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tIn this paper we give a suÆ
ient 
ondition to imply global asymptoti
 stability of adelayed 
ellular neural network of the form_xi(t) = �dixi(t) + nXj=1 aijf(xj(t)) + nXj=1 bijf(xj(t� �ij)) + ui; t � 0; i = 1; : : : ; n;where f(t) = 12 (jt+1j� jt�1j). In order to prove this stability result we need a suÆ
ient
ondition whi
h guarantees that the trivial solution of the linear delay system_zi(t) = nXj=1 aijzj(t) + nXj=1 bijzj(t� �ij); t � 0; i = 1; : : : ; nis asymptoti
ally stable independently of the delays �ij .keywords: delayed 
ellular neural networks, global asymptoti
 stability, M-matrix1 Introdu
tionThe notion of 
ellular neural networks (CNNs) was introdu
ed by Chua and Yang ([5℄), andsin
e then, CNN models have been used in many engineering appli
ations, e.g., in signalpro
essing and espe
ially in stati
 image treatment [6℄. As a generalization of CNNs, 
ellularneural networks with delays (DCNNs) were introdu
ed by Roska and Chua [14℄.In this paper we study the asymptoti
 stability of the DCNN model des
ribed by thesystem of nonlinear delay di�erential equations_xi(t) = �dixi(t)+ nXj=1 aijf(xj(t))+ nXj=1 bijf(xj(t� �ij))+ui; t � 0; i = 1; : : : ; n: (1.1)This resear
h was partially supported by Hungarian National Foundation for S
ienti�
 Resear
h GrantNo. T031935.This paper is in �nal form and no version of it will be submitted for publi
ation elsewhere.1



Here n is the number of 
ells; xi(t) denotes the potential of the ith 
ell at time t; di representsthe rate with whi
h the ith unit resets its potential to the resting state when it is isolatedfrom other 
ells and inputs; aij and bij denote the strengths of the jth unit on the ith unitat time t and t� �ij, respe
tively; �ij 
orresponds to transmission delay between the ith andjth 
ells; f denotes an output fun
tion; ui is an external input to the ith 
ell.The stability of (1.1) and more general 
lasses of DCNNs has been intensively studied,see, e.g., [2℄{[4℄, [11℄{[13℄, [15℄{[18℄, and the referen
es therein. We will assume throughoutthis paper that the output fun
tion f : R ! R is de�ned byf(t) = 12(jt+ 1j � jt� 1j) = 8<: 1; t > 1;t; �1 � t � 1;�1; t < �1: (1.2)This fun
tion is widely used in CNN and DCNN models.In a re
ent paper Mohamad and Gopalsamy ([13℄) have shown using �xed point methodthat if f is de�ned by (1.2) anddi > nXj=1(jaij j+ jbij j); i = 1; 2; : : : ; n; (1.3)then (1.1) has a unique �xed point whi
h is globally exponentially stable. In our Theorem 4(see below) we show that the weaker assumptiondi � aii > nXj=1;j 6=i jaij j+ nXj=1 jbij j; i = 1; 2; : : : ; n; (1.4)together with another 
ondition (see (3.11) below) implies the global asymptoti
 stability ofthe unique equilibrium of (1.1). We also 
onje
ture (see Conje
ture 1 below) that assumption(3.11) 
an be omitted, (1.4) itself, or even a weaker 
ondition implies the global asymptoti
stability of the equilibrium.We remark that 
ondition (1.4) is equivalent to saying that the matrix K = (kij) withelements kij = � di � aii � jbiij; if i = j;�jaijj � jbijj otherwiseis diagonally dominant and it has positive diagonal elements. We re
all that an n�n matrixK = (kij) is (row) diagonally dominant, ifjkiij > nXj=1;j 6=i jkij j; i = 1; : : : ; n:Our 
ondition (1.4) is similar to that given by Takahashi in [15℄, where it was shown thatif d1 = d2 = � � � = dn = 1 and the n� n matrix W = (wij) with elementswij = � aii � 1� jbiij; if i = j;�jaijj � jbij j otherwise2



is a nonsingular M-matrix (see de�nition below), then every solution of (1.1) tends to a
onstant equilibrium, i.e., the system is 
ompletely stable. Clearly, 
ondition (1.4) impliesthat di�aii > jbiij, so in this 
aseW 
an not be an M-matrix. Similarly, ifW is an M-matrix,then (1.4) 
an not hold, therefore the two 
onditions 
over disjoint 
ases. We 
omment thatdespite the similarities of the two 
onditions, the proof of our result requires a di�erentte
hnique than that used in [15℄. Our results were motivated by the monotone te
hniquewe used in [9℄, where we studied the s
alar version of (1.1) with f de�ned by (1.2), andshowed that the s
alar version of (1.4) implies the global asymptoti
 stability of the uniqueequilibrium.In Se
tion 2 we give a suÆ
ient 
ondition whi
h implies asymptoti
 stability of a lineardelay system for all delays. Su
h stability is 
alled absolute stability in the engineeringliterature. We extend a known result [3℄ for the 
ase we use in Se
tion 3 to prove ourstability results for (1.1). In Se
tion 4 we give an example to illustrate the main result andwe formulate a 
onje
ture to generalize the result.First we introdu
e some notations. Let R+ be the set of positive real numbers. We use therelation x � y (x < y, respe
tively) for ve
tors x;y 2 Rn , if xi � yi (xi < yi, respe
tively)for all i = 1; : : : ; n, where x = (x1; : : : ; xn)T and y = (y1; : : : ; yn)T . We introdu
e the ve
tors0 = (0; 0; : : : ; 0)T 2 Rn and 1 = (1; 1; : : : ; 1)T 2 Rn .For an n� n matrix B the symbol jBj denotes the 
orresponding n� n matrix with ijthelement jbij j. Similarly, juj = (jx1j; : : : ; jxnj)T .We say that an n � n matrix K is an M-matrix, if all of its diagonal elements are non-negative, and its o�-diagonal elements are nonpositive, and all of its prin
ipal minors arenonnegative (see, e.g., [1℄, [3℄ or [7℄). It is known (see, e.g., [1℄) that if K is a nonsingularM-matrix, then x � y implies K�1x � K�1y.Remark 1 Let K be a matrix su
h that the diagonal elements of K are all positive and theo�-diagonal elements are all nonpositive. Then it is known (see, e.g., Theorem 2.3 in [1℄) thatif K is a diagonally dominant, then it is a nonsingular M-matrix, as well. Moreover, K is anonsingular M-matrix, if and only if, there exists a positive diagonal matrix D su
h that KDis a diagonally dominant matrix. We note that there are 50 
onditions listed in [1℄ whi
h areall equivalent to that a matrix is a nonsingular M-matrix.2 Absolute Stability of a Linear SystemConsider the autonomous linear delay system_zi(t) = nXj=1 aijzj(t) + nXj=1 bijzj(t� �ij); t � 0; i = 1; : : : ; n; (2.1)where �ij � 0 for i; j = 1; : : : ; n.We put the 
oeÆ
ients to the n� n matri
es A = (aij) and B = (bij). For the matrix Awe asso
iate the n�n diagonal matrix A0 = diag(a11; a22; : : : ; ann), i.e., the diagonal part of3



A, and let A1 = A�A0 be the o�-diagonal part of A. Then with this notation, whi
h we usethroughout this paper, we 
an rewrite A as A = A0 + A1. Similarly, let B0 be the diagonalpart of B, and denote B1 = B �B0.In the 
ase when A1 = 0 and B0 = 0 the ne
essary and suÆ
ient 
ondition for thestability and asymptoti
 stability of (2.1) for all sele
tion of the delays �ij was established in[10℄. Following the methods of [10℄ this result was extended in [3℄ for the spe
ial 
ase whenonly A1 = 0, i.e., A is a diagonal matrix in (2.1), and B is an arbitrary matrix.Theorem 1 (see Theorem 2.6 in [3℄) Suppose A = A0. Then the trivial solution of (2.1)is asymptoti
ally stable for all delays �ij � 0, if and only if �A � jBj is an M-matrix andA+B is a nonsingular matrix.Note that in the 
ase when B is a nonnegative matrix, this result follows from a moregeneral theorem in [7℄, where su
h result was proved for quasilinear delay di�erential equa-tions. In the 
ase when B is a nonnegative matrix, Theorem 1 also follows from an othergeneralization of it given in [8℄, where it was shown that if �k � 0, (k = 1; : : : ; p), Dk � 0 arediagonal matri
es for k = 1; : : : ; p su
h that Ppk=1Dk is invertible, B` are nonnegative n� nmatri
es for ` = 1; : : : ; r, and equation_u(t) = � pXk=1Dku(t� �k)has a positive fundamental solution, then the trivial solution of_x(t) = � pXk=1Dkx(t� �k) + rX̀=1 B`x(t� �`)is asymptoti
ally stable for all �1; : : : ; �` � 0, if and only ifpXk=1Dk � rX̀=1 B`is a nonsingular M-matrix.We extend the suÆ
ient part of Theorem 1 for the 
ase whi
h we will need later. Weassume A 6= A0 , i.e., there are nonzero o�-diagonal parts of A. The proof follows that ofTheorem 1 (see [3℄).Theorem 2 Suppose �A0 � jA1j � jBj is a nonsingular M-matrix. Then the trivial solutionof (2.1) is asymptoti
ally stable for all delays �ij � 0.
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Proof Finding the solution of (2.1) in the form e�tv (v 6= 0) leads to the 
hara
teristi
equationdet0BBB� a11 + b11e���11 � � a12 + b12e���12 � � � a1n + b1ne���1na21 + b21e���21 a22 + b22e���22 � � � � � a2n + b2ne���2n... ... ...an1 + bn1e���n1 an2 + bn2e���n2 � � � ann + bnne���nn � � 1CCCA = 0 (2.2)of (2.1). It is known that the asymptoti
 stability of the trivial solution of (2.1) is equivalentto that all roots of (2.2) have negative real parts. Let � be a root of (2.2), then � is aneigenvalue of the matrixG(�) = 0BBB� a11 + b11e���11 a12 + b12e���12 � � � a1n + b1ne���1na21 + b21e���21 a22 + b22e���22 � � � a2n + b2ne���2n... ... ...an1 + bn1e���n1 an2 + bn2e���n2 � � � ann + bnne���nn 1CCCA :Sin
e �A0 � jA1j � jBj is a nonsingular M-matrix, it is known (see, e.g., Theorem 2.3 in [1℄)there exist positive 
onstants 
1; : : : ; 
n > 0 su
h that(�aii � jbiij)
i > nXj=1;j 6=i (jaij j+ jbijj)
j ; i = 1; : : : ; n: (2.3)Let � = diag(
1; : : : ; 
n). Then � is nonsingular, therefore � is an eigenvalue of the matrix��1G(�)�, as well. Therefore an appli
ation of Gersgorin's theorem for the matrix ��1G(�)�yields j�� aii � biie���ii j � nXj=1;j 6=i 
�1i (jaij j+ jbij jje���ij j)
jfor some i. Therefore for this �xed iRe(�) � Re(aii + biie���ii) + nXj=1;j 6=i 
�1i (jaij j+ jbij je�(Re �)�ij )
j :Suppose Re(�) � 0. Then (2.3) yieldsRe(�)
i � (aii + jbiij)
i + nXj=1;j 6=i (jaij j+ jbij j)
j < 0;whi
h 
ontradi
ts to the assumption, therefore Re(�) < 0 for all solutions of (2.2). �The proof implies immediately the next te
hni
al result.5



Corollary 3 If �A0 � jA1j � jBj is a nonsingular M-matrix, then A+B is nonsingular, aswell.Proof Let A and B satisfy the assumption, pi
k any �ij � 0 (i; j = 1; : : : ; n), and 
onsiderthe 
orresponding system (2.1). The proof of Theorem 2 shows that v is a nonzero 
onstantsolution of system (2.1) if and only if � = 0 is a solution of (2.2). But under this assumptionall solutions of (2.2) satisfy Re(�) < 0, therefore the only 
onstant solution of (2.1) is thezero solution. On the other hand, the 
onstant v solutions of (2.1) satisfy (A + B)v = 0,hen
e A+B is nonsingular. �3 Stability of a Delayed Neural Network SystemSuppose n is a �xed positive integer,di > 0; �ij � 0; aij ; bij ; ui 2 R (i; j = 1; : : : ; n); and f(t) = 12(jt+1j � jt� 1j): (3.1)We introdu
e the notations D = diag(d1; : : : ; dn), A = (aij), B = (bij), u = (u1; : : : ; un)T .As in the previous se
tion, we use the notation A = A0 +A1, where A0 is the diagonal part,A1 is the o�-diagonal part of A.Consider the DCNN model equations_xi(t) = �dixi(t) + nXj=1 aijf(xj(t)) + nXj=1 bijf(xj(t� �ij)) + ui; t � 0; i = 1; : : : ; n (3.2)with the initial 
onditionsxi(t) = 'i(t); t 2 [�r; 0℄; i = 1; : : : ; n; (3.3)where r = maxf�ij : i; j = 1; : : : ; ng.To (3.2) we asso
iate an auxiliary system. For a given 
 > 0 and  i : [�r; 0℄ ! R+(i = 1; : : : ; n) 
onsider the system_yi(t) = �diyi(t)+aiif(yi(t))+ nXj=1;j 6=i jaij jf(yj(t))+ nXj=1 jbijjf(yj(t��ij))+
i; t � 0; i = 1; : : : ; n(3.4)asso
iated to (3.2), and the initial 
onditionyi(t) =  i(t) t 2 [�r; 0℄; i = 1; : : : ; n: (3.5)
6



Lemma 1 Suppose (3.1). Let  i : [�r; 0℄ ! R+ (i = 1; : : : ; n), 
 > 0, and let y1; : : : ; yn bethe 
orresponding solution of (3.4)-(3.5). Then there exists M > 0 su
h that0 < yi(t) < M; t � 0; i = 1; : : : ; n:Proof Sin
e yi(0) > 0 and yi is 
ontinuous on [0;1) for all i = 1; : : : ; n, yi(t) > 0 for smallenough t � 0. Suppose there exists i and T > 0 su
h thatyj(t) > 0 for t 2 [�r; T ); j = 1; : : : ; n; and yi(T ) = 0:Then _yi(T�) � 0. On the other hand, (3.4) implies_yi(T ) = nXj=1;j 6=i jaij jf(yj(T )) + nXj=1 jbij jf(yj(T � �ij)) + 
i > 0;whi
h is a 
ontradi
tion. Therefore yi(t) > 0 for all t > 0 and i = 1; : : : ; n.Fix i. To prove that yi is bounded from above, assume that lim supt!1 yi(t) =1. Thenthere exists a monotone in
reasing sequen
e tn su
h thatlimn!1 tn =1; limn!1 yi(tn) =1; and yi(tn) = maxfyi(t) : t 2 [�r; tn℄g:Then _yi(tn�) � 0, whi
h 
ontradi
ts to the relations_yi(tn) = �diyi(tn) + aiif(yi(tn)) + nXj=1;j 6=i jaij jf(yj(T )) + nXj=1 jbij jf(yj(tn � �i)) + 
i� �diyi(tn) + nXj=1 jaij j+ nXj=1 jbij j+ 
i< 0for large enough n. �Remark 2 It is easy to 
he
k that the matrix D�A0� jA1j � jBj is a diagonally dominantmatrix with positive diagonal elements, if and only if0 < (D �A0 � jA1j � jBj)1:Lemma 3 Assume (3.1), D �A0 � jA1j � jBj is a diagonally dominant matrix, and0 < 
 < (D �A0 � jA1j � jBj)1: (3.6)Let  i : [�r; 0℄ ! R+ (i = 1; : : : ; n), and let y(t) = (y1(t); : : : ; yn(t))T be the 
orrespondingsolution of (3.4)-(3.5). Thenlimt!1y(t) = (D �A0 � jA1j � jBj)�1
 < 1: (3.7)7



Proof It follows from Lemma 1 thatMi = lim supt!1 yi(t) mi = lim inft!1 yi(t)are �nite and mi � 0. For a �xed i there exists a sequen
e tn su
h thattn !1 as n!1; _yi(tn) � 0; n = 1; 2 : : : ; and limn!1 yi(tn) =Mi:We may also assume thatlimn!1 yj(tn) =m�j and limn!1 yj(tn � �ij) = m��ijfor all j = 1; : : : ; n for some m�j ;m��ij 2 [mj ;Mj ℄, sin
e otherwise we 
an sele
t a subsequen
eof tn with this property. Then0 � limn!1 _yi(tn)= limn!1��diyi(tn) + aiif(yi(tn)) + nXj=1;j 6=i jaij jf(yj(tn)) + nXj=1 jbij jf(yi(tn � �ij)) + 
i�= �diMi + aiif(Mi) + nXj=1;j 6=i jaij jf(m�j) + nXj=1 jbijjf(m��ij ) + 
i� �diMi + aiif(Mi) + nXj=1;j 6=i jaij jf(Mj) + nXj=1 jbij jf(Mj) + 
i:Therefore for all i = 1; : : : ; n
i � diMi � aiif(Mi)� nXj=1;j 6=i jaij jf(Mj)� nXj=1 jbij jf(Mj)� diMi � aiif(Mi)� nXj=1;j 6=i jaij j � nXj=1 jbij j: (3.8)Suppose Mi � 1 for some i. Then (3.8) implies
i � di � aii � nXj=1;j 6=i jaij j � nXj=1 jbij jwhi
h 
ontradi
ts to assumption (3.6), whi
h yields0 < 
i < di � aii � nXj=1;j 6=i jaij j � nXj=1 jbij j:8



Therefore 0 �Mi < 1 for all i = 1; : : : ; n. This means there exists t1 > 0 su
h that for t � t1(3.4) is equivalent to the linear system_yi(t) = (�di + aii)yi(t) + nXj=1;j 6=i jaij jyj(t) + nXj=1 jbij jyj(t� �ij) + 
i; t � t1: (3.9)De�ne e = (D �A0 � jA1j � jBj)�1
:Then e = (e1; : : : ; en)T is the unique equilibrium of the system (3.9), and it follows from (3.6)that 0 � ei �Mi < 1, so 0 � e < 1. Introdu
ing z(t) = y(t)� e we 
an rewrite (3.9) as_zi(t) = (�di + aii)zi(t) + nXj=1;j 6=i jaij jzj(t) + nXj=1 jbij jzj(t� �ij); t � t1: (3.10)Sin
e D � A0 � jA1j � jBj is a nonsingular M-matrix by Remark 1, Theorem 2 yields thetrivial solution of (3.10) is asymptoti
ally stable (independently of the size of the delays),therefore (3.7) holds. �Theorem 4 Assume (3.1), D�A0�jA1j�jBj is a diagonally dominant matrix with positivediagonal elements, and u is su
h thatjuj < (D �A0 � jA1j � jBj)1: (3.11)Then any solution x of (3.2)-(3.3) satis�eslimt!1x(t) = (D �A�B)�1u: (3.12)Proof Fix any initial fun
tions  i : [�r; 0℄! R+ su
h that i(s) > j'i(s)j; s 2 [�r; 0℄; i = 1; : : : ; n;and let 
 > juj be su
h that 
 < (D � A0 � jA1j � jBj)1. Let y denote the solution of the
orresponding IVP (3.4)-(3.5). Sin
e y(0) > jx(0)j, relation jx(t)j < y(t) holds for suÆ
ientlysmall t > 0. Suppose there exists i and T > 0 su
h thatjxj(t)j < yj(t); t 2 [��; T ); j = 1; : : : ; n; and jxi(T )j = yi(T ): (3.13)It follows from Lemma 1 that jxi(T )j = yi(T ) 6= 0, therefore ddt jxi(t)j exists at T , andddt (jxi(t)j)jt=T = _xi(T ) signxi(T ). Hen
eddt(jxi(t)j)jt=T= ��dixi(T ) + nXj=1 aijf(xj(T )) + nXj=1 bijf(xj(T � �ij)) + ui� signxi(T )9



= �dijxi(T )j+ aiif(jxi(T )j) + nXj=1;j 6=i aijf(xj(T )) signxi(T )+ nXj=1 bijf(xj(T � �ij)) sign xi(T ) + ui signxi(T )< �dijxi(T )j+ aiif(jxi(T )j) + nXj=1;j 6=i jaij jf(jxj(T )j) + nXj=1 jbij jf(jxj(T � �ij)j) + 
i� �diyi(T ) + aiif(yi(T )) + nXj=1;j 6=i jaij jf(yj(T )) + nXj=1 jbij jf(yj(T � �ij)) + 
i= _yi(T ):This 
ontradi
ts to assumption (3.13), therefore jxi(t)j < yi(t) holds for all t > 0 and i =1; : : : ; n. Moreover, Lemma 3 yieldslimt!1y(t) = (D �A0 � jA1j � jBj)�1
 < 1holds, therefore there exists t1 > 0 su
h that jx(t)j < 1 for t � t1. Then (3.2) is equivalent to_xi(t) = �dixi(t) + nXj=1 aijxj(t) + nXj=1 bijxj(t� �ij) + ui; t � t1:This implies (3.12) using an argument similar to that in the proof of Lemma 3. �4 ExamplesTo illustrate our results 
onsider the two-dimensional DCNN model equations_x1(t) = �x1(t)� 6f(x1(t)) + f(x2(t))� 3f(x1(t� 1)) + f(x2(t� 2)) + u1 (4.1)_x2(t) = �x2(t)� f(x1(t))� 3f(x2(t))� f(x1(t� 1)) + f(x2(t� 2)) + u2; (4.2)where f is de�ned by (1.2). It is easy to see thatD �A0 � jA1j � jBj = � 4 �2�2 3 �is a diagonally dominant matrix. Therefore Theorem 4 yields that if ju1j < 2 and ju2j < 1then the trivial solution of this system is asymptoti
ally stable. In Figure 1 we have plottedthe two 
omponents of the solutions 
orresponding to u1 = �1 and u2 = 0:5 and to the initialfun
tions� '1(t)'2(t) � = � t+ 1�t � ; � sin 2tt2 � 1 � ; � 
os t+ 1t+ 2 � and � t3 � 2�2 
os t � ; (4.3)respe
tively. 10
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