
Parameter Estimation by Quasilinearization inFuntional Di�erential Equations withState-Dependent Delays: a Numerial StudyFeren HartungDepartment of Mathematis and Computing, University of Veszpr�emH-8201 Veszpr�em, P.O.Box 158, HungaryAbstratIn this paper we study a parameter estimation method in funtional di�erentialequations using quasilinearization tehnique. We de�ne the method and test itsappliability in numerial examples. We estimate in�nite dimensional parameterssuh as oeÆient funtions, delay funtions and initial funtions in state-dependentdelay equations.Key words: parameter estimation, state-dependent delays, quasilinearization
1 Introdution and De�nition of the ShemeEstimation of unknown parameters in various lasses of di�erential equations,and in partiular in funtional di�erential equations (FDEs), has been inves-tigated by many authors (see, e.g., [1℄, [2℄, [5℄{[7℄, [13℄, [14℄, [16℄, [17℄, [19℄,[21℄).In this paper we onsider the nonlinear state-dependent delay system_x(t) = f�t; x(t); x(t� �(t; x(t); �)); ��; t 2 [0; T ℄ (1)with the assoiated initial onditionx(t) = '(t); t 2 [�r; 0℄: (2)? This researh was partially supported by Hungarian National Foundation forSienti� Researh Grant No. T031935 and Janos Bolyai Researh Grant of theHungarian Aademy of Sienes.Preprint submitted to Elsevier Preprint 3 November 2000



Here � 2 � and � 2 � are parameters of the equation and the delay funtion,respetively, where � and � are normed linear spaes. In our examples theparameters will be funtions, i.e., the parameter spae will be in�nite dimen-sional. We will onsider the initial funtion ' as a parameter, too. We assumethat the parameters  � ('; �; �) are unknown, but there are measurementsX0; X1; : : : ; Xl of the solution at the points t0; t1; : : : ; tl. Our goal is to �nd aparameter value whih minimizes the least square ost funtionminJ() � lXi=0(x(ti; )�Xi)2 (3)over the parameter spae � (or over an admissible set of parameters). Denotethis in�nite dimensional minimization problem by P .One standard approah used in the literature to solve this minimization prob-lem redues it to solving �nite dimensional minimization problems:Step 1) First take �nite dimensional approximations of the parameters, N ,(i.e., N 2 �N � �, dim�N <1, N !  as N !1).Step 2) Consider a sequene of approximate initial value problems (IVPM;N )orresponding to a disretization of IVP (1)-(2) for some �xed parameter N 2�N with solutions yM(�; N) satisfying yM(t; N) ! x(t; ) as N;M ! 1,uniformly on ompat time intervals.Step 3) De�ne the least square minimization problems (PN;M) for eah N;M =1; 2; : : :, i.e., �nd N;M 2 �N , whih minimizes the least squares �t-to-datariterion JN;M(N ) = lXi=0 jyM(ti; N)�Xij2; N 2 �N :Step 4) Assuming that the atual parameters belong to a ompat subset of�, argue that the sequene of solutions, N;M (N;M = 1; 2; : : :), of the �nitedimensional minimization problems PN;M has a onvergent subsequene withlimit � 2 �.Step 5) Show that � is the solution of the minimization problem P .Note that Step 5 an be proved independently of the partiular hoie of theapproximation shemes used in Step 1 and Step 2. This method was suess-fully used in [1℄, [2℄, [7℄ and [21℄ using spline-based approximation shemes inStep 2. Note that these shemes have no known extension even for the simplestlasses of neutral equations. In the sequene of papers [13℄{[16℄ and [19℄ wede�ned several versions of a numerial identi�ation sheme and proved theirtheoretial onvergene for a large lass of FDEs inluding delay and neutral2



state-dependent FDEs. The methods were based on an approximation teh-nique alled approximation by equations with pieewise onstant arguments,whih was introdued for linear delay and neutral equations in [8℄ and wasgeneralized for nonlinear delay and neutral state-dependent FDEs in [9℄ and[15℄, respetively.The method of quasilinearization for parameter estimation was introdued forODEs in [3℄ and was applied to identify �nite dimensional parameters in FDEsin [5℄ and [6℄. The idea is the following: take �nite dimensional approximationof the parameters (if they are in�nite dimensional) N = ('N ; �N ; �N), andonsider the orresponding IVP_xN(t)=f�t; xN(t); xN (t� �(t; xN (t); �N)); �N�; t 2 [0; T ℄ (4)xN (t)='N(t); t 2 [�r; 0℄: (5)Minimize the least square ost funtionminJN (N) � lXi=0(xN (ti; N)�Xi)2;by a gradient-based method. Note that this requires the omputation of thederivative of JN with respet to the parameter N , i.e., we have to be able toompute the derivative of the solution xN of (4)-(5) with respet to parameters.This problem was studied, e.g., in [4℄, [10℄, [11℄, [20℄ for several lasses of state-independent delay equations, and in [12℄ and [18℄ for state-dependent FDEs.The algorithm of quasilinearization an be desribed as follows: Take a ba-sis feN1 ; : : : ; eNNg for the �nite dimensional subspae �N of �, and let  =(1; : : : ; N)T be the oordinates of the parameter N 2 �N with respet tothis basis, i.e., N = PNi=1 ieNi . Then we identify N with the olumn vetor ,and simply write xN (t; ) instead of xN (t; N). We approximate the parametervetor  by the �xed point iteration desribed by the following equations:(k+1)= g((k)); k = 0; 1; : : : ; (6)g()= � (D())�1b() (7)D()= lXi=0MT (ti; )M(ti; ) (8)b()= lXi=0MT (ti; )(xN(ti; )�Xi) (9)M(t; )= (M1(t; ); : : : ;MN(t; )) (10)Mi(t; )= �xN� (t; )eNi : (11)3



This is exatly the same sheme that was used in [5℄ and [6℄ exept thatthere the parameter spae was �nite dimensional, and the set feN1 ; : : : ; eNNgwas the anonial basis of RN . In our ase �xN� is a linear funtional de�nedon a funtion spae, e.g., on a spae of ontinuous funtions, and �xN� (t; )eNidenotes the value of the linear funtional applied to the funtion eNi . For thederivation of this method in the �nite dimensional ase we refer to [3℄.In the next setion we present several numerial examples whih will illustratethat this method works for identifying in�nite dimensional parameters, as well.2 Numerial ExamplesIn all of the numerial examples presented below we approximate the fun-tions by linear spline funtions. Let � = �1; �2; : : : ; �N = � be an equidistantmesh of an interval [�; �℄, and feN1 ; : : : ; eNNg in (11) be the \hat" funtionsorresponding to the mesh f�1; : : : ; �Ng, i.e., eNi is the linear spline funtionwith the property that eNi (�j) = 0 if i 6= j, and eNi (�i) = 1.Example 1 Consider the linear delay equation_x(t)= �(t)x(t� �(t)); t 2 [0; 2℄ (12)x(t)='(t); t 2 [�2; 0℄: (13)If we take�(t) = 8><>: 2� t2; t 2 [0; 1℄;1; t 2 [1; 2℄; �(t) = 8><>:� tt+1 ; t 2 [0; 1℄;�12 ; t 2 [1; 2℄; '(t) = t2 (14)as the parameters in (12)-(13), then the solution of the orresponding IVP isx(t) = 8>>>>><>>>>>:�15 t5 � 14 t4 + 43t3 � 4t+ 4 log(t+ 1); t 2 [0; 1℄;160 t6 � 340 t5 � 2t log(t+ 1)� 124t4 + 712t3+ 83120 t� 10324 + 4 log(2); t 2 [1; 2℄:We used this funtion to generate measurements at the points ti = 0:1i, i =0; 1; : : : ; 20. First let � and � be de�ned by (14) and onsider ' as a parameterin the equation. The derivative of the solution x(t;') of IVP (12){(13) withrespet to the initial funtion ' satis�es the variational equation4



_z(t;'; �)= �(t)z(t� �(t);'; �); t 2 [0; 2℄ (15)z(t;'; �)= �(t); t 2 [�2; 0℄; (16)where z(t;'; �) = �x�'(t;')� denotes the derivative applied to the funtion �.This IVP was solved numerially by the approximation tehnique of [8℄ toobtain the derivative values used in (11). Then we omputed one iteration of(6){(11) starting from the onstant 2 initial parameter value. The numerialresults an be seen in Figure 1 using N = 3 and N = 9 dimensional splineapproximations of the initial funtion. The solid urve represents the \true"initial funtion. We got the following values for the ost funtions: J3((0)) =J9((0)) = 57:574144, J3((1)) = 0:000204 and J9((1)) = 0:000001. In thislinear equation x(t;') depends linearly on ', therefore M(t; ) de�ned by(10)-(11) is onstant in . Hene b is linear, and D is the derivative of b.Therefore iteration (6) onverges in one step, sine it is the Newton-iterationfor �nding the zero of the linear funtion b. We an observe that the �rst stepgives a good approximation of the identi�ation problem: the shape of theinitial funtion is well approximated, and the orresponding solution �ts wellto the measurements.
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Fig. 1. Estimation of ' in IVP (12)-(13): N = 3 and N = 9.Example 2 In this example we onsider again IVP (12)-(13), but here weassume that the oeÆient funtion � is unknown, and the delay funtion �and the initial funtion ' are given by (14). We used again the measurement ofExample 1. The derivative of the solution with respet to � an be omputedby solving the IVP_z(t; �; �)= �(t)z(t� �(t); �; �) + �(t)x(t� �(t); �); t 2 [0; 2℄z(t; �; �)= 0; t � 0;where z(t; �; �) = �x�� (t; �)�. We applied method (6){(11) for the onstant 1starting value. The �rst 3 steps of the numerial results an be seen in Figure 2.We observe fast onvergene to the true parameter value. At the third step theost funtion was J3((3)) = 0:000170 and J9((3)) = 0:000001, respetively.5
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Step 3 Fig. 2. Estimation of � in IVP (12)-(13): N = 3 and N = 9:Example 3 Consider again IVP (12)-(13). Here we assume that the delayfuntion � is unknown, and the oeÆient funtion � and the initial funtion' are de�ned by (14). We used the same measurement as in Examples 1 and 2.We have to ompute the derivative of x(t; �) with respet to �. This problemwas studied for the ase when � is onstant in [10℄ and [20℄ and in [12℄ and [18℄for the ase when � is a funtion. Consider the following variational equation_z(t; �; �)=��(t) _x(t� �(t); �)�(t); t 2 [0; 2℄z(t; �; �)= 0; t 2 [�2; 0℄where z(t; �; �) is the andidate for �x�� (t; �)�. It is easy to hek that x(t; �)is ontinuously di�erentiable with respet to t for any t and �, therefore z iswell-de�ned, and Corollary 2 of [12℄ implies that �x�� (t; �) = z(t; �; �) for any �and t. We did our alulations starting from a onstant 2 delay funtion. Thenumerial results are given in Figure 3. The value of the ost funtion wasJ3((3)) = 0:000306 and J9((4)) = 0:000003, respetively.
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Fig. 3. Estimation of � in IVP (12)-(13): N = 3 and N = 9Example 4 In this example and in the following two examples we onsiderthe state-dependent delay equation 6



_x(t)= �(t)x �t� �2(t)x2(t)� ; t 2 [0; 2℄ (17)x(t)='(t); t 2 [�1:5; 0℄; (18)where we hoose�(t) = �t; �(t) = 1t + 1 and '(t) = t2 + 1 (19)as the \true parameters". Note that the state-dependent delay term is givenby �2(t)x2(t). The analyti solution of this equation is diÆult to ompute,therefore we obtained the measurements by numerially solving IVP (17){(19)at the points ti = 0:1i, i = 0; 1; : : : ; 20. First we de�ned � and � by (19), andonsider the initial funtion ' as an unknown parameter. To ompute thederivative of the solution with respet to ' we used the variational equation_z(t;'; �)= t _x t� x2(t;')(t+ 1)2 ;'! 2x(t;')(t+ 1)2 z(t;'; �)� tz t� x2(t;')(t+ 1)2 ;'; �! ; t 2 [0; 2℄; (20)z(t;'; �)= �(t); t 2 [�1:5; 0℄: (21)Let x(t;') denote the solution of (17)-(18) orresponding to initial funtion ',and let �' be the \true" initial funtion, i.e., �'(t) = t2+1. Note that the solutionx(t; �') is ontinuously di�erentiable for t � �1:5. For pieewise ontinuouslydi�erentiable initial funtions we interpret _x(t) = _'(t) for t 2 [�1:5; 0℄ as theright derivativeD+'(t). It follows from Theorem 2 of [12℄ that for any t � 0 thefuntion mappingW 1;1([�1:5; 0℄;R) into R, ' 7! x(t;') is di�erentiable at �',and the derivative is given by z(t; �'; �). However, this theorem does not yieldthat z(t;'; �) is the derivative of the solution with respet to the initial funtionat any other ', and ertainly not at the �nite dimensional approximations 'Ngenerated by the method. On the other hand, Corollary 6.3 of [18℄ yields thatthe funtion mapping W 1;1([�1:5; 0℄;R) into W 1;p([0; 2℄;R), ' 7! x(�;'), forany p satisfying 1 � p <1 is di�erentiable, and the derivative is given by(20)-(21). Despite this lak of theoretial proof of di�erentiability in the pointwisesense, iteration (6){(11) works well for this ase too. The results an be seenin Figure 4. The ost funtion at the last step was J3((2)) = 0:000006 andJ9((2)) = 0:000005, respetively. The graph orresponding to N = 9 indiatesthat the \true" initial interval, i.e., the portion of the initial interval whihis, in fat, used to ompute the solution is smaller than [�1:5; 0℄. Using thetrue parameter value we an see that it is [�1; 0℄. For more detailed disussionabout the identi�ation of the \true" initial interval we refer the reader to [17℄and [19℄. 7
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Fig. 4. Estimation of ' in IVP (17)-(18): N = 3 and N = 9.Example 5 For IVP (17)-(18) onsider � as the unknown parameter, and let� and ' be de�ned by (19). We used the same measurements as in Example 4.The derivative of the solution x(t; �) with respet to � is omputed by_z(t; �; �)=��(t) _x t� x2(t; �)(t+ 1)2 ; �! 2x(t; �)(t+ 1)2 z(t; �; �)+ �(t)z t� x2(t; �)(t+ 1)2 ; �; �!+ �(t)x t� x2(t; �)(t+ 1)2 ; �! ; t 2 [0; 2℄z(t; �; �)= 0; t 2 [�1:5; 0℄:where we use D+x(0; �) instead of _x(0; �) when x is not di�erentiable at 0. Wehave the same problem with this derivative as in Example 4, but, again, herewe an also observe good onvergene of our sheme to the true parameter(see Figure 5). We have J3((2)) = 0:001721 and J9((2)) = 0:000725.
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Fig. 5. Estimation of � in IVP (17)-(18): N = 3 and N = 9.Example 6 Finally, onsider IVP (17)-(18) with � as unknown, and let � and' be de�ned by (19). We used z(t; �; �) de�ned by_z(t; �; �)= �(t)�� _x�t� �2(t)x2(t; �); ��2�2(t)x(t; �)z(t; �; �)8



� _x�t� �2(t)x2(t; �); ��2�(t)�(t)x2(t; �)+ z�t� �2(t)x2(t; �); �; ���; t 2 [0; 2℄; (22)z(t; �; �)= 0; t � 0; (23)to generate the derivative of the solution with respet to �. In this ase amuh weaker \pointwise di�erentiability" result an be proved than that ofthe previous two ases (see Theorem 3 in [12℄), but still, the \derivative"generated by IVP (22)-(23) is good enough to produe nie approximationsof the funtion � (see Figure 6). We had J3((2)) = 0:000008 and J9((2)) =0:000018, respetively, at the last step.
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[7℄ J. A. Burns and P. D. Hirsh, A di�erene equation approah to parameterestimation for di�erential-delay equations, Appl. Math. Comp. 7 (1980) 281{311.[8℄ I. Gy}ori, On approximation of the solutions of delay di�erential equations byusing pieewise onstant arguments, Internat. J. of Math. & Math. Si., 14:1(1991) 111{126.[9℄ I. Gy}ori, F. Hartung and J. Turi, On numerial approximations for a lassof di�erential equations with time- and state-dependent delays, Appl. Math.Letters, 8:6 (1995) 19{24.[10℄ J. K. Hale, L. A. C. Ladeira, Di�erentiability with respet to delays, J. Di�.Eqns., 92 (1991) 14-26.[11℄ J. K. Hale and S. M. Verduyn Lunel, Introdution to Funtional Di�erentialEquations, Spingler-Verlag, New York, 1993.[12℄ F. Hartung, On di�erentiability of solutions with respet to parameters in alass of funtional di�erential equations, Fun. Di�. Eqns., 4:1-2 (1997) 65{79.[13℄ F. Hartung, T. L. Herdman and J. Turi, Identi�ations of parameters inhereditary systems, Proeedings of ASME Fifteenth Biennial Conferene onMehanial Vibration and Noise, Boston, Massahusetts, September 1995, DE-Vol 84-3, Vol.3, Part C, 1061{1066.[14℄ F. Hartung, T. L. Herdman and J. Turi, Identi�ations of parametersin hereditary systems: a numerial study, Proeedings of the 3rd IEEEMediterranean Symposium on New Diretions in Control and Automation,Cyprus, July 1995, 291{298.[15℄ F. Hartung, T. L. Herdman, and J. Turi, On existene, uniqueness andnumerial approximation for neutral equations with state-dependent delays,Appl. Numer. Math., 24 (1997) 393{409.[16℄ F. Hartung, T. L. Herdman, and J. Turi, Parameter identi�ation in lasses ofhereditary systems of neutral type, Appl. Math. and Comp., 89 (1998) 147{160.[17℄ F. Hartung, T. L. Herdman, and J. Turi, Parameter identi�ation in neutralfuntional di�erential equations with state-dependent delays, Nonlin. Anal., 39(2000) 305{325.[18℄ F. Hartung and J. Turi, On di�erentiability of solutions with respet toparameters in state-dependent delay equations, J. Di�. Eqns. 135:2 (1997) 192{237.[19℄ F. Hartung and J. Turi, Identi�ation of Parameters in Delay Equationswith State-Dependent Delays, J. Nonlinear Analysis: Theory, Methods andAppliations, 29:11 (1997) 1303{1318.[20℄ V.-M. Hokkanen and G. Morosanu, Di�erentiability with respet to delay,Di�erential and Integral Equations, 11:4 (1998) 589{603.[21℄ K. A. Murphy, Estimation of time- and state-dependent delays and otherparameters in funtional di�erential equations, SIAM J. Appl. Math., 50:4(1990) 972{1000. 10


