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We present our main results in Setion 2, and in Setion 3 we onsider numerial exam-ples. Example 3.3 demonstrates how our results an be used to obtain an estimate on themaximum allowable sampling interval while preserving stability of a hybrid system withfeedbak delay. Note that this study was motivated by [5℄ where stabilization of a hybridfeedbak ontrol system was studied in the ase when the plant is desribed by an ordinarydi�erential equation. In Setion 4, as an appliation of our perturbation results, we derivesuÆient onditions for asymptoti stability for lasses of linear salar and vetor delaydi�erential equations with multiple time-dependent delays.To put our urrent work into proper perspetive for the reader, in the remaining part ofthis setion, we reall some relevant developments from [6℄. Theorems E and G in Chapter34 in [6℄ give general perturbations results for the preservation of asymptoti stability ofgeneral linear delay systems. More spei�ally, Example 3 on page 397 in [6℄ addresses thequestion of the e�ets of delay perturbations on the stability of linear di�erential systems,and a suÆient ondition guaranteeing the asymptoti stability of perturbed systems isstated (see also [10℄) as follows: The trivial (x(t) = 0) solution of the perturbed system_x(t) = A0(t)x(t) + mXi=1Ai(t)x(t� ri); t � 0is uniformly asymptotially stable, if the trivial solution of the unperturbed system_y(t) = mXi=0Ai(t)y(t); t � 0is uniformly asymptotially stable, i.e., there exist onstants M > 0 and  > 0 s.t. for t � 0we have ky(t; �)k �Mk�ke�t; (1.1)where � is the given initial ondition, and if� supt�0 mXi=1 kAi(t)k � mXi=0 supt�0 kAi(t)k < M ; (1.2)where r1; r2; : : : ; rm represent onstant delay perturbations and � � maxfr1; r2; : : : ; rmg.Note that ondition (1.2) has a straightforward generalization for ontinuous time-delayperturbations, i.e., when ri = ri(t) are ontinuous funtions. In this ase in ondition (1.2)the onstant � is replaed by �� � maxi=1;:::;m supt�0 jri(t)j. It is somewhat inonvenientthat in order to apply ondition (1.2), one has to assume: i) smallness of delays for allt � 0, ii) expliit knowledge of the onstants M and .In Setion 2 below we derive a ondition for the preservation of stability for a large lassof equations assuming: i) smallness of perturbations only for suÆiently large times, (henewe allow perturbation whih are not \small" initially), ii) the knowledge of the integral of theabsolute value of the fundamental solution over [0;1). Note that for asymptotially stablesystems, it is relatively easy to obtain good estimates for the above integral, and thereforeour ondition may provide useful tool for appliations. Furthermore, in the speial ase,when the fundamental solution is positive, the ondition for preservation of stability an beformulated in terms of the oeÆient matries of the given system.1



Investigating stability properties of perturbed delay equations, unertain delay equa-tions, or robust stability of delay equations is a reasonably ative researh area. Withoutlaiming ompleteness we refer the reader to [1℄, [4℄, [6℄{[7℄, [13℄{[16℄, [21℄ and the referenestherein for related artiles on these topis.2 Main ResultsConsider the delay di�erential equation_x(t) = mXi=0Aix(t� ri � �i(t)); t � 0 (2.1)with initial ondition x(t) = '(t); �r � t � 0; (2.2)where Ai (i = 0; : : : ;m) denote onstant n � n matries, 0 � r0 � r1 � : : : � rm, ' :[�r; 0℄ ! Rn is a ontinuous funtion, and we shall assume that the pieewise ontinuousdelay perturbations, �i(�) (i = 0; : : : ;m), satisfyt� r � t� ri � �i(t) � t for t � 0 (i = 0; : : : ;m): (2.3)The solution of initial value problem (2.1)-(2.2) is an absolutely ontinuous funtion, whihsatis�es (2.2) for all t 2 [�r; 0℄, and satis�es (2.1) a.e. t � 0. Under our assumptions initialvalue problem (2.1)-(2.2) is a delay di�erential equation and has a unique solution, whihis ontinuously di�erentiable at the points where �i(t) (i = 0; : : : ;m) are ontinuous.We onsider the orresponding unperturbed system with onstant delays, i.e.,_y(t) = mXi=0Aiy(t� ri); t � 0; (2.4)and we assume that(H) the trivial solution of (2.4) is asymptotially stable.The fundamental solution of (2.4), V (t), is de�ned as the solution of the following system_V (t) = mXi=0AiV (t� ri); t � T (2.5)and V (t) = ( I; t = T;0; t < T; (2.6)where I; 0 2 Rn�n are the identity and the zero matrix, respetively, and T � 0.
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Remark 2.1 To emphasize the dependene of V (�) on T we use the notation V (t; T ). Notethat V (t; T ) = V (t�T ; 0) for t � T � 0 beause (2.4) is autonomous (see e.g. [11℄), heneZ 10 V (t; T ) dt = Z 10 V (t; 0) dt:We an rewrite (2.1) in the form_x(t) = mXi=0Aix(t� ri) + f(t); (2.7)where f(t) � mXi=0Ai�x(t� ri � �i(t))� x(t� ri)�: (2.8)In this setting (2.4) an be onsidered as the homogeneous equation orrespondingto (2.7). The variation-of-onstants formula (see, e.g., [11℄, p. 145) gives the followingexpression for the solution of initial value problem (2.1)-(2.2):x(t) = y(t) + Z tT V (t� s)f(s) ds; t � T; (2.9)where T > 0, and y is the solution of (2.4) with initial funtion y(t) = x(t) for T�r � t � Tand V (�) = V (�;T ) is the fundamental solution of (2.4).For future onveniene, we introdue the ~ operation on vetors and on matries, whihmeans taking the absolute value of the vetor or matrix omponentwise, i.e., if x =(x1; x2; : : : ; xn)T , then by de�nition ~x � (jx1j; jx2j; : : : ; jxnj)T , and similarly if A = (aij)n�n,then ~A � (jaij j)n�n. The relation � between vetors means a omponentwise omparison,i.e., (x1; x2; : : : ; xn)T � (y1; y2; : : : ; yn)T if for all the omponents xi � yi.Remark 2.2 Hypothesis (H) implies (see e.g. [11℄) that the trivial solution of (2.4) isexponentially stable, and there exist onstants K > 0 and � > 0, suh that kV (t)k � Ke��tfor t � 0, (where k � k is the matrix norm indued by the vetor norm k(x1; x2; : : : ; xn)k �maxfjx1j; jx2j; : : : ; jxnjg), and then every element of the matrixZ 10 ~V (s) dsis �nite.The next theorem shows that if the perturbations of the delays in (2.1) are small enoughfor large t, then the equation remains asymptotially stable.
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Theorem 2.3 Assume (H) and that the matrixM � Z 10 ~V (s) ds mXi=0 limt!1j�i(t)j � ~Ai! mXi=0 ~Ai! (2.10)has spetral radius less than 1, i.e., �(M) < 1. Then the trivial solution of (2.1) is asymp-totially stable.Proof: We prove the theorem in three steps. First we give an estimate of ~f(t) for larget. Next we show that ~x(t) is bounded, i.e., limt!1~x(t) is �nite, and then we show thatlimt!1~x(t) = 0, whih proves the theorem.(i) We will need an estimate of f(t) for large t. Fix a onstant T > r, then (2.3) impliesthat t� ri � �i(t) � 0 for t > T; i = 0; : : : ;m: (2.11)It is easy to see that for t > r the solution of (2.1) is pieewise ontinuously di�erentiableand we an write f(t) = mXi=0Ai Z t�ri��i(t)t�ri _x(s) ds:Using (2.1) we get f(t) = mXi=0Ai Z t�ri��i(t)t�ri mXj=0Ajx(s� rj � �j(s)) ds: (2.12)This relation and the de�nition of the ~ operation imply the inequality~f(t) � mXi=0 ~Ai ������Z t�ri��i(t)t�ri mXj=0 ~Aj~x(s� rj � �j(s)) ds������ : (2.13)Introdue the simplifying notationmax0�s�t ~x(s) � �max0�s�t jx1(s)j; max0�s�t jx2(s)j; : : : ; max0�s�t jxn(s)j�T :In addition to (2.11), we hoose T large enough that all the arguments of ~x(�) in the integralsin (2.13) are positive. Then we an estimate all ~x(�) by max0�s�t ~x(s), therefore we obtainfrom (2.13) ~f(t) �  mXi=0 j�i(t)j ~Ai! mXi=0 ~Ai! max0�s�t ~x(s); t � T: (2.14)De�ne the matrix M0 � Z 10 ~V (s) ds mXi=0 ~Ai!2: (2.15)
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(We note that aording to Remark 2.1, the matries M and M0 are independent of thehoie of T .) It is easy to see that �(M) < 1 implies that there exists Æ > 0 suh that�(M + ÆM0) < 1: (2.16)With this Æ we an hoose T suh that (2.14) holds and furthermore, we have the followingrelations j�i(t)j < limu!1j�i(u)j + Æ; t � T; i = 0; : : : ;m: (2.17)Then (2.14) yields the following estimate~f(t) �  mXi=0( limu!1j�i(u)j+ Æ) ~Ai! mXi=0 ~Ai! max0�s�t ~x(s); t � T: (2.18)(ii) Next we prove that the solution of (2.1) is bounded for all initial funtions. ChooseT > 0 suh that (2.18) holds. For suh T , formula (2.9) and standard estimates yield theinequality ~x(t) � ~y(t) + Z tT ~V (t� s) ~f(s) ds; t � T: (2.19)Combining (2.18) and (2.19) we get~x(t) � ~y(t) + Z tT ~V (t� s) mXi=0( limu!1j�i(u)j+ Æ) ~Ai! mXi=0 ~Ai! max0�u�s ~x(u) ds� ~y(t) + Z tT ~V (t� s) ds mXi=0( limu!1j�i(u)j+ Æ) ~Ai! mXi=0 ~Ai! max0�u�t ~x(u):A hange of variables gives the inequality~x(t) � ~y(t) + Z t�T0 ~V (s) ds mXi=0( limu!1j�i(u)j + Æ) ~Ai! mXi=0 ~Ai! max0�u�t ~x(u)� ~y(t) + Z 10 ~V (s) ds mXi=0( limu!1j�i(u)j+ Æ) ~Ai! mXi=0 ~Ai! max0�u�t ~x(u):Using the de�nition of M and M0, we have~x(t) � ~y(t) + (M + ÆM0) max0�u�t ~x(u)� max0�u�t ~y(u) + (M + ÆM0) max0�u�t ~x(u): (2.20)The right hand side of inequality (2.20) is monotone in t, therefore (2.20) yields thatmax0�u�t ~x(u) � max0�u�t ~y(u) + (M + ÆM0) max0�u�t ~x(u): (2.21)Rearranging (2.21) and using that y(t) is bounded by hypothesis (H), we have that thereexists a onstant vetor z � 0 suh that(I � (M + ÆM0)) max0�u�t ~x(u) � max0�u�t ~y(u) � z; t � T: (2.22)5



Inequality (2.16) and the fat that M + ÆM0 has nonnegative omponents imply that I �(M + ÆM0) is a nonsingular M-matrix, therefore an appliation of Theorem 6.2.3 in [3℄yields that I � (M + ÆM0) is a monotone matrix, henemax0�u�t ~x(u) � (I � (M + ÆM0))�1z; t � T;i.e., x(t) is bounded for t � 0.(iii) Next we show that x(t) tends to 0 as t ! 1, i.e., limt!1~x(t) = 0. Inequality (2.19)yields limt!1~x(t) � limt!1~y(t) + limt!1 Z tT ~V (t� s) ~f(s) ds:By (H) we have limt!1~y(t) = 0, henelimt!1~x(t) � limt!1 Z tT ~V (t� s) ~f(s) ds: (2.23)For any Æ > 0 we an hoose T suh that (2.17) is satis�ed and moreover, in (2.13) allarguments of ~x(�) in the integrals are large enough, i.e., we an estimate ~x(�) by limt!1~x(t)+Æ1,where 1 = (1; 1; : : : ; 1)T , and onsequently, for t � T , relation (2.13) implies the inequality~f(t) �  mXi=0( limu!1j�i(u)j + Æ) ~Ai! mXi=0 ~Ai! ( limu!1~x(u) + Æ1): (2.24)Combining (2.23) and (2.24) we havelimt!1~x(t) � limt!1 Z tT ~V (t� s) ds mXi=0( limu!1j�i(u)j+ Æ) ~Ai! mXi=0 ~Ai! ( limu!1~x(u) + Æ1)� Z 10 ~V (s) ds mXi=0( limu!1j�i(u)j+ Æ) ~Ai! mXi=0 ~Ai! ( limt!1~x(t) + Æ1): (2.25)Sine (2.25) holds for arbitrary Æ, we havelimt!1~x(t) �M limt!1~x(t): (2.26)Hene (I �M) limt!1~x(t) � 0: (2.27)By assumption �(M) < 1, M has nonnegative omponents, and therefore I � M is anonsingular M-matrix, therefore by Theorem 6.2.3 in [3℄ I �M is monotone, hene (2.27)yields that limt!1~x(t) � 0. On the other hand limt!1~x(t) � 0, therefore limt!1~x(t) = 0.The proof of the theorem is omplete.The following orollary is an easy onsequene of the theorem.6



Corollary 2.4 Let M0 be de�ned by (2.15). Iflimt!1j�i(t)j < 1�(M0) ; i = 0; : : : ;m;then the trivial solution of (2.1) is asymptotially stable.If the fundamental solution V (t) of (2.4) is nonnegative, (i.e., eah omponent vij(t) ofV (t) is nonnegative and therefore V (t) = ~V (t)), then it is easy to ompute the integral in(2.15). In partiular, we have the following result.Proposition 2.5 If the trivial solution of (2.4) is asymptotially stable, then the funda-mental solution of (2.4) satis�es mXi=0Ai!Z 10 V (s) ds = �I;where I is the identity matrix.Proof: Let V (t) be the fundamental solution of (2.4) orresponding to T = 0. By integrat-ing (2.5) from 0 to t > 0 we getV (t)� V (0) = mXi=0Ai Z t0 V (s� ri) ds:A hange of variables in the integrals and the assumed initial ondition V (t) = 0 for t < 0yield V (t)� V (0) = mXi=0Ai Z t�ri�ri V (s) ds= mXi=0Ai Z t�ri0 V (s) ds:Using V (0) = I and the fat V (t)! 0 as t!1 we obtain the equality�I =  mXi=0Ai!Z 10 V (s) ds;whih proves the proposition.Remark 2.6 In the ase when V (t) is nonnegative, and Pmi=0Ai is nonsingular, Proposi-tion 2.5 implies that M0 = � mXi=0Ai!�1  mXi=0 ~Ai!2; (2.28)therefore our stability ondition in Corollary 2.4 is given in terms of the oeÆient matries.7



To onlude the setion in the next Proposition we give a suÆient ondition for pos-itivity of the fundamental solution of (2.4). We shall need the following notations. LetAi = ha(i)jk i, V (t) = hvjk(t)i, �(i)jj � maxn�a(i)jj ; 0o, �(i)jj � maxna(i)jj ; 0o. Then we anrewrite initial value problem (2.5)-(2.6) in terms of the omponents:_vjk(t) = � mXi=0 �(i)jj vjk(t� ri) + mXi=0 nXl=1l6=j a(i)jl vlk(t� ri) + mXi=0 �(i)jj vjk(t� ri); t � 0; (2.29)vjk(t) = ( Æjk; t = 0;0; t < 0; (2.30)(where Æjk is the Kroneker-delta), j; k = 1; 2; : : : ; n. Consider the following two initialvalue problems assoiated to the negative parts of the omponents in the main diagonalsof Ai, i.e., to the \homogeneous part" of (2.29):_wjk(t) = � mXi=0 �(i)jj wjk(t� ri); t � 0; (2.31)wjk(t) = ( Æjk; t = 0;0; t < 0; (2.32)and _uj(t) = � mXi=0 �(i)jj uj(t� ri); t � 0; (2.33)uj(t) = ( 1; t = 0;0; t < 0; (2.34)j; k = 1; 2; : : : ; n. Clearly, we have that for all t � 0wjk(t) = ( 0; j 6= k;uj(t); j = k: (2.35)Proposition 2.7 Assume that(i) a(i)jk � 0 for all j; k = 1; 2; : : : ; n, j 6= k.(ii) Pmi=0 �(i)jj ri � 1e for all j = 1; 2; : : : ; n.Then vjk(t) � 0 for all t � 0 and j; k = 1; 2; : : : ; n.Proof: Let wjk(t) and uj(t) be the solutions of initial value problems (2.31)-(2.32) and(2.33)-(2.34), respetively, (j; k = 1; 2; : : : ; n). By Theorem 3.31 in [9℄ it follows thatuj(t) � 0 for all j = 1; 2; : : : ; n. (The above theorem applies for solutions orrespond-ing to ontinuous initial funtions. To use that result for IVP (2.33)-(2.34) we approximatethe initial funtion in (2.34) by appropriate ontinuous initial funtions, ulj(t), t � 0,8



l = 1; 2; : : :, and by arguing that the orresponding solutions ulj(t), t � 0 approximate uj(t)uniformly on ompat time intervals we get that the limit uj(t) = liml!1 ulj(t), is alsononnegative.) Nonnegativeness of uj(t) and relation (2.35) yield that wjk(t) � 0 for t � 0,j; k = 1; 2; : : : ; n as well. The variation-of-onstant formula implies the relationvjk(t) = wjk(t) + mXi=0 nXl=1l6=j a(i)jl Z t0 uj(t� s)vlk(s� ri) ds+ mXi=0 �(i)jj Z t0 uj(t� s)vjk(s� ri) ds:Using the nonnegativeness of wjk(t), uj(t), �(i)jj , a(i)jl (l 6= j), and (2.30) it is easy to see thenonnegativeness of vjk(t).Note that in the ODE ase, i.e., when m = 0, r0 = 0, ondition (ii) of the previ-ous proposition is satis�ed automatially, and then ondition (i) is also neessary for thepositivity of vjk(t). (See Theorem 3 in Chapter 10 of [2℄.)3 Examples and AppliationsConsider the salar version of (2.1)._x(t) = mXi=0 aix(t� ri � �i(t)); t � 0 (3.1)with initial ondition x(t) = '(t); �r � t � 0; (3.2)where ' : [�r; 0℄ ! R is a ontinuous funtion. The orresponding equation with unper-turbed delays is _y(t) = mXi=0 aiy(t� ri); t � 0: (3.3)Let v(t) be the fundamental solution of (3.3), i.e._v(t) = mXi=0 aiv(t� ri); t � 0 (3.4)v(t) = ( 1; t = 0;0; t < 0: (3.5)The salar version of Theorem 2.3 is the following.Theorem 3.1 Assume that the trivial solution of (3.3) is asymptotially stable and thefuntions �i(�) (i = 0; : : : ;m) satisfymXi=0 jaij limt!1j�i(t)j < 1(Pmi=0 jaij) R10 jv(t)j dt : (3.6)Then the trivial solution of (3.1) is asymptotially stable.9



Note that if the fundamental solution is nonnegative, then Remark 2.6 yields thatondition (3.6) is equivalent tomXi=0 jaij limt!1j�i(t)j < �Pmi=0 aiPmi=0 jaij : (3.7)In the general ase we would need an upper estimate of R10 jv(t)j dt to get an easily veri�ableondition on the allowable perturbation. Suh an estimate at this time is known (see [8℄)only for the single-delay equation of the form_x(t) = �bx(t� �); (3.8)where b > 0 and b� < �=2 (hene the trivial solution is asymptotially stable). For thisequation it an be shown (see [8℄) that there exists a unique harateristi root �0 =�0 + �0i of equation (3.8) , i.e., a solution of � = �be��� , satisfying �0 2 �0; �2� �. Then thefundamental solution of (3.8) satis�esZ 10 jv(t)j dt � 1b �20 + �20�20 : (3.9)In the general ase, the pratial importane of our result an be argued as follows:i) it is easy to obtain numerial approximation of the fundamental solution, ii) using thefat that the fundamental solution exponentially onverges to 0 if the trivial solution isasymptotially stable, it is easy to obtain good numerial approximation of the integralR10 jv(t)j dt, and iii) using the numerial value of the integral and ondition (3.6) get ap-proximate bounds for the allowable perturbations.The following examples show appliations of this method.Example 3.2 Consider the salar equation_x(t) = �x(t� r0 � �(t)): (3.10)We know, (see e.g. [11℄), that the trivial solution of_y(t) = �y(t� r0) (3.11)is asymptotially stable if and only if 0 � r0 < �=2. Also we know, (see e.g. [8℄), that thefundamental solution of (3.11) is positive if 0 � r0 � 1=e, and osillates if 1=e < r0 < �=2.Therefore if we pik e.g. r0 = 0:3, (i.e., r0 < 1=e), then an appliation of Proposition2.5 yields that R10 jv(s)j ds = 1. Therefore by using our ondition in Theorem 3.1 we havethat if limt!1j�(t)j < 1, then the trivial solution of (3.10) is asymptotially stable. On theother hand, if we pik, e.g., r0 = 1, then we obtain �0 + �0i = �0:3181 + 1:3372i as thenumerial value of the harateristi root of (3.11) satisfying �0 2 �0; �2 �. Inequality (3.9)yields the estimate R10 jv(s)j ds � 18:6687, and therefore if limt!1j�(t)j � 1=18:6687 = 0:0536,then the trivial solution of (3.10) is asymptotially stable. By numerial integration we getR10 jv(s)j ds = 2:9302, hene the allowable perturbation is limt!1j�(t)j � 0:3413 by Theorem10



3.1, whih is muh better than that of obtained by using estimate (3.9). Figure 1 and2 ontain the graph of the fundamental solution of (3.10) orresponding to r0 = 1, and�(t) = 0 and �(t) = 4t+1 + 0:3, respetively.
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Figure 2Example 3.3 Consider the one-dimensional ontrol system_x(t) = �0:1x(t) + 2x(t� 1) +Ku(t): (3.12)One an hek that for K = 0 the trivial solution of (3.12) is unstable. Let K = �2 andu(t) = x(t � 1:3) in (3.12). Numerial approximation of the fundamental solution of theorresponding equation _x(t) = �0:1x(t) + 2x(t� 1)� 2x(t� 1:3): (3.13)is shown on Figure 3. This piture indiates that the fundamental solution exponentiallytends to zero, i.e., the trivial solution of (3.13) is asymptotially stable. Therefore thefeedbak law Ku(t) = �2x(t � 1:3) stabilizes (3.12). The term t � 1:3 represents a timedelay in the ontrol mehanism. Suppose that we sample the system only at the pointsh; 2h; 3h; : : :, and use a pieewise onstant feedbak ontrol u(t) = x([(t� 1:3)=h℄h) insteadof uh(t) = x(t�1:3). Here [�℄ denotes the greatest integer funtion and h > 0 is the samplingperiod. The question we are interested in is to �nd a bound on the sampling period h, whihguarantees that the trivial solution of the resulting hybrid feedbak system_x(t) = �0:1x(t) + 2x(t� 1)� 2x�� t� 1:3h �h� : (3.14)remains asymptotially stable. The pieewise onstant delay in the last term in (3.14) anbe onsidered as a perturbation of t� 1:3 in (3.13) with�(t) = t� 1:3 � � t� 1:3h �h:Then we have that j�(t)j � h for all t � 0. Numerial approximation gives that thefundamental solution of (3.13) satis�es R10 jv(t)j dt = 10:5914. Therefore by Theorem 3.111



we have as a suÆient ondition that h < 110:5914�8:2 = 0:0115 guarantees that the trivialsolution of (3.14) is asymptotially stable.Example 3.4 Consider system_x(t) = A0x(t) +A1x(t� 1� �1(t)) +A2x(t� 1:4 � �2(t)); (3.15)where A0 =  �0:1 0:20:0 �0:3 !; A1 =  0:0 0:10:0 �0:2 ! and A2 =  �0:2 0:00:2 0:0 !:The orresponding unperturbed equation is_x(t) = A0x(t) +A1x(t� 1) +A2x(t� 1:4): (3.16)On Figure 4 we display the omponents of the numerial solutions of the fundamentalmatrix solution of (3.16). By Proposition 2.7 the fundamental solution is nonnegative, andFigure 4 shows that eah omponents of it tends to zero exponentially as t ! 1, i.e., thetrivial solution of (3.16) is asymptotially stable. Nonnegativeness of the omponents ofV (�) and Remark 2.6 yield that M0 =  0:778 1:1440:511 0:778 ! ;hene �(M0) = 1:543. By using Corollary 2.4, if the perturbations of the delays satisfylimt!1j�i(t)j < 0:648 (i = 1; 2), then the trivial solution of (3.15) is asymptotially stable.
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Figure 4Example 3.5 Consider the following system_x(t) = A0x(t) +A1x(t� 1� �1(t)) +A2x(t� 1:5 � �2(t)); (3.17)where x(t) 2 R2,A0 =  �0:1 0:3�0:5 0:0 ! ; A1 =  0:7 �0:40:5 �0:8 ! and A2 =  �1:0 0:10:1 0:4 ! :12



The orresponding unperturbed equation is_x(t) = A0x(t) +A1x(t� 1) +A2x(t� 1:5): (3.18)On Figure 5 we display the omponents of the numerial solutions of the fundamental matrixsolution. This piture indiates that every omponent funtion tends to zero exponentiallyas t ! 1, therefore the trivial solution of (3.18) is asymptotially stable. Numerialapproximation of the omponents of R10 ~V (t) dt gives the following numerial values for thematrix M0 M0 =  18:699 10:80016:441 10:641 ! ;therefore �(M0) = 28:591. Corollary 2.4 implies that if the perturbations of the delayssatisfy limt!1j�i(t)j < 0:035 (i = 1; 2), then the trivial solution of (3.17) is asymptotiallystable. On Figure 6 we present the omponents of the solution of (3.17) orresponding to�1(t) = 0 and �2(t) = 5t+1 + 0:03 and the initial ondition x(0) = I, and x(t) = 0, t < 0.
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Figure 64 Stability resultsIn this setion we show an appliation of our perturbation theorem to obtain stabilityonditions for vetor and salar linear delay equations with multiple delays.Consider �rst a vetor equation of the form_x(t) = mXi=0Aix(t� �i(t)); t � 0; (4.1)and the orresponding ordinary di�erential equation_y(t) =  mXi=0Ai! y(t); t � 0; (4.2)where x(�); y(�) 2 Rn, and �i(t) � 0 are pieewise ontinuous, bounded funtions. We anthink of �i(t) (i = 0; 1; : : : ;m) in (4.1) as perturbations of the (zero) delays in (4.2). Reall13



that if all the eigenvalues of the matrix Pmi=0Ai have negative real parts, then the trivialsolution of (4.2) is asymptotially stable. Let Ai = �a(i)jk�. By Theorem 3 in Chapter 10 of[2℄ it follows that the fundamental solution of (4.2) is positive if and only if Pmi=0 a(i)jk � 0,for j; k = 1; 2; : : : ; n, j 6= k. Assuming the asymptoti stability and the positiveness of thefundamental solution of (4.2) we an apply Theorem 2.3 and Proposition 2.5 and get thatthe trivial solution of (4.1) is asymptotially stable, if the matrixM � � mXi=0Ai!�1  mXi=0 limt!1�i(t) ~Ai! mXi=0 ~Ai!has spetral radius less than 1. In the sequel we shall give ondition yielding that kMk < 1,whih learly implies that �(M) < 1. Here k � k is the matrix norm generated by either thek � k1 or the k � k1 vetor norm. Note that ondition kMk < 1 is satis�ed if we require thatmXi=0 limt!1�i(t)kAik < 1k (Pmi=0Ai)�1 k � kPmi=0 ~Aikbe satis�ed. Here we used that kAik = k ~Aik, andkMk � � mXi=0Ai!�1  mXi=0 limt!1�i(t) ~Ai  mXi=0 ~Ai�  mXi=0Ai!�1 mXi=0 limt!1�i(t)kAik! mXi=0 ~Ai ;and have proved the following proposition.Proposition 4.1 Assume that(i) the matrix mXi=0Ai has eigenvalues only with negative real parts,(ii) Pmi=0 a(i)jk � 0 for j; k = 1; 2; : : : ; n, j 6= k, and(iii) mXi=0 limt!1�i(t)kAik < 1k (Pmi=0Ai)�1 k � kPmi=0 ~Aik ,then the trivial solution of (4.1) is asymptotially stable.Next we onsider the salar linear delay equations with multiple delays of the form_x(t) = � mXi=0 aix(t� �i(t)); t � 0; (4.3)14



and the orresponding equation_y(t) = � mXi=0 ai! y(t); t � 0: (4.4)The salar version of Proposition 4.1 an be stated as follows:Proposition 4.2 Assume that(i) mXi=0 ai > 0, and(ii) mXi=0 jaij limt!1�i(t) < Pmi=0 aiPmi=0 jaij ,then the trivial solution of (4.3) is asymptotially stable.For the ase when eah ai > 0 we have the following result.Corollary 4.3 Assume that ai > 0 for i = 0; 1; : : : ;m. Then, ifmXi=0 ai limt!1�i(t) < 1; (4.5)then the trivial solution of (4.3) is asymptotially stable.In the rest of this setion we assume that ai > 0 for all i = 0; 1; : : : ;m. In this speialase, by imposing additional assumptions, we an obtain larger bound for the \averagedelay" in (4.5) whih guarantees the asymptoti stability of the trivial solution of (4.3).Rewrite (4.3) in the form_x(t) = � mXi=0 aix(t� � � (�i(t)� �)); t � 0; (4.6)and onsider the equation _y(t) = � mXi=0 ai! y(t� �); t � 0: (4.7)Equation (4.7) is a single delay equation, whih is asymptotially stable if and only ifPmi=0 ai > 0 and �Pmi=0 ai < �=2. We have assumed that eah ai � 0 therefore the �rstondition is satis�ed, and let � = �ePmi=0 ai ;where 0 � � � 1. With this hoie of � equation (4.7) is asymptotially stable, andmoreover, the fundamental solution of (4.7) is positive. We onsider equation (4.6) as anequation obtained by perturbing the delay � in (4.7) with �i(t) = �i(t) � � . By Theorem15



3.1 and the disussion after the theorem, the trivial solution of (4.6) (therefore the trivialsolution of (4.3) as well) is asymptotially stable if (3.7) holds. Using the nonnegativenessof eah ai, and that (4.6) has the form (3.1) with ai replaed by �ai, we get that for ourequation this ondition is equivalent tomXi=0 ai limt!1 ������i(t)� �ePmj=0 aj ����� < 1: (4.8)To further simplify this ondition we onsider speial ases. It is easy to see thatlimt!1 j�i(t)� � j = 8<: limt!1�i(t)� �; if �i(t) � � for t � T;� � limt!1�i(t); if �i(t) � � for t � T:First assume that we an selet 0 � � � 1 suh that for some T � 0 the delays satisfy�i(t) � �ePmj=0 aj ; t � T; i = 0; 1; : : : ;m: (4.9)Then ondition (4.8) an be rewritten asmXi=0 ai limt!1�i(t) < 1 + �e : (4.10)Note that � = 0 satis�es (4.9), therefore we an always use ondition (4.10) with � = 0,and we get the same ondition as in Corollary 4.3. On the other hand, if limt!1�i(t) > 0 forall i = 0; 1; : : : ;m, then there exists a positive � satisfying (4.9), and we get a larger boundin (4.10) than that in Corollary 4.3.Next onsider the ase when there exists 0 < � � 1 suh that for some T � 0�i(t) � �ePmj=0 aj ; t � T; i = 0; 1; : : : ;m:Then we also have that�i(t) � 1ePmj=0 aj ; t � T; i = 0; 1; : : : ;m;and it is easy to see that (4.8) is always satis�ed.We summarize our results in the next proposition.Proposition 4.4 Assume that ai � 0, i = 0; 1; : : : ;m. Then either one of the followingtwo onditions is suÆient for the asymptoti stability of the trivial solution of (4.3).(i) There exist T � 0 and 0 � � � 1 suh that(a) �i(t) � �ePmj=0 aj , t > T , i = 0; 1; : : : ;m, and16
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