
J. Di�erential and Integral Equations, 8:7 (1995) 1867{1872.On the Asymptoti Behavior of the Solutions of aState-Dependent Delay EquationF. Hartung and J. TuriPrograms in Mathematial SienesUniversity of Texas at DallasRihardson, TX 75083Abstat: In this paper we establish an asymptoti formula for \small" solutions ofthe delay equation _x(t) = ax(t� bjx(t)j), where a and b are positive onstants.1 IntrodutionIn a reent paper ([3℄) we have studied the theoretial onvergene properties of an approxi-mation tehnique (using equations with pieewise onstant arguments) for state-dependentdelay equations and in a follow-up paper ([4℄) we have done extensive numerial testingon the performane of our method. In partiular, we have onsidered in [4℄ numerialsolutions of the following initial value problem (IVP)_y(t) = y(t� jy(t)j) + sin 2t� sin2(t� sin2 t); t � 0; (1.1)y(t) = �(t); t � 0: (1.2)It is easy to hek that the funtion y(t) = sin2 t; t � 0 solves (1.1)-(1.2) with initialfuntion �(t) = sin2 t. As a matter of fat, from the initial funtion we only use theinformation that y(0) = 0. On Figure 1 we display the numerial solutions of (1.1)-(1.2)using various values for the disretization onstant, h. The graph indiates onvergene on�nite intervals (in agreement with the theoretial preditions of [3℄), but after some time(whih of ourse depends on h) we an observe a \very regular divergene" (i.e., more orless linearly growing error) of the numerial solutions.AMS Math. Subjet Classi�ation (1991 revision): 34K05, 34K25, 34K99
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Figure 1. solid line: sin2 t, o: h = 0:01, x: h = 0:001, +: h = 0:0001We have studied numerial solutions of IVP (1.1)-(1.2) with perturbed initial funtions(see Figure 2), then we have onsidered the homogeneous equation orresponding to (1.1)with various initial funtions (see Figure 3) and in all ases have observed the same typeof asymptotis.
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Figure 2. Numerial solutions of (1.1)-(1.2) with h = 0:001 using initial funtion+: sin2 t, o: sin2 t+ 0:05, x: sin2 t+ 0:1 os 5t,solid line: sin2 t
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Figure 3. Numerial solutions of (1.3)-(1.4) with h = 0:001 using initial funtiono: t+ 0:2, x: 0:2 sin5t+ 0:01, +: 0:4 os 2tMotivated by these numerial �ndings, in this paper we onsider \small" solutions,orresponding to small (in sup norm) initial funtions, of the IVP_x(t) = x(t� jx(t)j); t � 0; (1.3)x(t) = �(t); t � 0; (1.4)where the delay equation (1.3) is the homogeneous ounterpart of equation (1.1).The investigation of \small" solutions is justi�ed by the fat that the approximationerror initially an be ontrolled by the proper seletion of the disretization onstant.The asymptoti analysis, presented in the next setion establishes the following relationon the unique solution, x(t), of IVP (1.3)-(1.4)x(t) = t+ �+ �(t); (1.5)where � is a onstant, �(t) has the properties that limt!1�(t) = 0 and limt!1 _�(t) = 0.In Setion 3 we present examples to illustrate appliations and limitations of (1.5) andto indiate how the results ould possibly be extended to the more general equation_x(t) = ax�t� r(x(t))�; a > 0; (1.6)where r(t) is a given Lipshitz-ontinuous funtion.We onlude this setion by noting that a omplete asymptoti theory for Equation(1.6), with a < 0 an be found in [1℄.
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2 Main ResultsConsider initial value problem_x(t) = ax(t� bjx(t)j); t � 0; (2.1)x(t) = �(t); t � 0; (2.2)where a > 0, b > 0.We assume throughout the paper that the initial funtion, �(t), is ontinuous, whihimplies that IVP (2.1)-(2.2) has a solution, i.e., there exists a ontinuously di�erentiablefuntion whih satis�es (2.1) and (2.2). Moreover we also assume that the solution isunique, whih is satis�ed if the initial funtion is Lipshitz-ontinuous. (See [2℄, [3℄ or [5℄for existene, uniqueness theorems.)We introdue the simplifying notations x0 � �(0) and !(t) � t � bjx(t)j, whih areused throughout the paper.It is easy to hek the following two statements.Proposition 2.1(i) If x(t) is the solution of (2.1)-(2.2) orresponding to the initial funtion �(t), then�x(t) is the solution of (2.1)-(2.2) orresponding to the initial funtion ��(t).(ii) If x0 = 0, then the solution of (2.1)-(2.2), x(t), is identially zero for t � 0.By Proposition 2.1 it is enough to study the qualitative behavior of IVP (2.1)-(2.2)with initial funtion �(�) satisfying �(0) = x0 > 0.Proposition 2.2 If x0 > 0, then the solution of IVP (2.1)-(2.2) satis�es x(t) > 0 fort � 0.Proof: The ontinuity of �(t) implies that there exists ~t > 0 suh that �(t) > 0 fort 2 (�~t; 0℄. Suppose that there exists t� > 0 suh that the solution x(t) of (2.1)-(2.2)satis�es x(t�) = 0 and x(t) > 0 for t 2 (0; t�). Then the mean value theorem implies thatfor any 0 < Æ < t� there exists �t 2 (t� � Æ; t�) suh that _x(�t) < 0. But _x(�t) = ax(�t� bx(�t))implies that �t� bx(�t) < �~t for suh �t, whih yields �t+~t < bx(�t). If Æ ! 0 we get t�+~t � 0whih is a ontradition. Therefore x(t) > 0 for all t � 0.In the next proposition we reveal an interesting asymptoti property of the solutionsof IVP (2.1)-(2.2).Proposition 2.3 If there exists a T � 0 suh that the solution of (2.1)-(2.2) satis�es_x(T ) = 1b , then the solution has the form x(t) = 1b (t� T ) + x(T ) for t � T .Proof: Equation (2.1) and the ondition _x(T ) = 1b yield the relation1b = _x(T ) = ax(T � bx(T )) = ax�t� b�1b (t� T ) + x(T )�� ;4



whih means that the funtion 1b (t� T ) + x(T ) satis�es (2.1) for t � T .This result immediately implies that !(�) is a monotone funtion, beause if there isa T � 0 suh _!(T ) = 0, i.e., _x(T ) = 1b , then !(t) = !(T ) for t � T . But if _!(t) 6= 0 forall t � 0, then !(�) is a stritly monotone inreasing or dereasing funtion. Therefore wehave obtained the following proposition.Proposition 2.4 The time lag funtion, !(t), is monotone for t � 0.Simple alulations and substitution into (2.1)-(2.2) show that for the ase !(t) � 0,the time lag funtion, !(�), satis�es the following ordinary di�erential equation_!(t) = 1� ab�(!(t)); for t � 0; !(t) � 0; (2.3)with initial ondition !(0) = �bx0: (2.4)Assuming that the initial interval is �nite, i.e., there exists K > 0 suh that !(t) � t�bjx(t)j � �K for all t � 0, we an prove that solutions of IVP (2.1)-(2.2) are asymptotiallyapproahing a line with slope 1b . In partiular, we haveTheorem 2.5 Assume that x0 > 0. Then the following two statements are equivalent(i) There exists a K > 0 suh that the solution x(t) of IVP (2.1)-(2.2) satis�es t�bjx(t)j ��K for t � 0.(ii) There exist a onstant � and a funtion �(t) suh that the solution of IVP (2.1)-(2.2)has the form x(t) = 1b (t+ �+ �(t)); t � 0; (2.5)where limt!1 �(t) = 0 and limt!1 _�(t) = 0.Proof: Trivially (ii) implies (i).Assume that ondition (i) holds.By assumption !(0) < 0. If there exists a t > 0 suh that !(t) > 0, then !(�) is amonotone inreasing funtion. Otherwise !(t) � 0 for t � 0. We want to show that thefuntion !(�) is bounded from above.The only interesting ase is when there exists a T > 0 suh that !(T ) = 0, !(t) < 0for t 2 [0; T ) and !(t) > 0 for t > T . Using Proposition 2.2 and the de�nition of T wehave that _x(t) = ax(!(t)) > 0 for t > T , hene the solution, x(�), is monotone inreasingfor t > T , therefore we have_x(t) � mint2[0;T ℄ ax(t) > 0 for t > T;whih implies that x(t)!1 as t!1. 5



Suppose that limt!1 !(t) = 1. Using the monotoniity of !(�), Equation (2.1) andthe fat that x(t)!1 as t!1 we obtain0 � _!(t) = 1� b _x(t) = 1� abx(t� bx(t)) = 1� abx(!(t))! �1; (2.6)whih is a ontradition. This means that there exists a onstant L > 0 suh that 0 <!(t) � L for t > T . Therefore in every ase we have that !(�) is a bounded funtion fromabove, and by assumption (i) it is also bounded from below. It is a monotone funtion,therefore its limit at 1 exists, so we an de�ne � � � limt!1 !(t) and �(t) � �!(t)��.With these de�nitions relation (2.5) and limt!1 �(t) = 0 are satis�ed. Monotoniity andboundedness of !(�) imply that limt!1 _�(t) = � limt!1 _!(t) = 0.The proof of the theorem is omplete.The following proposition gives onditions, whih guarantee that IVP (2.1)-(2.2) has�nite initial interval, i.e., ondition (i) holds in Theorem 2.5.Proposition 2.6(i) If �(�bx0) � 1ab , then !(t) � �bx0 for t � 0.(ii) If �(�bx0) > 1ab and there exists a onstant L > bx0 suh that �(�L) = 1ab , then�L < !(t) for t � 0.(iii) If �(t) > 1ab for t � �bx0, then limt!1 !(t) = �1.Proof:(i) If �(�bx0) = 1ab , then �bx0 is an equilibrium of (2.3), therefore !(t) = �bx0 for allt � 0. Consider the ase when �(�bx0) < 1ab . This implies that _!(0) = 1�ab�(�bx0) > 0,therefore using Proposition 2.4 the funtion !(�) is monotone inreasing, hene !(t) ��bx0 for all t � 0.(ii) By assumption �L is an equilibrium of the autonomous equation (2.3), !(0) = �bx0 >�L, therefore we have that !(t) > �L for all t � 0.(iii) The assumption, �(t) > 1ab , t � �bx0, implies that _!(t) < 0 for all t � 0, hene !(�)is de�ned by (2.3)-(2.4) for all t � 0, and is a monotone dereasing funtion. Suppose that!(t) ! �L > �1 as t! 1. Then �L has to be an equilibrium point of (2.3), whih isequivalent to that �(�L) = 1ab , whih ontradits to our assumption.Summarizing our results we formulate the following orollary to Theorem 2.5.Theorem 2.7 The solution of IVP (2.1)-(2.2) is asymptotially a straight line with slope1b , i.e., there exist a onstant � and a funtion �(t) suh that the solution of IVP (2.1)-(2.2)has the form x(t) = 1b (t+ �+ �(t)); t � 0; (2.7)where limt!1 �(t) = 0 and limt!1 _�(t) = 0 if and only if either(i) �(�bx0) � 1ab . In this ase t� bjx(t)j � �bx0 for t � 0.or(ii) �(�bx0) > 1ab and there exists a onstant L � bx0 suh that �(�L) = 1ab . In thisase �L < t� bjx(t)j � �bx0 for t � 0.6



3 Examples, and a more general IVPConsider the speial ase of (2.1){(2.2)_x(t) = x(t� jx(t)j); t � 0; (3.1)x(t) = �(t); t � 0; (3.2)with various initial funtions.Example 3.1 Let the initial funtion �(t) = 1 + t. Then the solution of (3.1)-(3.2) isx(t) = t+ e�t, for t � 0. In this example we have that �1 � !(t) < 0 for t � 0.Example 3.2 If the initial funtion�(t) = ( 3 + t; �2 � t � �11� t; �1 � t � 0;then the solution of (3.1)-(3.2) is x(t) = t+ 2� e�t. We have �2 < !(t) � �1.Example 3.3 Let the initial funtion �(t) = 1 � t2. Then the solution of (3.1)-(3.2) isx(t) = t+ 1t+1 .Example 3.4 If �(t) = 0:5, then Theorem 2.7 yields, that the solution of (3.1)-(3.2) hasform (2.7), where � < 0, beause the right hand side of (2.3) is positive for all t, therefore�� = limt!1 !(t) > 0.These examples indiate that in (2.7) � and �(t) an have any sign, and the order ofonvergene of �(�) to zero an be for example exponential or polynomial. The time lagfuntion, !(�) an be both inreasing and dereasing.The next two examples show ases when the assumptions of Theorem 2.7 are notsatis�ed.Example 3.5 Consider the initial funtion �(t) = p, where p > 1. Then the solution of(3.1)-(3.2) is x(t) = pt+ p, for t � 0. For this example !(t) = (1� p)t� p, so !(t)! �1as t!1, and we do not have asymptoti formula (2.5).Example 3.6 If the initial funtion �(t) = 1 � t, then the solution of (3.1)-(3.2) isx(t) = t + et, for t � 0. In this example also !(t) ! �1 as t ! 1, and the solutiongrows exponentially.To onlude we onsider the IVP_x(t) = ax�t� r(x(t))�; t � 0; (3.3)x(t) = �(t); t � 0; (3.4)where r(�) is monotone inreasing, r(0) = 0, and a > 0.Numerial studies indiate that solutions orresponding to \small" initial funtionshave similar asymptoti properties. For example on Figure 4 we show numerial solutions7



of (3.3)-(3.4) for the delay funtion r(x) = x2 with parameter a = 1, orresponding toinitial funtions �1(t) = 0:2 sin 5t+ 0:01;�2(t) = 0:4 os 2t;�3(t) = 0:05:This and other numerial runings suggest the onjeture, that for \small" initial fun-tion, the solution of (3.3)-(3.4) is asymptotially a shift of the inverse of r(�), i.e., r�1(t+�).
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Figure 4. Numerial solutions of IVP (3.3)-(3.4) with r(x) = x2, a = 1 and with initial funtionso: �1(t), x: �2(t), +: �3(t)Referenes[1℄ K. L. Cooke, Asymptoti theory for the delay-di�erential equation u0(t) = �au(t �r(u(t))), J. Math. Anal. Appl., 19 (1967), 160{173.[2℄ R. D. Driver, Existene theory for a delay-di�erential system, Contributions to Di�er-ential Equations, 1 (1961), 317{336.[3℄ I. Gy}ori, F. Hartung, J. Turi, Approximation of Funtional Di�erential Equations withTime- and State-Dependent Delays by Equations with Pieewise Constant Arguments,preprint.[4℄ I. Gy}ori, F. Hartung, J. Turi, On Numerial Solutions for a Class of Nonlinear DelayEquations with Time- and State-Dependent Delays, to appear in the Proeedings ofWorld Congress of Nonlinear Analysts, 1992.[5℄ J. K. Hale, \Theory of Funtional Di�erential Equations", Spingler-Verlag, New York,1977. 8


