σ))D3τ(t, ψ, σ). (4.7)

Moreover, D2Λ(t, ·, ·) and D3Λ(t, ·, ·) are continuous on (Ω1 ∩ C
1) × Ω4 for t ∈ [0, T ].

Proof Let ψ ∈ Ω1 ∩ C
1. Introduce

ωψ(ū;u) = ψ(u) − ψ(ū) − ψ̇(ū)(u− ū)

and the modulus of continuity of ψ̇

Ωψ̇(ε) = sup{|ψ̇(u) − ψ̇(ū)| : |u− ū| ≤ ε, u, ū ∈ [−r, 0]}.

The function ψ̇ is continuous, therefore Ωψ̇(ε) → 0 as ε→ 0. Lemma 2.3 yields

|ωψ(ū;u)| ≤ Ωψ̇(|u− ū|)|u− ū|, u, ū ∈ [−r, 0].
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Let ψ ∈ Ω1 ∩C
1 and σ ∈ Ω4 be fixed, and let h ∈W 1,∞ and k ∈ Σ. We define

ωΛ(t, ψ, σ;ψ + h, σ + k) = Λ(t, ψ + h, σ + k) − Λ(t, ψ, σ) + ψ̇(−τ(t, ψ, σ))D2τ(t, ψ, σ)h

−h(−τ(t, ψ, σ)) + ψ̇(−τ(t, ψ, σ))D3τ(t, ψ, σ)k

and

ωτ (t, ψ, σ;ψ + h, σ + k) = τ(t, ψ + h, σ + k) − τ(t, ψ, σ) − D2τ(t, ψ, σ)h −D3τ(t, ψ, σ)k

for h ∈W 1,∞ and k ∈ Σ such that ψ + h ∈ Ω1 and σ + k ∈ Ω4. Then it is easy to check that

ωΛ(t, ψ, σ;ψ + h, σ + k)

= ωψ(−τ(t, ψ, σ);−τ(t, ψ + h, σ + k)) − ψ̇(−τ(t, ψ, σ))ωτ (t, ψ, σ;ψ + h, σ + k)

+h(−τ(t, ψ + h, σ + k)) − h(−τ(t, ψ, σ)).

Let ε1 > 0 and ε4 > 0 be such that BC(ψ; ε1) ⊂ Ω1 and M̃4 := BΣ(σ; ε4) ⊂ Ω4. Then M̃1 :=
BW 1,∞(ψ; ε1) is a compact subset of C, and M̃1 ⊂ Ω1. Let L2 = L2(t, M̃1, M̃4) be the Lipschitz
constant from (A2) (ii). Then

|ωΛ(t, ψ, σ;ψ + h, σ + k)|

≤ Ωψ̇(|τ(t, ψ + h, σ + k) − τ(t, ψ, σ)|)|τ(t, ψ + h, σ + k) − τ(t, ψ, σ)|

+|ψ|W 1,∞ |ωτ (t, ψ, σ;ψ + h, σ + k)| + |h|W 1,∞ |τ(t, ψ + h, σ + k) − τ(t, ψ, σ)|

≤ Ωψ̇

(

L2(|h|C + |k|Σ)
)

L2(|h|C + |k|Σ)

+|ψ|W 1,∞ |ωτ (t, ψ, σ;ψ + h, σ + k)| + L2|h|W 1,∞(|h|C + |k|Σ) (4.8)

for |h|C ≤ ε1 and |k|Σ ≤ ε4. Since |h|C ≤ |h|W 1,∞ , it implies

|ωΛ(t, ψ, σ;ψ + h, σ + k)|

|h|W 1,∞ + |k|Σ
≤ L2Ωψ̇

(

L2(|h|W 1,∞ + |k|Σ)
)

+|ψ|W 1,∞

|ωτ (t, ψ, σ;ψ + h, σ + k)|

|h|C + |k|Σ
+ L2|h|W 1,∞ .

Consequently, |ωΛ(t,ψ,σ;ψ+h,σ+k)|
|h|

W1,∞+|k|Σ
→ 0 as |h|W 1,∞ + |k|Σ → 0, since (A2) (iii) and the continuity of ψ̇

yield Ωψ̇

(

L2(|h|W 1,∞ + |k|Σ)
)

→ 0, and (A2) (iii) implies |ωτ (t,ψ,σ;ψ+h,σ+k)|
|h|C+|k|Σ

→ 0 as |h|W 1,∞ + |k|Σ →

0. This concludes the proof of both (4.6) and (4.7). �

Lipschitz continuity of D2τ and D3τ , Lemma 2.3 and (4.8) immediately yield the next estimate.

Corollary 4.2 Assume (A2) (i)–(iv). Let 0 < α ≤ T be finite, M1 ⊂ C be a compact, M4 ⊂ Σ be
a closed and bounded subset of the respective spaces, L2 = L2(α,M1,M4) and L3(α,M1,M4) be the
constants from (A2) (ii) and (iv), respectively. Then

|ωΛ(t, ψ, σ;ψ + h, σ + k)|

|h|C + |k|Σ
≤ L2Ωψ̇

(

L2(|h|C + |k|Σ)
)

+ L3|ψ|W 1,∞(|h|C + |k|Σ) + L2|h|W 1,∞ (4.9)

for t ∈ [0, α], ψ,ψ + h ∈M1, σ, σ + k ∈M4.
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Let γ̄ = (ϕ̄, σ̄, θ̄) ∈ M, and x(·; γ̄) be the corresponding solution of the IVP (1.1)-(1.2) on [0, α].
Fix h = (hϕ, hσ , hθ) ∈ Γ, and consider the variational equation

d

dt

(

z(t; γ̄, h) −D2g(t, x(t − η(t); γ̄))z(t− η(t); γ̄, h)
)

= D2f(t, x(·; γ̄)t,Λ(t, x(·; γ̄)t, σ̄), θ̄)z(·; γ̄, h)t

+ D3f(t, x(·; γ̄)t,Λ(t, x(·; γ̄)t, σ̄), θ̄)
(

D2Λ(t, x(·; γ̄)t, σ̄)z(·; γ̄, h)t (4.10)

+ D3Λ(t, x(·; γ̄)t, σ̄)hσ
)

+D4f(t, x(·; γ̄)t,Λ(t, x(·; γ̄)t, σ̄), θ̄)hθ, t ∈ [0, α],

z(t; γ̄, h) = hϕ(t), t ∈ [−r, 0]. (4.11)

This is a linear time-dependent and state-independent NFDE for z(·; γ̄, h), and the right-hand side
of (4.10) depends continuously on t and z(·; γ̄, h)t since x(·; γ̄)t ∈ C1 by Theorem 3.1 (v). Therefore
this IVP has a unique solution, z(·; γ̄, h), which depends linearly on h. The boundedness of the
map Γ → R

n, h 7→ z(t; γ̄, h) for each t ∈ [0, α] follows from the next theorem.

Theorem 4.3 Assume (A1) (i)–(iii), (A2) (i)–(iii), (A3), (A4) (i), (ii) and (A5) (i)–(iv), and
let γ̄ ∈ M. There exists N4 ≥ 0 such that the solution of the IVP (4.10)-(4.11) satisfies

|z(t; γ̄, h)| ≤ N4|h|Γ, t ∈ [0, α], h ∈ Γ.

Proof For simplicity we use the notations

x(t) = x(t; γ̄) and z(t) = z(t; γ̄, h).

Integrating (4.10) from 0 to t we get

z(t) = D2g(t, x(t− η(t)))z(t − η(t)) + hϕ(0) −D2g(0, ϕ̄(−η(0)))hϕ(−η(0))

+

∫ t

0
D2f(s, xs,Λ(s, xs, σ̄), θ̄)zs +D3f(s, xs,Λ(s, xs, σ̄), θ̄)

(

D2Λ(s, xs, σ̄)zs

+ D3Λ(s, xs, σ̄)hσ
)

+D4f(s, xs,Λ(s, xs, σ̄), θ̄)hθ ds.

Let the constants δ, α and the sets M1, . . . ,M5 be defined by Theorem 3.1, and L1 be the corre-
sponding Lipschitz constant, and N1, N2 be defined by (3.6) and (3.7), respectively. Assumptions
(A1) (ii) and (iii) yield that

|D2f(t, ψ, u, θ)|L(C,Rn) ≤ L1, |D3f(t, ψ, u, θ)| ≤ L1, |D4f(t, ψ, u, θ)|L(Θ,Rn) ≤ L1 (4.12)

for t ∈ [0, α], ψ ∈ M1, u ∈ M2, and θ ∈ M3. From (4.6), (4.7) and (A2) (iii) it follows that there
exists N5 = N5(α) such that

|D2Λ(s, xs, σ̄)|L(C,Rn) ≤ N5 and |D3Λ(s, xs, σ̄)|L(Σ,Rn) ≤ N5, s ∈ [0, α]. (4.13)

Then we get

|z(t)| ≤ N1|z(t− η(t))| + (1 +N1)|h|Γ + L1

∫ t

0
|zs|C +N5|zs|C +N5|h|Γ + |h|Γ ds.
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An application of Lemma 2.1 implies

β(t; γ̄, h) ≤ N1β(t− η0; γ̄, h) +K1|h|Γ +K2

∫ t

0
β(s; γ̄, h) ds, t ∈ [0, α],

where β(t; γ̄, h) = max{|z(s)| : s ∈ [−r, t]}, K1 = 1 + N1 + L1(1 + N5)α and K2 = L1(1 + N5).
Then Lemma 2.2 yields

|z(t)| ≤ β(t; γ̄, h) ≤ N4|h|Γ, t ∈ [0, α],

where

N4 = max

{

K1

1 −N1e−cη0
, ecr

}

ecα

and c is the positive solution of cN1e
−cη0 +K2 = c. �

Next we study differentiability of the function x(t; γ) wrt γ. We denote this differentiation by
D2x.

Theorem 4.4 Assume (A1) (i)–(iii), (A2) (i)–(iii), (A3), (A4) (i), (ii) and (A5) (i)–(iv), and
let γ̄ ∈ M. Let δ > 0 and α > 0 be defined by Theorem 3.1, and x(t; γ) be the solution of the

IVP (1.1)-(1.2) on [0, α] for γ ∈ BΓ(γ̄; δ). Then the function x(t; ·) :
(

BΓ(γ̄; δ) ⊂ Γ
)

→ R
n is

differentiable at γ̄ for t ∈ [0, α], and

D2x(t; γ̄)h = z(t; γ̄, h), h ∈ Γ,

where z is the solution of the IVP (4.10)-(4.11).

Proof Let γ̄ = (ϕ̄, σ̄, θ̄) ∈ M, δ > 0 and α be as in the assumption of the theorem, and let the
sets M1, . . . ,M5 be defined by Theorem 3.1 (iii). Let h = (hϕ, hσ , hθ) ∈ Γ be such that |h|Γ < δ.
For brevity, we use the notations

x(t) = x(t; γ̄), y(t) = x(t; γ̄ + h) and z(t) = z(t; γ̄, h).

Integrating (1.1) and (4.10), and using the definitions of ωf , ωg and ωΛ we get

y(t) − x(t) − z(t)

= g(t, y(t − η(t))) − g(t, x(t − η(t))) −D2g(t, x(t − η(t)))z(t − η(t))

−
(

g(0, ϕ̄(−η(0)) + hϕ(−η(0))) − g(0, ϕ̄(−η(0))) −D2g(0, ϕ̄(−η(0)))hϕ(−η(0))
)

+

∫ t

0

(

f(s, ys,Λ(s, ys, σ̄ + hσ), θ̄ + hθ) − f(s, xs,Λ(s, xs, σ̄), θ̄) −D2f(s, xs,Λ(s, xs, σ̄), θ̄)zs

− D3f(s, xs,Λ(s, xs, σ̄), θ̄)
(

D2Λ(s, xs, σ̄)zs +D3Λ(s, xs, σ̄)hσ
)

− D4f(s, xs,Λ(s, xs, σ̄), θ̄)hθ
)

ds

= ωg(t, x(t− η(t)); y(t − η(t))) − ωg(0, ϕ̄(−η(0)); ϕ̄(−η(0)) + hϕ(−η(0)))

+ D2g(t, x(t − η(t)))
(

y(t− η(t)) − x(t− η(t)) − z(t− η(t))
)

+

∫ t

0

(

ωf (s, xs,Λ(s, xs, σ̄), θ̄; ys,Λ(s, ys, σ̄+hσ), θ̄+hθ) +D2f(s, xs,Λ(s, xs, σ̄), θ̄)(ys − xs − zs)

+D3f(s, xs,Λ(s, xs, σ̄), θ̄)
(

ωΛ(s, xs, σ̄; ys, σ̄ + hσ) +D2Λ(s, xs, σ̄)(ys − xs − zs)
))

ds. (4.14)
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Let L1 = L1(α,M1,M2,M3), L2 = L2(α,M1,M4) and L4 = L4(α,M5) be the constants from (A1)
(ii), (A2) (ii) and (A4) (ii), respectively, N1,N2, N3 and N5 be defined by (3.6), (3.7), (3.13) and
(4.13), respectively, and L be the constant from Theorem 3.1. Applying (4.4) and Theorem 3.1 we
have

|ωg(t, x(t− η(t)); y(t− η(t)))| ≤ L4|y(t− η(t)) − x(t− η(t))|2 ≤ L4L
2|h|2Γ

for t ∈ [0, α]. Then (4.14), together with (4.12) and (4.13) implies

|y(t) − x(t) − z(t)| ≤ 2L4L
2|h|2Γ +N1|y(t− η(t)) − x(t− η(t)) − z(t− η(t))| +

∫ t

0

(

Gf (s; γ̄, h)

+ L1|ys − xs − zs|C + L1GΛ(s; γ̄, h) + L1N5|ys − xs − zs|C

)

ds (4.15)

for t ∈ [0, α], where

Gf (s; γ̄, h) = |ωf (s, xs,Λ(s, xs, σ̄), θ̄; ys,Λ(s, ys, σ̄ + hσ), θ̄ + hθ)|

and
GΛ(s; γ̄, h) = |ωΛ(s, xs, σ̄; ys, σ̄ + hσ)|.

Introduce µ(t; γ̄, h) = sup{|y(s) − x(s) − z(s)| : −r ≤ s ≤ t}. Applying Lemma 2.1 for (4.15) we
obtain

µ(t; γ̄, h) ≤ A(h) +N1µ(t− η0; γ̄, h) + L1(1 +N5)

∫ t

0
µ(s; γ̄, h) ds, t ∈ [0, α],

where

A(h) = 2L4L
2|h|2Γ +

∫ α

0

(

Gf (s; γ̄, h) + L1GΛ(s; γ̄, h)
)

ds.

Therefore Lemma 2.2 and µ(t; γ̄, h) = 0 for t ∈ [−r, 0] imply

|y(t) − x(t) − z(t)| ≤ µ(t; γ̄, h) ≤
A(h)

1 −N1e−cη0
ecα, t ∈ [0, α], (4.16)

where c is the unique positive solution of cN1e
−cη0 + L1(1 + N5) = c. Hence the claim of the

theorem follows if we argue A(h)/|h|Γ → 0 as |h|Γ → 0, i.e.,
∫ α
0 Gf (s; γ̄, h)/|h|Γ ds → 0 and

∫ α
0 GΛ(s; γ̄, h)/|h|Γ ds→ 0 as |h|Γ → 0.

First we show that
∫ α
0 GΛ(s; γ̄, h)/|h|Γ ds → 0 as |h|Γ → 0 for s ∈ [0, α]. Let N2 be defined by

(3.7) and Ωẋs be the modulus of continuity of ẋs. The definitions of GΛ, ωΛ and inequalities (3.2)
and (4.8) yield

GΛ(s; γ̄, h) = |ωΛ(s, xs, σ̄; ys, σ̄ + hσ)|

≤
[

L2Ωẋs

(

L2(|ys − xs|C + |hσ|Σ)
)

+ |xs|W 1,∞

|ωτ (s, xs, σ̄; ys, σ̄ + hσ)|

|ys − xs|C + |hσ |Σ

+L2|ys − xs|W 1,∞

]

(|ys − xs|C + |hσ|Σ)

≤
[

L2Ωẋs

(

L2(L+ 1)|h|Γ

)

+N2
|ωτ (s, xs, σ̄; ys, σ̄ + hσ)|

|ys − xs|C + |hσ |Σ
+ L2L|h|Γ

]

(L+ 1)|h|Γ. (4.17)

Since Ωẋs

(

L2(L+ 1)|h|Γ)
)

≤ 2N2 and

|ωτ (s, xs, σ̄; ys, σ̄ + hσ)| ≤ 2L2(|ys − xs|C + |hσ |Σ)
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by (A2) (ii), we get that GΛ(s; γ̄, h)/|h|Γ is bounded from above. On the other hand, for each

fixed s ∈ [0, α] the function ẋs is continuous, therefore Ωẋs

(

L2(L+ 1)|h|Γ)
)

→ 0 as |h|Γ → 0, and

similarly, |ωτ (s,xs,σ̄;ys,σ̄+hσ)|
|ys−xs|C+|hσ|Σ

→ 0 as |h|Γ → 0 by (A2) (iii) and |ys − xs|C ≤ L|h|Γ. Consequently,
∫ α
0 GΛ(s; γ̄, h)/|h|Γ ds→ 0 as |h|Γ → 0 by the Lebesgue’s Dominated Convergence Theorem.

Next we show that
∫ α
0 Gf (s; γ̄, h)/|h|Γ ds → 0 as |h|Γ → 0. Combining (3.8), (4.2) and (4.12)

we have

Gf (s; γ̄, h) = |ωf (s, xs,Λ(s, xs, σ̄), θ̄; ys,Λ(s, ys, σ̄ + hσ), θ̄ + hθ)|

≤ 2L1(|ys − xs|C + |Λ(s, ys, σ̄ + hσ) − Λ(s, xs, σ̄)| + |hθ|Θ)

≤ 2L1K1|h|Γ

for s ∈ [0, α] and |h|Γ < δ, where K1 = 2L+ L2N2(L+ 1) + 1.
On the other hand, let hk = (hϕk , h

σ
k , h

θ
k) ∈ Γ (k = 1, 2, . . .) be a sequence such that |hk|Γ ≤ δ

and |hk|Γ → 0, and let yk(t) = x(t; γ̄+hk). Define the set M∗
3 = {θ̄+νhθk : ν ∈ [0, 1], k = 1, 2, . . .}.

Then M∗
3 ⊂ M3, and it is easy to check that M∗

3 is a compact subset of Θ. Therefore the set
E := M1 ×M2 ×M∗

3 is a compact subset of Ω1 × Ω2 × Ω3,

(xs,Λ(s, xs, σ̄), θ̄), (yks ,Λ(s, yks , σ̄ + hσk), θ̄ + hθk) ∈ E for s ∈ [0, α], k = 1, 2 . . . ,

and E is a star domain with center at (xs,Λ(s, xs, σ̄), θ̄) for each s ∈ [0, α]. Then applying (3.8),
(4.3) and the definition of K1 we get

Gf (s; γ̄, hk) = |ωf (s, xs,Λ(s, xs, σ̄), θ̄; yks ,Λ(s, yks , σ̄ + hσk), θ̄ + hθk)|

≤ Ωf

(

|yks − xs|C + |Λ(s, yks , σ̄ + hσ) − Λ(s, xs, σ̄)| + |hθk|Θ;α,E
)

×
(

|yks − xs|C + |Λ(s, yks , σ̄ + hσk ) − Λ(s, xs, σ̄)| + |hθk|Θ

)

≤ Ωf

(

K1|hk|Γ;α,E
)

K1|hk|Γ, s ∈ [0, α]. (4.18)

Since D2f , D3f and D3f are continuous on E, they are uniformly continuous on E, as well, so

Ωf

(

K1|hk|Γ;α,E
)

→ 0 as k → ∞. Therefore
∫ α
0 Gf (s; γ̄, hk)/|hk|Γ ds → 0 as k → ∞ by the

Lebesgue’s Dominated Convergence Theorem.
The proof of the theorem is complete. �

We note that in the the previous theorem the assumption γ̄ ∈ M was essential, since the proof
relied on that x is a C1-function, therefore D2Λ and D3Λ exist.

The proof immediately implies differentiability of the parameter map in a C-norm:

Corollary 4.5 Assume the conditions of Theorem 4.4. Then the function

(

BΓ(γ̄; δ) ⊂ Γ
)

→ C, γ 7→ x(·; γ)t

is differentiable at γ̄ for t ∈ [0, α], and its derivative is given by

D2x(·; γ̄)th = z(·; γ̄, h)t, h ∈ Γ.
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Next we show that, under slightly more smoothness on τ and g than that in the previous
theorem, x(·; γ)t is differentiable wrt γ if we use W 1,∞ as the state-space of the solutions.

Theorem 4.6 Assume (A1) (i)–(iii), (A2) (i)–(iv), (A3), (A4) (i)–(iii) and (A5) (i)–(iv), and
let γ̄ ∈ M. Let δ > 0 and α > 0 be defined by Theorem 3.1, and x(t; γ) be the solution of the IVP
(1.1)-(1.2) on [0, α] for γ ∈ BΓ(γ̄; δ). Then the function

(

BΓ(γ̄; δ) ⊂ Γ
)

→W 1,∞, γ 7→ x(·; γ)t

is differentiable at γ̄ for t ∈ [0, α], and

D2x(·; γ̄)th = z(·; γ̄, h)t, h ∈ Γ,

where z is the solution of the IVP (4.10)-(4.11).

Proof Note that (A4) (iii) yields using Schwarz’s Theorem that D1D2g exists and it is continuous
on [0, α] × Ω5. We use all the notations introduced in the proof of Theorem 4.4. It follows from
the proof of Theorem 4.4 that |yt − xt − zt|C/|h|Γ → 0 as |h|Γ → 0. It is easy to argue with the
method of steps that z is a.e. differentiable on [−r, α]. Therefore we have

ẏ(t) − ẋ(t) − ż(t) = A(t; γ̄, h) +B(t; γ̄, h), a.e. t ∈ [0, α], (4.19)

where

A(t; γ̄, h) = D1g(t, y(t− η(t))) +D2g(t, y(t − η(t))ẏ(t− η(t))(1 − η̇(t))

−D1g(t, x(t − η(t))) −D2g(t, x(t − η(t)))ẋ(t− η(t))(1 − η̇(t))

−D1D2g(t, x(t − η(t)))z(t − η(t))

−D2D2g(t, x(t − η(t))ẋ(t− η(t))(1 − η̇(t))z(t− η(t))

−D2g(t, x(t − η(t)))ż(t− η(t))(1 − η̇(t))

and

B(t; γ̄, h) = f(t, yt,Λ(t, yt, σ̄ + hσ), θ̄ + hθ) − f(t, xt,Λ(t, xt, σ̄), θ̄) −D2f(t, xt,Λ(t, xt, σ̄), θ̄)zt

− D3f(t, xt,Λ(t, xt, σ̄), θ̄)
(

D2Λ(t, xt, σ̄)zt +D3Λ(t, xt, σ̄)hσ
)

− D4f(t, xt,Λ(t, xt, σ̄), θ̄)hθ.

Simple computations show

A(t; γ̄, h)

= D1g(t, y(t − η(t))) −D1g(t, x(t − η(t))) −D1D2g(t, x(t− η(t)))
(

y(t− η(t)) − x(t− η(t))
)

+D1D2g(t, x(t− η(t)))
(

y(t− η(t)) − x(t− η(t)) − z(t− η(t))
)

+
(

D2g(t, y(t − η(t))) −D2g(t, x(t − η(t)))

−D2D2g(t, x(t− η(t)))(y(t − η(t)) − x(t− η(t)))
)

ẏ(t− η(t))(1 − η̇(t))

+D2D2g(t, x(t− η(t)))
(

y(t− η(t)) − x(t− η(t)) − z(t− η(t))
)

ẏ(t− η(t))(1 − η̇(t))

+D2D2g(t, x(t− η(t)))
(

ẏ(t− η(t)) − ẋ(t− η(t))
)

(1 − η̇(t))z(t− η(t))

+D2g(t, x(t − η(t)))
(

ẏ(t− η(t)) − ẋ(t− η(t)) − ż(t− η(t))
)

(1 − η̇(t)). (4.20)
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Let N1, N2 and N3 be defined by (3.6), (3.7) and (3.13), respectively. Assumption (A4) (iii) yields
that

N6 = max{max{|D2Dig(t, u)| : t ∈ [0, α], u ∈M5} : i = 1, 2} (4.21)

is finite. Lemma 2.3 implies for i = 1, 2

|Dig(t, u)−Dig(t, ū)−D2Dig(t, ū)(u− ū)| ≤ ΩD2Dig(|u− ū|;α,M5)|u− ū|, t ∈ [0, α], u, ū ∈M5,
(4.22)

where ΩD2Dig is the modulus of continuity of D2Dig (i = 1, 2), i.e.,

ΩD2Dig(ε;α,M5) = sup{|D2Dig(t, u) −D2Dig(t, ū)| : |u− ū| ≤ ε, t ∈ [0, α], u, ū ∈M5}.

Let µ be defined as in the proof of Theorem 4.4 and ζ(t; γ̄, h) := ess sup{|ẏ(s) − ẋ(s) − ż(s)| : s ∈
[0, t]}. Combining (4.20), (4.21), (4.22) and the estimate

|ẏ(t− η(t))| ≤ |ẏ(t− η(t)) − ẋ(t− η(t))| + |ẋ(t− η(t))| ≤ L|h|Γ +N2 ≤ Lδ +N2, t ∈ [0, α],

we get for a.e. t ∈ [0, α]

|A(t; γ̄, h)| ≤ ΩD2D1g(|y(t− η(t)) − x(t− η(t))|;α,M5)|y(t− η(t)) − x(t− η(t))|

+N6µ(t− η(t); γ̄, h)

+N3(Lδ +N2)ΩD2D2g(|y(t− η(t)) − x(t− η(t))|;α,M5)|y(t− η(t)) − x(t− η(t))|

+N3N6(Lδ +N2)µ(t− η(t); γ̄, h)

+N3N6|ẏ(t− η(t)) − ẋ(t− η(t))||z(t − η(t))| +N1N3ζ(t− η(t); γ̄). (4.23)

Then, using (3.2), the monotonicity of ΩD2Dig, µ and ζ and Theorem 4.3, (4.23) yields

|A(t; γ̄, h)| ≤ LΩD2D1g(L|h|Γ;α,M5)|h|Γ +N3(Lδ +N2)LΩD2D2g(L|h|Γ;α,M5)|h|Γ

+N6(1 +N3(Lδ +N2))µ(t; γ̄, h) + LN3N4N6|h|
2
Γ +N1N3ζ(t− η0; γ̄). (4.24)

Using the notations introduced in the proof of Theorem 4.4 we have

B(t; γ̄, h) = ωf (t, xt,Λ(t, xt, σ̄), θ̄; yt,Λ(t, yt, σ̄ + hσ), θ̄ + hθ)

+D2f(t, xt,Λ(t, xt, σ̄), θ̄)(yt − xt − zt)

+D3f(t, xt,Λ(t, xt, σ̄), θ̄)
(

ωΛ(t, xt, σ̄; yt, σ̄ + hσ) +D2Λ(t, xt, σ̄)(yt − xt − zt)
)

hence
|B(t; γ̄, h)| ≤ Gf (t; γ̄, h) + L1GΛ(t; γ̄, h) + L1(N5 + 1)µ(t; γ̄, h).

Therefore, combining it with (4.19) and (4.24) we get

|ẏ(t) − ẋ(t) − ż(t)| ≤ P1(h) + P2ζ(t− η0; γ̄), a.e. t ∈ [0, α],

where

P1(h) = L
(

ΩD2D1g(L|h|Γ;α,M5) +N3(Lδ +N2)ΩD2D2g(L|h|Γ;α,M5)
)

|h|Γ

+LN3N4N6|h|
2
Γ +

(

N6(1 +N3(Lδ +N2)) + L1(N5 + 1)
)

µ(α; γ̄, h)

+ max{Gf (t; γ̄, h) + L1GΛ(t; γ̄, h) : t ∈ [0, α]},
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and P2 = N1N3. Clearly, ẏ(t) − ẋ(t) − ż(t) = 0 for t ∈ [−r, 0], hence

ζ(t; γ̄) ≤ P1(h) + P2ζ(t− η0; γ̄), t ∈ [0, α].

This, using the method of steps, yields

|ẏt − ẋt − żt|L∞ ≤ ζ(t; γ̄) ≤ (1 + P2 + · · · + Pm2 )P1(h), t ∈ [0, α], (4.25)

where m = [α/η0]. Therefore, in view of (4.25), it suffices to show that P1(h)/|h|Γ → 0 as |h|Γ → 0.
From the proof of Theorem 4.4 follows that µ(α; γ̄, h)/|h|Γ → 0 as |h|Γ → 0, the continuity of
D2Dig on the compact set [0, α] ×M5 yields ΩD2Dig(L|h|Γ;α,M5) → 0 as |h|Γ → 0 for i = 1, 2.
Therefore we have to argue only that Gf (t; γ̄, h)/|h|Γ → 0 and GΛ(t; γ̄, h)/|h|Γ → 0 uniformly in
t ∈ [0, α] as |h|Γ → 0.

Consider a sequence hk ∈ Γ such that |hk|Γ → 0 as k → ∞. As in the proof of Theorem 4.4,
we again use notations yk(t) = x(t; γ̄ + hk) and z(t) = z(t; γ̄, hk). It follows from (4.18) that
max{Gf (t; γ̄, hk) : t ∈ [0, α]} → 0 as k → ∞.

Define
Ω̄(ε) = sup{|ẋ(u) − ẋ(ū)| : |u− ū| ≤ ε, u, ū ∈ [−r, α]}.

Then (4.17) combined with Ωẋs(ε) ≤ Ω̄(ε) for s ∈ [0, α] and (4.9) yields

GΛ(s; γ̄, h) ≤
(

L2Ω̄
(

L2(L+ 1)|h|Γ

)

+N2L3(L+ 1)|h|Γ + L2L|h|Γ

)

(L+ 1)|h|Γ. s ∈ [0, α].

This concludes the proof of the theorem. �
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