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not in the ontext of equi-stability. The results of Setion 2 will extend some of our earlierworks in this diretion [9℄, [11℄.Setion 4 will ontain appliations of the results of the omparison priniple of Setion3 and the perturbation results of Setion 2. Inspired by some earlier results given for linearequations in the papers [14℄ and [20℄ and for state-dependent equations in [8℄ we prove somesimilar, sometimes more general stability results fo nonlinear equations. It worth to notethat our method works for threshold-type di�erential equations, as well. To the best of ourknowledge our approah is original in the stability investigation of suh equations.2 Perturbation ResultsFirst we introdue some basi notations used throughout this paper: a positive integer nand r > 0 are �xed. Let A = (aij) and B = (bij) be matries of the same dimension.By the notation A � B we mean that relation aij � bij holds for all i and j, and bymax(A;B) we denote a matrix with the ij-th omponent max(aij ; bij). Let j � j denote a�xed vetor norm on Rn suh that the orresponding indued matrix norm on Rn�n (whihis denoted by j � j, as well) is monotone, i.e., it satis�es jAj � jBj for matries 0 � A � B,and jAj = jmax(A;�A)j. For example the j � j1 or j � j1 norms satisfy these properties. Wedenote the spae of ontinuous funtions  : [�r; 0℄ ! Rn equipped with the supremumnorm k k � maxfj (t)j : t 2 [�r; 0℄g by C, and the identially zero funtion of C by 0.For a funtion x : [�r;1) ! R we de�ne xt : [�r; 0℄ ! Rn , xt(s) � x(t+ s) for t � 0 and�r � s � 0.Consider the linear delay systems_x(t) = A(t)x(t� �(t)); t � 0 (2.1)and _y(t) = B(t)y(t� �(t)); t � 0; (2.2)with the respetive initial onditionsx(t) = '(t); t 2 [�r; 0℄ (2.3)and y(t) = '(t); t 2 [�r; 0℄: (2.4)Throughout this paper ' 2 C, and we assume(H1) A;B : [0;1)! Rn�n are ontinuous funtions;(H2) the delay funtions �; � : [0;1)! R are ontinuous, and0 � �(t) � (t) and 0 � �(t) � (t); t � 0for some ontinuous  : [0;1) ! R satisfying 0 � (t) � t+ r and lim inf t!1t�(t) > 0. 2



The solution of (2.1) orresponding to the initial time 0 and the initial funtion ' isdenoted by x(t;'). If we want to emphasize that the solution orresponds to the oeÆientA and the delay � we use the more detailed notation x(t;';A; �).The trivial solution (i.e., x = 0) of the linear equation (2.1) is exponentially stable withorder � > 0, if there exists a onstant K� � 1 suh that the solution of (2.1) orrespondingto initial funtion ' satis�es jx(t;')j � K�e��tk'k; t � 0: (2.5)We will onsider B and � to be �xed suh that the trivial solution of (2.2) be exponen-tially stable. Equation (2.1) is onsidered as a perturbed equation of (2.2), i..e., we assumethat A and � are \lose" to B and �, respetively. We will show in Theorem 2.2 that ifthe perturbations are \small enough", then the exponential stability of (2.2) is preservedfor (2.1).Preservation of stability under delay perturbation has been studied, e.g., in [2℄, [5℄,[11℄ and [19℄. In these papers it was assumed that the delays and the oeÆients arebounded. We relax this ondition in this setion. Our Theorem 2.2 extends the resultsof [11℄ using the approah of [8℄. Note that it was shown in [2℄ that there always existsa \neighborhood" of B and � inside whih the exponential stability is preserved, but theproof gives only the existene of suh a \neighborhood", not the size of it. We will de�nethe \neighborhood" expliitly. Moreover, in Theorem 2.3 we de�ne suh a \neighborhood",inside whih the exponential stability of the orresponding equation is uniform with respetto the parameters, i.e., the onstants K� and � in the de�nition of the exponential stabilityan be seleted independently of the parameters. This is the result we will need in Setion 4.In the proof of our main theorem we need the following estimate whih an be provedeasily by using Gronwall's inequality (see, e.g., Lemma 2.1 in [8℄).Lemma 2.1 Assume (H1) and (H2). Then the solution x of the initial value problem(2.1)-(2.3) satis�es jx(t)j � eR t0 jA(s)j dsk'k (2.6)for all t � 0.Next we prove the main result of this setion.Theorem 2.2 Assume (H1) and (H2), and the trivial solution of (2.2) is exponentiallystable with order � > 0. Then for any 0 < � < � there exists " > 0 suh that iflimt!1 jA(t)�B(t)je�(t) + jB(t)je�(t) �����Z t��(t)t��(t) jB(s)je�(s) ds�����! < "; (2.7)then the trivial solution of the orresponding equation (2.1) is exponentially stable with order�, i.e., there exists K� � 1 suh thatjx(t;')j � K�e��tk'k; t � 0: (2.8)3



Proof We an rewrite (2.1) in the form_x(t) = B(t)x(t� �(t)) + f(t);where f(t) � A(t)x(t� �(t)) �B(t)x(t� �(t)):Let V be the fundamental solution of (2.2), i.e., the matrix valued solution of the initialvalue problem �V�t (t; s) = B(t)V (t� �(t); s); t � s;V (t; s) = � I; t = s;0; t < s;where I and 0 is the identity and the zero matrix, respetively. Then the variation-of-onstants formula (see, e.g., [13℄) impliesx(t) = y(t) + Z t0 V (t; s)f(s) ds; t � 0: (2.9)It is known (see, e.g., [13℄) that the assumed exponential stability with order � of the trivialsolution of (2.2) implies that there exist onstants � > 0, K� � 1 and ~K� � 1 suh that yand V satisfyjy(t;')j � K�e��tk'k; and jV (t; s)j � ~K�e��(t�s) for t � s: (2.10)Therefore we get from (2.9) for any t1 > 0 thatjx(t)j� jy(t)j+ Z t0 jV (t; s)jjf(s)j ds� ( K�e��tk'k + ~K�e��t R t10 e�sjf(s)j ds; t 2 [0; t1℄K�e��tk'k + ~K�e��t �R t10 e�sjf(s)j ds+ R tt1 e�sjf(s)j ds� ; t > t1: (2.11)Let 0 < � < � be �xed, " � �� �~K� ; (2.12)and let A and � be suh that (2.7) holds. We introdue the simplifying notationd � limt!1 jA(t) �B(t)je�(t) + jB(t)je�(t) �����Z t��(t)t��(t) jB(s)je�(s) ds�����! ;and let Æ > 0 be suh that d+ Æ < ", and let t1 > 0 be suh that the inequalitiest� �(t) � 0; t� �(t) � 0; t � t1 (2.13)4



and jA(t)�B(t)je�(t) + jB(t)je�(t) �����Z t��(t)t��(t) jB(s)je�(s) ds����� < d+ Æ; t � t1 (2.14)hold. Let t > t1. Then (2.11) and the de�nition of f yieldjx(t)j � K�e��tk'k+ ~K�e��t Z t10 e�s(jA(s)jjx(s � �(s))j+ jB(s)jjx(s� �(s))j) ds+ ~K�e��t Z tt1 e�sjA(s)�B(s)jjx(t� �(s))j ds+ ~K�e��t Z tt1 jB(s)jjx(s� �(s))� x(s� �(s))j ds: (2.15)The �rst integral of the right-hand-side of (2.15) an be estimated using Lemma 2.1 as~K�e��t Z t10 e�s(jA(s)jjx(s � �(s))j+ jB(s)jjx(s� �(s))j) ds � Ce��tk'k; (2.16)where C is de�ned byC � ~K�� maxs2[0;t1℄ jA(s)jeR t10 jA(s)j ds + maxs2[0;t1℄ jB(s)jeR t10 jB(s)j ds� e�t1 � 1� : (2.17)We have x(s � �(s)) � x(s � �(s)) = R s��(s)s��(s) _x(u) du for s � t1 by (2.13). Therefore thethird integral of the right-hand-side of (2.15) an be rewritten as~K�e��t Z tt1 jB(s)jjx(s� �(s))� x(s� �(s))j ds= ~K�e��t Z tt1 e�sjB(s)j �����Z s��(s)s��(s) _x(u) du����� ds� ~K�e��t Z tt1 e�sjB(s)j �����Z s��(s)s��(s) jA(u)jjx(u � �(u))j du����� ds: (2.18)Multiplying both sides of (2.15) by e�t, using the estimates (2.16) and (2.18), and intro-duing z(t) � e�tjx(t)j we get for t > t1z(t) � (K� + C)k'k + ~K�e��t+�t Z tt1 e�sjA(s)�B(s)jz(s� �(s))e��(s��(s)) ds+ ~K�e��t+�t Z tt1 e�sjB(s)j �����Z s��(s)s��(s) jB(u)jz(u � �(u))e��(u��(u)) du����� ds� (K� + C)k'k + ~K�e�(���)t max�r�u�t z(u)Z tt1 e(���)sjA(s)�B(s)je��(s) ds+ ~K�e�(���)t max�r�u�t z(u)Z tt1 e(���)sjB(s)j �����Z s��(s)s��(s) jB(u)je��(u�s��(u)) du�����ds:(2.19)5



Suppose �(s) � �(s). Then ��(s) � u � s � ��(s) for u 2 [s � �(s); s � �(s)℄, and sos � u � �(s). In the ase when �(s) � �(s) relation s � u � �(s) follows similarly foru 2 [s� �(s); s��(s)℄, hene in both ases s�u � (s). Therefore (2.19) and (2.14) implyz(t) � (K� + C)k'k+ ~K�e�(���)t max�r�u�t z(u)Z tt1 e(���)sjA(s)�B(s)je�(s) ds+ ~K�e�(���)t max�r�u�t z(u)Z tt1 e(���)sjB(s)j �����Z s��(s)s��(s) jB(u)je�((s)+(u)) du�����ds� (K� + C)k'k+ ~K�e�(���)t max�r�u�t z(u)(d + Æ)Z tt1 e(���)s ds= (K� + C)k'k+ ~K�e�(���)t max�r�u�t z(u)(d + Æ)e(���)t � e(���)t1�� �� (K� + C)k'k+ d+ Æ" max�r�u�t z(u): (2.20)It is easily follows from (2.11) that (2.20) holds for t 2 [0; t1℄, as well. Sine the right-hand-side of (2.20) is monotone in t, and z(t) = e�tj'(t)j � k'k � K�k'k for t � 0, therefore(2.20) yields max�r�u�t z(u) � (K� + C)k'k+ d+ Æ" max�r�u�t z(u);and hene z(t) � max�r�u�t z(u) � K�k'k, whereK� � K� + C1� d+Æ" : (2.21)This implies that jx(t)j � K�e��tk'k for t � 0. 2Next we give onditions when the onstant K� in (2.8) is independent of the seletion ofthe oeÆient matrix A and the delay � satisfying (2.7), i.e., the trivial solution of (2.1) isexponentially equi-stable with respet to A and � satisfying (2.7) (see the formal de�nitionin Setion 3 below).Theorem 2.3 Assume (H1) and (H2), and the trivial solution of (2.2) is exponentiallystable with the order � > 0. Let ~K� be suh that the fundamental solution V of (2.2)satis�es jV (t; s)j � ~K�e��(t�s) for t � s, and let 0 < � < � be �xed. Suppose the funtions�+;�� : [0;1)! Rn�n and �+;�� : [0;1)! R are suh that0 � �+(t); 0 � ��(t); 0 � ��(t) � �(t); 0 � �+(t) � (t)� �(t) for t � 0;(2.22)andlimt!1 jmax(�+(t);��(t))je�(t) + jB(t)je�(t) Z t��(t)+��(t)t��(t)��+(t) jB(s)je�(s) ds! < �� �~K� :(2.23)6



Suppose the parameters A : [0;1)! Rn�n and � : [0;1)! R belong to the set� � n(A; �) : B(t)� ��(t) � A(t) � B(t) + �+(t) and�(t)���(t) � �(t) � �(t) + �+(t) for t � 0o: (2.24)Then there exists K� � 1 suh thatjx(t;';A; �)j � K�e��tk'k; t � 0; (A; �) 2 �;i.e., for any (A; �) 2 � the trivial solution of the orresponding equation (2.1) is exponen-tially stable with order �, and the onstant K� is independent of the parameters (A; �) 2 �.Proof If (A; �) 2 � then � satis�es (H2). We denote ij-th element of the matries A(t),B(t), �+(t) and ��(t) by aij(t), bij(t), +ij (t) and �ij (t), respetively. The de�nition of� yields that jaij(t) � bij(t)j � max(+ij (t); �ij (t)) for all i and j, therefore the assumedproperties of the matrix norm implies jA(t) � B(t)j � jmax(�+(t);��(t))j for all t � 0.Therefore we havejA(t)�B(t)je�(t) + jB(t)je�(t) �����Z t��(t)t��(t) jB(s)je�(s) ds������ jmax(�+(t);��(t))je�(t) + jB(t)je�(t) Z t��(t)+��(t)t��(t)��+(t) jB(s)je�(s) ds; (2.25)whih, together with (2.12) and (2.23), implies that A and � satisfy (2.7). Therefore theonstant K� de�ned by (2.21) in the proof of Theorem 2.2 satis�es (2.8). We have toshow that K� an be de�ned independently of the partiular hoie of (A; �) 2 �. Forthis (see (2.21) and (2.17)) it is enough to prove that C an be seleted independently of(A; �) 2 �. In view of the inequality jA(t)j � jB(t)j + jmax(�+(t);��(t))j (t � 0) and(2.17), we have to show only that t1 an be independent of A and �. We reall that t1 isde�ned by inequalities (2.13) and (2.14). Assumption (H2) yields that t � �(t) � t� (t)and t � �(t) � t� (t) for t � 0, therefore t1 an be hosen so that (2.13) be satis�ed forany seletion of the delays. It follows from (2.25) that t1 an be suh that (2.14) holds forany (A; �) 2 �, whih ompletes the proof of this theorem. 2Remark 2.4 It is easy to see that the funtion�"(t) � ( 1; jB(t)j = 0;min�1; "3jB(t)je�(t)maxfjB(s)je�(s): s2[t��(t)�1;t��(t)+1℄g� ; jB(t)j 6= 0 (2.26)satis�es limt!1jB(t)je�(t) Z t��(t)+�"(t)t��(t)��"(t) jB(s)je�(s) ds < ":Therefore if the trivial solution of (2.2) is exponentially stable, there always exists a \neigh-borhood" of (B; �) of the form (2.24) suh that the trivial solution of (2.1) orresponding tooeÆient A and delay � from this neighborhood is exponentially stable, as well.7



Corollary 2.5 If the delay funtions are bounded, i.e.,  in (H2) is (t) � r, then thestatement of Theorem 2.3 remains valid when ondition (2.23) is replaed bylimt!1 jmax(�+(t);��(t))je�r + e2�rjB(t)jZ t��(t)+��(t)t��(t)��+(t) jB(s)j ds! < �� �~K� :If, in addition, jB(t)j � b0 for t � 0, then �+;��;�+ and �� an be seleted as �+(t) =��(t) = � is a omponentwise nonnegative onstant matrix, �+(t) = ��(t) = � is anonnegative onstant satisfying j�je�r + 2�b20e2�r < �� �~K� : (2.27)We note that if j�j+ 2�b20 < �~K� ;then relation (2.27) holds, as well, for some 0 < � < �.The results of this setion an be immediately generalized to linear equations of theform _x(t) = mXk=1Ak(t)x(t� �k(t)); t � 0; (2.28)where the funtions Ak and �k satisfy onditions (H1) and (H2), respetively, for all k =1; : : : ;m with bounds k. We formulate the generalization of Theorem 2.3 for this equation.Theorem 2.2 an be stated similarly.Theorem 2.6 Assume Bk and �k satisfy onditions (H1) and (H2) with k, respetively,and suppose the trivial solution of_x(t) = mXk=1Bk(t)x(t� �k(t)); t � 0 (2.29)is exponentially stable with the order �. Let ~K� be suh that the fundamental solution Vof (2.29) satis�es jV (t; s)j � ~K�e��(t�s) for t � s, let 0 < � < � be �xed. Suppose thefuntions �+k ;��k : [0;1)! Rn�n and �+k ;��k : [0;1)! R are suh that0 � �+k (t); 0 � ��k (t); 0 � ��k (t) � �k(t); 0 � �+k (t) � k(t)� �k(t)for t � 0, k = 1; : : : ;m, andlimt!1� mXk=1 jmax(�+k (t);��k (t))je�k(t)+ mXk=1 jBk(t)je�k(t) Z t��k(t)+��k (t)t��k(t)��+k (t) jBk(s)je�k(s) ds� < �� �~K� :8



De�ne the parameter set� � n(A1; : : : ; Am; �1; : : : ; �m) : Bk(t)� ��k (t) � Ak(t) � Bk(t) + �+k (t) and�k(t)���k (t) � �k(t) � �k(t) + �+k (t) for t � 0; k = 1; : : : ;mo:Then there exists K� � 1 suh thatjx(t;';A1; : : : ; Am; �1; : : : ; �m)j � K�e��tk'k; t � 0; (A1; : : : ; Am; �1; : : : ; �m) 2 �:3 Equi-Stability with respet to a Set of ParametersIn Setion 2 we studied a linear delay equation where we onsidered the oeÆient and thedelay funtion as parameters in the equation. In Theorem 2.3 we gave onditions when thesolution tends to zero exponentially, and when the onstants in the exponential estimatean be seleted independently of the partiular hoie of the parameters. In this setion westudy this \independene from the parameters" in a more general form. We introdue thenotion of equi-stability with respet to a set of parameters, and then prove our omparisonpriniple for a ertain lass of funtional di�erential equations. Consider_y(t) = g(t; yt; p); t � 0 (3.1)with initial ondition y(t) = '(t); t 2 [�r; 0℄; (3.2)where g : [0;1) � 
 � U ! Rn , 
 � C inluding the zero funtion 0, the parameter pbelongs to a ertain parameter set U , and g(t;0; p) = 0 for all t � 0 and p 2 U . Notethat in the appliations we will show in Setion 4 and in the next theorem the set U willbe a subset of a funtion spae, but for the sake of the following de�nitions U an be anarbitrary set without any struture in it. A solution of (3.1){(3.2) orresponding to initialfuntion ' and parameter p 2 U is denoted by y(t) = y(t;'; p).We say that the trivial (y = 0) solution of (3.1){(3.2) is equi-stable with respet toU , if for any " > 0 there exists Æ = Æ(") > 0 suh that jy(t;'; p)j < " for any t � 0,k'k < Æ and p 2 U . We say that the trivial solution of (3.1){(3.2) is asymptotially equi-stable with respet to U , if it is equi-stable with respet to U , and there exists � > 0 thatlimt!1 y(t;'; p) = 0 for k'k < � and p 2 U . We say that the trivial solution of (3.1){(3.2)is exponentially equi-stable with respet to U , if for any " > 0 there exist Æ = Æ(") > 0,K = K(") � 1 and � = �(") > 0 suh that jy(t;'; p)j < Ke��tk'k for any t � 0, k'k < Æand p 2 U .Consider the funtional di�erential equation_x(t) = f(t; xt; xt); t � 0; (3.3)with initial ondition x(t) = '(t); t 2 [�r; 0℄; (3.4)where 9



(A) f : [0;1) � 
1 � 
2 ! Rn is ontinuous, 
1 and 
2 are open subsets of C bothontaining the identially zero funtion 0, and f(t;0; u) = 0 for t 2 [0;1) and u 2 
2.Let % > 0 be �xed, and S(%) denote the set of ontinuous funtions u : [�r;1) ! Rnsatisfying ju(t)j � % for t � �r. Suppose % is small enough to satisfy S(%) � 
2, and �x afuntion u 2 S(%). We assoiate the equation_y(t) = f(t; yt; ut); t � 0; (3.5)to the funtion u and to Equation (3.3) with the initial ondition (3.2) orresponding to(3.4). A solution of (3.5){(3.2) orresponding to initial funtion ' and the funtion u 2 S(%)is denoted by y(t) = y(t;'; u). Assumption (A) yields that the identially zero funtion isa solution of both initial value problems (3.3){(3.4) and (3.5){(3.2).The next theorem shows that the equi-stability of the trivial solution of (3.5) impliesthe stability of the trivial solution of (3.3).Theorem 3.1 Assume (A), let % > 0 be suh that S(%) � 
2, and u 2 S(%). Then(i) if the trivial solution of (3.5) is equi-stable with respet to S(%), then the trivial solutionof (3.3) is stable, as well;(ii) if the trivial solution of (3.5) is asymptotially equi-stable with respet to S(%), thenthe trivial solution of (3.3) is asymptotially stable, as well;(iii) if the trivial solution of (3.5) is exponentially equi-stable with respet to S(%), thenthe trivial solution of (3.3) is exponentially stable, as well.Proof (i) Fix any 0 < " < %, and let 0 < Æ < % be a onstant orresponding to " inthe de�nition of equi-stability with respet to S(%) of the trivial solution of (3.5). Let 'satisfy k'k < Æ, and let x(t) = x(t;') be any orresponding solution of (3.3){(3.4). Sine,by assumption, jx(0)j < %, the ontinuity of x yields that jx(t)j < % for t > 0 lose to 0.Suppose there exists T > 0 suh that jx(t)j < % for t 2 [0; T ) and jx(T )j = %. De�neu(t) = � x(t); t 2 [�r; T );x(T ); t � T:Then u 2 S(%). Let y(t) = y(t;'; u) be the solution of the orresponding (3.5){(3.2). Bythe equi-stability with respet to S(%) of (3.5), jy(t;'; u)j < " < % for t � 0. On the otherhand, y(t) = x(t) for t 2 [0; T ). Therefore, by ontinuity, jx(T )j = jy(T )j = % gives aontradition to the de�nition of T . Hene jx(t)j = jy(t)j < " for t � 0, whih proves (i).(ii) By part (i) the trivial solution of (3.3) is stable, therefore there exists Æ > 0 suhthat jx(t;')j < % for t � 0 and k'k < Æ. The asymptoti equi-stability of (3.5) implies theexistene of � > 0 that limt!1 y(t;'; u) = 0 for k'k < � and u 2 S(%). Let u(t) = x(t;')for a �xed ' satisfying k'k < �, then u 2 S(%). Therefore limt!1 x(t) = 0, as well, sinex(t;') = y(t;'; u). 10



(iii) As in part (ii), there exists Æ0 > 0 suh that jx(t;')j < % for t � 0, k'k < Æ0.By assumption, there exist Æ > 0, K � 1 and � > 0 suh that jy(t;'; u)j � Ke��tk'kfor t � 0, k'k < Æ and u 2 S(%). But for k'k < minfÆ0; Æg and u = x(�;') we havex(t;') = y(t;'; u), and so jx(t;')j � Ke��tk'k, t � 0. 2Theorem 3.1 an be applied for example for state-dependent delay equations of the form_x(t) = h(t; x(t); x(t � �(t; xt))); t � 0; (3.6)where the delay funtion � : [0;1)�C ! R is ontinuous, and 0 � �(t;  ) � t+ r for t � 0and  2 C and h(t; 0; 0) = 0, t � 0. The assoiated state-independent delay equation to(3.6) is _y(t) = h(t; y(t); y(t � �(t; ut))); t � 0: (3.7)Therefore some type of equi-stability of the trivial solution of (3.7) implies the same type ofstability of the trivial solution of (3.6). We note that suh results an be generalized for forstate-dependent delay equations with multiple delays, and for other lasses of di�erentialequations, e.g., for equations with unbounded delays, (i.e., where the initial interval is[�r; 0℄ = (�1; 0℄) or for neutral di�erential equations. The appliability of these theoremsdepends on if we an give onditions implying equi-stability of the assoiated equation.In the next setion we will present suh onditions for several lasses of delay equationsinluding equations with state-dependent delays.4 AppliationsIn our �rst example we give a ondition implying the equi-stability of a ertain delayequation. Consider the linear delay equation_x(t) = � mXi=1 ai(t; p)x(t� �i(t)); t � 0; (4.1)where p is a parameter in the equation belonging to a ertain set U .Theorem 4.1 Let r > 0, and assume �i : [0;1) ! [0; r℄ and ai : [0;1) � U ! [0;1) fori = 1; : : : ;m, and there exist onstants 0 � dik < 1 (i; k = 1; : : : ;m), T � r and K > 0suh that Z tt��i(t) ak(s; p) ds � dik; t � T; p 2 U ; i; k = 1 : : : ;m;where mXi;k=1dik < 1; (4.2)and Z T0 mXi=1 ai(s; p) ds � K; p 2 U :11



(i) Then the trivial solution of (4.1) is equi-stable with respet to U .(ii) If we assume further that R10 Pmj=1 aj(s; p) ds =1 for p 2 U , then the trivial solutionof (4.1) is asymptotially equi-stable with respet to U .(iii) If, moreover, there exists � > 0 suh thatZ ts ai(s; p) ds � �(t� s) for t � s � 0; p 2 U and i = 1; : : : ;m;then the trivial solution of (4.1) is exponentially equi-stable with respet to U .Proof (i) Fix p 2 U . We have_x(t) = � mXi=1 ai(t; p)! x(t) + mXi=1 ai(t; p)(x(t) � x(t� �i(t))); t � 0:Using the variation-of-onstant formula for ODEs we getx(t) = e� R t0 Pmi=1 ai(s;p) dsx(0) + mXi=1 Z t0 e� R ts Pmj=1 aj(u;p) duai(s; p)(x(s) � x(s� �i(s))) ds:Using t� �i(t) � 0 for t � T � r and i = 1; : : : ;m, Equation (4.1) yields for t � Tx(t) = e� R t0 Pmi=1 ai(s;p) dsx(0) + mXi=1 Z T0 e� R ts Pmj=1 aj(u;p) duai(s; p)(x(s) � x(s� �i(s))) ds� mXi=1 Z tT e� R ts Pmj=1 aj(u;p) duai(s; p)Z ss��i(s) mXk=1 ak(u; p)x(u � �k(u)) du ds:A simple generalization of Lemma 2.1 to Equation (4.1) impliesjx(t)j � eR T0 Pmj=1 aj(s;p) dsk'k � eKk'k; t 2 [0; T ℄; p 2 U ;therefore, for t � Tjx(t)j � e� R t0 Pmj=1 aj(s;p) dsjx(0)j + 2eKk'k mXi=1 Z T0 e� R ts Pmj=1 aj(u;p) duai(s; p) ds+ mXi=1 Z tT e� R ts Pmj=1 aj(u;p) duai(s; p)Z ss��i(s) mXk=1 ak(u; p)jx(u � �k(u))j du ds (4.3)� e� R t0 Pmj=1 aj(s;p) dsjx(0)j + 2eKk'k�e� R tT Pmj=1 aj(u;p) du � e� R t0 Pmj=1 aj(u;p) du�+ max�r�s�t jx(s)j mXi;k=1Z tT e� R ts Pmj=1 aj(u;p) duai(s; p)Z ss��i(s) ak(u; p) du ds� �1 + 2eK� k'k + max�r�s�t jx(s)j mXi;k=1 dik Z tT e� R ts ai(u;p) duai(s; p) ds12



= �1 + 2eK� k'k + max�r�s�t jx(s)j mXi;k=1 dik �1� e� R tT ai(u;p) du� (4.4)� �1 + 2eK� k'k + max�r�s�t jx(s)j mXi;k=1 dik:Note that the last inequality holds for t 2 [�r; T ℄, as well. It follows thereforemax�r�s�t jx(s)j � �1 + 2eK� k'k+ d max�r�s�t jx(s)j;where d � mXi;k=1dik < 1;hene jx(t)j � max�r�s�t jx(s)j � 1 + 2eK1� d k'k;whih yields the stability of the trivial solution of (4.1).(ii) Let x be any �xed solution of (4.1), then, by part (i), limt!1jx(t)j is �nite. Let " > 0be �xed, and let t1 > T be suh that jx(t)j � limt!1jx(t)j+ " for t � t1� r. Similarly to (4.4)one an easily obtainjx(t)j � e� R tt1Pmj=1 aj(s;p) dsjx(t1)j+ ( lims!1jx(s)j+ ") mXi;k=1 dik �1� e� R tt1 ai(s;p) ds� ; t � t1:(4.5)Then taking the limit as t!1 we getlims!1jx(s)j � d( lims!1jx(s)j+ ");or equivalently, lims!1jx(s)j � d"1� d;whih yields limt!1 x(t) = 0, sine " > 0 was arbitrary.To prove part (iii) �x 0 < � < � suh thatde2�r �1 + ��� �� < 1;and introdue z(t) = jx(t)je�t. Multiplying both sides of (4.3) by e�t and using thate� R t0 Pmj=1 aj(s;p) ds � e��t; t � 0; p 2 U ;
13



we getz(t) � k'k + 2eKk'ke�t �e� R tT Pmj=1 aj(u;p) du � e� R t0 Pmj=1 aj(u;p) du�+ e�t mXi;k=1Z tT e� R ts Pmj=1 aj(u;p) duai(s; p)� Z ss��i(s)ak(u; p)jz(u � �k(u))je��(u��k(u)) du ds� k'k + 2eKk'keR T0 Pmj=1 aj(u;p) du+ e�r max�r�s�t z(s) mXi;k=1Z tT e� R ts ai(u;p) du+�tai(s; p)e��(s��i(s)) Z ss��i(s) ak(u; p) du ds� (1 + 2e2K)k'k + e2�r max�r�s�t z(s) mXi;k=1 dik Z tT e� R ts ai(u;p) du+�(t�s)ai(s; p) ds:Integration by parts and inequality e� R ts ai(s;p) ds � e��(t�s) yieldz(t) � (1 + 2e2K)k'k+ e2�r max�r�s�t z(s) mXi;k=1 dik�1� e� R tT ai(u;p) du+�(t�T )+� Z tT e� R ts ai(u;p) due�(t�s) ds�� (1 + 2e2K)k'k+ e2�r max�r�s�t z(s) mXi;k=1 dik�1 + � Z tT e(���)(s�t) ds�� (1 + 2e2K)k'k+ e2�r max�r�s�t z(s)d�1 + ��� ��;whih implies easily z(t) �M�k'k, whereM� � 1 + 2e2K1� de2�r �1 + ����� :This therefore means that jx(t)j �M�e��tk'k, i.e., the trivial solution of (4.1) is exponen-tially equi-stable with respet to U . 2It has been shown in [14℄ by Krisztin (as a speial ase of a result proved for distributeddelay ase) that the trivial solution of the salar equation_x(t) = � mXi=1 ai(t)x(t� �i(t)); t � 0 (4.6)is asymptotially stable, if 0 � ai(t) � �i and 0 � �i(t) � qi for t � 0, andmXi=1 �iqi < 1:14



Yoneyama [20℄ proved the asymptoti stability of the trivial solution of the equation_x(t) = �a(t)x(t� �(t)); t � 0 (4.7)under the integral ondition that0 < inft�0 Z tt��0 a(s) ds � supt�0 Z tt��0 a(s) ds < 32 ;when 0 � a(t) and 0 � �(t) � �0 for t � 0. Our Theorem 4.1 was motivated by Yoneyama'sondition and reformulates Krisztin's result using integral ondition. Note that the upperlimit 32 in the above ondition was inreased in [9℄ (but at the same time the lower limit 0had to be inreased, as well), where it was shown that if R10 a(s) ds =1 and the funtiont 7! R t0 a(s) ds is monotone inreasing, then for any  2 (0; �=2) there exists b 2 (0; ) suhthat the trivial solution of (4.7) is asymptotially stable, assumingb < lim inf t!1Z tt��(t) a(s) ds � limt!1Z tt��(t) a(s) ds < :In our next example we onsider the salar equation_x(t) = � mXi=1 ai(t; xt)x(t� �i(t)); t � 0: (4.8)Theorems 3.1 and 4.1 have the following orollary.Theorem 4.2 Assume �i : [0;1) ! [0; r℄, ai : [0;1) � C ! [0;1), there exist onstants% > 0, 0 � dik < 1 (i; k = 1; : : : ;m), T � r and K > 0 suh thatZ tt��i(t) ak(s; us) ds � dik; t � T; u 2 S(%); i; k = 1; : : : ;m;where mXi;k=1dik < 1;and Z T0 mXi=1 ai(s; us) ds � K; u 2 S(%):(i) Then the trivial solution of (4.8) is stable.(ii) If we assume further that R10 Pmj=1 aj(s; us) ds = 1 for u 2 S(%), then the trivialsolution of (4.8) is asymptotially stable.(iii) If, moreover, there exists � > 0 suh thatZ ts ai(s; us) ds � �(t� s) for t � s � 0; u 2 S(%) and i = 1; : : : ;m;then the trivial solution of (4.8) is exponentially stable.15



Next we study the exponential stability of the state-dependent delay system_x(t) = B(t)x(t� �(t; xt)); t � 0; (4.9)with the assoiated initial ondition (2.3). We assume that B satis�es (H1), and � satis�es(H3) � : [0;1)�C ! [0;1) is ontinuous, and there exist % > 0 and a ontinuous funtion : [0;1)! R suh that 0 � (t) � t+ r for t � 0, lim inf t!1t� (t) > 0, and�(t; ut) � (t) for t � 0; u 2 S(%):Note that these onditions imply the loal existene of solutions of (4.9)-(2.3), but notneessary the uniqueness of the solution (see, e.g., [4℄, [10℄).Remark 2.4 yields that for every n;m 2 N there exist funtions �+n;m;��n;m : [0;1) ![0;1) satisfying limt!1jB(t)je 1m(t) Z t��(t;0)+�+n;m(t)t��(t;0)���n;m(t) jB(s)je 1m(s) ds < 1n (4.10)and 0 � ��n;m(t) � �(t;0); 0 � �+n;m(t) � (t)� �(t;0) for t � 0:With the help of these funtions we an test if the exponential stability of the trivial solutionof _x(t) = B(t)x(t� �(t;0)); t � 0 (4.11)is preserved for that of (4.9). In partiular, assume that � is suh that(H4) for every n;m 2 N there exist T = Tn;m > 0 and 0 < Æ = Æn;m � % suh that�(t;0)���n;m(t) � �(t; ut) � �(t;0)+�+n;m(t); t � T and u 2 S(Æ): (4.12)Then we have the following result.Theorem 4.3 Assume (H1), (H3) and (H4), and the trivial solution of (4.11) is exponen-tially stable. Then the trivial solution of (4.9) is exponentially stable, as well.Proof For any u 2 S(%) we assoiate equation_y(t) = B(t)y(t� �(t; ut)); t � 0 (4.13)to (4.9). The assumptions imply that there exists ~K� � 1 and � > 0 suh that thefundamental solution V of (4.11) satis�es jV (t; s)j � ~K�e��(t�s) for t � s. Fix 1� < m0,and let n0 2 N be suh that ~K�=(� � 1m0 ) < n0, and let T and Æ be the orrespondingonstants from (H4). We de�ne the funtions�+(t) � � �+n0;m0(t); t � T;(t)� �(t;0); 0 � t < T16



and ��(t) � � ��n0;m0(t); t � T;�(t;0); 0 � t < Tand the set � = f� : �(t;0) ���(t) � �(t) � �(t;0) + �+(t); t � 0g:Then �(�; u�) 2 � for u 2 S(Æ), andlimt!1jB(t)je 1m0 (t) Z t��(t;0)+�+(t)t��(t;0)���(t) jB(s)je 1m0 (s) ds < �� 1m0~K� :Hene Theorem 2.3 implies that the trivial solution of (4.13) is exponentially equi-stablewith order 1=m0 with respet to the set S(Æ). Therefore Theorem 3.1 implies that thetrivial solution of (4.9) is exponentially stable, as well. 2Note that if jB(t)je�(t) is bounded for t > 0 and for some � > 0, then, for large enoughm, �+n;m and ��n;m an be seleted to be onstants funtions. If both jB(t)j and (t) arebounded, Corollary 2.5 and the last theorem imply immediately the next orollary, whihslightly improves Theorem 2.2 of [8℄.Corollary 4.4 If jB(t)j � b0 for t � 0 and � : [0;1) � C ! [0; r℄, then Theorem 4.3remains true when assumption (H4) is replaed by(H4') for every " > 0 there exists Æ > 0 suh thatlimt!1j�(t;0) � �(t; ut)j < "; u 2 S(Æ): (4.14)We note that in [8℄ it was proved, that if we have more smoothness on the delay � ,then the exponential stability of the trivial solution of (4.11) is not only suÆient, but alsoneessary for the exponential stability of the trivial solution of (4.9).Our �nal result is formulated for the salar delay equation_x(t) = a(t)x(t� �(t; xt)); t � 0; (4.15)where the delay funtion is de�ned by the threshold relationZ tt��(t;xt) f(t; s; xt) ds = m; t � 0 (4.16)for some m > 0. Reently suh threshold-type delay equations have reeived onsiderableattention from modelling and theoretial point of view, as well (see, e.g., [1℄, [6℄, [7℄, [15℄{[18℄), but very little is known about the general stability theory of suh equations (see[15℄).Let F be a positive onstant, r � m=F , and we assume17



(A1) a : [0;1)! R is ontinuous and bounded,(A2) f : [0;1) � [�r;1)� C ! (0;1) is suh that(i) for every " > 0 there exist Æ > 0 and T > 0 suh that jf(t; s;  )� f(t; s;0)j < "for t � T , s � T � r and  2 S(Æ),(ii) f(t; s;0) � F for t � 0 and s � �r.Note that assumption (A2) (ii) implies 0 < �(t;0) � r for t � 0.Theorem 4.5 Assume (A1) and (A2), and suppose the trivial solution of_x(t) = a(t)x(t� �(t;0)); t � 0; (4.17)is exponentially stable. Then the trivial solution of (4.15) is exponentially stable, as well.Proof By Remark 4.4 it is enough to show that (4.14) holds. Assumption (A2)(i) yieldsthat for any " > 0 there exist Æ > 0 and T > 0 suh thatZ tt��(t;ut)(f(t; s;0)� ") ds � Z tt��(t;ut) f(t; s; ut) ds � Z tt��(t;ut)(f(t; s;0) + ") dsfor t > T and any u 2 S(Æ). On the other hand for suh u the de�nition of �(t; ut) impliesZ tt��(t;ut) f(t; s; ut) ds = Z tt��(t;0) f(t; s;0) ds = m;thereforeZ tt��(t;ut)(f(t; s;0)� ") ds � Z tt��(t;0) f(t; s;0) ds � Z tt��(t;ut)(f(t; s;0) + ") ds;and so �"�(t; ut) � Z t��(t;ut)t��(t;0) f(t; s;0) ds � "�(t; ut):Hene F j�(t; ut)� �(t;0)j � �����Z t��(t;ut)t��(t;0) f(t; s;0) ds����� � "�(t; ut) (4.18)for t > T and u 2 S(Æ). Assumption (A2) (i) yieldsm = Z tt��(t;ut) f(t; s; ut) ds � (F � ")�(t; ut):Therefore it follows from (4.18) thatj�(t; ut)� �(t;0)j � "m(F �m)F ; t > T; u 2 S(Æ);whih implies property (H4'). 218
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