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Istv�an Gy}ori and Feren HartungDepartment of Mathematis and ComputingUniversity of Veszpr�emH-8201 Veszpr�em, P.O.Box 158, Hungarygyori�almos.vein.hu and hartung�szt.vein.huAbstratIn this paper we study the asymptoti behavior and numerial approximation of thesingle neuron model equation _x(t) = �dx(t) + af(x(t)) + bf(x(t � �)) + I , t � 0 (1),where d > 0 and f(x) = 0:5(jx + 1j � jx � 1j). We obtain new suÆient onditionsfor global asymptoti stability of onstant equilibriums of (1), give several numerialexamples to illustrate our results, and formulate onjetures on the asymptoti behaviorof the solutions based on our numerial experiments.keywords: delayed ellular neural networks, global asymptoti stability, numerialapproximations1 IntrodutionCellular neural networks (CNNs), introdued by Chua and Yang in 1988 ([5℄), have beensuessfully applied in various engineering and sienti� topis: in signal proessing systems,espeially in stati image treatment [6℄, in solving nonlinear algebrai equations [1℄. In theseappliations the existene and stability of the equilibrium solutions and the qualitativeproperties (osillation, periodiity, asymptoti representation of the solutions) play veryimportant role. Beause of the importane of the qualitative properties of the solutions themodel equations of CNNs models have been extensively studied in the past deade (see,e.g., [2℄, [9℄ [16℄{[20℄, [26℄ and [28℄, and the referenes therein).In a standard CNN model the model equations are ordinary di�erential equations(ODEs) assuming that the interations in the system are instantaneous. On the otherhand it is known that in the real models of eletroni networks time delays are likely to bepresent, due to the �nite swithing speed of ampli�ers. So in the so-alled delayed CNNs(DCNNs) the model equations are delay di�erential equations, whih have muh more om-pliated dynamis than the ODEs. The time delay in the response of a neuron an inuenestability (see, e.g., [13℄) or it reates osillation (see, e..g., [11℄).This researh was partially supported by Hungarian National Foundation for Sienti� Researh GrantNo. T031935. 1



Reently, DCNN models are applied in the arti�ial neural networks ([23℄,[24℄). In theappliations DCNNs are usually required to be globally asymptotially stable, ompletelystable, absolutely stable or stable independently of the delays. These di�erent types ofstability of DCNNs have been rigorously done and many riteria have been obtained so far(see, e.g., [4℄, [17℄, [19℄, [26℄{[28℄). Most of these methods and results are devoted to thease when a non-delayed, linear terms dominate the others.In this paper our attention is foused on a single neuron or the averaged potential of apopulation of neurons oupled by mutual inhibitory synapses. In that ase, based on thepaper [14℄, the model equation is a salar delay di�erential equation of the formC _x(t) = �x(t)R + �f(x(t)) + �f(x(t� �)) + ~I; t � 0;in whih C > 0, R > 0 and ~I is alled apaitane, resistane and the external urrent inputonstants of the neuron, respetively; x(t) is the voltage of the neuron and f is a feedbakfuntion. The feedbak time delay � may be aused by �nite ondution veloities, synaptitransmission or other mehanisms. In retinal network, an extraordinary value of � = 0:1se has been measured (see, e.g., [7℄ and [21℄).In our study we fous on global stability results, osillation properties of the solution ofthe equation _x(t) = �dx(t) + af(x(t)) + bf(x(t� �)) + I; t � 0; (1.1)in the ase when the feedbak funtion f is a Hop�eld ativation funtion de�ned byf(x) = 12(jx+ 1j � jx� 1j) = 8<: 1; x > 1;x; �1 � x � 1;�1; x < �1: (1.2)We assume throughout this paper that d > 0. Note that even in this single neuron modelwith this simple nonlinearity there is no omplete knowledge on the asymptoti or globalasymptoti stability of the equilibrium points of (1.1). The standard ondition an be foundin the literature for asymptoti stability of the trivial solution of (1.1) isd > jaj+ jbj+ jIj(see, e.g., [4℄ or [16℄). We will show in Setion 2 that this ondition an be relaxed, theweaker ondition d > a+ jbj+ jIj (1.3)implies the global asymptoti stability of the unique equilibrium point of (1.1) (see Theo-rem 2.3). In the seond part of Setion 2 we will study the ase when d � a + jbj + jIj.Then (1.1) may have more equilibrium points, and the dynamis of the equation an bemore interesting. We will study in details the ase when b > 0 using the tehnique ofmonotone semiows. In the ase when a + b � jIj < d � a + b + jIj we have a ompleteunderstanding of the dynamis of (1.1) (see Theorems 2.8), but in the remaining ases wehave only partial theoretial results (see Theorems 2.9 and 2.12). In the latter ases wemade numerial studies, and based on those experiments we onjeture that if b > 0, thenevery solution of (1.1) tends to a onstant equilibrium, i.e., (1.1) is ompletely stable.2



In the ase when b < 0 and a + b + jIj < d � a + jbj + jIj we will present numerialstudies and onjeture ases when the solutions of (1.1) are asymptotially periodi.In Setion 3 we will de�ne two numerial approximation tehniques we used in thesimulations. Note that these methods were originally introdued in [10℄ for more generaldelay equations.We note that if e is an equilibrium point of (1.1) suh that �1 < e < 1 (see Lemma 2.4below) then the linearization of (1.1) around this equilibrium gives equation_z(t) = z(t) + bz(t� �); t � 0; (1.4)where  = a� d. The asymptoti behavior of the solution of equation (1.4) is well-known.Theorem 1.1 (see, e.g., [13℄) The trivial (zero) solution of equation (1.4) is asymptoti-ally stable independently of the delay if and only if � > jbj. Moreover, the exat stabilityregion of the trivial solution of (1.4) is bounded by the line b = � and by the urve = s ot(�s); b = � ssin(�s) ; s 2 h0; �� i :(See Figure 1 for the region.)
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Figure 1: Stability region of the linearized equation.
2 Stability ResultsWe onsider again the single neuron model equation_x(t) = �dx(t) + af(x(t)) + bf(x(t� �)) + I; t � 0; (2.1)3



with the initial ondition x(t) = '(t); t 2 [��; 0℄: (2.2)We assume throughout this paper thatf(x) = 12(jx+ 1j � jx� 1j) (2.3)and d > 0; a; b 2 R; b 6= 0: (2.4)For a given  > 0 and  : [�r; 0℄! (0;1) onsider the equation_y(t) = �dy(t) + af(y(t)) + jbjf(y(t� �)) + ; t � 0 (2.5)assoiated to (2.1), and the initial onditiony(t) =  (t) t 2 [��; 0℄: (2.6)Lemma 2.1 Assume (2.3){(2.4). Let  : [��; 0℄ ! (0;1),  > 0, and let y be the orre-sponding solution of (2.5)-(2.6). Then there exists M > 0 suh that0 < y(t) < M; t � 0:Proof Sine y(0) > 0 and y is ontinuous on [0;1), y(t) > 0 for small enough t � 0.Suppose there exists T > 0 suh thaty(t) > 0 for t 2 [��; T ); and y(T ) = 0:Then _y(T�) � 0. On the other hand, (2.5) implies_y(T ) = �dy(T ) + af(y(T )) + jbjf(y(T � �)) +  = jbjf(y(T � �)) +  > 0;whih is a ontradition. Therefore y(t) > 0 for all t > 0.To prove that y is bounded from above, assume that lim supt!1 y(t) =1. Then thereexists a monotone inreasing sequene tn suh thatlimn!1 tn =1; limn!1 y(tn) =1; and y(tn) = maxfy(t) : t 2 [��; tn℄g:Then _y(tn�) � 0, whih ontradits to the relations_y(tn) = �dy(tn) + af(y(tn)) + jbjf(y(tn � �)) +  � �dy(tn) + a+ jbj+  < 0for large enough n. �
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Lemma 2.2 Assume (2.3){(2.4),  > 0, andd > a+ jbj+ : (2.7)Let  : [��; 0℄! (0;1), and let y be the orresponding solution of (2.5)-(2.6). Thenlimt!1 y(t) = d� a� jbj : (2.8)Proof It follows from Lemma 2.1 thatlim supt!1 y(t) =M lim inft!1 y(t) = mare �nite and m � 0. There are two ases: either M = m, or M > m. In the �rst aseM = limt!1 y(t), and (2.5) yields0 = �dM + af(M) + jbjf(M) + : (2.9)In the seond ase there exists a sequene tn suh thattn !1 as n!1; _y(tn) = 0; n = 1; 2 : : : ; and limn!1 y(tn) =M:We may also assume that limn!1 y(tn � �) = m�for somem � m� �M , sine otherwise we an selet a subsequene of tn with this property.Then 0 = limn!1 _y(tn)= limn!1��dy(tn) + af(y(tn)) + jbjf(y(tn � �)) + �= �dM + af(M) + jbjf(m�) + � �dM + af(M) + jbjf(M) + : (2.10)Therefore in both ases (2.10) holds. Suppose M � 1. Then (2.10), f(M) = 1 and (2.7)imply the ontradition 0 � �d+ a+ jbj+  < 0:Therefore 0 �M < 1. This means there exists t1 > 0 suh that for t � t1 (2.5) is equivalentto _y(t) = (�d+ a)y(t) + jbjy(t� �) + ; t � t1: (2.11)De�ne K = d� a� jbj :It follows from (2.7) that K < 1. Introduing z(t) = y(t)�K we an rewrite (2.11) as_z(t) = (�d+ a)z(t) + jbjz(t� �); t � t1: (2.12)Sine d� a > jbj, Theorem 1.1 yields the trivial solution of (2.12) is asymptotially stable(independently of the size of the delay), therefore (2.8) holds. �5



Theorem 2.3 Assume (2.3){(2.4), andd > a+ jbj+ jIj: (2.13)Then any solution x of (2.1)-(2.2) satis�eslimt!1x(t) = Id� a� b : (2.14)Proof Fix any  : [�r; 0℄! (0;1) suh that (s) > j'(s)j; s 2 [�r; 0℄;and let  > jIj be suh that d > a+ jbj+ . Let y denote the solution of the orrespondingIVP (2.5)-(2.6). Sine y(0) > jx(0)j, relation jx(t)j < y(t) holds for suÆiently small t > 0.Suppose there exists T > 0 suh thatjx(t)j < y(t); t 2 [��; T ); and jx(T )j = y(T ): (2.15)It follows from Lemma 2.1 that jx(T )j = y(T ) 6= 0, therefore ddt jx(t)j exists at T , andddt jx(T )j = _x(T ) signx(T ). Heneddt jx(T )j = ��dx(T ) + af(x(T )) + bf(x(T � �)) + I� signx(T )= �djx(T )j+ af(jx(T )j) + bf(x(T � �)) signx(T ) + I signx(T )� �djx(T )j+ af(jx(T )j) + jbjf(jx(T � �)j) + < �dy(T ) + af(y(T )) + jbjf(y(T � �)) + = _y(T ):This ontradits to assumption (2.15), therefore jx(t)j < y(t) holds for all t > 0. Moreover,Lemma 2.2 yields limt!1 y(t) = d� a� jbj < 1holds, therefore there exists t1 > 0 suh that jx(t)j < 1 for t � t1. Then (2.1) is equivalentto _x(t) = (�d+ a)x(t) + bx(t� �) + I; t � t1:This implies (2.14) using an argument similar to that in the proof of Lemma 2.2. �L is an equilibrium of (2.1) if�dL+ af(L) + bf(L) + I = 0: (2.16)If L � 1, L � �1 and �1 � L � 1, then f(L) = 1, f(L) = �1 and f(L) = L, respetively.Therefore in this three ases we get three possible solutions of (2.16):e1 = a+ b+ Id ; e2 = �a� b+ Id ; and e3 = Id� a� b ; (2.17)6



assuming d 6= a + b in the third ase. Conversely, e1; e2 and e3 de�ned by (2.17) areequilibrium points of (2.1), if e1 � 1, e2 � �1 and �1 � e3 � 1. The next ases an beheked easily:Lemma 2.4 Assume (2.3){(2.4), and let e1; e2 and e3 be de�ned by (2.17). Then(i) if d > max(a+ b+ jIj; 0), then �1 < e3 < 1 is the only equilibrium point of (2.1).(ii) if max(0; a+ b� jIj) < d � a+ b+ jIj, then (2.1) has only one equilibrium point:(1) if I > 0, then e1 � 1 is the equilibrium,(2) if I < 0, then e2 � �1 is the equilibrium,(iii) if 0 < d = a + b and I = 0, then any number e 2 [�1; 1℄ is an equilibrium of (2.1),and it has no other equilibrium outside [�1; 1℄,(iv) if 0 < d = a+ b� jIj and I 6= 0, then (2.1) has two equilibrium points:(1) if I > 0, then e1 > 1 and e2(= e3) = �1 are equilibriums,(2) if I < 0, then e1(= e3) = 1 and e2 < �1 are equilibriums,(v) if 0 < d < a + b � jIj, then e1 > 1, e2 < �1 and �1 < e3 < 1 are the equilibriumpoints of (2.1).Next we assume that b > 0. First we reall some results from the theory of monotonedynamial systems formulated for (2.1).Theorem 2.5 (see, e.g., [25℄) Assume (2.3) and b > 0.(i) Let '; : [��; 0℄! R be suh that'(s) �  (s); s 2 [��; 0℄;and let x(t;') and x(t; ) denote the solution of (2.1) orresponding to initial funtion' and  , respetively. Then x(t;') � x(t; ); t � 0:(ii) Let x(t; ) be the solution of (2.1) orresponding to a onstant '(s) =  initial funtion.If �d + af() + bf() + I � 0, then x(t; ) is nondereasing, and if �d + af() +bf() + I � 0, then x(t; ) is noninreasing funtion.Next we study the asymptoti behavior of (2.1) starting from onstant initial onditions.Consider a onstant initial funtion '(s) = , then the orresponding solution will bedenoted by x(t; ). 7



Theorem 2.6 Assume (2.3) and b > 0. Then every solution of (2.1) starting from aonstant initial funtion tends to a onstant equilibrium.Proof It follows from Theorem 2.5 (ii) that all solutions of (2.1) orresponding to aonstant initial funtion are monotone funtions. On the other hand Lemma 2.1 yields thesolutions of (2.1) are bounded funtions. Therefore limt!1 x(t; ) always exists, and heneit is an equilibrium point of Equation (2.1). �Theorems 2.3 and 2.6, and Lemma 2.4 have the following orollary, whih gives a om-plete desription of the asymptoti property of the solution of (2.1) starting from onstantinitial funtions.Theorem 2.7 Assume (2.3), b > 0, and let e1; e2 and e3 be de�ned by (2.17). Then(i) if d > max(a + b + jIj; 0), then e3 is a globally asymptotially stable equilibrium of(2.1);(ii) if max(0; a+ b� jIj) < d � a+ b+ jIj, then(1) if I > 0, then x(t; )! e1 for any  2 R,(2) if I < 0, then x(t; )! e2 for any  2 R as t!1;(iii) if 0 < d = a+ b and I = 0, then(1) if  > 1, then x(t; )! 1 monotone dereasingly;(2) if  2 [�1; 1℄, then x(t; ) is onstant; and(3) if  < �1, then x(t; )! �1 monotone inreasingly as t!1;(iv) if 0 < d = a + b � jIj and I 6= 0, then if  > e1, then x(t; ) ! e1 monotonedereasingly;(1) if I > 0, then if  2 (�1; e1), then x(t; )! e1 monotone inreasingly; if  < �1,then x(t; )! �1 monotone inreasingly;(2) if I < 0, then if  2 (e2; 1), then x(t; ) ! e2 monotone dereasingly; if  < e2,then x(t; )! e2 monotone inreasingly as t!1;(v) if 0 < d < a+ b� jIj, then(1) if  > e1, then x(t; )! e1 monotone dereasingly;(2) if  2 (e3; e1), then x(t; )! e1 monotone inreasingly;(3) if  2 (e2; e3), then x(t; )! e2 monotone dereasingly; and(4) if  < e2, then x(t; )! e2 monotone inreasingly as t!1.8



To illustrate Theorem 2.7 we numerially omputed solutions of (2.1) orresponding toseveral onstant initial funtions to di�erent parameter values. The orresponding solutionsan be seen in Figures 2{7.Figure 2 illustrates ase (i) of Theorem 2.7, here d = 4, a = 1, b = 1, I = �1 and � = 1.We see that all solutions tend to e3 = �0:5.In Figure 3 ase (ii) (1) of Theorem 2.7 is illustrated. The solutions of (2.1) orrespondto d = 2, a = 1, b = 1, I = 1 and � = 1.Figure 4 orresponds to parameter values d = 2, a = �1, b = 3, I = 0 and � = 1.We see that solutions starting from onstant value greater than 1 tend to 1, and similarly,solutions starting from a onstant less than -1 tend to -1, and solutions starting fromonstants between -1 and 1 remain onstant.In Figure 5 solutions of (2.1) with d = 2, a = 1, b = 3, I = 2 and � = 1 an be seen.In this ase (2.1) has only two equilibriums: e1 = 3 and e2 = �1. This orresponds to ase(iv) (1) of Theorem 2.7. Case (iv) (2) is illustrated in Figure 6, where d = 1, a = �1, b = 3,I = �1, � = 1, and the equilibriums are e1 = 1, e2 = �3.In Figure 7 an example for ase (v) of Theorem 2.7 is studied. Here d = 2, a = 1,b = 3, I = 1 and � = 1, and the orresponding equation has three equilibriums: e1 = 2:5,e2 = �1:5 and e3 = �0:5. We an see from the graph that e1 and e2 are attrative withrespet to solutions starting from onstant initial funtions.
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Figure 2: ase (i), d = 4, a = 1, b = 1,I = �1, � = 1, and ' = onstant. 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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Figure 3: ase (ii) (1), d = 2, a = 1, b = 1,I = 1, � = 1, and ' = onstant.Newt we show that in ase (ii) of Theorem 2.7 the single equilibrium point of (2.1) isglobally asymptotially stable for nononstant initial funtions, as well.Theorem 2.8 Assume (2.3), b > 0, and max(0; a + b� jIj) < d � a+ b+ jIj. Let x(t;')be any solution of (2.1)-(2.2), and e1; e2 and e3 be de�ned by (2.17). Then(1) if I > 0, then x(t;')! e1, as t!1,(2) if I < 0, then x(t;')! e2, as t!1. 9
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Figure 4: ase (iii), d = 2, a = �1, b = 3,I = 0, � = 1, and ' = onstant. 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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Figure 5: ase (iv) (1), d = 2, a = 1, b = 3,I = 2, � = 1, and ' = onstant.
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Figure 6: ase (iv) (2), d = 1, a = �1,b = 3, I = �1, � = 1, and ' = onstant. 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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Figure 7: ase (v), d = 2, a = 1, b = 3,I = 1, � = 1, and ' = onstant.Proof Consider ase (1). Pik onstants h and k suh thath < e3; k > e1; and h < '(t) < k; t 2 [��; 0℄:Then by Theorem 2.5 x(t;h) � x(t;') � x(t; k); t � 0:Sine by Theorem 2.7 limt!1x(t;h) = e1 = limt!1x(t; k);the theorem is proved. Case (2) an be proved similarly. �Finally we onsider ase (v) of Theorem 2.7, i.e., assume 0 < d < a+ b� jIj. Then thelinearized equation (1.4) has an unstable trivial solution (see Figure 1). We show that inthis ase the solutions of (2.1) either tend to e1 or e2, or osillate around e3.10



Theorem 2.9 Assume (2.3), b > 0, and 0 < d < a+ b � jIj. Let e1; e2 and e3 be de�nedby (2.17), and let x(t;') be any solution of (2.1)-(2.2). Then either(i) limt!1x(t;') = e1,(ii) limt!1x(t;') = e2, or(iii) there exists a sequene tn � 0 suh thatlimn!1 tn =1; jtn+1 � tnj � �; and x(tn;') = e3;i.e., x osillates around e3.Proof We distinguish three ases. If there exists " > 0 and t0 � 0 suh that x(t;') >e3 + " for t 2 [t0 � �; t0℄, then by Theorem 2.7, x(t; e3 + ") ! e1. Theorem 2.5 impliesx(t;') > x(t+ t0; e3 + "), therefore there exists T > 0 suh that x(t;') > 1 for t > T . Butthen _x(t;') = �dx(t;') + a+ b+ I;and therefore x(t;')! e1.If there exists " > 0 and t0 � 0 suh that x(t;') < e3� " for t 2 [t0� �; t0℄, then we getby a similar argument that x(t;')! e2.In the remaining ase statement (iii) holds. �Corollary 2.10 Assume (2.3), b > 0, and 0 < d < a+ b� jIj. Let e1; e2 and e3 be de�nedby (2.17), and let x(t;') be any solution of (2.1)-(2.2). Then(i) if '(t) > e3, t 2 [�r; 0℄, then limt!1x(t;') = e1,(ii) if '(t) < e3, t 2 [�r; 0℄, then limt!1x(t;') = e2.The next result shows that there are solutions of (2.1) (di�erent from the onstantfuntion e3) satisfying ase (iii) of Theorem 2.9.Proposition 2.11 Assume (2.3), b > 0, and 0 < d < a + b � jIj. Let e3 be de�ned by(2.17). Then there exist initial funtions ' suh that the orresponding solutions x(t;') of(2.1)-(2.2) satisfy ase (iii) of Theorem 2.9, moreover x(t;')! e3 as t!1.Proof Consider the linear equation_z(t) = (�d+ a)z(t) + bz(t� �) (2.18)assoiated to (2.1). The harateristi equation � = �d+a+ be��� of (2.18) has a omplexroot � = � + i� with � < 0 and � > �=� (see, e.g., [13℄). Then z(t) = e�t os �t is a11



solution of (2.18) for any  2 R. Pik any  satisfying jj < min(1 � e3; 1 + e3), and letx(t) = z(t) + e3. Then jx(t)j < 1, and it is a solution of (2.1) satisfying x(t)! e3. �Let �x(t) be a solution of (2.1) given in the proof of the last proposition, and let �' beits restrition to [�r; 0℄. Suppose �x(t) is stable. Then the solutions x(t;') of (2.1) startingfrom initial funtions ' lose to �' remains in the neighborhood of �x, where �1 < x(t;') < 1holds. But then de�ne z(t) = x(t) � e3 and �z(t) = �x(t) � e3. Then both z(t) and �z(t) aresolutions of (2.18), moreover the di�erene funtion w(t) = z(t) � �z(t) = x(t) � �x(t) isalso a solution of (2.18). But this is a ontradition, sine in this ase the trivial solutionof (2.18) is unstable, and so w(t) an not be bounded. Therefore solution �x(t) of (2.1) isunstable, and hene it is diÆult to observe it numerially. In Figure 8 we plotted suh asolution starting from the initial funtion '(t) = 0:5e�0:43177t os(2:3706t) (together withsome other solutions). We an see that this solution �rst approahes 0, but after sometime, due to numerial error, it gets o� the unstable equilibrium, and one of the stableequilibrium attrats the solution. We made several numerial runnings to test the stabilityof the equilibrium points in this ase for nononstant initial funtions, and we found thatevery numerial solution tends to e1 or e2.Similarly to Theorem 2.9 and Corollary 2.10 one an prove the following result for ases(iii) and (iv) of Theorem 2.7.Theorem 2.12 Assume (2.3), b > 0, and let e1; e2 and e3 be de�ned by (2.17), and letx(t;') be any solution of (2.1)-(2.2).(i) Suppose 0 < d = a+ b and I = 0. Then(1) if '(t) > 1 for t 2 [�r; 0℄, then limt!1x(t;') = 1,(2) if '(t) < �1 for t 2 [�r; 0℄, then limt!1x(t;') = �1;(ii) Suppose 0 < d = a+ b� jIj and I > 0. Then(1) if '(t) > e2 for t 2 [�r; 0℄, then limt!1x(t;') = e1,(2) if '(t) < e2 for t 2 [�r; 0℄, then limt!1x(t;') = e2;(iii) Suppose 0 < d = a+ b� jIj and I < 0. Then(1) if '(t) > e1 for t 2 [�r; 0℄, then limt!1x(t;') = e1,(2) if '(t) < e1 for t 2 [�r; 0℄, then limt!1x(t;') = e2;Figure 9 studies ase (iii) of Theorem 2.7. Here we an observe that solutions startingfrom di�erent initial funtions tend to a onstant equilibrium (depending on the initialfuntion). In Figure 10 we study ase (iv) of Theorem 2.7. In this ase, as well, thesolutions tend to one of the two equilibrium points.12
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Figure 8: d = 1, a = 0:5, b = 1, � =2, I = 0, '(t) = os(2t) + 1, sin t + 1,0:5e�0:43177t os(2:3706t), 0:01 sin 5t, t2�1,and t� 2, respetively. 0 1 2 3 4 5 6 7 8 9 10
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Figure 9: d = 2, a = �1, b = 3, � = 1,I = 0, '(t) = 2 os t, t + 1:5, os 2t, sin t,t2 � 2, and �3 os 10t, respetively.
Theorem 2.9, 2.12 and our numerial studies suggest that not only in ase (i) and (ii) ofTheorem 2.7, but also in ases (iii){(v) all solutions of (2.1) tend to a onstant equilibrium.Conjeture 2.13 Assume (2.3), b > 0, and 0 < d � a + b � jIj. Then every solution of(2.1)-(2.2) tends to a onstant equilibrium.Finally, onsider the ase when b < 0. In this ase the method of monotone semiows(Theorem 2.5) does not work. Theorem 2.3 implies that e3 is globally asymptotially stableif d > max(a+ jbj+ jIj; 0). We now study the ase whenmax(a+ b+ jIj; 0) < d � a+ jbj+ jIj: (2.19)In this ase Lemma 2.4 yields that e3 is the only equilibrium of (2.1), but it is an openquestion whether this equilibrium point is globally asymptotially stable. Introdue z(t) =x(t) � e3. As we have seen in the proof of Proposition 2.11, z(t) satis�es equation (2.18)until x(t) remains lose to the equilibrium (more preisely, if jx(t)�e3j � 1). It follows fromTheorem 1.1 that the trivial solution of (2.18) is not asymptotially stable independentlyof the delay, as it was in the ase of Theorem 2.3.First onsider an example where d = 2, a = 2 ot 2 + 2 � 1:54234, b = �2= sin 2 ��1:09975, I = 1 and � = 2. Note that these parameters lie on the lower boundary ofthe stability region of the linearized equation (2.18) (see Theorem 1.1 and Figure 1). Inthis ase the trivial solution of (2.18) is stable but not asymptotially stable. Then it isknown that the orresponding linear equation (2.18) has a periodi solution. (It is easy tohek that z(t) = � os t solves (2.18) for any � 2 [�1; 1℄.) First in Figure 11 we have thegraph of a few solutions of the orresponding nonlinear equation (2.1). We found that all13
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Figure 10: d = 1, a = �1, b = 3, � = 1,I = 1, '(t) = 4� t2, t+1, t3, 0:5 sin 5t� 1,and �3 os 2t, respetively. 0 5 10 15 20 25 30
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Figure 11: d = 2, a = 1:54234, b =�1:09975, I = 1, � = 2, and '(t) = t2 + 2,0:7+0:1 sin t, 0:4, �0:5 os 2t and t� 1, re-spetively.the numerially observable solutions (exept the onstant equilibrium) are asymptotiallyperiodi.In the next example we use parameter values d = 2, a = 1:54234, b = �0:8, I = 1,and � = 2. Then it is easy to hek that the linear equation (2.18) has an asymptotiallystable trivial solution, therefore equilibrium e3 of the nonlinear equation (2.1) is loallyasymptotially stable, as well. Based on our numerial studies we onjeture that in this asee3 is also globally asymptotially stable. We plotted some solutions of the orrespondingequation (2.1) in Figure 12.Finally, onsider parameter values d = 1, a = 0:5, b = �2, I = 0, and � = 2. Then thezero solution of the linear equation (2.18) is unstable (see Figure 1). We found that thesolutions of the nonlinear equations are asymptotially periodi. We an see some solutionsof (2.1) in Figure 13. Of ourse, as in Proposition 2.11, we an �nd solutions of (2.18)whih tend to 0. E.g., z(t) = 0:3e�0:8146t os(10:19475t) is a solution of (2.18), thereforex(t) = z(t) is a solution of (2.1). In Figure 13 we plotted a numerial solution starting fromthis initial funtion. We an see that the numerial solution �rst follows the analytialsolution x(t), but after some time, due to numerial errors, a periodi solution attrats it.Based on numerial studies we made the following onjeture on the asymptoti behaviorof the solution.Conjeture 2.14 Assume (2.3) and (2.19). If the trivial solution of the orrespondinglinear equation (2.18) is asymptotially stable, then e3 is a globally stable equilibrium of(2.1). Otherwise, \most of the solutions" of (2.1) are asymptotially periodi.
14
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Figure 12: d = 2, a = 1:54234, b = �0:8,I = 1, � = 2, and '(t) = 3 os t, t + 2,sin 5t� 0:5 and �1:5, respetively. 0 5 10 15 20 25 30
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Figure 13: d = 1, a = 0:5, b = �2,� = 2, I = 0, and '(t) = t3 � t + 1,0:3e�0:8146t os(10:19475t), and �1:5 os 3t,respetively.3 Numerial ApproximationIn this setion we de�ne two numerial shemes to approximate the solutions of (2.1).Our �rst method is the hain method, whih was �rst introdued by Repin [22℄ andJanushevski [15℄, and later was also used in [10℄ and [12℄. We an rewrite (2.1) in the formddt�x(t) + bZ tt�� f(x(s)) ds� = �dx(t) + (a+ b)f(x(t)) + I; t � 0:Fix a positive integer N , introdue the stepsize h = �=N , and to this equation we assoiatethe system of ODEs_y(N;0)(t) = �dy(N;0)(t) + af(y(N;0)(t)) + I + 1hy(N;N)(t) (3.1)_y(N;1)(t) = �1hy(N;1)(t) + bf(y(N;0)(t)) (3.2)_y(N;i)(t) = �1hy(N;i)(t) + 1hy(N;i�1)(t); i = 2; : : : ; N; (3.3)y(N;0)(0) = '(0); (3.4)y(N;i)(0) = Z �(i�1)h�ih bf('(s)) ds; i = 1; : : : ; N; (3.5)It an be shown (see the details in [12℄) thatlimN!1 jy(N;0)(t)� x(t)j = 0; limN!1 �����y(N;i)(t)� Z t�(i�1)ht�ih bf(x(s)) ds����� = 0; i = 1; : : : ; N:
15



Example 3.1 Consider the IVP_x(t) = �x(t) + f(x(t))� f(x(t� 1)); t � 0; (3.6)x(t) = 2; t 2 [�1; 0℄ (3.7)Its solution an be omputed using the method of steps:
x(t) =

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

2 t 2 [�1; 0℄;2e�t t 2 (0; log 2℄�t+ 1:69314718 t 2 (log 2; 1 + log 2℄0:5t2 � 2:69314718t + 3:12652087 t 2 (1 + log 2; 2 + log 2℄�0:166666667t3 + 1:84657359t2 � 6:31966805t6:38210568; t 2 (2 + log 2; 3 + log 2℄0:0416666667t4 � 0:782191197t3 + 5:25640762t2�14:5483473t + 14:1334177; t 2 (3 + log 2; 4 + log 2℄�0:00833333334t5 + 2372144659t4 � 2:61766040t3+13:8705347t2 � 34:9286972t + 33:1065757 t 2 (4 + log 2; 5 + log 2℄0:0013888889t6 � 0:0557762265t5 + 0:9124628997t4�7:743378692t3 + 35:75663620t2 � 84:76901587t+80:39795420 t 2 (5 + log 2; 6 + log 2℄In this example we used sheme (3.1){(3.5) to get approximate solution of IVP (3.6)-(3.7).In Table 1 we ompared the numerial results to the true solution. We an observe linearonvergene to the true solution.Table 1: Chain method.h N jy(N;0)(2)� x(2)j jy(N;0)(4)� x(4)j jy(N;0)(6)� x(6)j0.250000 5 0.090714 0.119166 0.0337560.111111 10 0.047653 0.066927 0.0298300.020408 50 0.009849 0.014230 0.0081600.010101 100 0.004756 0.007093 0.0041730.005025 200 0.002219 0.003469 0.002072Our next sheme is based on the method of lines, whih is used frequently to approx-imate PDEs (see, e.g., [29℄ and the referenes therein), and was used in [10℄ to approximateFDEs. Let u(t; s) = x(t� s), then (2.1) is equivalent to�u�t (t; s) + �u�s (t; s) = 0; 0 � s � �; t � 0 (3.8)�u�t (t; 0) = �du(t; 0) + af(u(t; 0)) + bf(u(t; �)) + I; t � 0 (3.9)16



Let N be �xed, and h = �=N . Consider the system of ODEs_v(N;0)(t) = �dv(N;0)(t) + af(v(N;0)(t)) + bf(v(N;N)(t)) (3.10)_v(N;i)(t) = �1hv(N;i)(t) + 1hv(N;i�1)(t); i = 1; : : : ; N; (3.11)v(N;i)(0) = '(�ih); i = 0; : : : ; N: (3.12)Then one an show (see details in [10℄) that limN!1 jv(N;i)(t)� u(t; ih)j = 0, i = 0; : : : ; N .The shemati piture of the hain method and the method of lines an be seen in Figures14 and 15, respetively. It an bee seen that the di�erene between the two methods is theomputation of the �rst and seond omponents, and the de�nition of the initial values ofthe variables.

Figure 14: hain method Figure 15: method of linesExample 3.2 Consider again IVP (3.6)-(3.7), and now we we use sheme (3.1){(3.5) toget its approximate solution. In Table 2 we ompared the numerial results to the truesolution. We an observe linear onvergene to the true solution.Referenes[1℄ S. Arik, V. Tavanoglu, Equilibrium analysis of nonsymmetri CNNs, Internat. J. Cir-uit Theory Appl. 34 (1996) 269{274.[2℄ T. A. Burton, Averaged networks, Neural Networks 6 (1993) 677{680.[3℄ S. A. Campbell, Stability and bifuration of a simple neural network with multipletime delays, Fields Inst. Commun. 21 (1999) 65{79.[4℄ J. Cao, Global exponential stability and periodi solutions of delayed ellular neuralnetworks, J. Comput. System Si. 60 (2000) 38{46.17
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